1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/interrupt.h> 41 #include <linux/tick.h> 42 #include <linux/seq_file.h> 43 #include <linux/err.h> 44 #include <linux/debugobjects.h> 45 #include <linux/sched/signal.h> 46 #include <linux/sched/sysctl.h> 47 #include <linux/sched/rt.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/nohz.h> 50 #include <linux/sched/debug.h> 51 #include <linux/timer.h> 52 #include <linux/freezer.h> 53 #include <linux/compat.h> 54 55 #include <linux/uaccess.h> 56 57 #include <trace/events/timer.h> 58 59 #include "tick-internal.h" 60 61 /* 62 * Masks for selecting the soft and hard context timers from 63 * cpu_base->active 64 */ 65 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 66 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 67 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 68 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 69 70 /* 71 * The timer bases: 72 * 73 * There are more clockids than hrtimer bases. Thus, we index 74 * into the timer bases by the hrtimer_base_type enum. When trying 75 * to reach a base using a clockid, hrtimer_clockid_to_base() 76 * is used to convert from clockid to the proper hrtimer_base_type. 77 */ 78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 79 { 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 81 .clock_base = 82 { 83 { 84 .index = HRTIMER_BASE_MONOTONIC, 85 .clockid = CLOCK_MONOTONIC, 86 .get_time = &ktime_get, 87 }, 88 { 89 .index = HRTIMER_BASE_REALTIME, 90 .clockid = CLOCK_REALTIME, 91 .get_time = &ktime_get_real, 92 }, 93 { 94 .index = HRTIMER_BASE_BOOTTIME, 95 .clockid = CLOCK_BOOTTIME, 96 .get_time = &ktime_get_boottime, 97 }, 98 { 99 .index = HRTIMER_BASE_TAI, 100 .clockid = CLOCK_TAI, 101 .get_time = &ktime_get_clocktai, 102 }, 103 { 104 .index = HRTIMER_BASE_MONOTONIC_SOFT, 105 .clockid = CLOCK_MONOTONIC, 106 .get_time = &ktime_get, 107 }, 108 { 109 .index = HRTIMER_BASE_REALTIME_SOFT, 110 .clockid = CLOCK_REALTIME, 111 .get_time = &ktime_get_real, 112 }, 113 { 114 .index = HRTIMER_BASE_BOOTTIME_SOFT, 115 .clockid = CLOCK_BOOTTIME, 116 .get_time = &ktime_get_boottime, 117 }, 118 { 119 .index = HRTIMER_BASE_TAI_SOFT, 120 .clockid = CLOCK_TAI, 121 .get_time = &ktime_get_clocktai, 122 }, 123 } 124 }; 125 126 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 127 /* Make sure we catch unsupported clockids */ 128 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 129 130 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 131 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 132 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 133 [CLOCK_TAI] = HRTIMER_BASE_TAI, 134 }; 135 136 /* 137 * Functions and macros which are different for UP/SMP systems are kept in a 138 * single place 139 */ 140 #ifdef CONFIG_SMP 141 142 /* 143 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 144 * such that hrtimer_callback_running() can unconditionally dereference 145 * timer->base->cpu_base 146 */ 147 static struct hrtimer_cpu_base migration_cpu_base = { 148 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 149 }; 150 151 #define migration_base migration_cpu_base.clock_base[0] 152 153 /* 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 155 * means that all timers which are tied to this base via timer->base are 156 * locked, and the base itself is locked too. 157 * 158 * So __run_timers/migrate_timers can safely modify all timers which could 159 * be found on the lists/queues. 160 * 161 * When the timer's base is locked, and the timer removed from list, it is 162 * possible to set timer->base = &migration_base and drop the lock: the timer 163 * remains locked. 164 */ 165 static 166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 167 unsigned long *flags) 168 { 169 struct hrtimer_clock_base *base; 170 171 for (;;) { 172 base = timer->base; 173 if (likely(base != &migration_base)) { 174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 175 if (likely(base == timer->base)) 176 return base; 177 /* The timer has migrated to another CPU: */ 178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 179 } 180 cpu_relax(); 181 } 182 } 183 184 /* 185 * We do not migrate the timer when it is expiring before the next 186 * event on the target cpu. When high resolution is enabled, we cannot 187 * reprogram the target cpu hardware and we would cause it to fire 188 * late. To keep it simple, we handle the high resolution enabled and 189 * disabled case similar. 190 * 191 * Called with cpu_base->lock of target cpu held. 192 */ 193 static int 194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 195 { 196 ktime_t expires; 197 198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 199 return expires < new_base->cpu_base->expires_next; 200 } 201 202 static inline 203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 204 int pinned) 205 { 206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 207 if (static_branch_likely(&timers_migration_enabled) && !pinned) 208 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 209 #endif 210 return base; 211 } 212 213 /* 214 * We switch the timer base to a power-optimized selected CPU target, 215 * if: 216 * - NO_HZ_COMMON is enabled 217 * - timer migration is enabled 218 * - the timer callback is not running 219 * - the timer is not the first expiring timer on the new target 220 * 221 * If one of the above requirements is not fulfilled we move the timer 222 * to the current CPU or leave it on the previously assigned CPU if 223 * the timer callback is currently running. 224 */ 225 static inline struct hrtimer_clock_base * 226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 227 int pinned) 228 { 229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 230 struct hrtimer_clock_base *new_base; 231 int basenum = base->index; 232 233 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 234 new_cpu_base = get_target_base(this_cpu_base, pinned); 235 again: 236 new_base = &new_cpu_base->clock_base[basenum]; 237 238 if (base != new_base) { 239 /* 240 * We are trying to move timer to new_base. 241 * However we can't change timer's base while it is running, 242 * so we keep it on the same CPU. No hassle vs. reprogramming 243 * the event source in the high resolution case. The softirq 244 * code will take care of this when the timer function has 245 * completed. There is no conflict as we hold the lock until 246 * the timer is enqueued. 247 */ 248 if (unlikely(hrtimer_callback_running(timer))) 249 return base; 250 251 /* See the comment in lock_hrtimer_base() */ 252 timer->base = &migration_base; 253 raw_spin_unlock(&base->cpu_base->lock); 254 raw_spin_lock(&new_base->cpu_base->lock); 255 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 raw_spin_unlock(&new_base->cpu_base->lock); 259 raw_spin_lock(&base->cpu_base->lock); 260 new_cpu_base = this_cpu_base; 261 timer->base = base; 262 goto again; 263 } 264 timer->base = new_base; 265 } else { 266 if (new_cpu_base != this_cpu_base && 267 hrtimer_check_target(timer, new_base)) { 268 new_cpu_base = this_cpu_base; 269 goto again; 270 } 271 } 272 return new_base; 273 } 274 275 #else /* CONFIG_SMP */ 276 277 static inline struct hrtimer_clock_base * 278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 279 { 280 struct hrtimer_clock_base *base = timer->base; 281 282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 283 284 return base; 285 } 286 287 # define switch_hrtimer_base(t, b, p) (b) 288 289 #endif /* !CONFIG_SMP */ 290 291 /* 292 * Functions for the union type storage format of ktime_t which are 293 * too large for inlining: 294 */ 295 #if BITS_PER_LONG < 64 296 /* 297 * Divide a ktime value by a nanosecond value 298 */ 299 s64 __ktime_divns(const ktime_t kt, s64 div) 300 { 301 int sft = 0; 302 s64 dclc; 303 u64 tmp; 304 305 dclc = ktime_to_ns(kt); 306 tmp = dclc < 0 ? -dclc : dclc; 307 308 /* Make sure the divisor is less than 2^32: */ 309 while (div >> 32) { 310 sft++; 311 div >>= 1; 312 } 313 tmp >>= sft; 314 do_div(tmp, (unsigned long) div); 315 return dclc < 0 ? -tmp : tmp; 316 } 317 EXPORT_SYMBOL_GPL(__ktime_divns); 318 #endif /* BITS_PER_LONG >= 64 */ 319 320 /* 321 * Add two ktime values and do a safety check for overflow: 322 */ 323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 324 { 325 ktime_t res = ktime_add_unsafe(lhs, rhs); 326 327 /* 328 * We use KTIME_SEC_MAX here, the maximum timeout which we can 329 * return to user space in a timespec: 330 */ 331 if (res < 0 || res < lhs || res < rhs) 332 res = ktime_set(KTIME_SEC_MAX, 0); 333 334 return res; 335 } 336 337 EXPORT_SYMBOL_GPL(ktime_add_safe); 338 339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 340 341 static struct debug_obj_descr hrtimer_debug_descr; 342 343 static void *hrtimer_debug_hint(void *addr) 344 { 345 return ((struct hrtimer *) addr)->function; 346 } 347 348 /* 349 * fixup_init is called when: 350 * - an active object is initialized 351 */ 352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 353 { 354 struct hrtimer *timer = addr; 355 356 switch (state) { 357 case ODEBUG_STATE_ACTIVE: 358 hrtimer_cancel(timer); 359 debug_object_init(timer, &hrtimer_debug_descr); 360 return true; 361 default: 362 return false; 363 } 364 } 365 366 /* 367 * fixup_activate is called when: 368 * - an active object is activated 369 * - an unknown non-static object is activated 370 */ 371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 372 { 373 switch (state) { 374 case ODEBUG_STATE_ACTIVE: 375 WARN_ON(1); 376 377 default: 378 return false; 379 } 380 } 381 382 /* 383 * fixup_free is called when: 384 * - an active object is freed 385 */ 386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 387 { 388 struct hrtimer *timer = addr; 389 390 switch (state) { 391 case ODEBUG_STATE_ACTIVE: 392 hrtimer_cancel(timer); 393 debug_object_free(timer, &hrtimer_debug_descr); 394 return true; 395 default: 396 return false; 397 } 398 } 399 400 static struct debug_obj_descr hrtimer_debug_descr = { 401 .name = "hrtimer", 402 .debug_hint = hrtimer_debug_hint, 403 .fixup_init = hrtimer_fixup_init, 404 .fixup_activate = hrtimer_fixup_activate, 405 .fixup_free = hrtimer_fixup_free, 406 }; 407 408 static inline void debug_hrtimer_init(struct hrtimer *timer) 409 { 410 debug_object_init(timer, &hrtimer_debug_descr); 411 } 412 413 static inline void debug_hrtimer_activate(struct hrtimer *timer, 414 enum hrtimer_mode mode) 415 { 416 debug_object_activate(timer, &hrtimer_debug_descr); 417 } 418 419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 420 { 421 debug_object_deactivate(timer, &hrtimer_debug_descr); 422 } 423 424 static inline void debug_hrtimer_free(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 430 enum hrtimer_mode mode); 431 432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 433 enum hrtimer_mode mode) 434 { 435 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 436 __hrtimer_init(timer, clock_id, mode); 437 } 438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 439 440 void destroy_hrtimer_on_stack(struct hrtimer *timer) 441 { 442 debug_object_free(timer, &hrtimer_debug_descr); 443 } 444 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 445 446 #else 447 448 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 449 static inline void debug_hrtimer_activate(struct hrtimer *timer, 450 enum hrtimer_mode mode) { } 451 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 452 #endif 453 454 static inline void 455 debug_init(struct hrtimer *timer, clockid_t clockid, 456 enum hrtimer_mode mode) 457 { 458 debug_hrtimer_init(timer); 459 trace_hrtimer_init(timer, clockid, mode); 460 } 461 462 static inline void debug_activate(struct hrtimer *timer, 463 enum hrtimer_mode mode) 464 { 465 debug_hrtimer_activate(timer, mode); 466 trace_hrtimer_start(timer, mode); 467 } 468 469 static inline void debug_deactivate(struct hrtimer *timer) 470 { 471 debug_hrtimer_deactivate(timer); 472 trace_hrtimer_cancel(timer); 473 } 474 475 static struct hrtimer_clock_base * 476 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 477 { 478 unsigned int idx; 479 480 if (!*active) 481 return NULL; 482 483 idx = __ffs(*active); 484 *active &= ~(1U << idx); 485 486 return &cpu_base->clock_base[idx]; 487 } 488 489 #define for_each_active_base(base, cpu_base, active) \ 490 while ((base = __next_base((cpu_base), &(active)))) 491 492 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 493 unsigned int active, 494 ktime_t expires_next) 495 { 496 struct hrtimer_clock_base *base; 497 ktime_t expires; 498 499 for_each_active_base(base, cpu_base, active) { 500 struct timerqueue_node *next; 501 struct hrtimer *timer; 502 503 next = timerqueue_getnext(&base->active); 504 timer = container_of(next, struct hrtimer, node); 505 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 506 if (expires < expires_next) { 507 expires_next = expires; 508 if (timer->is_soft) 509 cpu_base->softirq_next_timer = timer; 510 else 511 cpu_base->next_timer = timer; 512 } 513 } 514 /* 515 * clock_was_set() might have changed base->offset of any of 516 * the clock bases so the result might be negative. Fix it up 517 * to prevent a false positive in clockevents_program_event(). 518 */ 519 if (expires_next < 0) 520 expires_next = 0; 521 return expires_next; 522 } 523 524 /* 525 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 526 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 527 * 528 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 529 * those timers will get run whenever the softirq gets handled, at the end of 530 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 531 * 532 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 533 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 534 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 535 * 536 * @active_mask must be one of: 537 * - HRTIMER_ACTIVE_ALL, 538 * - HRTIMER_ACTIVE_SOFT, or 539 * - HRTIMER_ACTIVE_HARD. 540 */ 541 static ktime_t 542 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 543 { 544 unsigned int active; 545 struct hrtimer *next_timer = NULL; 546 ktime_t expires_next = KTIME_MAX; 547 548 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 549 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 550 cpu_base->softirq_next_timer = NULL; 551 expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX); 552 553 next_timer = cpu_base->softirq_next_timer; 554 } 555 556 if (active_mask & HRTIMER_ACTIVE_HARD) { 557 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 558 cpu_base->next_timer = next_timer; 559 expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next); 560 } 561 562 return expires_next; 563 } 564 565 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 566 { 567 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 568 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 569 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 570 571 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 572 offs_real, offs_boot, offs_tai); 573 574 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 575 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 576 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 577 578 return now; 579 } 580 581 /* 582 * Is the high resolution mode active ? 583 */ 584 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 585 { 586 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 587 cpu_base->hres_active : 0; 588 } 589 590 static inline int hrtimer_hres_active(void) 591 { 592 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 593 } 594 595 /* 596 * Reprogram the event source with checking both queues for the 597 * next event 598 * Called with interrupts disabled and base->lock held 599 */ 600 static void 601 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 602 { 603 ktime_t expires_next; 604 605 /* 606 * Find the current next expiration time. 607 */ 608 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 609 610 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 611 /* 612 * When the softirq is activated, hrtimer has to be 613 * programmed with the first hard hrtimer because soft 614 * timer interrupt could occur too late. 615 */ 616 if (cpu_base->softirq_activated) 617 expires_next = __hrtimer_get_next_event(cpu_base, 618 HRTIMER_ACTIVE_HARD); 619 else 620 cpu_base->softirq_expires_next = expires_next; 621 } 622 623 if (skip_equal && expires_next == cpu_base->expires_next) 624 return; 625 626 cpu_base->expires_next = expires_next; 627 628 /* 629 * If hres is not active, hardware does not have to be 630 * reprogrammed yet. 631 * 632 * If a hang was detected in the last timer interrupt then we 633 * leave the hang delay active in the hardware. We want the 634 * system to make progress. That also prevents the following 635 * scenario: 636 * T1 expires 50ms from now 637 * T2 expires 5s from now 638 * 639 * T1 is removed, so this code is called and would reprogram 640 * the hardware to 5s from now. Any hrtimer_start after that 641 * will not reprogram the hardware due to hang_detected being 642 * set. So we'd effectivly block all timers until the T2 event 643 * fires. 644 */ 645 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 646 return; 647 648 tick_program_event(cpu_base->expires_next, 1); 649 } 650 651 /* High resolution timer related functions */ 652 #ifdef CONFIG_HIGH_RES_TIMERS 653 654 /* 655 * High resolution timer enabled ? 656 */ 657 static bool hrtimer_hres_enabled __read_mostly = true; 658 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 659 EXPORT_SYMBOL_GPL(hrtimer_resolution); 660 661 /* 662 * Enable / Disable high resolution mode 663 */ 664 static int __init setup_hrtimer_hres(char *str) 665 { 666 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 667 } 668 669 __setup("highres=", setup_hrtimer_hres); 670 671 /* 672 * hrtimer_high_res_enabled - query, if the highres mode is enabled 673 */ 674 static inline int hrtimer_is_hres_enabled(void) 675 { 676 return hrtimer_hres_enabled; 677 } 678 679 /* 680 * Retrigger next event is called after clock was set 681 * 682 * Called with interrupts disabled via on_each_cpu() 683 */ 684 static void retrigger_next_event(void *arg) 685 { 686 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 687 688 if (!__hrtimer_hres_active(base)) 689 return; 690 691 raw_spin_lock(&base->lock); 692 hrtimer_update_base(base); 693 hrtimer_force_reprogram(base, 0); 694 raw_spin_unlock(&base->lock); 695 } 696 697 /* 698 * Switch to high resolution mode 699 */ 700 static void hrtimer_switch_to_hres(void) 701 { 702 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 703 704 if (tick_init_highres()) { 705 printk(KERN_WARNING "Could not switch to high resolution " 706 "mode on CPU %d\n", base->cpu); 707 return; 708 } 709 base->hres_active = 1; 710 hrtimer_resolution = HIGH_RES_NSEC; 711 712 tick_setup_sched_timer(); 713 /* "Retrigger" the interrupt to get things going */ 714 retrigger_next_event(NULL); 715 } 716 717 static void clock_was_set_work(struct work_struct *work) 718 { 719 clock_was_set(); 720 } 721 722 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 723 724 /* 725 * Called from timekeeping and resume code to reprogram the hrtimer 726 * interrupt device on all cpus. 727 */ 728 void clock_was_set_delayed(void) 729 { 730 schedule_work(&hrtimer_work); 731 } 732 733 #else 734 735 static inline int hrtimer_is_hres_enabled(void) { return 0; } 736 static inline void hrtimer_switch_to_hres(void) { } 737 static inline void retrigger_next_event(void *arg) { } 738 739 #endif /* CONFIG_HIGH_RES_TIMERS */ 740 741 /* 742 * When a timer is enqueued and expires earlier than the already enqueued 743 * timers, we have to check, whether it expires earlier than the timer for 744 * which the clock event device was armed. 745 * 746 * Called with interrupts disabled and base->cpu_base.lock held 747 */ 748 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 749 { 750 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 751 struct hrtimer_clock_base *base = timer->base; 752 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 753 754 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 755 756 /* 757 * CLOCK_REALTIME timer might be requested with an absolute 758 * expiry time which is less than base->offset. Set it to 0. 759 */ 760 if (expires < 0) 761 expires = 0; 762 763 if (timer->is_soft) { 764 /* 765 * soft hrtimer could be started on a remote CPU. In this 766 * case softirq_expires_next needs to be updated on the 767 * remote CPU. The soft hrtimer will not expire before the 768 * first hard hrtimer on the remote CPU - 769 * hrtimer_check_target() prevents this case. 770 */ 771 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 772 773 if (timer_cpu_base->softirq_activated) 774 return; 775 776 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 777 return; 778 779 timer_cpu_base->softirq_next_timer = timer; 780 timer_cpu_base->softirq_expires_next = expires; 781 782 if (!ktime_before(expires, timer_cpu_base->expires_next) || 783 !reprogram) 784 return; 785 } 786 787 /* 788 * If the timer is not on the current cpu, we cannot reprogram 789 * the other cpus clock event device. 790 */ 791 if (base->cpu_base != cpu_base) 792 return; 793 794 /* 795 * If the hrtimer interrupt is running, then it will 796 * reevaluate the clock bases and reprogram the clock event 797 * device. The callbacks are always executed in hard interrupt 798 * context so we don't need an extra check for a running 799 * callback. 800 */ 801 if (cpu_base->in_hrtirq) 802 return; 803 804 if (expires >= cpu_base->expires_next) 805 return; 806 807 /* Update the pointer to the next expiring timer */ 808 cpu_base->next_timer = timer; 809 cpu_base->expires_next = expires; 810 811 /* 812 * If hres is not active, hardware does not have to be 813 * programmed yet. 814 * 815 * If a hang was detected in the last timer interrupt then we 816 * do not schedule a timer which is earlier than the expiry 817 * which we enforced in the hang detection. We want the system 818 * to make progress. 819 */ 820 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 821 return; 822 823 /* 824 * Program the timer hardware. We enforce the expiry for 825 * events which are already in the past. 826 */ 827 tick_program_event(expires, 1); 828 } 829 830 /* 831 * Clock realtime was set 832 * 833 * Change the offset of the realtime clock vs. the monotonic 834 * clock. 835 * 836 * We might have to reprogram the high resolution timer interrupt. On 837 * SMP we call the architecture specific code to retrigger _all_ high 838 * resolution timer interrupts. On UP we just disable interrupts and 839 * call the high resolution interrupt code. 840 */ 841 void clock_was_set(void) 842 { 843 #ifdef CONFIG_HIGH_RES_TIMERS 844 /* Retrigger the CPU local events everywhere */ 845 on_each_cpu(retrigger_next_event, NULL, 1); 846 #endif 847 timerfd_clock_was_set(); 848 } 849 850 /* 851 * During resume we might have to reprogram the high resolution timer 852 * interrupt on all online CPUs. However, all other CPUs will be 853 * stopped with IRQs interrupts disabled so the clock_was_set() call 854 * must be deferred. 855 */ 856 void hrtimers_resume(void) 857 { 858 lockdep_assert_irqs_disabled(); 859 /* Retrigger on the local CPU */ 860 retrigger_next_event(NULL); 861 /* And schedule a retrigger for all others */ 862 clock_was_set_delayed(); 863 } 864 865 /* 866 * Counterpart to lock_hrtimer_base above: 867 */ 868 static inline 869 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 870 { 871 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 872 } 873 874 /** 875 * hrtimer_forward - forward the timer expiry 876 * @timer: hrtimer to forward 877 * @now: forward past this time 878 * @interval: the interval to forward 879 * 880 * Forward the timer expiry so it will expire in the future. 881 * Returns the number of overruns. 882 * 883 * Can be safely called from the callback function of @timer. If 884 * called from other contexts @timer must neither be enqueued nor 885 * running the callback and the caller needs to take care of 886 * serialization. 887 * 888 * Note: This only updates the timer expiry value and does not requeue 889 * the timer. 890 */ 891 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 892 { 893 u64 orun = 1; 894 ktime_t delta; 895 896 delta = ktime_sub(now, hrtimer_get_expires(timer)); 897 898 if (delta < 0) 899 return 0; 900 901 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 902 return 0; 903 904 if (interval < hrtimer_resolution) 905 interval = hrtimer_resolution; 906 907 if (unlikely(delta >= interval)) { 908 s64 incr = ktime_to_ns(interval); 909 910 orun = ktime_divns(delta, incr); 911 hrtimer_add_expires_ns(timer, incr * orun); 912 if (hrtimer_get_expires_tv64(timer) > now) 913 return orun; 914 /* 915 * This (and the ktime_add() below) is the 916 * correction for exact: 917 */ 918 orun++; 919 } 920 hrtimer_add_expires(timer, interval); 921 922 return orun; 923 } 924 EXPORT_SYMBOL_GPL(hrtimer_forward); 925 926 /* 927 * enqueue_hrtimer - internal function to (re)start a timer 928 * 929 * The timer is inserted in expiry order. Insertion into the 930 * red black tree is O(log(n)). Must hold the base lock. 931 * 932 * Returns 1 when the new timer is the leftmost timer in the tree. 933 */ 934 static int enqueue_hrtimer(struct hrtimer *timer, 935 struct hrtimer_clock_base *base, 936 enum hrtimer_mode mode) 937 { 938 debug_activate(timer, mode); 939 940 base->cpu_base->active_bases |= 1 << base->index; 941 942 timer->state = HRTIMER_STATE_ENQUEUED; 943 944 return timerqueue_add(&base->active, &timer->node); 945 } 946 947 /* 948 * __remove_hrtimer - internal function to remove a timer 949 * 950 * Caller must hold the base lock. 951 * 952 * High resolution timer mode reprograms the clock event device when the 953 * timer is the one which expires next. The caller can disable this by setting 954 * reprogram to zero. This is useful, when the context does a reprogramming 955 * anyway (e.g. timer interrupt) 956 */ 957 static void __remove_hrtimer(struct hrtimer *timer, 958 struct hrtimer_clock_base *base, 959 u8 newstate, int reprogram) 960 { 961 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 962 u8 state = timer->state; 963 964 timer->state = newstate; 965 if (!(state & HRTIMER_STATE_ENQUEUED)) 966 return; 967 968 if (!timerqueue_del(&base->active, &timer->node)) 969 cpu_base->active_bases &= ~(1 << base->index); 970 971 /* 972 * Note: If reprogram is false we do not update 973 * cpu_base->next_timer. This happens when we remove the first 974 * timer on a remote cpu. No harm as we never dereference 975 * cpu_base->next_timer. So the worst thing what can happen is 976 * an superflous call to hrtimer_force_reprogram() on the 977 * remote cpu later on if the same timer gets enqueued again. 978 */ 979 if (reprogram && timer == cpu_base->next_timer) 980 hrtimer_force_reprogram(cpu_base, 1); 981 } 982 983 /* 984 * remove hrtimer, called with base lock held 985 */ 986 static inline int 987 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 988 { 989 if (hrtimer_is_queued(timer)) { 990 u8 state = timer->state; 991 int reprogram; 992 993 /* 994 * Remove the timer and force reprogramming when high 995 * resolution mode is active and the timer is on the current 996 * CPU. If we remove a timer on another CPU, reprogramming is 997 * skipped. The interrupt event on this CPU is fired and 998 * reprogramming happens in the interrupt handler. This is a 999 * rare case and less expensive than a smp call. 1000 */ 1001 debug_deactivate(timer); 1002 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1003 1004 if (!restart) 1005 state = HRTIMER_STATE_INACTIVE; 1006 1007 __remove_hrtimer(timer, base, state, reprogram); 1008 return 1; 1009 } 1010 return 0; 1011 } 1012 1013 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1014 const enum hrtimer_mode mode) 1015 { 1016 #ifdef CONFIG_TIME_LOW_RES 1017 /* 1018 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1019 * granular time values. For relative timers we add hrtimer_resolution 1020 * (i.e. one jiffie) to prevent short timeouts. 1021 */ 1022 timer->is_rel = mode & HRTIMER_MODE_REL; 1023 if (timer->is_rel) 1024 tim = ktime_add_safe(tim, hrtimer_resolution); 1025 #endif 1026 return tim; 1027 } 1028 1029 static void 1030 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1031 { 1032 ktime_t expires; 1033 1034 /* 1035 * Find the next SOFT expiration. 1036 */ 1037 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1038 1039 /* 1040 * reprogramming needs to be triggered, even if the next soft 1041 * hrtimer expires at the same time than the next hard 1042 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1043 */ 1044 if (expires == KTIME_MAX) 1045 return; 1046 1047 /* 1048 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1049 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1050 */ 1051 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1052 } 1053 1054 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1055 u64 delta_ns, const enum hrtimer_mode mode, 1056 struct hrtimer_clock_base *base) 1057 { 1058 struct hrtimer_clock_base *new_base; 1059 1060 /* Remove an active timer from the queue: */ 1061 remove_hrtimer(timer, base, true); 1062 1063 if (mode & HRTIMER_MODE_REL) 1064 tim = ktime_add_safe(tim, base->get_time()); 1065 1066 tim = hrtimer_update_lowres(timer, tim, mode); 1067 1068 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1069 1070 /* Switch the timer base, if necessary: */ 1071 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1072 1073 return enqueue_hrtimer(timer, new_base, mode); 1074 } 1075 1076 /** 1077 * hrtimer_start_range_ns - (re)start an hrtimer 1078 * @timer: the timer to be added 1079 * @tim: expiry time 1080 * @delta_ns: "slack" range for the timer 1081 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1082 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1083 * softirq based mode is considered for debug purpose only! 1084 */ 1085 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1086 u64 delta_ns, const enum hrtimer_mode mode) 1087 { 1088 struct hrtimer_clock_base *base; 1089 unsigned long flags; 1090 1091 /* 1092 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1093 * match. 1094 */ 1095 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1096 1097 base = lock_hrtimer_base(timer, &flags); 1098 1099 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1100 hrtimer_reprogram(timer, true); 1101 1102 unlock_hrtimer_base(timer, &flags); 1103 } 1104 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1105 1106 /** 1107 * hrtimer_try_to_cancel - try to deactivate a timer 1108 * @timer: hrtimer to stop 1109 * 1110 * Returns: 1111 * 0 when the timer was not active 1112 * 1 when the timer was active 1113 * -1 when the timer is currently executing the callback function and 1114 * cannot be stopped 1115 */ 1116 int hrtimer_try_to_cancel(struct hrtimer *timer) 1117 { 1118 struct hrtimer_clock_base *base; 1119 unsigned long flags; 1120 int ret = -1; 1121 1122 /* 1123 * Check lockless first. If the timer is not active (neither 1124 * enqueued nor running the callback, nothing to do here. The 1125 * base lock does not serialize against a concurrent enqueue, 1126 * so we can avoid taking it. 1127 */ 1128 if (!hrtimer_active(timer)) 1129 return 0; 1130 1131 base = lock_hrtimer_base(timer, &flags); 1132 1133 if (!hrtimer_callback_running(timer)) 1134 ret = remove_hrtimer(timer, base, false); 1135 1136 unlock_hrtimer_base(timer, &flags); 1137 1138 return ret; 1139 1140 } 1141 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1142 1143 /** 1144 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1145 * @timer: the timer to be cancelled 1146 * 1147 * Returns: 1148 * 0 when the timer was not active 1149 * 1 when the timer was active 1150 */ 1151 int hrtimer_cancel(struct hrtimer *timer) 1152 { 1153 for (;;) { 1154 int ret = hrtimer_try_to_cancel(timer); 1155 1156 if (ret >= 0) 1157 return ret; 1158 cpu_relax(); 1159 } 1160 } 1161 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1162 1163 /** 1164 * hrtimer_get_remaining - get remaining time for the timer 1165 * @timer: the timer to read 1166 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1167 */ 1168 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1169 { 1170 unsigned long flags; 1171 ktime_t rem; 1172 1173 lock_hrtimer_base(timer, &flags); 1174 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1175 rem = hrtimer_expires_remaining_adjusted(timer); 1176 else 1177 rem = hrtimer_expires_remaining(timer); 1178 unlock_hrtimer_base(timer, &flags); 1179 1180 return rem; 1181 } 1182 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1183 1184 #ifdef CONFIG_NO_HZ_COMMON 1185 /** 1186 * hrtimer_get_next_event - get the time until next expiry event 1187 * 1188 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1189 */ 1190 u64 hrtimer_get_next_event(void) 1191 { 1192 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1193 u64 expires = KTIME_MAX; 1194 unsigned long flags; 1195 1196 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1197 1198 if (!__hrtimer_hres_active(cpu_base)) 1199 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1200 1201 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1202 1203 return expires; 1204 } 1205 #endif 1206 1207 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1208 { 1209 if (likely(clock_id < MAX_CLOCKS)) { 1210 int base = hrtimer_clock_to_base_table[clock_id]; 1211 1212 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1213 return base; 1214 } 1215 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1216 return HRTIMER_BASE_MONOTONIC; 1217 } 1218 1219 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1220 enum hrtimer_mode mode) 1221 { 1222 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1223 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1224 struct hrtimer_cpu_base *cpu_base; 1225 1226 memset(timer, 0, sizeof(struct hrtimer)); 1227 1228 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1229 1230 /* 1231 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1232 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1233 * ensure POSIX compliance. 1234 */ 1235 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1236 clock_id = CLOCK_MONOTONIC; 1237 1238 base += hrtimer_clockid_to_base(clock_id); 1239 timer->is_soft = softtimer; 1240 timer->base = &cpu_base->clock_base[base]; 1241 timerqueue_init(&timer->node); 1242 } 1243 1244 /** 1245 * hrtimer_init - initialize a timer to the given clock 1246 * @timer: the timer to be initialized 1247 * @clock_id: the clock to be used 1248 * @mode: The modes which are relevant for intitialization: 1249 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1250 * HRTIMER_MODE_REL_SOFT 1251 * 1252 * The PINNED variants of the above can be handed in, 1253 * but the PINNED bit is ignored as pinning happens 1254 * when the hrtimer is started 1255 */ 1256 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1257 enum hrtimer_mode mode) 1258 { 1259 debug_init(timer, clock_id, mode); 1260 __hrtimer_init(timer, clock_id, mode); 1261 } 1262 EXPORT_SYMBOL_GPL(hrtimer_init); 1263 1264 /* 1265 * A timer is active, when it is enqueued into the rbtree or the 1266 * callback function is running or it's in the state of being migrated 1267 * to another cpu. 1268 * 1269 * It is important for this function to not return a false negative. 1270 */ 1271 bool hrtimer_active(const struct hrtimer *timer) 1272 { 1273 struct hrtimer_clock_base *base; 1274 unsigned int seq; 1275 1276 do { 1277 base = READ_ONCE(timer->base); 1278 seq = raw_read_seqcount_begin(&base->seq); 1279 1280 if (timer->state != HRTIMER_STATE_INACTIVE || 1281 base->running == timer) 1282 return true; 1283 1284 } while (read_seqcount_retry(&base->seq, seq) || 1285 base != READ_ONCE(timer->base)); 1286 1287 return false; 1288 } 1289 EXPORT_SYMBOL_GPL(hrtimer_active); 1290 1291 /* 1292 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1293 * distinct sections: 1294 * 1295 * - queued: the timer is queued 1296 * - callback: the timer is being ran 1297 * - post: the timer is inactive or (re)queued 1298 * 1299 * On the read side we ensure we observe timer->state and cpu_base->running 1300 * from the same section, if anything changed while we looked at it, we retry. 1301 * This includes timer->base changing because sequence numbers alone are 1302 * insufficient for that. 1303 * 1304 * The sequence numbers are required because otherwise we could still observe 1305 * a false negative if the read side got smeared over multiple consequtive 1306 * __run_hrtimer() invocations. 1307 */ 1308 1309 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1310 struct hrtimer_clock_base *base, 1311 struct hrtimer *timer, ktime_t *now, 1312 unsigned long flags) 1313 { 1314 enum hrtimer_restart (*fn)(struct hrtimer *); 1315 int restart; 1316 1317 lockdep_assert_held(&cpu_base->lock); 1318 1319 debug_deactivate(timer); 1320 base->running = timer; 1321 1322 /* 1323 * Separate the ->running assignment from the ->state assignment. 1324 * 1325 * As with a regular write barrier, this ensures the read side in 1326 * hrtimer_active() cannot observe base->running == NULL && 1327 * timer->state == INACTIVE. 1328 */ 1329 raw_write_seqcount_barrier(&base->seq); 1330 1331 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1332 fn = timer->function; 1333 1334 /* 1335 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1336 * timer is restarted with a period then it becomes an absolute 1337 * timer. If its not restarted it does not matter. 1338 */ 1339 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1340 timer->is_rel = false; 1341 1342 /* 1343 * The timer is marked as running in the CPU base, so it is 1344 * protected against migration to a different CPU even if the lock 1345 * is dropped. 1346 */ 1347 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1348 trace_hrtimer_expire_entry(timer, now); 1349 restart = fn(timer); 1350 trace_hrtimer_expire_exit(timer); 1351 raw_spin_lock_irq(&cpu_base->lock); 1352 1353 /* 1354 * Note: We clear the running state after enqueue_hrtimer and 1355 * we do not reprogram the event hardware. Happens either in 1356 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1357 * 1358 * Note: Because we dropped the cpu_base->lock above, 1359 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1360 * for us already. 1361 */ 1362 if (restart != HRTIMER_NORESTART && 1363 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1364 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1365 1366 /* 1367 * Separate the ->running assignment from the ->state assignment. 1368 * 1369 * As with a regular write barrier, this ensures the read side in 1370 * hrtimer_active() cannot observe base->running.timer == NULL && 1371 * timer->state == INACTIVE. 1372 */ 1373 raw_write_seqcount_barrier(&base->seq); 1374 1375 WARN_ON_ONCE(base->running != timer); 1376 base->running = NULL; 1377 } 1378 1379 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1380 unsigned long flags, unsigned int active_mask) 1381 { 1382 struct hrtimer_clock_base *base; 1383 unsigned int active = cpu_base->active_bases & active_mask; 1384 1385 for_each_active_base(base, cpu_base, active) { 1386 struct timerqueue_node *node; 1387 ktime_t basenow; 1388 1389 basenow = ktime_add(now, base->offset); 1390 1391 while ((node = timerqueue_getnext(&base->active))) { 1392 struct hrtimer *timer; 1393 1394 timer = container_of(node, struct hrtimer, node); 1395 1396 /* 1397 * The immediate goal for using the softexpires is 1398 * minimizing wakeups, not running timers at the 1399 * earliest interrupt after their soft expiration. 1400 * This allows us to avoid using a Priority Search 1401 * Tree, which can answer a stabbing querry for 1402 * overlapping intervals and instead use the simple 1403 * BST we already have. 1404 * We don't add extra wakeups by delaying timers that 1405 * are right-of a not yet expired timer, because that 1406 * timer will have to trigger a wakeup anyway. 1407 */ 1408 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1409 break; 1410 1411 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1412 } 1413 } 1414 } 1415 1416 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1417 { 1418 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1419 unsigned long flags; 1420 ktime_t now; 1421 1422 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1423 1424 now = hrtimer_update_base(cpu_base); 1425 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1426 1427 cpu_base->softirq_activated = 0; 1428 hrtimer_update_softirq_timer(cpu_base, true); 1429 1430 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1431 } 1432 1433 #ifdef CONFIG_HIGH_RES_TIMERS 1434 1435 /* 1436 * High resolution timer interrupt 1437 * Called with interrupts disabled 1438 */ 1439 void hrtimer_interrupt(struct clock_event_device *dev) 1440 { 1441 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1442 ktime_t expires_next, now, entry_time, delta; 1443 unsigned long flags; 1444 int retries = 0; 1445 1446 BUG_ON(!cpu_base->hres_active); 1447 cpu_base->nr_events++; 1448 dev->next_event = KTIME_MAX; 1449 1450 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1451 entry_time = now = hrtimer_update_base(cpu_base); 1452 retry: 1453 cpu_base->in_hrtirq = 1; 1454 /* 1455 * We set expires_next to KTIME_MAX here with cpu_base->lock 1456 * held to prevent that a timer is enqueued in our queue via 1457 * the migration code. This does not affect enqueueing of 1458 * timers which run their callback and need to be requeued on 1459 * this CPU. 1460 */ 1461 cpu_base->expires_next = KTIME_MAX; 1462 1463 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1464 cpu_base->softirq_expires_next = KTIME_MAX; 1465 cpu_base->softirq_activated = 1; 1466 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1467 } 1468 1469 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1470 1471 /* Reevaluate the clock bases for the next expiry */ 1472 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1473 /* 1474 * Store the new expiry value so the migration code can verify 1475 * against it. 1476 */ 1477 cpu_base->expires_next = expires_next; 1478 cpu_base->in_hrtirq = 0; 1479 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1480 1481 /* Reprogramming necessary ? */ 1482 if (!tick_program_event(expires_next, 0)) { 1483 cpu_base->hang_detected = 0; 1484 return; 1485 } 1486 1487 /* 1488 * The next timer was already expired due to: 1489 * - tracing 1490 * - long lasting callbacks 1491 * - being scheduled away when running in a VM 1492 * 1493 * We need to prevent that we loop forever in the hrtimer 1494 * interrupt routine. We give it 3 attempts to avoid 1495 * overreacting on some spurious event. 1496 * 1497 * Acquire base lock for updating the offsets and retrieving 1498 * the current time. 1499 */ 1500 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1501 now = hrtimer_update_base(cpu_base); 1502 cpu_base->nr_retries++; 1503 if (++retries < 3) 1504 goto retry; 1505 /* 1506 * Give the system a chance to do something else than looping 1507 * here. We stored the entry time, so we know exactly how long 1508 * we spent here. We schedule the next event this amount of 1509 * time away. 1510 */ 1511 cpu_base->nr_hangs++; 1512 cpu_base->hang_detected = 1; 1513 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1514 1515 delta = ktime_sub(now, entry_time); 1516 if ((unsigned int)delta > cpu_base->max_hang_time) 1517 cpu_base->max_hang_time = (unsigned int) delta; 1518 /* 1519 * Limit it to a sensible value as we enforce a longer 1520 * delay. Give the CPU at least 100ms to catch up. 1521 */ 1522 if (delta > 100 * NSEC_PER_MSEC) 1523 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1524 else 1525 expires_next = ktime_add(now, delta); 1526 tick_program_event(expires_next, 1); 1527 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1528 ktime_to_ns(delta)); 1529 } 1530 1531 /* called with interrupts disabled */ 1532 static inline void __hrtimer_peek_ahead_timers(void) 1533 { 1534 struct tick_device *td; 1535 1536 if (!hrtimer_hres_active()) 1537 return; 1538 1539 td = this_cpu_ptr(&tick_cpu_device); 1540 if (td && td->evtdev) 1541 hrtimer_interrupt(td->evtdev); 1542 } 1543 1544 #else /* CONFIG_HIGH_RES_TIMERS */ 1545 1546 static inline void __hrtimer_peek_ahead_timers(void) { } 1547 1548 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1549 1550 /* 1551 * Called from run_local_timers in hardirq context every jiffy 1552 */ 1553 void hrtimer_run_queues(void) 1554 { 1555 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1556 unsigned long flags; 1557 ktime_t now; 1558 1559 if (__hrtimer_hres_active(cpu_base)) 1560 return; 1561 1562 /* 1563 * This _is_ ugly: We have to check periodically, whether we 1564 * can switch to highres and / or nohz mode. The clocksource 1565 * switch happens with xtime_lock held. Notification from 1566 * there only sets the check bit in the tick_oneshot code, 1567 * otherwise we might deadlock vs. xtime_lock. 1568 */ 1569 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1570 hrtimer_switch_to_hres(); 1571 return; 1572 } 1573 1574 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1575 now = hrtimer_update_base(cpu_base); 1576 1577 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1578 cpu_base->softirq_expires_next = KTIME_MAX; 1579 cpu_base->softirq_activated = 1; 1580 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1581 } 1582 1583 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1584 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1585 } 1586 1587 /* 1588 * Sleep related functions: 1589 */ 1590 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1591 { 1592 struct hrtimer_sleeper *t = 1593 container_of(timer, struct hrtimer_sleeper, timer); 1594 struct task_struct *task = t->task; 1595 1596 t->task = NULL; 1597 if (task) 1598 wake_up_process(task); 1599 1600 return HRTIMER_NORESTART; 1601 } 1602 1603 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1604 { 1605 sl->timer.function = hrtimer_wakeup; 1606 sl->task = task; 1607 } 1608 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1609 1610 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1611 { 1612 switch(restart->nanosleep.type) { 1613 #ifdef CONFIG_COMPAT 1614 case TT_COMPAT: 1615 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp)) 1616 return -EFAULT; 1617 break; 1618 #endif 1619 case TT_NATIVE: 1620 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1621 return -EFAULT; 1622 break; 1623 default: 1624 BUG(); 1625 } 1626 return -ERESTART_RESTARTBLOCK; 1627 } 1628 1629 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1630 { 1631 struct restart_block *restart; 1632 1633 hrtimer_init_sleeper(t, current); 1634 1635 do { 1636 set_current_state(TASK_INTERRUPTIBLE); 1637 hrtimer_start_expires(&t->timer, mode); 1638 1639 if (likely(t->task)) 1640 freezable_schedule(); 1641 1642 hrtimer_cancel(&t->timer); 1643 mode = HRTIMER_MODE_ABS; 1644 1645 } while (t->task && !signal_pending(current)); 1646 1647 __set_current_state(TASK_RUNNING); 1648 1649 if (!t->task) 1650 return 0; 1651 1652 restart = ¤t->restart_block; 1653 if (restart->nanosleep.type != TT_NONE) { 1654 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1655 struct timespec64 rmt; 1656 1657 if (rem <= 0) 1658 return 0; 1659 rmt = ktime_to_timespec64(rem); 1660 1661 return nanosleep_copyout(restart, &rmt); 1662 } 1663 return -ERESTART_RESTARTBLOCK; 1664 } 1665 1666 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1667 { 1668 struct hrtimer_sleeper t; 1669 int ret; 1670 1671 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1672 HRTIMER_MODE_ABS); 1673 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1674 1675 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1676 destroy_hrtimer_on_stack(&t.timer); 1677 return ret; 1678 } 1679 1680 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1681 const enum hrtimer_mode mode, const clockid_t clockid) 1682 { 1683 struct restart_block *restart; 1684 struct hrtimer_sleeper t; 1685 int ret = 0; 1686 u64 slack; 1687 1688 slack = current->timer_slack_ns; 1689 if (dl_task(current) || rt_task(current)) 1690 slack = 0; 1691 1692 hrtimer_init_on_stack(&t.timer, clockid, mode); 1693 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1694 ret = do_nanosleep(&t, mode); 1695 if (ret != -ERESTART_RESTARTBLOCK) 1696 goto out; 1697 1698 /* Absolute timers do not update the rmtp value and restart: */ 1699 if (mode == HRTIMER_MODE_ABS) { 1700 ret = -ERESTARTNOHAND; 1701 goto out; 1702 } 1703 1704 restart = ¤t->restart_block; 1705 restart->fn = hrtimer_nanosleep_restart; 1706 restart->nanosleep.clockid = t.timer.base->clockid; 1707 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1708 out: 1709 destroy_hrtimer_on_stack(&t.timer); 1710 return ret; 1711 } 1712 1713 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1714 struct timespec __user *, rmtp) 1715 { 1716 struct timespec64 tu; 1717 1718 if (get_timespec64(&tu, rqtp)) 1719 return -EFAULT; 1720 1721 if (!timespec64_valid(&tu)) 1722 return -EINVAL; 1723 1724 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1725 current->restart_block.nanosleep.rmtp = rmtp; 1726 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1727 } 1728 1729 #ifdef CONFIG_COMPAT 1730 1731 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp, 1732 struct compat_timespec __user *, rmtp) 1733 { 1734 struct timespec64 tu; 1735 1736 if (compat_get_timespec64(&tu, rqtp)) 1737 return -EFAULT; 1738 1739 if (!timespec64_valid(&tu)) 1740 return -EINVAL; 1741 1742 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1743 current->restart_block.nanosleep.compat_rmtp = rmtp; 1744 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1745 } 1746 #endif 1747 1748 /* 1749 * Functions related to boot-time initialization: 1750 */ 1751 int hrtimers_prepare_cpu(unsigned int cpu) 1752 { 1753 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1754 int i; 1755 1756 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1757 cpu_base->clock_base[i].cpu_base = cpu_base; 1758 timerqueue_init_head(&cpu_base->clock_base[i].active); 1759 } 1760 1761 cpu_base->cpu = cpu; 1762 cpu_base->active_bases = 0; 1763 cpu_base->hres_active = 0; 1764 cpu_base->hang_detected = 0; 1765 cpu_base->next_timer = NULL; 1766 cpu_base->softirq_next_timer = NULL; 1767 cpu_base->expires_next = KTIME_MAX; 1768 cpu_base->softirq_expires_next = KTIME_MAX; 1769 return 0; 1770 } 1771 1772 #ifdef CONFIG_HOTPLUG_CPU 1773 1774 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1775 struct hrtimer_clock_base *new_base) 1776 { 1777 struct hrtimer *timer; 1778 struct timerqueue_node *node; 1779 1780 while ((node = timerqueue_getnext(&old_base->active))) { 1781 timer = container_of(node, struct hrtimer, node); 1782 BUG_ON(hrtimer_callback_running(timer)); 1783 debug_deactivate(timer); 1784 1785 /* 1786 * Mark it as ENQUEUED not INACTIVE otherwise the 1787 * timer could be seen as !active and just vanish away 1788 * under us on another CPU 1789 */ 1790 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1791 timer->base = new_base; 1792 /* 1793 * Enqueue the timers on the new cpu. This does not 1794 * reprogram the event device in case the timer 1795 * expires before the earliest on this CPU, but we run 1796 * hrtimer_interrupt after we migrated everything to 1797 * sort out already expired timers and reprogram the 1798 * event device. 1799 */ 1800 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1801 } 1802 } 1803 1804 int hrtimers_dead_cpu(unsigned int scpu) 1805 { 1806 struct hrtimer_cpu_base *old_base, *new_base; 1807 int i; 1808 1809 BUG_ON(cpu_online(scpu)); 1810 tick_cancel_sched_timer(scpu); 1811 1812 /* 1813 * this BH disable ensures that raise_softirq_irqoff() does 1814 * not wakeup ksoftirqd (and acquire the pi-lock) while 1815 * holding the cpu_base lock 1816 */ 1817 local_bh_disable(); 1818 local_irq_disable(); 1819 old_base = &per_cpu(hrtimer_bases, scpu); 1820 new_base = this_cpu_ptr(&hrtimer_bases); 1821 /* 1822 * The caller is globally serialized and nobody else 1823 * takes two locks at once, deadlock is not possible. 1824 */ 1825 raw_spin_lock(&new_base->lock); 1826 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1827 1828 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1829 migrate_hrtimer_list(&old_base->clock_base[i], 1830 &new_base->clock_base[i]); 1831 } 1832 1833 /* 1834 * The migration might have changed the first expiring softirq 1835 * timer on this CPU. Update it. 1836 */ 1837 hrtimer_update_softirq_timer(new_base, false); 1838 1839 raw_spin_unlock(&old_base->lock); 1840 raw_spin_unlock(&new_base->lock); 1841 1842 /* Check, if we got expired work to do */ 1843 __hrtimer_peek_ahead_timers(); 1844 local_irq_enable(); 1845 local_bh_enable(); 1846 return 0; 1847 } 1848 1849 #endif /* CONFIG_HOTPLUG_CPU */ 1850 1851 void __init hrtimers_init(void) 1852 { 1853 hrtimers_prepare_cpu(smp_processor_id()); 1854 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1855 } 1856 1857 /** 1858 * schedule_hrtimeout_range_clock - sleep until timeout 1859 * @expires: timeout value (ktime_t) 1860 * @delta: slack in expires timeout (ktime_t) 1861 * @mode: timer mode 1862 * @clock_id: timer clock to be used 1863 */ 1864 int __sched 1865 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1866 const enum hrtimer_mode mode, clockid_t clock_id) 1867 { 1868 struct hrtimer_sleeper t; 1869 1870 /* 1871 * Optimize when a zero timeout value is given. It does not 1872 * matter whether this is an absolute or a relative time. 1873 */ 1874 if (expires && *expires == 0) { 1875 __set_current_state(TASK_RUNNING); 1876 return 0; 1877 } 1878 1879 /* 1880 * A NULL parameter means "infinite" 1881 */ 1882 if (!expires) { 1883 schedule(); 1884 return -EINTR; 1885 } 1886 1887 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1888 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1889 1890 hrtimer_init_sleeper(&t, current); 1891 1892 hrtimer_start_expires(&t.timer, mode); 1893 1894 if (likely(t.task)) 1895 schedule(); 1896 1897 hrtimer_cancel(&t.timer); 1898 destroy_hrtimer_on_stack(&t.timer); 1899 1900 __set_current_state(TASK_RUNNING); 1901 1902 return !t.task ? 0 : -EINTR; 1903 } 1904 1905 /** 1906 * schedule_hrtimeout_range - sleep until timeout 1907 * @expires: timeout value (ktime_t) 1908 * @delta: slack in expires timeout (ktime_t) 1909 * @mode: timer mode 1910 * 1911 * Make the current task sleep until the given expiry time has 1912 * elapsed. The routine will return immediately unless 1913 * the current task state has been set (see set_current_state()). 1914 * 1915 * The @delta argument gives the kernel the freedom to schedule the 1916 * actual wakeup to a time that is both power and performance friendly. 1917 * The kernel give the normal best effort behavior for "@expires+@delta", 1918 * but may decide to fire the timer earlier, but no earlier than @expires. 1919 * 1920 * You can set the task state as follows - 1921 * 1922 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1923 * pass before the routine returns unless the current task is explicitly 1924 * woken up, (e.g. by wake_up_process()). 1925 * 1926 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1927 * delivered to the current task or the current task is explicitly woken 1928 * up. 1929 * 1930 * The current task state is guaranteed to be TASK_RUNNING when this 1931 * routine returns. 1932 * 1933 * Returns 0 when the timer has expired. If the task was woken before the 1934 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1935 * by an explicit wakeup, it returns -EINTR. 1936 */ 1937 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1938 const enum hrtimer_mode mode) 1939 { 1940 return schedule_hrtimeout_range_clock(expires, delta, mode, 1941 CLOCK_MONOTONIC); 1942 } 1943 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1944 1945 /** 1946 * schedule_hrtimeout - sleep until timeout 1947 * @expires: timeout value (ktime_t) 1948 * @mode: timer mode 1949 * 1950 * Make the current task sleep until the given expiry time has 1951 * elapsed. The routine will return immediately unless 1952 * the current task state has been set (see set_current_state()). 1953 * 1954 * You can set the task state as follows - 1955 * 1956 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1957 * pass before the routine returns unless the current task is explicitly 1958 * woken up, (e.g. by wake_up_process()). 1959 * 1960 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1961 * delivered to the current task or the current task is explicitly woken 1962 * up. 1963 * 1964 * The current task state is guaranteed to be TASK_RUNNING when this 1965 * routine returns. 1966 * 1967 * Returns 0 when the timer has expired. If the task was woken before the 1968 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1969 * by an explicit wakeup, it returns -EINTR. 1970 */ 1971 int __sched schedule_hrtimeout(ktime_t *expires, 1972 const enum hrtimer_mode mode) 1973 { 1974 return schedule_hrtimeout_range(expires, 0, mode); 1975 } 1976 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1977