xref: /openbmc/linux/kernel/time/hrtimer.c (revision fca3aa16)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
41 #include <linux/tick.h>
42 #include <linux/seq_file.h>
43 #include <linux/err.h>
44 #include <linux/debugobjects.h>
45 #include <linux/sched/signal.h>
46 #include <linux/sched/sysctl.h>
47 #include <linux/sched/rt.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/nohz.h>
50 #include <linux/sched/debug.h>
51 #include <linux/timer.h>
52 #include <linux/freezer.h>
53 #include <linux/compat.h>
54 
55 #include <linux/uaccess.h>
56 
57 #include <trace/events/timer.h>
58 
59 #include "tick-internal.h"
60 
61 /*
62  * Masks for selecting the soft and hard context timers from
63  * cpu_base->active
64  */
65 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
66 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
67 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69 
70 /*
71  * The timer bases:
72  *
73  * There are more clockids than hrtimer bases. Thus, we index
74  * into the timer bases by the hrtimer_base_type enum. When trying
75  * to reach a base using a clockid, hrtimer_clockid_to_base()
76  * is used to convert from clockid to the proper hrtimer_base_type.
77  */
78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79 {
80 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81 	.clock_base =
82 	{
83 		{
84 			.index = HRTIMER_BASE_MONOTONIC,
85 			.clockid = CLOCK_MONOTONIC,
86 			.get_time = &ktime_get,
87 		},
88 		{
89 			.index = HRTIMER_BASE_REALTIME,
90 			.clockid = CLOCK_REALTIME,
91 			.get_time = &ktime_get_real,
92 		},
93 		{
94 			.index = HRTIMER_BASE_TAI,
95 			.clockid = CLOCK_TAI,
96 			.get_time = &ktime_get_clocktai,
97 		},
98 		{
99 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
100 			.clockid = CLOCK_MONOTONIC,
101 			.get_time = &ktime_get,
102 		},
103 		{
104 			.index = HRTIMER_BASE_REALTIME_SOFT,
105 			.clockid = CLOCK_REALTIME,
106 			.get_time = &ktime_get_real,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_MONOTONIC,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 /*
144  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145  * means that all timers which are tied to this base via timer->base are
146  * locked, and the base itself is locked too.
147  *
148  * So __run_timers/migrate_timers can safely modify all timers which could
149  * be found on the lists/queues.
150  *
151  * When the timer's base is locked, and the timer removed from list, it is
152  * possible to set timer->base = &migration_base and drop the lock: the timer
153  * remains locked.
154  */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 					     unsigned long *flags)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = timer->base;
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * We do not migrate the timer when it is expiring before the next
176  * event on the target cpu. When high resolution is enabled, we cannot
177  * reprogram the target cpu hardware and we would cause it to fire
178  * late. To keep it simple, we handle the high resolution enabled and
179  * disabled case similar.
180  *
181  * Called with cpu_base->lock of target cpu held.
182  */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 	ktime_t expires;
187 
188 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 	return expires < new_base->cpu_base->expires_next;
190 }
191 
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 					 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 	return base;
201 }
202 
203 /*
204  * We switch the timer base to a power-optimized selected CPU target,
205  * if:
206  *	- NO_HZ_COMMON is enabled
207  *	- timer migration is enabled
208  *	- the timer callback is not running
209  *	- the timer is not the first expiring timer on the new target
210  *
211  * If one of the above requirements is not fulfilled we move the timer
212  * to the current CPU or leave it on the previously assigned CPU if
213  * the timer callback is currently running.
214  */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 		    int pinned)
218 {
219 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 	struct hrtimer_clock_base *new_base;
221 	int basenum = base->index;
222 
223 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 	new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 	new_base = &new_cpu_base->clock_base[basenum];
227 
228 	if (base != new_base) {
229 		/*
230 		 * We are trying to move timer to new_base.
231 		 * However we can't change timer's base while it is running,
232 		 * so we keep it on the same CPU. No hassle vs. reprogramming
233 		 * the event source in the high resolution case. The softirq
234 		 * code will take care of this when the timer function has
235 		 * completed. There is no conflict as we hold the lock until
236 		 * the timer is enqueued.
237 		 */
238 		if (unlikely(hrtimer_callback_running(timer)))
239 			return base;
240 
241 		/* See the comment in lock_hrtimer_base() */
242 		timer->base = &migration_base;
243 		raw_spin_unlock(&base->cpu_base->lock);
244 		raw_spin_lock(&new_base->cpu_base->lock);
245 
246 		if (new_cpu_base != this_cpu_base &&
247 		    hrtimer_check_target(timer, new_base)) {
248 			raw_spin_unlock(&new_base->cpu_base->lock);
249 			raw_spin_lock(&base->cpu_base->lock);
250 			new_cpu_base = this_cpu_base;
251 			timer->base = base;
252 			goto again;
253 		}
254 		timer->base = new_base;
255 	} else {
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			new_cpu_base = this_cpu_base;
259 			goto again;
260 		}
261 	}
262 	return new_base;
263 }
264 
265 #else /* CONFIG_SMP */
266 
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 	struct hrtimer_clock_base *base = timer->base;
271 
272 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273 
274 	return base;
275 }
276 
277 # define switch_hrtimer_base(t, b, p)	(b)
278 
279 #endif	/* !CONFIG_SMP */
280 
281 /*
282  * Functions for the union type storage format of ktime_t which are
283  * too large for inlining:
284  */
285 #if BITS_PER_LONG < 64
286 /*
287  * Divide a ktime value by a nanosecond value
288  */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 	int sft = 0;
292 	s64 dclc;
293 	u64 tmp;
294 
295 	dclc = ktime_to_ns(kt);
296 	tmp = dclc < 0 ? -dclc : dclc;
297 
298 	/* Make sure the divisor is less than 2^32: */
299 	while (div >> 32) {
300 		sft++;
301 		div >>= 1;
302 	}
303 	tmp >>= sft;
304 	do_div(tmp, (unsigned long) div);
305 	return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309 
310 /*
311  * Add two ktime values and do a safety check for overflow:
312  */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 	ktime_t res = ktime_add_unsafe(lhs, rhs);
316 
317 	/*
318 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 	 * return to user space in a timespec:
320 	 */
321 	if (res < 0 || res < lhs || res < rhs)
322 		res = ktime_set(KTIME_SEC_MAX, 0);
323 
324 	return res;
325 }
326 
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328 
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330 
331 static struct debug_obj_descr hrtimer_debug_descr;
332 
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 	return ((struct hrtimer *) addr)->function;
336 }
337 
338 /*
339  * fixup_init is called when:
340  * - an active object is initialized
341  */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 	struct hrtimer *timer = addr;
345 
346 	switch (state) {
347 	case ODEBUG_STATE_ACTIVE:
348 		hrtimer_cancel(timer);
349 		debug_object_init(timer, &hrtimer_debug_descr);
350 		return true;
351 	default:
352 		return false;
353 	}
354 }
355 
356 /*
357  * fixup_activate is called when:
358  * - an active object is activated
359  * - an unknown non-static object is activated
360  */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 
367 	default:
368 		return false;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 					  enum hrtimer_mode mode)
405 {
406 	debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 	debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 			   enum hrtimer_mode mode);
421 
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 			   enum hrtimer_mode mode)
424 {
425 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 	__hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 
430 void destroy_hrtimer_on_stack(struct hrtimer *timer)
431 {
432 	debug_object_free(timer, &hrtimer_debug_descr);
433 }
434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
435 
436 #else
437 
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 					  enum hrtimer_mode mode) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443 
444 static inline void
445 debug_init(struct hrtimer *timer, clockid_t clockid,
446 	   enum hrtimer_mode mode)
447 {
448 	debug_hrtimer_init(timer);
449 	trace_hrtimer_init(timer, clockid, mode);
450 }
451 
452 static inline void debug_activate(struct hrtimer *timer,
453 				  enum hrtimer_mode mode)
454 {
455 	debug_hrtimer_activate(timer, mode);
456 	trace_hrtimer_start(timer, mode);
457 }
458 
459 static inline void debug_deactivate(struct hrtimer *timer)
460 {
461 	debug_hrtimer_deactivate(timer);
462 	trace_hrtimer_cancel(timer);
463 }
464 
465 static struct hrtimer_clock_base *
466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467 {
468 	unsigned int idx;
469 
470 	if (!*active)
471 		return NULL;
472 
473 	idx = __ffs(*active);
474 	*active &= ~(1U << idx);
475 
476 	return &cpu_base->clock_base[idx];
477 }
478 
479 #define for_each_active_base(base, cpu_base, active)	\
480 	while ((base = __next_base((cpu_base), &(active))))
481 
482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
483 					 const struct hrtimer *exclude,
484 					 unsigned int active,
485 					 ktime_t expires_next)
486 {
487 	struct hrtimer_clock_base *base;
488 	ktime_t expires;
489 
490 	for_each_active_base(base, cpu_base, active) {
491 		struct timerqueue_node *next;
492 		struct hrtimer *timer;
493 
494 		next = timerqueue_getnext(&base->active);
495 		timer = container_of(next, struct hrtimer, node);
496 		if (timer == exclude) {
497 			/* Get to the next timer in the queue. */
498 			next = timerqueue_iterate_next(next);
499 			if (!next)
500 				continue;
501 
502 			timer = container_of(next, struct hrtimer, node);
503 		}
504 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 		if (expires < expires_next) {
506 			expires_next = expires;
507 
508 			/* Skip cpu_base update if a timer is being excluded. */
509 			if (exclude)
510 				continue;
511 
512 			if (timer->is_soft)
513 				cpu_base->softirq_next_timer = timer;
514 			else
515 				cpu_base->next_timer = timer;
516 		}
517 	}
518 	/*
519 	 * clock_was_set() might have changed base->offset of any of
520 	 * the clock bases so the result might be negative. Fix it up
521 	 * to prevent a false positive in clockevents_program_event().
522 	 */
523 	if (expires_next < 0)
524 		expires_next = 0;
525 	return expires_next;
526 }
527 
528 /*
529  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
530  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
531  *
532  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
533  * those timers will get run whenever the softirq gets handled, at the end of
534  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
535  *
536  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
537  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
538  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
539  *
540  * @active_mask must be one of:
541  *  - HRTIMER_ACTIVE_ALL,
542  *  - HRTIMER_ACTIVE_SOFT, or
543  *  - HRTIMER_ACTIVE_HARD.
544  */
545 static ktime_t
546 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
547 {
548 	unsigned int active;
549 	struct hrtimer *next_timer = NULL;
550 	ktime_t expires_next = KTIME_MAX;
551 
552 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
553 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
554 		cpu_base->softirq_next_timer = NULL;
555 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
556 							 active, KTIME_MAX);
557 
558 		next_timer = cpu_base->softirq_next_timer;
559 	}
560 
561 	if (active_mask & HRTIMER_ACTIVE_HARD) {
562 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
563 		cpu_base->next_timer = next_timer;
564 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
565 							 expires_next);
566 	}
567 
568 	return expires_next;
569 }
570 
571 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
572 {
573 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
574 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
575 
576 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
577 						   offs_real, offs_tai);
578 
579 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
580 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
581 
582 	return now;
583 }
584 
585 /*
586  * Is the high resolution mode active ?
587  */
588 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
589 {
590 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
591 		cpu_base->hres_active : 0;
592 }
593 
594 static inline int hrtimer_hres_active(void)
595 {
596 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
597 }
598 
599 /*
600  * Reprogram the event source with checking both queues for the
601  * next event
602  * Called with interrupts disabled and base->lock held
603  */
604 static void
605 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
606 {
607 	ktime_t expires_next;
608 
609 	/*
610 	 * Find the current next expiration time.
611 	 */
612 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
613 
614 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
615 		/*
616 		 * When the softirq is activated, hrtimer has to be
617 		 * programmed with the first hard hrtimer because soft
618 		 * timer interrupt could occur too late.
619 		 */
620 		if (cpu_base->softirq_activated)
621 			expires_next = __hrtimer_get_next_event(cpu_base,
622 								HRTIMER_ACTIVE_HARD);
623 		else
624 			cpu_base->softirq_expires_next = expires_next;
625 	}
626 
627 	if (skip_equal && expires_next == cpu_base->expires_next)
628 		return;
629 
630 	cpu_base->expires_next = expires_next;
631 
632 	/*
633 	 * If hres is not active, hardware does not have to be
634 	 * reprogrammed yet.
635 	 *
636 	 * If a hang was detected in the last timer interrupt then we
637 	 * leave the hang delay active in the hardware. We want the
638 	 * system to make progress. That also prevents the following
639 	 * scenario:
640 	 * T1 expires 50ms from now
641 	 * T2 expires 5s from now
642 	 *
643 	 * T1 is removed, so this code is called and would reprogram
644 	 * the hardware to 5s from now. Any hrtimer_start after that
645 	 * will not reprogram the hardware due to hang_detected being
646 	 * set. So we'd effectivly block all timers until the T2 event
647 	 * fires.
648 	 */
649 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
650 		return;
651 
652 	tick_program_event(cpu_base->expires_next, 1);
653 }
654 
655 /* High resolution timer related functions */
656 #ifdef CONFIG_HIGH_RES_TIMERS
657 
658 /*
659  * High resolution timer enabled ?
660  */
661 static bool hrtimer_hres_enabled __read_mostly  = true;
662 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
663 EXPORT_SYMBOL_GPL(hrtimer_resolution);
664 
665 /*
666  * Enable / Disable high resolution mode
667  */
668 static int __init setup_hrtimer_hres(char *str)
669 {
670 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
671 }
672 
673 __setup("highres=", setup_hrtimer_hres);
674 
675 /*
676  * hrtimer_high_res_enabled - query, if the highres mode is enabled
677  */
678 static inline int hrtimer_is_hres_enabled(void)
679 {
680 	return hrtimer_hres_enabled;
681 }
682 
683 /*
684  * Retrigger next event is called after clock was set
685  *
686  * Called with interrupts disabled via on_each_cpu()
687  */
688 static void retrigger_next_event(void *arg)
689 {
690 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
691 
692 	if (!__hrtimer_hres_active(base))
693 		return;
694 
695 	raw_spin_lock(&base->lock);
696 	hrtimer_update_base(base);
697 	hrtimer_force_reprogram(base, 0);
698 	raw_spin_unlock(&base->lock);
699 }
700 
701 /*
702  * Switch to high resolution mode
703  */
704 static void hrtimer_switch_to_hres(void)
705 {
706 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
707 
708 	if (tick_init_highres()) {
709 		printk(KERN_WARNING "Could not switch to high resolution "
710 				    "mode on CPU %d\n", base->cpu);
711 		return;
712 	}
713 	base->hres_active = 1;
714 	hrtimer_resolution = HIGH_RES_NSEC;
715 
716 	tick_setup_sched_timer();
717 	/* "Retrigger" the interrupt to get things going */
718 	retrigger_next_event(NULL);
719 }
720 
721 static void clock_was_set_work(struct work_struct *work)
722 {
723 	clock_was_set();
724 }
725 
726 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
727 
728 /*
729  * Called from timekeeping and resume code to reprogram the hrtimer
730  * interrupt device on all cpus.
731  */
732 void clock_was_set_delayed(void)
733 {
734 	schedule_work(&hrtimer_work);
735 }
736 
737 #else
738 
739 static inline int hrtimer_is_hres_enabled(void) { return 0; }
740 static inline void hrtimer_switch_to_hres(void) { }
741 static inline void retrigger_next_event(void *arg) { }
742 
743 #endif /* CONFIG_HIGH_RES_TIMERS */
744 
745 /*
746  * When a timer is enqueued and expires earlier than the already enqueued
747  * timers, we have to check, whether it expires earlier than the timer for
748  * which the clock event device was armed.
749  *
750  * Called with interrupts disabled and base->cpu_base.lock held
751  */
752 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
753 {
754 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
755 	struct hrtimer_clock_base *base = timer->base;
756 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
757 
758 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
759 
760 	/*
761 	 * CLOCK_REALTIME timer might be requested with an absolute
762 	 * expiry time which is less than base->offset. Set it to 0.
763 	 */
764 	if (expires < 0)
765 		expires = 0;
766 
767 	if (timer->is_soft) {
768 		/*
769 		 * soft hrtimer could be started on a remote CPU. In this
770 		 * case softirq_expires_next needs to be updated on the
771 		 * remote CPU. The soft hrtimer will not expire before the
772 		 * first hard hrtimer on the remote CPU -
773 		 * hrtimer_check_target() prevents this case.
774 		 */
775 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
776 
777 		if (timer_cpu_base->softirq_activated)
778 			return;
779 
780 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
781 			return;
782 
783 		timer_cpu_base->softirq_next_timer = timer;
784 		timer_cpu_base->softirq_expires_next = expires;
785 
786 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
787 		    !reprogram)
788 			return;
789 	}
790 
791 	/*
792 	 * If the timer is not on the current cpu, we cannot reprogram
793 	 * the other cpus clock event device.
794 	 */
795 	if (base->cpu_base != cpu_base)
796 		return;
797 
798 	/*
799 	 * If the hrtimer interrupt is running, then it will
800 	 * reevaluate the clock bases and reprogram the clock event
801 	 * device. The callbacks are always executed in hard interrupt
802 	 * context so we don't need an extra check for a running
803 	 * callback.
804 	 */
805 	if (cpu_base->in_hrtirq)
806 		return;
807 
808 	if (expires >= cpu_base->expires_next)
809 		return;
810 
811 	/* Update the pointer to the next expiring timer */
812 	cpu_base->next_timer = timer;
813 	cpu_base->expires_next = expires;
814 
815 	/*
816 	 * If hres is not active, hardware does not have to be
817 	 * programmed yet.
818 	 *
819 	 * If a hang was detected in the last timer interrupt then we
820 	 * do not schedule a timer which is earlier than the expiry
821 	 * which we enforced in the hang detection. We want the system
822 	 * to make progress.
823 	 */
824 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
825 		return;
826 
827 	/*
828 	 * Program the timer hardware. We enforce the expiry for
829 	 * events which are already in the past.
830 	 */
831 	tick_program_event(expires, 1);
832 }
833 
834 /*
835  * Clock realtime was set
836  *
837  * Change the offset of the realtime clock vs. the monotonic
838  * clock.
839  *
840  * We might have to reprogram the high resolution timer interrupt. On
841  * SMP we call the architecture specific code to retrigger _all_ high
842  * resolution timer interrupts. On UP we just disable interrupts and
843  * call the high resolution interrupt code.
844  */
845 void clock_was_set(void)
846 {
847 #ifdef CONFIG_HIGH_RES_TIMERS
848 	/* Retrigger the CPU local events everywhere */
849 	on_each_cpu(retrigger_next_event, NULL, 1);
850 #endif
851 	timerfd_clock_was_set();
852 }
853 
854 /*
855  * During resume we might have to reprogram the high resolution timer
856  * interrupt on all online CPUs.  However, all other CPUs will be
857  * stopped with IRQs interrupts disabled so the clock_was_set() call
858  * must be deferred.
859  */
860 void hrtimers_resume(void)
861 {
862 	lockdep_assert_irqs_disabled();
863 	/* Retrigger on the local CPU */
864 	retrigger_next_event(NULL);
865 	/* And schedule a retrigger for all others */
866 	clock_was_set_delayed();
867 }
868 
869 /*
870  * Counterpart to lock_hrtimer_base above:
871  */
872 static inline
873 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
874 {
875 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
876 }
877 
878 /**
879  * hrtimer_forward - forward the timer expiry
880  * @timer:	hrtimer to forward
881  * @now:	forward past this time
882  * @interval:	the interval to forward
883  *
884  * Forward the timer expiry so it will expire in the future.
885  * Returns the number of overruns.
886  *
887  * Can be safely called from the callback function of @timer. If
888  * called from other contexts @timer must neither be enqueued nor
889  * running the callback and the caller needs to take care of
890  * serialization.
891  *
892  * Note: This only updates the timer expiry value and does not requeue
893  * the timer.
894  */
895 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
896 {
897 	u64 orun = 1;
898 	ktime_t delta;
899 
900 	delta = ktime_sub(now, hrtimer_get_expires(timer));
901 
902 	if (delta < 0)
903 		return 0;
904 
905 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
906 		return 0;
907 
908 	if (interval < hrtimer_resolution)
909 		interval = hrtimer_resolution;
910 
911 	if (unlikely(delta >= interval)) {
912 		s64 incr = ktime_to_ns(interval);
913 
914 		orun = ktime_divns(delta, incr);
915 		hrtimer_add_expires_ns(timer, incr * orun);
916 		if (hrtimer_get_expires_tv64(timer) > now)
917 			return orun;
918 		/*
919 		 * This (and the ktime_add() below) is the
920 		 * correction for exact:
921 		 */
922 		orun++;
923 	}
924 	hrtimer_add_expires(timer, interval);
925 
926 	return orun;
927 }
928 EXPORT_SYMBOL_GPL(hrtimer_forward);
929 
930 /*
931  * enqueue_hrtimer - internal function to (re)start a timer
932  *
933  * The timer is inserted in expiry order. Insertion into the
934  * red black tree is O(log(n)). Must hold the base lock.
935  *
936  * Returns 1 when the new timer is the leftmost timer in the tree.
937  */
938 static int enqueue_hrtimer(struct hrtimer *timer,
939 			   struct hrtimer_clock_base *base,
940 			   enum hrtimer_mode mode)
941 {
942 	debug_activate(timer, mode);
943 
944 	base->cpu_base->active_bases |= 1 << base->index;
945 
946 	timer->state = HRTIMER_STATE_ENQUEUED;
947 
948 	return timerqueue_add(&base->active, &timer->node);
949 }
950 
951 /*
952  * __remove_hrtimer - internal function to remove a timer
953  *
954  * Caller must hold the base lock.
955  *
956  * High resolution timer mode reprograms the clock event device when the
957  * timer is the one which expires next. The caller can disable this by setting
958  * reprogram to zero. This is useful, when the context does a reprogramming
959  * anyway (e.g. timer interrupt)
960  */
961 static void __remove_hrtimer(struct hrtimer *timer,
962 			     struct hrtimer_clock_base *base,
963 			     u8 newstate, int reprogram)
964 {
965 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
966 	u8 state = timer->state;
967 
968 	timer->state = newstate;
969 	if (!(state & HRTIMER_STATE_ENQUEUED))
970 		return;
971 
972 	if (!timerqueue_del(&base->active, &timer->node))
973 		cpu_base->active_bases &= ~(1 << base->index);
974 
975 	/*
976 	 * Note: If reprogram is false we do not update
977 	 * cpu_base->next_timer. This happens when we remove the first
978 	 * timer on a remote cpu. No harm as we never dereference
979 	 * cpu_base->next_timer. So the worst thing what can happen is
980 	 * an superflous call to hrtimer_force_reprogram() on the
981 	 * remote cpu later on if the same timer gets enqueued again.
982 	 */
983 	if (reprogram && timer == cpu_base->next_timer)
984 		hrtimer_force_reprogram(cpu_base, 1);
985 }
986 
987 /*
988  * remove hrtimer, called with base lock held
989  */
990 static inline int
991 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
992 {
993 	if (hrtimer_is_queued(timer)) {
994 		u8 state = timer->state;
995 		int reprogram;
996 
997 		/*
998 		 * Remove the timer and force reprogramming when high
999 		 * resolution mode is active and the timer is on the current
1000 		 * CPU. If we remove a timer on another CPU, reprogramming is
1001 		 * skipped. The interrupt event on this CPU is fired and
1002 		 * reprogramming happens in the interrupt handler. This is a
1003 		 * rare case and less expensive than a smp call.
1004 		 */
1005 		debug_deactivate(timer);
1006 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1007 
1008 		if (!restart)
1009 			state = HRTIMER_STATE_INACTIVE;
1010 
1011 		__remove_hrtimer(timer, base, state, reprogram);
1012 		return 1;
1013 	}
1014 	return 0;
1015 }
1016 
1017 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1018 					    const enum hrtimer_mode mode)
1019 {
1020 #ifdef CONFIG_TIME_LOW_RES
1021 	/*
1022 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1023 	 * granular time values. For relative timers we add hrtimer_resolution
1024 	 * (i.e. one jiffie) to prevent short timeouts.
1025 	 */
1026 	timer->is_rel = mode & HRTIMER_MODE_REL;
1027 	if (timer->is_rel)
1028 		tim = ktime_add_safe(tim, hrtimer_resolution);
1029 #endif
1030 	return tim;
1031 }
1032 
1033 static void
1034 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1035 {
1036 	ktime_t expires;
1037 
1038 	/*
1039 	 * Find the next SOFT expiration.
1040 	 */
1041 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1042 
1043 	/*
1044 	 * reprogramming needs to be triggered, even if the next soft
1045 	 * hrtimer expires at the same time than the next hard
1046 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1047 	 */
1048 	if (expires == KTIME_MAX)
1049 		return;
1050 
1051 	/*
1052 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1053 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1054 	 */
1055 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1056 }
1057 
1058 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1059 				    u64 delta_ns, const enum hrtimer_mode mode,
1060 				    struct hrtimer_clock_base *base)
1061 {
1062 	struct hrtimer_clock_base *new_base;
1063 
1064 	/* Remove an active timer from the queue: */
1065 	remove_hrtimer(timer, base, true);
1066 
1067 	if (mode & HRTIMER_MODE_REL)
1068 		tim = ktime_add_safe(tim, base->get_time());
1069 
1070 	tim = hrtimer_update_lowres(timer, tim, mode);
1071 
1072 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1073 
1074 	/* Switch the timer base, if necessary: */
1075 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1076 
1077 	return enqueue_hrtimer(timer, new_base, mode);
1078 }
1079 
1080 /**
1081  * hrtimer_start_range_ns - (re)start an hrtimer
1082  * @timer:	the timer to be added
1083  * @tim:	expiry time
1084  * @delta_ns:	"slack" range for the timer
1085  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1086  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1087  *		softirq based mode is considered for debug purpose only!
1088  */
1089 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1090 			    u64 delta_ns, const enum hrtimer_mode mode)
1091 {
1092 	struct hrtimer_clock_base *base;
1093 	unsigned long flags;
1094 
1095 	/*
1096 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1097 	 * match.
1098 	 */
1099 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1100 
1101 	base = lock_hrtimer_base(timer, &flags);
1102 
1103 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1104 		hrtimer_reprogram(timer, true);
1105 
1106 	unlock_hrtimer_base(timer, &flags);
1107 }
1108 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1109 
1110 /**
1111  * hrtimer_try_to_cancel - try to deactivate a timer
1112  * @timer:	hrtimer to stop
1113  *
1114  * Returns:
1115  *  0 when the timer was not active
1116  *  1 when the timer was active
1117  * -1 when the timer is currently executing the callback function and
1118  *    cannot be stopped
1119  */
1120 int hrtimer_try_to_cancel(struct hrtimer *timer)
1121 {
1122 	struct hrtimer_clock_base *base;
1123 	unsigned long flags;
1124 	int ret = -1;
1125 
1126 	/*
1127 	 * Check lockless first. If the timer is not active (neither
1128 	 * enqueued nor running the callback, nothing to do here.  The
1129 	 * base lock does not serialize against a concurrent enqueue,
1130 	 * so we can avoid taking it.
1131 	 */
1132 	if (!hrtimer_active(timer))
1133 		return 0;
1134 
1135 	base = lock_hrtimer_base(timer, &flags);
1136 
1137 	if (!hrtimer_callback_running(timer))
1138 		ret = remove_hrtimer(timer, base, false);
1139 
1140 	unlock_hrtimer_base(timer, &flags);
1141 
1142 	return ret;
1143 
1144 }
1145 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1146 
1147 /**
1148  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1149  * @timer:	the timer to be cancelled
1150  *
1151  * Returns:
1152  *  0 when the timer was not active
1153  *  1 when the timer was active
1154  */
1155 int hrtimer_cancel(struct hrtimer *timer)
1156 {
1157 	for (;;) {
1158 		int ret = hrtimer_try_to_cancel(timer);
1159 
1160 		if (ret >= 0)
1161 			return ret;
1162 		cpu_relax();
1163 	}
1164 }
1165 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1166 
1167 /**
1168  * hrtimer_get_remaining - get remaining time for the timer
1169  * @timer:	the timer to read
1170  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1171  */
1172 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1173 {
1174 	unsigned long flags;
1175 	ktime_t rem;
1176 
1177 	lock_hrtimer_base(timer, &flags);
1178 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1179 		rem = hrtimer_expires_remaining_adjusted(timer);
1180 	else
1181 		rem = hrtimer_expires_remaining(timer);
1182 	unlock_hrtimer_base(timer, &flags);
1183 
1184 	return rem;
1185 }
1186 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1187 
1188 #ifdef CONFIG_NO_HZ_COMMON
1189 /**
1190  * hrtimer_get_next_event - get the time until next expiry event
1191  *
1192  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1193  */
1194 u64 hrtimer_get_next_event(void)
1195 {
1196 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1197 	u64 expires = KTIME_MAX;
1198 	unsigned long flags;
1199 
1200 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1201 
1202 	if (!__hrtimer_hres_active(cpu_base))
1203 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1204 
1205 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1206 
1207 	return expires;
1208 }
1209 
1210 /**
1211  * hrtimer_next_event_without - time until next expiry event w/o one timer
1212  * @exclude:	timer to exclude
1213  *
1214  * Returns the next expiry time over all timers except for the @exclude one or
1215  * KTIME_MAX if none of them is pending.
1216  */
1217 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1218 {
1219 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1220 	u64 expires = KTIME_MAX;
1221 	unsigned long flags;
1222 
1223 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1224 
1225 	if (__hrtimer_hres_active(cpu_base)) {
1226 		unsigned int active;
1227 
1228 		if (!cpu_base->softirq_activated) {
1229 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1230 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1231 							    active, KTIME_MAX);
1232 		}
1233 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1234 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1235 						    expires);
1236 	}
1237 
1238 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1239 
1240 	return expires;
1241 }
1242 #endif
1243 
1244 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1245 {
1246 	if (likely(clock_id < MAX_CLOCKS)) {
1247 		int base = hrtimer_clock_to_base_table[clock_id];
1248 
1249 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1250 			return base;
1251 	}
1252 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1253 	return HRTIMER_BASE_MONOTONIC;
1254 }
1255 
1256 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1257 			   enum hrtimer_mode mode)
1258 {
1259 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1260 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1261 	struct hrtimer_cpu_base *cpu_base;
1262 
1263 	memset(timer, 0, sizeof(struct hrtimer));
1264 
1265 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1266 
1267 	/*
1268 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1269 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1270 	 * ensure POSIX compliance.
1271 	 */
1272 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1273 		clock_id = CLOCK_MONOTONIC;
1274 
1275 	base += hrtimer_clockid_to_base(clock_id);
1276 	timer->is_soft = softtimer;
1277 	timer->base = &cpu_base->clock_base[base];
1278 	timerqueue_init(&timer->node);
1279 }
1280 
1281 /**
1282  * hrtimer_init - initialize a timer to the given clock
1283  * @timer:	the timer to be initialized
1284  * @clock_id:	the clock to be used
1285  * @mode:       The modes which are relevant for intitialization:
1286  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1287  *              HRTIMER_MODE_REL_SOFT
1288  *
1289  *              The PINNED variants of the above can be handed in,
1290  *              but the PINNED bit is ignored as pinning happens
1291  *              when the hrtimer is started
1292  */
1293 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1294 		  enum hrtimer_mode mode)
1295 {
1296 	debug_init(timer, clock_id, mode);
1297 	__hrtimer_init(timer, clock_id, mode);
1298 }
1299 EXPORT_SYMBOL_GPL(hrtimer_init);
1300 
1301 /*
1302  * A timer is active, when it is enqueued into the rbtree or the
1303  * callback function is running or it's in the state of being migrated
1304  * to another cpu.
1305  *
1306  * It is important for this function to not return a false negative.
1307  */
1308 bool hrtimer_active(const struct hrtimer *timer)
1309 {
1310 	struct hrtimer_clock_base *base;
1311 	unsigned int seq;
1312 
1313 	do {
1314 		base = READ_ONCE(timer->base);
1315 		seq = raw_read_seqcount_begin(&base->seq);
1316 
1317 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1318 		    base->running == timer)
1319 			return true;
1320 
1321 	} while (read_seqcount_retry(&base->seq, seq) ||
1322 		 base != READ_ONCE(timer->base));
1323 
1324 	return false;
1325 }
1326 EXPORT_SYMBOL_GPL(hrtimer_active);
1327 
1328 /*
1329  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1330  * distinct sections:
1331  *
1332  *  - queued:	the timer is queued
1333  *  - callback:	the timer is being ran
1334  *  - post:	the timer is inactive or (re)queued
1335  *
1336  * On the read side we ensure we observe timer->state and cpu_base->running
1337  * from the same section, if anything changed while we looked at it, we retry.
1338  * This includes timer->base changing because sequence numbers alone are
1339  * insufficient for that.
1340  *
1341  * The sequence numbers are required because otherwise we could still observe
1342  * a false negative if the read side got smeared over multiple consequtive
1343  * __run_hrtimer() invocations.
1344  */
1345 
1346 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1347 			  struct hrtimer_clock_base *base,
1348 			  struct hrtimer *timer, ktime_t *now,
1349 			  unsigned long flags)
1350 {
1351 	enum hrtimer_restart (*fn)(struct hrtimer *);
1352 	int restart;
1353 
1354 	lockdep_assert_held(&cpu_base->lock);
1355 
1356 	debug_deactivate(timer);
1357 	base->running = timer;
1358 
1359 	/*
1360 	 * Separate the ->running assignment from the ->state assignment.
1361 	 *
1362 	 * As with a regular write barrier, this ensures the read side in
1363 	 * hrtimer_active() cannot observe base->running == NULL &&
1364 	 * timer->state == INACTIVE.
1365 	 */
1366 	raw_write_seqcount_barrier(&base->seq);
1367 
1368 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1369 	fn = timer->function;
1370 
1371 	/*
1372 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1373 	 * timer is restarted with a period then it becomes an absolute
1374 	 * timer. If its not restarted it does not matter.
1375 	 */
1376 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1377 		timer->is_rel = false;
1378 
1379 	/*
1380 	 * The timer is marked as running in the CPU base, so it is
1381 	 * protected against migration to a different CPU even if the lock
1382 	 * is dropped.
1383 	 */
1384 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1385 	trace_hrtimer_expire_entry(timer, now);
1386 	restart = fn(timer);
1387 	trace_hrtimer_expire_exit(timer);
1388 	raw_spin_lock_irq(&cpu_base->lock);
1389 
1390 	/*
1391 	 * Note: We clear the running state after enqueue_hrtimer and
1392 	 * we do not reprogram the event hardware. Happens either in
1393 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1394 	 *
1395 	 * Note: Because we dropped the cpu_base->lock above,
1396 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1397 	 * for us already.
1398 	 */
1399 	if (restart != HRTIMER_NORESTART &&
1400 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1401 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1402 
1403 	/*
1404 	 * Separate the ->running assignment from the ->state assignment.
1405 	 *
1406 	 * As with a regular write barrier, this ensures the read side in
1407 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1408 	 * timer->state == INACTIVE.
1409 	 */
1410 	raw_write_seqcount_barrier(&base->seq);
1411 
1412 	WARN_ON_ONCE(base->running != timer);
1413 	base->running = NULL;
1414 }
1415 
1416 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1417 				 unsigned long flags, unsigned int active_mask)
1418 {
1419 	struct hrtimer_clock_base *base;
1420 	unsigned int active = cpu_base->active_bases & active_mask;
1421 
1422 	for_each_active_base(base, cpu_base, active) {
1423 		struct timerqueue_node *node;
1424 		ktime_t basenow;
1425 
1426 		basenow = ktime_add(now, base->offset);
1427 
1428 		while ((node = timerqueue_getnext(&base->active))) {
1429 			struct hrtimer *timer;
1430 
1431 			timer = container_of(node, struct hrtimer, node);
1432 
1433 			/*
1434 			 * The immediate goal for using the softexpires is
1435 			 * minimizing wakeups, not running timers at the
1436 			 * earliest interrupt after their soft expiration.
1437 			 * This allows us to avoid using a Priority Search
1438 			 * Tree, which can answer a stabbing querry for
1439 			 * overlapping intervals and instead use the simple
1440 			 * BST we already have.
1441 			 * We don't add extra wakeups by delaying timers that
1442 			 * are right-of a not yet expired timer, because that
1443 			 * timer will have to trigger a wakeup anyway.
1444 			 */
1445 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1446 				break;
1447 
1448 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1449 		}
1450 	}
1451 }
1452 
1453 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1454 {
1455 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1456 	unsigned long flags;
1457 	ktime_t now;
1458 
1459 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1460 
1461 	now = hrtimer_update_base(cpu_base);
1462 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1463 
1464 	cpu_base->softirq_activated = 0;
1465 	hrtimer_update_softirq_timer(cpu_base, true);
1466 
1467 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1468 }
1469 
1470 #ifdef CONFIG_HIGH_RES_TIMERS
1471 
1472 /*
1473  * High resolution timer interrupt
1474  * Called with interrupts disabled
1475  */
1476 void hrtimer_interrupt(struct clock_event_device *dev)
1477 {
1478 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1479 	ktime_t expires_next, now, entry_time, delta;
1480 	unsigned long flags;
1481 	int retries = 0;
1482 
1483 	BUG_ON(!cpu_base->hres_active);
1484 	cpu_base->nr_events++;
1485 	dev->next_event = KTIME_MAX;
1486 
1487 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1488 	entry_time = now = hrtimer_update_base(cpu_base);
1489 retry:
1490 	cpu_base->in_hrtirq = 1;
1491 	/*
1492 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1493 	 * held to prevent that a timer is enqueued in our queue via
1494 	 * the migration code. This does not affect enqueueing of
1495 	 * timers which run their callback and need to be requeued on
1496 	 * this CPU.
1497 	 */
1498 	cpu_base->expires_next = KTIME_MAX;
1499 
1500 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1501 		cpu_base->softirq_expires_next = KTIME_MAX;
1502 		cpu_base->softirq_activated = 1;
1503 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1504 	}
1505 
1506 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1507 
1508 	/* Reevaluate the clock bases for the next expiry */
1509 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1510 	/*
1511 	 * Store the new expiry value so the migration code can verify
1512 	 * against it.
1513 	 */
1514 	cpu_base->expires_next = expires_next;
1515 	cpu_base->in_hrtirq = 0;
1516 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1517 
1518 	/* Reprogramming necessary ? */
1519 	if (!tick_program_event(expires_next, 0)) {
1520 		cpu_base->hang_detected = 0;
1521 		return;
1522 	}
1523 
1524 	/*
1525 	 * The next timer was already expired due to:
1526 	 * - tracing
1527 	 * - long lasting callbacks
1528 	 * - being scheduled away when running in a VM
1529 	 *
1530 	 * We need to prevent that we loop forever in the hrtimer
1531 	 * interrupt routine. We give it 3 attempts to avoid
1532 	 * overreacting on some spurious event.
1533 	 *
1534 	 * Acquire base lock for updating the offsets and retrieving
1535 	 * the current time.
1536 	 */
1537 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1538 	now = hrtimer_update_base(cpu_base);
1539 	cpu_base->nr_retries++;
1540 	if (++retries < 3)
1541 		goto retry;
1542 	/*
1543 	 * Give the system a chance to do something else than looping
1544 	 * here. We stored the entry time, so we know exactly how long
1545 	 * we spent here. We schedule the next event this amount of
1546 	 * time away.
1547 	 */
1548 	cpu_base->nr_hangs++;
1549 	cpu_base->hang_detected = 1;
1550 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1551 
1552 	delta = ktime_sub(now, entry_time);
1553 	if ((unsigned int)delta > cpu_base->max_hang_time)
1554 		cpu_base->max_hang_time = (unsigned int) delta;
1555 	/*
1556 	 * Limit it to a sensible value as we enforce a longer
1557 	 * delay. Give the CPU at least 100ms to catch up.
1558 	 */
1559 	if (delta > 100 * NSEC_PER_MSEC)
1560 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1561 	else
1562 		expires_next = ktime_add(now, delta);
1563 	tick_program_event(expires_next, 1);
1564 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1565 		    ktime_to_ns(delta));
1566 }
1567 
1568 /* called with interrupts disabled */
1569 static inline void __hrtimer_peek_ahead_timers(void)
1570 {
1571 	struct tick_device *td;
1572 
1573 	if (!hrtimer_hres_active())
1574 		return;
1575 
1576 	td = this_cpu_ptr(&tick_cpu_device);
1577 	if (td && td->evtdev)
1578 		hrtimer_interrupt(td->evtdev);
1579 }
1580 
1581 #else /* CONFIG_HIGH_RES_TIMERS */
1582 
1583 static inline void __hrtimer_peek_ahead_timers(void) { }
1584 
1585 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1586 
1587 /*
1588  * Called from run_local_timers in hardirq context every jiffy
1589  */
1590 void hrtimer_run_queues(void)
1591 {
1592 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1593 	unsigned long flags;
1594 	ktime_t now;
1595 
1596 	if (__hrtimer_hres_active(cpu_base))
1597 		return;
1598 
1599 	/*
1600 	 * This _is_ ugly: We have to check periodically, whether we
1601 	 * can switch to highres and / or nohz mode. The clocksource
1602 	 * switch happens with xtime_lock held. Notification from
1603 	 * there only sets the check bit in the tick_oneshot code,
1604 	 * otherwise we might deadlock vs. xtime_lock.
1605 	 */
1606 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1607 		hrtimer_switch_to_hres();
1608 		return;
1609 	}
1610 
1611 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1612 	now = hrtimer_update_base(cpu_base);
1613 
1614 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1615 		cpu_base->softirq_expires_next = KTIME_MAX;
1616 		cpu_base->softirq_activated = 1;
1617 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1618 	}
1619 
1620 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1621 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1622 }
1623 
1624 /*
1625  * Sleep related functions:
1626  */
1627 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1628 {
1629 	struct hrtimer_sleeper *t =
1630 		container_of(timer, struct hrtimer_sleeper, timer);
1631 	struct task_struct *task = t->task;
1632 
1633 	t->task = NULL;
1634 	if (task)
1635 		wake_up_process(task);
1636 
1637 	return HRTIMER_NORESTART;
1638 }
1639 
1640 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1641 {
1642 	sl->timer.function = hrtimer_wakeup;
1643 	sl->task = task;
1644 }
1645 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1646 
1647 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1648 {
1649 	switch(restart->nanosleep.type) {
1650 #ifdef CONFIG_COMPAT
1651 	case TT_COMPAT:
1652 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1653 			return -EFAULT;
1654 		break;
1655 #endif
1656 	case TT_NATIVE:
1657 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1658 			return -EFAULT;
1659 		break;
1660 	default:
1661 		BUG();
1662 	}
1663 	return -ERESTART_RESTARTBLOCK;
1664 }
1665 
1666 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1667 {
1668 	struct restart_block *restart;
1669 
1670 	hrtimer_init_sleeper(t, current);
1671 
1672 	do {
1673 		set_current_state(TASK_INTERRUPTIBLE);
1674 		hrtimer_start_expires(&t->timer, mode);
1675 
1676 		if (likely(t->task))
1677 			freezable_schedule();
1678 
1679 		hrtimer_cancel(&t->timer);
1680 		mode = HRTIMER_MODE_ABS;
1681 
1682 	} while (t->task && !signal_pending(current));
1683 
1684 	__set_current_state(TASK_RUNNING);
1685 
1686 	if (!t->task)
1687 		return 0;
1688 
1689 	restart = &current->restart_block;
1690 	if (restart->nanosleep.type != TT_NONE) {
1691 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1692 		struct timespec64 rmt;
1693 
1694 		if (rem <= 0)
1695 			return 0;
1696 		rmt = ktime_to_timespec64(rem);
1697 
1698 		return nanosleep_copyout(restart, &rmt);
1699 	}
1700 	return -ERESTART_RESTARTBLOCK;
1701 }
1702 
1703 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1704 {
1705 	struct hrtimer_sleeper t;
1706 	int ret;
1707 
1708 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1709 				HRTIMER_MODE_ABS);
1710 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1711 
1712 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1713 	destroy_hrtimer_on_stack(&t.timer);
1714 	return ret;
1715 }
1716 
1717 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1718 		       const enum hrtimer_mode mode, const clockid_t clockid)
1719 {
1720 	struct restart_block *restart;
1721 	struct hrtimer_sleeper t;
1722 	int ret = 0;
1723 	u64 slack;
1724 
1725 	slack = current->timer_slack_ns;
1726 	if (dl_task(current) || rt_task(current))
1727 		slack = 0;
1728 
1729 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1730 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1731 	ret = do_nanosleep(&t, mode);
1732 	if (ret != -ERESTART_RESTARTBLOCK)
1733 		goto out;
1734 
1735 	/* Absolute timers do not update the rmtp value and restart: */
1736 	if (mode == HRTIMER_MODE_ABS) {
1737 		ret = -ERESTARTNOHAND;
1738 		goto out;
1739 	}
1740 
1741 	restart = &current->restart_block;
1742 	restart->fn = hrtimer_nanosleep_restart;
1743 	restart->nanosleep.clockid = t.timer.base->clockid;
1744 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1745 out:
1746 	destroy_hrtimer_on_stack(&t.timer);
1747 	return ret;
1748 }
1749 
1750 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1751 		struct timespec __user *, rmtp)
1752 {
1753 	struct timespec64 tu;
1754 
1755 	if (get_timespec64(&tu, rqtp))
1756 		return -EFAULT;
1757 
1758 	if (!timespec64_valid(&tu))
1759 		return -EINVAL;
1760 
1761 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1762 	current->restart_block.nanosleep.rmtp = rmtp;
1763 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1764 }
1765 
1766 #ifdef CONFIG_COMPAT
1767 
1768 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1769 		       struct compat_timespec __user *, rmtp)
1770 {
1771 	struct timespec64 tu;
1772 
1773 	if (compat_get_timespec64(&tu, rqtp))
1774 		return -EFAULT;
1775 
1776 	if (!timespec64_valid(&tu))
1777 		return -EINVAL;
1778 
1779 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1780 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1781 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1782 }
1783 #endif
1784 
1785 /*
1786  * Functions related to boot-time initialization:
1787  */
1788 int hrtimers_prepare_cpu(unsigned int cpu)
1789 {
1790 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1791 	int i;
1792 
1793 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1794 		cpu_base->clock_base[i].cpu_base = cpu_base;
1795 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1796 	}
1797 
1798 	cpu_base->cpu = cpu;
1799 	cpu_base->active_bases = 0;
1800 	cpu_base->hres_active = 0;
1801 	cpu_base->hang_detected = 0;
1802 	cpu_base->next_timer = NULL;
1803 	cpu_base->softirq_next_timer = NULL;
1804 	cpu_base->expires_next = KTIME_MAX;
1805 	cpu_base->softirq_expires_next = KTIME_MAX;
1806 	return 0;
1807 }
1808 
1809 #ifdef CONFIG_HOTPLUG_CPU
1810 
1811 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1812 				struct hrtimer_clock_base *new_base)
1813 {
1814 	struct hrtimer *timer;
1815 	struct timerqueue_node *node;
1816 
1817 	while ((node = timerqueue_getnext(&old_base->active))) {
1818 		timer = container_of(node, struct hrtimer, node);
1819 		BUG_ON(hrtimer_callback_running(timer));
1820 		debug_deactivate(timer);
1821 
1822 		/*
1823 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1824 		 * timer could be seen as !active and just vanish away
1825 		 * under us on another CPU
1826 		 */
1827 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1828 		timer->base = new_base;
1829 		/*
1830 		 * Enqueue the timers on the new cpu. This does not
1831 		 * reprogram the event device in case the timer
1832 		 * expires before the earliest on this CPU, but we run
1833 		 * hrtimer_interrupt after we migrated everything to
1834 		 * sort out already expired timers and reprogram the
1835 		 * event device.
1836 		 */
1837 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1838 	}
1839 }
1840 
1841 int hrtimers_dead_cpu(unsigned int scpu)
1842 {
1843 	struct hrtimer_cpu_base *old_base, *new_base;
1844 	int i;
1845 
1846 	BUG_ON(cpu_online(scpu));
1847 	tick_cancel_sched_timer(scpu);
1848 
1849 	/*
1850 	 * this BH disable ensures that raise_softirq_irqoff() does
1851 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1852 	 * holding the cpu_base lock
1853 	 */
1854 	local_bh_disable();
1855 	local_irq_disable();
1856 	old_base = &per_cpu(hrtimer_bases, scpu);
1857 	new_base = this_cpu_ptr(&hrtimer_bases);
1858 	/*
1859 	 * The caller is globally serialized and nobody else
1860 	 * takes two locks at once, deadlock is not possible.
1861 	 */
1862 	raw_spin_lock(&new_base->lock);
1863 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1864 
1865 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1866 		migrate_hrtimer_list(&old_base->clock_base[i],
1867 				     &new_base->clock_base[i]);
1868 	}
1869 
1870 	/*
1871 	 * The migration might have changed the first expiring softirq
1872 	 * timer on this CPU. Update it.
1873 	 */
1874 	hrtimer_update_softirq_timer(new_base, false);
1875 
1876 	raw_spin_unlock(&old_base->lock);
1877 	raw_spin_unlock(&new_base->lock);
1878 
1879 	/* Check, if we got expired work to do */
1880 	__hrtimer_peek_ahead_timers();
1881 	local_irq_enable();
1882 	local_bh_enable();
1883 	return 0;
1884 }
1885 
1886 #endif /* CONFIG_HOTPLUG_CPU */
1887 
1888 void __init hrtimers_init(void)
1889 {
1890 	hrtimers_prepare_cpu(smp_processor_id());
1891 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1892 }
1893 
1894 /**
1895  * schedule_hrtimeout_range_clock - sleep until timeout
1896  * @expires:	timeout value (ktime_t)
1897  * @delta:	slack in expires timeout (ktime_t)
1898  * @mode:	timer mode
1899  * @clock_id:	timer clock to be used
1900  */
1901 int __sched
1902 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1903 			       const enum hrtimer_mode mode, clockid_t clock_id)
1904 {
1905 	struct hrtimer_sleeper t;
1906 
1907 	/*
1908 	 * Optimize when a zero timeout value is given. It does not
1909 	 * matter whether this is an absolute or a relative time.
1910 	 */
1911 	if (expires && *expires == 0) {
1912 		__set_current_state(TASK_RUNNING);
1913 		return 0;
1914 	}
1915 
1916 	/*
1917 	 * A NULL parameter means "infinite"
1918 	 */
1919 	if (!expires) {
1920 		schedule();
1921 		return -EINTR;
1922 	}
1923 
1924 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1925 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1926 
1927 	hrtimer_init_sleeper(&t, current);
1928 
1929 	hrtimer_start_expires(&t.timer, mode);
1930 
1931 	if (likely(t.task))
1932 		schedule();
1933 
1934 	hrtimer_cancel(&t.timer);
1935 	destroy_hrtimer_on_stack(&t.timer);
1936 
1937 	__set_current_state(TASK_RUNNING);
1938 
1939 	return !t.task ? 0 : -EINTR;
1940 }
1941 
1942 /**
1943  * schedule_hrtimeout_range - sleep until timeout
1944  * @expires:	timeout value (ktime_t)
1945  * @delta:	slack in expires timeout (ktime_t)
1946  * @mode:	timer mode
1947  *
1948  * Make the current task sleep until the given expiry time has
1949  * elapsed. The routine will return immediately unless
1950  * the current task state has been set (see set_current_state()).
1951  *
1952  * The @delta argument gives the kernel the freedom to schedule the
1953  * actual wakeup to a time that is both power and performance friendly.
1954  * The kernel give the normal best effort behavior for "@expires+@delta",
1955  * but may decide to fire the timer earlier, but no earlier than @expires.
1956  *
1957  * You can set the task state as follows -
1958  *
1959  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1960  * pass before the routine returns unless the current task is explicitly
1961  * woken up, (e.g. by wake_up_process()).
1962  *
1963  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1964  * delivered to the current task or the current task is explicitly woken
1965  * up.
1966  *
1967  * The current task state is guaranteed to be TASK_RUNNING when this
1968  * routine returns.
1969  *
1970  * Returns 0 when the timer has expired. If the task was woken before the
1971  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1972  * by an explicit wakeup, it returns -EINTR.
1973  */
1974 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1975 				     const enum hrtimer_mode mode)
1976 {
1977 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1978 					      CLOCK_MONOTONIC);
1979 }
1980 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1981 
1982 /**
1983  * schedule_hrtimeout - sleep until timeout
1984  * @expires:	timeout value (ktime_t)
1985  * @mode:	timer mode
1986  *
1987  * Make the current task sleep until the given expiry time has
1988  * elapsed. The routine will return immediately unless
1989  * the current task state has been set (see set_current_state()).
1990  *
1991  * You can set the task state as follows -
1992  *
1993  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1994  * pass before the routine returns unless the current task is explicitly
1995  * woken up, (e.g. by wake_up_process()).
1996  *
1997  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1998  * delivered to the current task or the current task is explicitly woken
1999  * up.
2000  *
2001  * The current task state is guaranteed to be TASK_RUNNING when this
2002  * routine returns.
2003  *
2004  * Returns 0 when the timer has expired. If the task was woken before the
2005  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2006  * by an explicit wakeup, it returns -EINTR.
2007  */
2008 int __sched schedule_hrtimeout(ktime_t *expires,
2009 			       const enum hrtimer_mode mode)
2010 {
2011 	return schedule_hrtimeout_range(expires, 0, mode);
2012 }
2013 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2014