1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/seq_file.h> 34 #include <linux/err.h> 35 #include <linux/debugobjects.h> 36 #include <linux/sched/signal.h> 37 #include <linux/sched/sysctl.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/deadline.h> 40 #include <linux/sched/nohz.h> 41 #include <linux/sched/debug.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 /* 62 * The timer bases: 63 * 64 * There are more clockids than hrtimer bases. Thus, we index 65 * into the timer bases by the hrtimer_base_type enum. When trying 66 * to reach a base using a clockid, hrtimer_clockid_to_base() 67 * is used to convert from clockid to the proper hrtimer_base_type. 68 */ 69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 70 { 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 72 .clock_base = 73 { 74 { 75 .index = HRTIMER_BASE_MONOTONIC, 76 .clockid = CLOCK_MONOTONIC, 77 .get_time = &ktime_get, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 }, 84 { 85 .index = HRTIMER_BASE_BOOTTIME, 86 .clockid = CLOCK_BOOTTIME, 87 .get_time = &ktime_get_boottime, 88 }, 89 { 90 .index = HRTIMER_BASE_TAI, 91 .clockid = CLOCK_TAI, 92 .get_time = &ktime_get_clocktai, 93 }, 94 { 95 .index = HRTIMER_BASE_MONOTONIC_SOFT, 96 .clockid = CLOCK_MONOTONIC, 97 .get_time = &ktime_get, 98 }, 99 { 100 .index = HRTIMER_BASE_REALTIME_SOFT, 101 .clockid = CLOCK_REALTIME, 102 .get_time = &ktime_get_real, 103 }, 104 { 105 .index = HRTIMER_BASE_BOOTTIME_SOFT, 106 .clockid = CLOCK_BOOTTIME, 107 .get_time = &ktime_get_boottime, 108 }, 109 { 110 .index = HRTIMER_BASE_TAI_SOFT, 111 .clockid = CLOCK_TAI, 112 .get_time = &ktime_get_clocktai, 113 }, 114 } 115 }; 116 117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 118 /* Make sure we catch unsupported clockids */ 119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 120 121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 124 [CLOCK_TAI] = HRTIMER_BASE_TAI, 125 }; 126 127 /* 128 * Functions and macros which are different for UP/SMP systems are kept in a 129 * single place 130 */ 131 #ifdef CONFIG_SMP 132 133 /* 134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 135 * such that hrtimer_callback_running() can unconditionally dereference 136 * timer->base->cpu_base 137 */ 138 static struct hrtimer_cpu_base migration_cpu_base = { 139 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 140 }; 141 142 #define migration_base migration_cpu_base.clock_base[0] 143 144 /* 145 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 146 * means that all timers which are tied to this base via timer->base are 147 * locked, and the base itself is locked too. 148 * 149 * So __run_timers/migrate_timers can safely modify all timers which could 150 * be found on the lists/queues. 151 * 152 * When the timer's base is locked, and the timer removed from list, it is 153 * possible to set timer->base = &migration_base and drop the lock: the timer 154 * remains locked. 155 */ 156 static 157 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 158 unsigned long *flags) 159 { 160 struct hrtimer_clock_base *base; 161 162 for (;;) { 163 base = timer->base; 164 if (likely(base != &migration_base)) { 165 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 166 if (likely(base == timer->base)) 167 return base; 168 /* The timer has migrated to another CPU: */ 169 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 170 } 171 cpu_relax(); 172 } 173 } 174 175 /* 176 * We do not migrate the timer when it is expiring before the next 177 * event on the target cpu. When high resolution is enabled, we cannot 178 * reprogram the target cpu hardware and we would cause it to fire 179 * late. To keep it simple, we handle the high resolution enabled and 180 * disabled case similar. 181 * 182 * Called with cpu_base->lock of target cpu held. 183 */ 184 static int 185 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 186 { 187 ktime_t expires; 188 189 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 190 return expires < new_base->cpu_base->expires_next; 191 } 192 193 static inline 194 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 195 int pinned) 196 { 197 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 198 if (static_branch_likely(&timers_migration_enabled) && !pinned) 199 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 200 #endif 201 return base; 202 } 203 204 /* 205 * We switch the timer base to a power-optimized selected CPU target, 206 * if: 207 * - NO_HZ_COMMON is enabled 208 * - timer migration is enabled 209 * - the timer callback is not running 210 * - the timer is not the first expiring timer on the new target 211 * 212 * If one of the above requirements is not fulfilled we move the timer 213 * to the current CPU or leave it on the previously assigned CPU if 214 * the timer callback is currently running. 215 */ 216 static inline struct hrtimer_clock_base * 217 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 218 int pinned) 219 { 220 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 221 struct hrtimer_clock_base *new_base; 222 int basenum = base->index; 223 224 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 225 new_cpu_base = get_target_base(this_cpu_base, pinned); 226 again: 227 new_base = &new_cpu_base->clock_base[basenum]; 228 229 if (base != new_base) { 230 /* 231 * We are trying to move timer to new_base. 232 * However we can't change timer's base while it is running, 233 * so we keep it on the same CPU. No hassle vs. reprogramming 234 * the event source in the high resolution case. The softirq 235 * code will take care of this when the timer function has 236 * completed. There is no conflict as we hold the lock until 237 * the timer is enqueued. 238 */ 239 if (unlikely(hrtimer_callback_running(timer))) 240 return base; 241 242 /* See the comment in lock_hrtimer_base() */ 243 timer->base = &migration_base; 244 raw_spin_unlock(&base->cpu_base->lock); 245 raw_spin_lock(&new_base->cpu_base->lock); 246 247 if (new_cpu_base != this_cpu_base && 248 hrtimer_check_target(timer, new_base)) { 249 raw_spin_unlock(&new_base->cpu_base->lock); 250 raw_spin_lock(&base->cpu_base->lock); 251 new_cpu_base = this_cpu_base; 252 timer->base = base; 253 goto again; 254 } 255 timer->base = new_base; 256 } else { 257 if (new_cpu_base != this_cpu_base && 258 hrtimer_check_target(timer, new_base)) { 259 new_cpu_base = this_cpu_base; 260 goto again; 261 } 262 } 263 return new_base; 264 } 265 266 #else /* CONFIG_SMP */ 267 268 static inline struct hrtimer_clock_base * 269 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 270 { 271 struct hrtimer_clock_base *base = timer->base; 272 273 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 274 275 return base; 276 } 277 278 # define switch_hrtimer_base(t, b, p) (b) 279 280 #endif /* !CONFIG_SMP */ 281 282 /* 283 * Functions for the union type storage format of ktime_t which are 284 * too large for inlining: 285 */ 286 #if BITS_PER_LONG < 64 287 /* 288 * Divide a ktime value by a nanosecond value 289 */ 290 s64 __ktime_divns(const ktime_t kt, s64 div) 291 { 292 int sft = 0; 293 s64 dclc; 294 u64 tmp; 295 296 dclc = ktime_to_ns(kt); 297 tmp = dclc < 0 ? -dclc : dclc; 298 299 /* Make sure the divisor is less than 2^32: */ 300 while (div >> 32) { 301 sft++; 302 div >>= 1; 303 } 304 tmp >>= sft; 305 do_div(tmp, (unsigned long) div); 306 return dclc < 0 ? -tmp : tmp; 307 } 308 EXPORT_SYMBOL_GPL(__ktime_divns); 309 #endif /* BITS_PER_LONG >= 64 */ 310 311 /* 312 * Add two ktime values and do a safety check for overflow: 313 */ 314 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 315 { 316 ktime_t res = ktime_add_unsafe(lhs, rhs); 317 318 /* 319 * We use KTIME_SEC_MAX here, the maximum timeout which we can 320 * return to user space in a timespec: 321 */ 322 if (res < 0 || res < lhs || res < rhs) 323 res = ktime_set(KTIME_SEC_MAX, 0); 324 325 return res; 326 } 327 328 EXPORT_SYMBOL_GPL(ktime_add_safe); 329 330 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 331 332 static struct debug_obj_descr hrtimer_debug_descr; 333 334 static void *hrtimer_debug_hint(void *addr) 335 { 336 return ((struct hrtimer *) addr)->function; 337 } 338 339 /* 340 * fixup_init is called when: 341 * - an active object is initialized 342 */ 343 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 344 { 345 struct hrtimer *timer = addr; 346 347 switch (state) { 348 case ODEBUG_STATE_ACTIVE: 349 hrtimer_cancel(timer); 350 debug_object_init(timer, &hrtimer_debug_descr); 351 return true; 352 default: 353 return false; 354 } 355 } 356 357 /* 358 * fixup_activate is called when: 359 * - an active object is activated 360 * - an unknown non-static object is activated 361 */ 362 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 363 { 364 switch (state) { 365 case ODEBUG_STATE_ACTIVE: 366 WARN_ON(1); 367 /* fall through */ 368 default: 369 return false; 370 } 371 } 372 373 /* 374 * fixup_free is called when: 375 * - an active object is freed 376 */ 377 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 378 { 379 struct hrtimer *timer = addr; 380 381 switch (state) { 382 case ODEBUG_STATE_ACTIVE: 383 hrtimer_cancel(timer); 384 debug_object_free(timer, &hrtimer_debug_descr); 385 return true; 386 default: 387 return false; 388 } 389 } 390 391 static struct debug_obj_descr hrtimer_debug_descr = { 392 .name = "hrtimer", 393 .debug_hint = hrtimer_debug_hint, 394 .fixup_init = hrtimer_fixup_init, 395 .fixup_activate = hrtimer_fixup_activate, 396 .fixup_free = hrtimer_fixup_free, 397 }; 398 399 static inline void debug_hrtimer_init(struct hrtimer *timer) 400 { 401 debug_object_init(timer, &hrtimer_debug_descr); 402 } 403 404 static inline void debug_hrtimer_activate(struct hrtimer *timer, 405 enum hrtimer_mode mode) 406 { 407 debug_object_activate(timer, &hrtimer_debug_descr); 408 } 409 410 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 411 { 412 debug_object_deactivate(timer, &hrtimer_debug_descr); 413 } 414 415 static inline void debug_hrtimer_free(struct hrtimer *timer) 416 { 417 debug_object_free(timer, &hrtimer_debug_descr); 418 } 419 420 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 421 enum hrtimer_mode mode); 422 423 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 424 enum hrtimer_mode mode) 425 { 426 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 427 __hrtimer_init(timer, clock_id, mode); 428 } 429 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 430 431 void destroy_hrtimer_on_stack(struct hrtimer *timer) 432 { 433 debug_object_free(timer, &hrtimer_debug_descr); 434 } 435 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 436 437 #else 438 439 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 440 static inline void debug_hrtimer_activate(struct hrtimer *timer, 441 enum hrtimer_mode mode) { } 442 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 443 #endif 444 445 static inline void 446 debug_init(struct hrtimer *timer, clockid_t clockid, 447 enum hrtimer_mode mode) 448 { 449 debug_hrtimer_init(timer); 450 trace_hrtimer_init(timer, clockid, mode); 451 } 452 453 static inline void debug_activate(struct hrtimer *timer, 454 enum hrtimer_mode mode) 455 { 456 debug_hrtimer_activate(timer, mode); 457 trace_hrtimer_start(timer, mode); 458 } 459 460 static inline void debug_deactivate(struct hrtimer *timer) 461 { 462 debug_hrtimer_deactivate(timer); 463 trace_hrtimer_cancel(timer); 464 } 465 466 static struct hrtimer_clock_base * 467 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 468 { 469 unsigned int idx; 470 471 if (!*active) 472 return NULL; 473 474 idx = __ffs(*active); 475 *active &= ~(1U << idx); 476 477 return &cpu_base->clock_base[idx]; 478 } 479 480 #define for_each_active_base(base, cpu_base, active) \ 481 while ((base = __next_base((cpu_base), &(active)))) 482 483 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 484 const struct hrtimer *exclude, 485 unsigned int active, 486 ktime_t expires_next) 487 { 488 struct hrtimer_clock_base *base; 489 ktime_t expires; 490 491 for_each_active_base(base, cpu_base, active) { 492 struct timerqueue_node *next; 493 struct hrtimer *timer; 494 495 next = timerqueue_getnext(&base->active); 496 timer = container_of(next, struct hrtimer, node); 497 if (timer == exclude) { 498 /* Get to the next timer in the queue. */ 499 next = timerqueue_iterate_next(next); 500 if (!next) 501 continue; 502 503 timer = container_of(next, struct hrtimer, node); 504 } 505 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 506 if (expires < expires_next) { 507 expires_next = expires; 508 509 /* Skip cpu_base update if a timer is being excluded. */ 510 if (exclude) 511 continue; 512 513 if (timer->is_soft) 514 cpu_base->softirq_next_timer = timer; 515 else 516 cpu_base->next_timer = timer; 517 } 518 } 519 /* 520 * clock_was_set() might have changed base->offset of any of 521 * the clock bases so the result might be negative. Fix it up 522 * to prevent a false positive in clockevents_program_event(). 523 */ 524 if (expires_next < 0) 525 expires_next = 0; 526 return expires_next; 527 } 528 529 /* 530 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 531 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 532 * 533 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 534 * those timers will get run whenever the softirq gets handled, at the end of 535 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 536 * 537 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 538 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 539 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 540 * 541 * @active_mask must be one of: 542 * - HRTIMER_ACTIVE_ALL, 543 * - HRTIMER_ACTIVE_SOFT, or 544 * - HRTIMER_ACTIVE_HARD. 545 */ 546 static ktime_t 547 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 548 { 549 unsigned int active; 550 struct hrtimer *next_timer = NULL; 551 ktime_t expires_next = KTIME_MAX; 552 553 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 554 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 555 cpu_base->softirq_next_timer = NULL; 556 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 557 active, KTIME_MAX); 558 559 next_timer = cpu_base->softirq_next_timer; 560 } 561 562 if (active_mask & HRTIMER_ACTIVE_HARD) { 563 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 564 cpu_base->next_timer = next_timer; 565 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 566 expires_next); 567 } 568 569 return expires_next; 570 } 571 572 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 573 { 574 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 575 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 576 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 577 578 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 579 offs_real, offs_boot, offs_tai); 580 581 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 582 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 583 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 584 585 return now; 586 } 587 588 /* 589 * Is the high resolution mode active ? 590 */ 591 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 592 { 593 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 594 cpu_base->hres_active : 0; 595 } 596 597 static inline int hrtimer_hres_active(void) 598 { 599 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 600 } 601 602 /* 603 * Reprogram the event source with checking both queues for the 604 * next event 605 * Called with interrupts disabled and base->lock held 606 */ 607 static void 608 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 609 { 610 ktime_t expires_next; 611 612 /* 613 * Find the current next expiration time. 614 */ 615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 616 617 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 618 /* 619 * When the softirq is activated, hrtimer has to be 620 * programmed with the first hard hrtimer because soft 621 * timer interrupt could occur too late. 622 */ 623 if (cpu_base->softirq_activated) 624 expires_next = __hrtimer_get_next_event(cpu_base, 625 HRTIMER_ACTIVE_HARD); 626 else 627 cpu_base->softirq_expires_next = expires_next; 628 } 629 630 if (skip_equal && expires_next == cpu_base->expires_next) 631 return; 632 633 cpu_base->expires_next = expires_next; 634 635 /* 636 * If hres is not active, hardware does not have to be 637 * reprogrammed yet. 638 * 639 * If a hang was detected in the last timer interrupt then we 640 * leave the hang delay active in the hardware. We want the 641 * system to make progress. That also prevents the following 642 * scenario: 643 * T1 expires 50ms from now 644 * T2 expires 5s from now 645 * 646 * T1 is removed, so this code is called and would reprogram 647 * the hardware to 5s from now. Any hrtimer_start after that 648 * will not reprogram the hardware due to hang_detected being 649 * set. So we'd effectivly block all timers until the T2 event 650 * fires. 651 */ 652 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 653 return; 654 655 tick_program_event(cpu_base->expires_next, 1); 656 } 657 658 /* High resolution timer related functions */ 659 #ifdef CONFIG_HIGH_RES_TIMERS 660 661 /* 662 * High resolution timer enabled ? 663 */ 664 static bool hrtimer_hres_enabled __read_mostly = true; 665 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 666 EXPORT_SYMBOL_GPL(hrtimer_resolution); 667 668 /* 669 * Enable / Disable high resolution mode 670 */ 671 static int __init setup_hrtimer_hres(char *str) 672 { 673 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 674 } 675 676 __setup("highres=", setup_hrtimer_hres); 677 678 /* 679 * hrtimer_high_res_enabled - query, if the highres mode is enabled 680 */ 681 static inline int hrtimer_is_hres_enabled(void) 682 { 683 return hrtimer_hres_enabled; 684 } 685 686 /* 687 * Retrigger next event is called after clock was set 688 * 689 * Called with interrupts disabled via on_each_cpu() 690 */ 691 static void retrigger_next_event(void *arg) 692 { 693 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 694 695 if (!__hrtimer_hres_active(base)) 696 return; 697 698 raw_spin_lock(&base->lock); 699 hrtimer_update_base(base); 700 hrtimer_force_reprogram(base, 0); 701 raw_spin_unlock(&base->lock); 702 } 703 704 /* 705 * Switch to high resolution mode 706 */ 707 static void hrtimer_switch_to_hres(void) 708 { 709 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 710 711 if (tick_init_highres()) { 712 pr_warn("Could not switch to high resolution mode on CPU %u\n", 713 base->cpu); 714 return; 715 } 716 base->hres_active = 1; 717 hrtimer_resolution = HIGH_RES_NSEC; 718 719 tick_setup_sched_timer(); 720 /* "Retrigger" the interrupt to get things going */ 721 retrigger_next_event(NULL); 722 } 723 724 static void clock_was_set_work(struct work_struct *work) 725 { 726 clock_was_set(); 727 } 728 729 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 730 731 /* 732 * Called from timekeeping and resume code to reprogram the hrtimer 733 * interrupt device on all cpus. 734 */ 735 void clock_was_set_delayed(void) 736 { 737 schedule_work(&hrtimer_work); 738 } 739 740 #else 741 742 static inline int hrtimer_is_hres_enabled(void) { return 0; } 743 static inline void hrtimer_switch_to_hres(void) { } 744 static inline void retrigger_next_event(void *arg) { } 745 746 #endif /* CONFIG_HIGH_RES_TIMERS */ 747 748 /* 749 * When a timer is enqueued and expires earlier than the already enqueued 750 * timers, we have to check, whether it expires earlier than the timer for 751 * which the clock event device was armed. 752 * 753 * Called with interrupts disabled and base->cpu_base.lock held 754 */ 755 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 756 { 757 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 758 struct hrtimer_clock_base *base = timer->base; 759 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 760 761 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 762 763 /* 764 * CLOCK_REALTIME timer might be requested with an absolute 765 * expiry time which is less than base->offset. Set it to 0. 766 */ 767 if (expires < 0) 768 expires = 0; 769 770 if (timer->is_soft) { 771 /* 772 * soft hrtimer could be started on a remote CPU. In this 773 * case softirq_expires_next needs to be updated on the 774 * remote CPU. The soft hrtimer will not expire before the 775 * first hard hrtimer on the remote CPU - 776 * hrtimer_check_target() prevents this case. 777 */ 778 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 779 780 if (timer_cpu_base->softirq_activated) 781 return; 782 783 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 784 return; 785 786 timer_cpu_base->softirq_next_timer = timer; 787 timer_cpu_base->softirq_expires_next = expires; 788 789 if (!ktime_before(expires, timer_cpu_base->expires_next) || 790 !reprogram) 791 return; 792 } 793 794 /* 795 * If the timer is not on the current cpu, we cannot reprogram 796 * the other cpus clock event device. 797 */ 798 if (base->cpu_base != cpu_base) 799 return; 800 801 /* 802 * If the hrtimer interrupt is running, then it will 803 * reevaluate the clock bases and reprogram the clock event 804 * device. The callbacks are always executed in hard interrupt 805 * context so we don't need an extra check for a running 806 * callback. 807 */ 808 if (cpu_base->in_hrtirq) 809 return; 810 811 if (expires >= cpu_base->expires_next) 812 return; 813 814 /* Update the pointer to the next expiring timer */ 815 cpu_base->next_timer = timer; 816 cpu_base->expires_next = expires; 817 818 /* 819 * If hres is not active, hardware does not have to be 820 * programmed yet. 821 * 822 * If a hang was detected in the last timer interrupt then we 823 * do not schedule a timer which is earlier than the expiry 824 * which we enforced in the hang detection. We want the system 825 * to make progress. 826 */ 827 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 828 return; 829 830 /* 831 * Program the timer hardware. We enforce the expiry for 832 * events which are already in the past. 833 */ 834 tick_program_event(expires, 1); 835 } 836 837 /* 838 * Clock realtime was set 839 * 840 * Change the offset of the realtime clock vs. the monotonic 841 * clock. 842 * 843 * We might have to reprogram the high resolution timer interrupt. On 844 * SMP we call the architecture specific code to retrigger _all_ high 845 * resolution timer interrupts. On UP we just disable interrupts and 846 * call the high resolution interrupt code. 847 */ 848 void clock_was_set(void) 849 { 850 #ifdef CONFIG_HIGH_RES_TIMERS 851 /* Retrigger the CPU local events everywhere */ 852 on_each_cpu(retrigger_next_event, NULL, 1); 853 #endif 854 timerfd_clock_was_set(); 855 } 856 857 /* 858 * During resume we might have to reprogram the high resolution timer 859 * interrupt on all online CPUs. However, all other CPUs will be 860 * stopped with IRQs interrupts disabled so the clock_was_set() call 861 * must be deferred. 862 */ 863 void hrtimers_resume(void) 864 { 865 lockdep_assert_irqs_disabled(); 866 /* Retrigger on the local CPU */ 867 retrigger_next_event(NULL); 868 /* And schedule a retrigger for all others */ 869 clock_was_set_delayed(); 870 } 871 872 /* 873 * Counterpart to lock_hrtimer_base above: 874 */ 875 static inline 876 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 877 { 878 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 879 } 880 881 /** 882 * hrtimer_forward - forward the timer expiry 883 * @timer: hrtimer to forward 884 * @now: forward past this time 885 * @interval: the interval to forward 886 * 887 * Forward the timer expiry so it will expire in the future. 888 * Returns the number of overruns. 889 * 890 * Can be safely called from the callback function of @timer. If 891 * called from other contexts @timer must neither be enqueued nor 892 * running the callback and the caller needs to take care of 893 * serialization. 894 * 895 * Note: This only updates the timer expiry value and does not requeue 896 * the timer. 897 */ 898 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 899 { 900 u64 orun = 1; 901 ktime_t delta; 902 903 delta = ktime_sub(now, hrtimer_get_expires(timer)); 904 905 if (delta < 0) 906 return 0; 907 908 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 909 return 0; 910 911 if (interval < hrtimer_resolution) 912 interval = hrtimer_resolution; 913 914 if (unlikely(delta >= interval)) { 915 s64 incr = ktime_to_ns(interval); 916 917 orun = ktime_divns(delta, incr); 918 hrtimer_add_expires_ns(timer, incr * orun); 919 if (hrtimer_get_expires_tv64(timer) > now) 920 return orun; 921 /* 922 * This (and the ktime_add() below) is the 923 * correction for exact: 924 */ 925 orun++; 926 } 927 hrtimer_add_expires(timer, interval); 928 929 return orun; 930 } 931 EXPORT_SYMBOL_GPL(hrtimer_forward); 932 933 /* 934 * enqueue_hrtimer - internal function to (re)start a timer 935 * 936 * The timer is inserted in expiry order. Insertion into the 937 * red black tree is O(log(n)). Must hold the base lock. 938 * 939 * Returns 1 when the new timer is the leftmost timer in the tree. 940 */ 941 static int enqueue_hrtimer(struct hrtimer *timer, 942 struct hrtimer_clock_base *base, 943 enum hrtimer_mode mode) 944 { 945 debug_activate(timer, mode); 946 947 base->cpu_base->active_bases |= 1 << base->index; 948 949 timer->state = HRTIMER_STATE_ENQUEUED; 950 951 return timerqueue_add(&base->active, &timer->node); 952 } 953 954 /* 955 * __remove_hrtimer - internal function to remove a timer 956 * 957 * Caller must hold the base lock. 958 * 959 * High resolution timer mode reprograms the clock event device when the 960 * timer is the one which expires next. The caller can disable this by setting 961 * reprogram to zero. This is useful, when the context does a reprogramming 962 * anyway (e.g. timer interrupt) 963 */ 964 static void __remove_hrtimer(struct hrtimer *timer, 965 struct hrtimer_clock_base *base, 966 u8 newstate, int reprogram) 967 { 968 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 969 u8 state = timer->state; 970 971 timer->state = newstate; 972 if (!(state & HRTIMER_STATE_ENQUEUED)) 973 return; 974 975 if (!timerqueue_del(&base->active, &timer->node)) 976 cpu_base->active_bases &= ~(1 << base->index); 977 978 /* 979 * Note: If reprogram is false we do not update 980 * cpu_base->next_timer. This happens when we remove the first 981 * timer on a remote cpu. No harm as we never dereference 982 * cpu_base->next_timer. So the worst thing what can happen is 983 * an superflous call to hrtimer_force_reprogram() on the 984 * remote cpu later on if the same timer gets enqueued again. 985 */ 986 if (reprogram && timer == cpu_base->next_timer) 987 hrtimer_force_reprogram(cpu_base, 1); 988 } 989 990 /* 991 * remove hrtimer, called with base lock held 992 */ 993 static inline int 994 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 995 { 996 if (hrtimer_is_queued(timer)) { 997 u8 state = timer->state; 998 int reprogram; 999 1000 /* 1001 * Remove the timer and force reprogramming when high 1002 * resolution mode is active and the timer is on the current 1003 * CPU. If we remove a timer on another CPU, reprogramming is 1004 * skipped. The interrupt event on this CPU is fired and 1005 * reprogramming happens in the interrupt handler. This is a 1006 * rare case and less expensive than a smp call. 1007 */ 1008 debug_deactivate(timer); 1009 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1010 1011 if (!restart) 1012 state = HRTIMER_STATE_INACTIVE; 1013 1014 __remove_hrtimer(timer, base, state, reprogram); 1015 return 1; 1016 } 1017 return 0; 1018 } 1019 1020 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1021 const enum hrtimer_mode mode) 1022 { 1023 #ifdef CONFIG_TIME_LOW_RES 1024 /* 1025 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1026 * granular time values. For relative timers we add hrtimer_resolution 1027 * (i.e. one jiffie) to prevent short timeouts. 1028 */ 1029 timer->is_rel = mode & HRTIMER_MODE_REL; 1030 if (timer->is_rel) 1031 tim = ktime_add_safe(tim, hrtimer_resolution); 1032 #endif 1033 return tim; 1034 } 1035 1036 static void 1037 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1038 { 1039 ktime_t expires; 1040 1041 /* 1042 * Find the next SOFT expiration. 1043 */ 1044 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1045 1046 /* 1047 * reprogramming needs to be triggered, even if the next soft 1048 * hrtimer expires at the same time than the next hard 1049 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1050 */ 1051 if (expires == KTIME_MAX) 1052 return; 1053 1054 /* 1055 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1056 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1057 */ 1058 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1059 } 1060 1061 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1062 u64 delta_ns, const enum hrtimer_mode mode, 1063 struct hrtimer_clock_base *base) 1064 { 1065 struct hrtimer_clock_base *new_base; 1066 1067 /* Remove an active timer from the queue: */ 1068 remove_hrtimer(timer, base, true); 1069 1070 if (mode & HRTIMER_MODE_REL) 1071 tim = ktime_add_safe(tim, base->get_time()); 1072 1073 tim = hrtimer_update_lowres(timer, tim, mode); 1074 1075 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1076 1077 /* Switch the timer base, if necessary: */ 1078 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1079 1080 return enqueue_hrtimer(timer, new_base, mode); 1081 } 1082 1083 /** 1084 * hrtimer_start_range_ns - (re)start an hrtimer 1085 * @timer: the timer to be added 1086 * @tim: expiry time 1087 * @delta_ns: "slack" range for the timer 1088 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1089 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1090 * softirq based mode is considered for debug purpose only! 1091 */ 1092 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1093 u64 delta_ns, const enum hrtimer_mode mode) 1094 { 1095 struct hrtimer_clock_base *base; 1096 unsigned long flags; 1097 1098 /* 1099 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1100 * match. 1101 */ 1102 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1103 1104 base = lock_hrtimer_base(timer, &flags); 1105 1106 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1107 hrtimer_reprogram(timer, true); 1108 1109 unlock_hrtimer_base(timer, &flags); 1110 } 1111 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1112 1113 /** 1114 * hrtimer_try_to_cancel - try to deactivate a timer 1115 * @timer: hrtimer to stop 1116 * 1117 * Returns: 1118 * 0 when the timer was not active 1119 * 1 when the timer was active 1120 * -1 when the timer is currently executing the callback function and 1121 * cannot be stopped 1122 */ 1123 int hrtimer_try_to_cancel(struct hrtimer *timer) 1124 { 1125 struct hrtimer_clock_base *base; 1126 unsigned long flags; 1127 int ret = -1; 1128 1129 /* 1130 * Check lockless first. If the timer is not active (neither 1131 * enqueued nor running the callback, nothing to do here. The 1132 * base lock does not serialize against a concurrent enqueue, 1133 * so we can avoid taking it. 1134 */ 1135 if (!hrtimer_active(timer)) 1136 return 0; 1137 1138 base = lock_hrtimer_base(timer, &flags); 1139 1140 if (!hrtimer_callback_running(timer)) 1141 ret = remove_hrtimer(timer, base, false); 1142 1143 unlock_hrtimer_base(timer, &flags); 1144 1145 return ret; 1146 1147 } 1148 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1149 1150 /** 1151 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1152 * @timer: the timer to be cancelled 1153 * 1154 * Returns: 1155 * 0 when the timer was not active 1156 * 1 when the timer was active 1157 */ 1158 int hrtimer_cancel(struct hrtimer *timer) 1159 { 1160 for (;;) { 1161 int ret = hrtimer_try_to_cancel(timer); 1162 1163 if (ret >= 0) 1164 return ret; 1165 cpu_relax(); 1166 } 1167 } 1168 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1169 1170 /** 1171 * hrtimer_get_remaining - get remaining time for the timer 1172 * @timer: the timer to read 1173 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1174 */ 1175 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1176 { 1177 unsigned long flags; 1178 ktime_t rem; 1179 1180 lock_hrtimer_base(timer, &flags); 1181 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1182 rem = hrtimer_expires_remaining_adjusted(timer); 1183 else 1184 rem = hrtimer_expires_remaining(timer); 1185 unlock_hrtimer_base(timer, &flags); 1186 1187 return rem; 1188 } 1189 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1190 1191 #ifdef CONFIG_NO_HZ_COMMON 1192 /** 1193 * hrtimer_get_next_event - get the time until next expiry event 1194 * 1195 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1196 */ 1197 u64 hrtimer_get_next_event(void) 1198 { 1199 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1200 u64 expires = KTIME_MAX; 1201 unsigned long flags; 1202 1203 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1204 1205 if (!__hrtimer_hres_active(cpu_base)) 1206 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1207 1208 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1209 1210 return expires; 1211 } 1212 1213 /** 1214 * hrtimer_next_event_without - time until next expiry event w/o one timer 1215 * @exclude: timer to exclude 1216 * 1217 * Returns the next expiry time over all timers except for the @exclude one or 1218 * KTIME_MAX if none of them is pending. 1219 */ 1220 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1221 { 1222 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1223 u64 expires = KTIME_MAX; 1224 unsigned long flags; 1225 1226 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1227 1228 if (__hrtimer_hres_active(cpu_base)) { 1229 unsigned int active; 1230 1231 if (!cpu_base->softirq_activated) { 1232 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1233 expires = __hrtimer_next_event_base(cpu_base, exclude, 1234 active, KTIME_MAX); 1235 } 1236 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1237 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1238 expires); 1239 } 1240 1241 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1242 1243 return expires; 1244 } 1245 #endif 1246 1247 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1248 { 1249 if (likely(clock_id < MAX_CLOCKS)) { 1250 int base = hrtimer_clock_to_base_table[clock_id]; 1251 1252 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1253 return base; 1254 } 1255 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1256 return HRTIMER_BASE_MONOTONIC; 1257 } 1258 1259 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1260 enum hrtimer_mode mode) 1261 { 1262 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1263 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1264 struct hrtimer_cpu_base *cpu_base; 1265 1266 memset(timer, 0, sizeof(struct hrtimer)); 1267 1268 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1269 1270 /* 1271 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1272 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1273 * ensure POSIX compliance. 1274 */ 1275 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1276 clock_id = CLOCK_MONOTONIC; 1277 1278 base += hrtimer_clockid_to_base(clock_id); 1279 timer->is_soft = softtimer; 1280 timer->base = &cpu_base->clock_base[base]; 1281 timerqueue_init(&timer->node); 1282 } 1283 1284 /** 1285 * hrtimer_init - initialize a timer to the given clock 1286 * @timer: the timer to be initialized 1287 * @clock_id: the clock to be used 1288 * @mode: The modes which are relevant for intitialization: 1289 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1290 * HRTIMER_MODE_REL_SOFT 1291 * 1292 * The PINNED variants of the above can be handed in, 1293 * but the PINNED bit is ignored as pinning happens 1294 * when the hrtimer is started 1295 */ 1296 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1297 enum hrtimer_mode mode) 1298 { 1299 debug_init(timer, clock_id, mode); 1300 __hrtimer_init(timer, clock_id, mode); 1301 } 1302 EXPORT_SYMBOL_GPL(hrtimer_init); 1303 1304 /* 1305 * A timer is active, when it is enqueued into the rbtree or the 1306 * callback function is running or it's in the state of being migrated 1307 * to another cpu. 1308 * 1309 * It is important for this function to not return a false negative. 1310 */ 1311 bool hrtimer_active(const struct hrtimer *timer) 1312 { 1313 struct hrtimer_clock_base *base; 1314 unsigned int seq; 1315 1316 do { 1317 base = READ_ONCE(timer->base); 1318 seq = raw_read_seqcount_begin(&base->seq); 1319 1320 if (timer->state != HRTIMER_STATE_INACTIVE || 1321 base->running == timer) 1322 return true; 1323 1324 } while (read_seqcount_retry(&base->seq, seq) || 1325 base != READ_ONCE(timer->base)); 1326 1327 return false; 1328 } 1329 EXPORT_SYMBOL_GPL(hrtimer_active); 1330 1331 /* 1332 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1333 * distinct sections: 1334 * 1335 * - queued: the timer is queued 1336 * - callback: the timer is being ran 1337 * - post: the timer is inactive or (re)queued 1338 * 1339 * On the read side we ensure we observe timer->state and cpu_base->running 1340 * from the same section, if anything changed while we looked at it, we retry. 1341 * This includes timer->base changing because sequence numbers alone are 1342 * insufficient for that. 1343 * 1344 * The sequence numbers are required because otherwise we could still observe 1345 * a false negative if the read side got smeared over multiple consequtive 1346 * __run_hrtimer() invocations. 1347 */ 1348 1349 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1350 struct hrtimer_clock_base *base, 1351 struct hrtimer *timer, ktime_t *now, 1352 unsigned long flags) 1353 { 1354 enum hrtimer_restart (*fn)(struct hrtimer *); 1355 int restart; 1356 1357 lockdep_assert_held(&cpu_base->lock); 1358 1359 debug_deactivate(timer); 1360 base->running = timer; 1361 1362 /* 1363 * Separate the ->running assignment from the ->state assignment. 1364 * 1365 * As with a regular write barrier, this ensures the read side in 1366 * hrtimer_active() cannot observe base->running == NULL && 1367 * timer->state == INACTIVE. 1368 */ 1369 raw_write_seqcount_barrier(&base->seq); 1370 1371 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1372 fn = timer->function; 1373 1374 /* 1375 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1376 * timer is restarted with a period then it becomes an absolute 1377 * timer. If its not restarted it does not matter. 1378 */ 1379 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1380 timer->is_rel = false; 1381 1382 /* 1383 * The timer is marked as running in the CPU base, so it is 1384 * protected against migration to a different CPU even if the lock 1385 * is dropped. 1386 */ 1387 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1388 trace_hrtimer_expire_entry(timer, now); 1389 restart = fn(timer); 1390 trace_hrtimer_expire_exit(timer); 1391 raw_spin_lock_irq(&cpu_base->lock); 1392 1393 /* 1394 * Note: We clear the running state after enqueue_hrtimer and 1395 * we do not reprogram the event hardware. Happens either in 1396 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1397 * 1398 * Note: Because we dropped the cpu_base->lock above, 1399 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1400 * for us already. 1401 */ 1402 if (restart != HRTIMER_NORESTART && 1403 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1404 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1405 1406 /* 1407 * Separate the ->running assignment from the ->state assignment. 1408 * 1409 * As with a regular write barrier, this ensures the read side in 1410 * hrtimer_active() cannot observe base->running.timer == NULL && 1411 * timer->state == INACTIVE. 1412 */ 1413 raw_write_seqcount_barrier(&base->seq); 1414 1415 WARN_ON_ONCE(base->running != timer); 1416 base->running = NULL; 1417 } 1418 1419 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1420 unsigned long flags, unsigned int active_mask) 1421 { 1422 struct hrtimer_clock_base *base; 1423 unsigned int active = cpu_base->active_bases & active_mask; 1424 1425 for_each_active_base(base, cpu_base, active) { 1426 struct timerqueue_node *node; 1427 ktime_t basenow; 1428 1429 basenow = ktime_add(now, base->offset); 1430 1431 while ((node = timerqueue_getnext(&base->active))) { 1432 struct hrtimer *timer; 1433 1434 timer = container_of(node, struct hrtimer, node); 1435 1436 /* 1437 * The immediate goal for using the softexpires is 1438 * minimizing wakeups, not running timers at the 1439 * earliest interrupt after their soft expiration. 1440 * This allows us to avoid using a Priority Search 1441 * Tree, which can answer a stabbing querry for 1442 * overlapping intervals and instead use the simple 1443 * BST we already have. 1444 * We don't add extra wakeups by delaying timers that 1445 * are right-of a not yet expired timer, because that 1446 * timer will have to trigger a wakeup anyway. 1447 */ 1448 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1449 break; 1450 1451 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1452 } 1453 } 1454 } 1455 1456 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1457 { 1458 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1459 unsigned long flags; 1460 ktime_t now; 1461 1462 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1463 1464 now = hrtimer_update_base(cpu_base); 1465 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1466 1467 cpu_base->softirq_activated = 0; 1468 hrtimer_update_softirq_timer(cpu_base, true); 1469 1470 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1471 } 1472 1473 #ifdef CONFIG_HIGH_RES_TIMERS 1474 1475 /* 1476 * High resolution timer interrupt 1477 * Called with interrupts disabled 1478 */ 1479 void hrtimer_interrupt(struct clock_event_device *dev) 1480 { 1481 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1482 ktime_t expires_next, now, entry_time, delta; 1483 unsigned long flags; 1484 int retries = 0; 1485 1486 BUG_ON(!cpu_base->hres_active); 1487 cpu_base->nr_events++; 1488 dev->next_event = KTIME_MAX; 1489 1490 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1491 entry_time = now = hrtimer_update_base(cpu_base); 1492 retry: 1493 cpu_base->in_hrtirq = 1; 1494 /* 1495 * We set expires_next to KTIME_MAX here with cpu_base->lock 1496 * held to prevent that a timer is enqueued in our queue via 1497 * the migration code. This does not affect enqueueing of 1498 * timers which run their callback and need to be requeued on 1499 * this CPU. 1500 */ 1501 cpu_base->expires_next = KTIME_MAX; 1502 1503 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1504 cpu_base->softirq_expires_next = KTIME_MAX; 1505 cpu_base->softirq_activated = 1; 1506 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1507 } 1508 1509 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1510 1511 /* Reevaluate the clock bases for the next expiry */ 1512 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1513 /* 1514 * Store the new expiry value so the migration code can verify 1515 * against it. 1516 */ 1517 cpu_base->expires_next = expires_next; 1518 cpu_base->in_hrtirq = 0; 1519 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1520 1521 /* Reprogramming necessary ? */ 1522 if (!tick_program_event(expires_next, 0)) { 1523 cpu_base->hang_detected = 0; 1524 return; 1525 } 1526 1527 /* 1528 * The next timer was already expired due to: 1529 * - tracing 1530 * - long lasting callbacks 1531 * - being scheduled away when running in a VM 1532 * 1533 * We need to prevent that we loop forever in the hrtimer 1534 * interrupt routine. We give it 3 attempts to avoid 1535 * overreacting on some spurious event. 1536 * 1537 * Acquire base lock for updating the offsets and retrieving 1538 * the current time. 1539 */ 1540 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1541 now = hrtimer_update_base(cpu_base); 1542 cpu_base->nr_retries++; 1543 if (++retries < 3) 1544 goto retry; 1545 /* 1546 * Give the system a chance to do something else than looping 1547 * here. We stored the entry time, so we know exactly how long 1548 * we spent here. We schedule the next event this amount of 1549 * time away. 1550 */ 1551 cpu_base->nr_hangs++; 1552 cpu_base->hang_detected = 1; 1553 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1554 1555 delta = ktime_sub(now, entry_time); 1556 if ((unsigned int)delta > cpu_base->max_hang_time) 1557 cpu_base->max_hang_time = (unsigned int) delta; 1558 /* 1559 * Limit it to a sensible value as we enforce a longer 1560 * delay. Give the CPU at least 100ms to catch up. 1561 */ 1562 if (delta > 100 * NSEC_PER_MSEC) 1563 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1564 else 1565 expires_next = ktime_add(now, delta); 1566 tick_program_event(expires_next, 1); 1567 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1568 } 1569 1570 /* called with interrupts disabled */ 1571 static inline void __hrtimer_peek_ahead_timers(void) 1572 { 1573 struct tick_device *td; 1574 1575 if (!hrtimer_hres_active()) 1576 return; 1577 1578 td = this_cpu_ptr(&tick_cpu_device); 1579 if (td && td->evtdev) 1580 hrtimer_interrupt(td->evtdev); 1581 } 1582 1583 #else /* CONFIG_HIGH_RES_TIMERS */ 1584 1585 static inline void __hrtimer_peek_ahead_timers(void) { } 1586 1587 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1588 1589 /* 1590 * Called from run_local_timers in hardirq context every jiffy 1591 */ 1592 void hrtimer_run_queues(void) 1593 { 1594 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1595 unsigned long flags; 1596 ktime_t now; 1597 1598 if (__hrtimer_hres_active(cpu_base)) 1599 return; 1600 1601 /* 1602 * This _is_ ugly: We have to check periodically, whether we 1603 * can switch to highres and / or nohz mode. The clocksource 1604 * switch happens with xtime_lock held. Notification from 1605 * there only sets the check bit in the tick_oneshot code, 1606 * otherwise we might deadlock vs. xtime_lock. 1607 */ 1608 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1609 hrtimer_switch_to_hres(); 1610 return; 1611 } 1612 1613 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1614 now = hrtimer_update_base(cpu_base); 1615 1616 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1617 cpu_base->softirq_expires_next = KTIME_MAX; 1618 cpu_base->softirq_activated = 1; 1619 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1620 } 1621 1622 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1623 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1624 } 1625 1626 /* 1627 * Sleep related functions: 1628 */ 1629 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1630 { 1631 struct hrtimer_sleeper *t = 1632 container_of(timer, struct hrtimer_sleeper, timer); 1633 struct task_struct *task = t->task; 1634 1635 t->task = NULL; 1636 if (task) 1637 wake_up_process(task); 1638 1639 return HRTIMER_NORESTART; 1640 } 1641 1642 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1643 { 1644 sl->timer.function = hrtimer_wakeup; 1645 sl->task = task; 1646 } 1647 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1648 1649 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1650 { 1651 switch(restart->nanosleep.type) { 1652 #ifdef CONFIG_COMPAT_32BIT_TIME 1653 case TT_COMPAT: 1654 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1655 return -EFAULT; 1656 break; 1657 #endif 1658 case TT_NATIVE: 1659 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1660 return -EFAULT; 1661 break; 1662 default: 1663 BUG(); 1664 } 1665 return -ERESTART_RESTARTBLOCK; 1666 } 1667 1668 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1669 { 1670 struct restart_block *restart; 1671 1672 hrtimer_init_sleeper(t, current); 1673 1674 do { 1675 set_current_state(TASK_INTERRUPTIBLE); 1676 hrtimer_start_expires(&t->timer, mode); 1677 1678 if (likely(t->task)) 1679 freezable_schedule(); 1680 1681 hrtimer_cancel(&t->timer); 1682 mode = HRTIMER_MODE_ABS; 1683 1684 } while (t->task && !signal_pending(current)); 1685 1686 __set_current_state(TASK_RUNNING); 1687 1688 if (!t->task) 1689 return 0; 1690 1691 restart = ¤t->restart_block; 1692 if (restart->nanosleep.type != TT_NONE) { 1693 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1694 struct timespec64 rmt; 1695 1696 if (rem <= 0) 1697 return 0; 1698 rmt = ktime_to_timespec64(rem); 1699 1700 return nanosleep_copyout(restart, &rmt); 1701 } 1702 return -ERESTART_RESTARTBLOCK; 1703 } 1704 1705 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1706 { 1707 struct hrtimer_sleeper t; 1708 int ret; 1709 1710 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1711 HRTIMER_MODE_ABS); 1712 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1713 1714 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1715 destroy_hrtimer_on_stack(&t.timer); 1716 return ret; 1717 } 1718 1719 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1720 const enum hrtimer_mode mode, const clockid_t clockid) 1721 { 1722 struct restart_block *restart; 1723 struct hrtimer_sleeper t; 1724 int ret = 0; 1725 u64 slack; 1726 1727 slack = current->timer_slack_ns; 1728 if (dl_task(current) || rt_task(current)) 1729 slack = 0; 1730 1731 hrtimer_init_on_stack(&t.timer, clockid, mode); 1732 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1733 ret = do_nanosleep(&t, mode); 1734 if (ret != -ERESTART_RESTARTBLOCK) 1735 goto out; 1736 1737 /* Absolute timers do not update the rmtp value and restart: */ 1738 if (mode == HRTIMER_MODE_ABS) { 1739 ret = -ERESTARTNOHAND; 1740 goto out; 1741 } 1742 1743 restart = ¤t->restart_block; 1744 restart->fn = hrtimer_nanosleep_restart; 1745 restart->nanosleep.clockid = t.timer.base->clockid; 1746 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1747 out: 1748 destroy_hrtimer_on_stack(&t.timer); 1749 return ret; 1750 } 1751 1752 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 1753 1754 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1755 struct __kernel_timespec __user *, rmtp) 1756 { 1757 struct timespec64 tu; 1758 1759 if (get_timespec64(&tu, rqtp)) 1760 return -EFAULT; 1761 1762 if (!timespec64_valid(&tu)) 1763 return -EINVAL; 1764 1765 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1766 current->restart_block.nanosleep.rmtp = rmtp; 1767 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1768 } 1769 1770 #endif 1771 1772 #ifdef CONFIG_COMPAT_32BIT_TIME 1773 1774 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1775 struct old_timespec32 __user *, rmtp) 1776 { 1777 struct timespec64 tu; 1778 1779 if (get_old_timespec32(&tu, rqtp)) 1780 return -EFAULT; 1781 1782 if (!timespec64_valid(&tu)) 1783 return -EINVAL; 1784 1785 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1786 current->restart_block.nanosleep.compat_rmtp = rmtp; 1787 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1788 } 1789 #endif 1790 1791 /* 1792 * Functions related to boot-time initialization: 1793 */ 1794 int hrtimers_prepare_cpu(unsigned int cpu) 1795 { 1796 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1797 int i; 1798 1799 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1800 cpu_base->clock_base[i].cpu_base = cpu_base; 1801 timerqueue_init_head(&cpu_base->clock_base[i].active); 1802 } 1803 1804 cpu_base->cpu = cpu; 1805 cpu_base->active_bases = 0; 1806 cpu_base->hres_active = 0; 1807 cpu_base->hang_detected = 0; 1808 cpu_base->next_timer = NULL; 1809 cpu_base->softirq_next_timer = NULL; 1810 cpu_base->expires_next = KTIME_MAX; 1811 cpu_base->softirq_expires_next = KTIME_MAX; 1812 return 0; 1813 } 1814 1815 #ifdef CONFIG_HOTPLUG_CPU 1816 1817 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1818 struct hrtimer_clock_base *new_base) 1819 { 1820 struct hrtimer *timer; 1821 struct timerqueue_node *node; 1822 1823 while ((node = timerqueue_getnext(&old_base->active))) { 1824 timer = container_of(node, struct hrtimer, node); 1825 BUG_ON(hrtimer_callback_running(timer)); 1826 debug_deactivate(timer); 1827 1828 /* 1829 * Mark it as ENQUEUED not INACTIVE otherwise the 1830 * timer could be seen as !active and just vanish away 1831 * under us on another CPU 1832 */ 1833 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1834 timer->base = new_base; 1835 /* 1836 * Enqueue the timers on the new cpu. This does not 1837 * reprogram the event device in case the timer 1838 * expires before the earliest on this CPU, but we run 1839 * hrtimer_interrupt after we migrated everything to 1840 * sort out already expired timers and reprogram the 1841 * event device. 1842 */ 1843 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1844 } 1845 } 1846 1847 int hrtimers_dead_cpu(unsigned int scpu) 1848 { 1849 struct hrtimer_cpu_base *old_base, *new_base; 1850 int i; 1851 1852 BUG_ON(cpu_online(scpu)); 1853 tick_cancel_sched_timer(scpu); 1854 1855 /* 1856 * this BH disable ensures that raise_softirq_irqoff() does 1857 * not wakeup ksoftirqd (and acquire the pi-lock) while 1858 * holding the cpu_base lock 1859 */ 1860 local_bh_disable(); 1861 local_irq_disable(); 1862 old_base = &per_cpu(hrtimer_bases, scpu); 1863 new_base = this_cpu_ptr(&hrtimer_bases); 1864 /* 1865 * The caller is globally serialized and nobody else 1866 * takes two locks at once, deadlock is not possible. 1867 */ 1868 raw_spin_lock(&new_base->lock); 1869 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1870 1871 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1872 migrate_hrtimer_list(&old_base->clock_base[i], 1873 &new_base->clock_base[i]); 1874 } 1875 1876 /* 1877 * The migration might have changed the first expiring softirq 1878 * timer on this CPU. Update it. 1879 */ 1880 hrtimer_update_softirq_timer(new_base, false); 1881 1882 raw_spin_unlock(&old_base->lock); 1883 raw_spin_unlock(&new_base->lock); 1884 1885 /* Check, if we got expired work to do */ 1886 __hrtimer_peek_ahead_timers(); 1887 local_irq_enable(); 1888 local_bh_enable(); 1889 return 0; 1890 } 1891 1892 #endif /* CONFIG_HOTPLUG_CPU */ 1893 1894 void __init hrtimers_init(void) 1895 { 1896 hrtimers_prepare_cpu(smp_processor_id()); 1897 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1898 } 1899 1900 /** 1901 * schedule_hrtimeout_range_clock - sleep until timeout 1902 * @expires: timeout value (ktime_t) 1903 * @delta: slack in expires timeout (ktime_t) 1904 * @mode: timer mode 1905 * @clock_id: timer clock to be used 1906 */ 1907 int __sched 1908 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1909 const enum hrtimer_mode mode, clockid_t clock_id) 1910 { 1911 struct hrtimer_sleeper t; 1912 1913 /* 1914 * Optimize when a zero timeout value is given. It does not 1915 * matter whether this is an absolute or a relative time. 1916 */ 1917 if (expires && *expires == 0) { 1918 __set_current_state(TASK_RUNNING); 1919 return 0; 1920 } 1921 1922 /* 1923 * A NULL parameter means "infinite" 1924 */ 1925 if (!expires) { 1926 schedule(); 1927 return -EINTR; 1928 } 1929 1930 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1931 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1932 1933 hrtimer_init_sleeper(&t, current); 1934 1935 hrtimer_start_expires(&t.timer, mode); 1936 1937 if (likely(t.task)) 1938 schedule(); 1939 1940 hrtimer_cancel(&t.timer); 1941 destroy_hrtimer_on_stack(&t.timer); 1942 1943 __set_current_state(TASK_RUNNING); 1944 1945 return !t.task ? 0 : -EINTR; 1946 } 1947 1948 /** 1949 * schedule_hrtimeout_range - sleep until timeout 1950 * @expires: timeout value (ktime_t) 1951 * @delta: slack in expires timeout (ktime_t) 1952 * @mode: timer mode 1953 * 1954 * Make the current task sleep until the given expiry time has 1955 * elapsed. The routine will return immediately unless 1956 * the current task state has been set (see set_current_state()). 1957 * 1958 * The @delta argument gives the kernel the freedom to schedule the 1959 * actual wakeup to a time that is both power and performance friendly. 1960 * The kernel give the normal best effort behavior for "@expires+@delta", 1961 * but may decide to fire the timer earlier, but no earlier than @expires. 1962 * 1963 * You can set the task state as follows - 1964 * 1965 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1966 * pass before the routine returns unless the current task is explicitly 1967 * woken up, (e.g. by wake_up_process()). 1968 * 1969 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1970 * delivered to the current task or the current task is explicitly woken 1971 * up. 1972 * 1973 * The current task state is guaranteed to be TASK_RUNNING when this 1974 * routine returns. 1975 * 1976 * Returns 0 when the timer has expired. If the task was woken before the 1977 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1978 * by an explicit wakeup, it returns -EINTR. 1979 */ 1980 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1981 const enum hrtimer_mode mode) 1982 { 1983 return schedule_hrtimeout_range_clock(expires, delta, mode, 1984 CLOCK_MONOTONIC); 1985 } 1986 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1987 1988 /** 1989 * schedule_hrtimeout - sleep until timeout 1990 * @expires: timeout value (ktime_t) 1991 * @mode: timer mode 1992 * 1993 * Make the current task sleep until the given expiry time has 1994 * elapsed. The routine will return immediately unless 1995 * the current task state has been set (see set_current_state()). 1996 * 1997 * You can set the task state as follows - 1998 * 1999 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2000 * pass before the routine returns unless the current task is explicitly 2001 * woken up, (e.g. by wake_up_process()). 2002 * 2003 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2004 * delivered to the current task or the current task is explicitly woken 2005 * up. 2006 * 2007 * The current task state is guaranteed to be TASK_RUNNING when this 2008 * routine returns. 2009 * 2010 * Returns 0 when the timer has expired. If the task was woken before the 2011 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2012 * by an explicit wakeup, it returns -EINTR. 2013 */ 2014 int __sched schedule_hrtimeout(ktime_t *expires, 2015 const enum hrtimer_mode mode) 2016 { 2017 return schedule_hrtimeout_range(expires, 0, mode); 2018 } 2019 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2020