xref: /openbmc/linux/kernel/time/hrtimer.c (revision da2ef666)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
41 #include <linux/tick.h>
42 #include <linux/seq_file.h>
43 #include <linux/err.h>
44 #include <linux/debugobjects.h>
45 #include <linux/sched/signal.h>
46 #include <linux/sched/sysctl.h>
47 #include <linux/sched/rt.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/nohz.h>
50 #include <linux/sched/debug.h>
51 #include <linux/timer.h>
52 #include <linux/freezer.h>
53 #include <linux/compat.h>
54 
55 #include <linux/uaccess.h>
56 
57 #include <trace/events/timer.h>
58 
59 #include "tick-internal.h"
60 
61 /*
62  * Masks for selecting the soft and hard context timers from
63  * cpu_base->active
64  */
65 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
66 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
67 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69 
70 /*
71  * The timer bases:
72  *
73  * There are more clockids than hrtimer bases. Thus, we index
74  * into the timer bases by the hrtimer_base_type enum. When trying
75  * to reach a base using a clockid, hrtimer_clockid_to_base()
76  * is used to convert from clockid to the proper hrtimer_base_type.
77  */
78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79 {
80 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81 	.clock_base =
82 	{
83 		{
84 			.index = HRTIMER_BASE_MONOTONIC,
85 			.clockid = CLOCK_MONOTONIC,
86 			.get_time = &ktime_get,
87 		},
88 		{
89 			.index = HRTIMER_BASE_REALTIME,
90 			.clockid = CLOCK_REALTIME,
91 			.get_time = &ktime_get_real,
92 		},
93 		{
94 			.index = HRTIMER_BASE_BOOTTIME,
95 			.clockid = CLOCK_BOOTTIME,
96 			.get_time = &ktime_get_boottime,
97 		},
98 		{
99 			.index = HRTIMER_BASE_TAI,
100 			.clockid = CLOCK_TAI,
101 			.get_time = &ktime_get_clocktai,
102 		},
103 		{
104 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
105 			.clockid = CLOCK_MONOTONIC,
106 			.get_time = &ktime_get,
107 		},
108 		{
109 			.index = HRTIMER_BASE_REALTIME_SOFT,
110 			.clockid = CLOCK_REALTIME,
111 			.get_time = &ktime_get_real,
112 		},
113 		{
114 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
115 			.clockid = CLOCK_BOOTTIME,
116 			.get_time = &ktime_get_boottime,
117 		},
118 		{
119 			.index = HRTIMER_BASE_TAI_SOFT,
120 			.clockid = CLOCK_TAI,
121 			.get_time = &ktime_get_clocktai,
122 		},
123 	}
124 };
125 
126 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
127 	/* Make sure we catch unsupported clockids */
128 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
129 
130 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
131 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
132 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
133 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
134 };
135 
136 /*
137  * Functions and macros which are different for UP/SMP systems are kept in a
138  * single place
139  */
140 #ifdef CONFIG_SMP
141 
142 /*
143  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
144  * such that hrtimer_callback_running() can unconditionally dereference
145  * timer->base->cpu_base
146  */
147 static struct hrtimer_cpu_base migration_cpu_base = {
148 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
149 };
150 
151 #define migration_base	migration_cpu_base.clock_base[0]
152 
153 /*
154  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155  * means that all timers which are tied to this base via timer->base are
156  * locked, and the base itself is locked too.
157  *
158  * So __run_timers/migrate_timers can safely modify all timers which could
159  * be found on the lists/queues.
160  *
161  * When the timer's base is locked, and the timer removed from list, it is
162  * possible to set timer->base = &migration_base and drop the lock: the timer
163  * remains locked.
164  */
165 static
166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 					     unsigned long *flags)
168 {
169 	struct hrtimer_clock_base *base;
170 
171 	for (;;) {
172 		base = timer->base;
173 		if (likely(base != &migration_base)) {
174 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 			if (likely(base == timer->base))
176 				return base;
177 			/* The timer has migrated to another CPU: */
178 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 		}
180 		cpu_relax();
181 	}
182 }
183 
184 /*
185  * We do not migrate the timer when it is expiring before the next
186  * event on the target cpu. When high resolution is enabled, we cannot
187  * reprogram the target cpu hardware and we would cause it to fire
188  * late. To keep it simple, we handle the high resolution enabled and
189  * disabled case similar.
190  *
191  * Called with cpu_base->lock of target cpu held.
192  */
193 static int
194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
195 {
196 	ktime_t expires;
197 
198 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 	return expires < new_base->cpu_base->expires_next;
200 }
201 
202 static inline
203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
204 					 int pinned)
205 {
206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
207 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
208 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
209 #endif
210 	return base;
211 }
212 
213 /*
214  * We switch the timer base to a power-optimized selected CPU target,
215  * if:
216  *	- NO_HZ_COMMON is enabled
217  *	- timer migration is enabled
218  *	- the timer callback is not running
219  *	- the timer is not the first expiring timer on the new target
220  *
221  * If one of the above requirements is not fulfilled we move the timer
222  * to the current CPU or leave it on the previously assigned CPU if
223  * the timer callback is currently running.
224  */
225 static inline struct hrtimer_clock_base *
226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
227 		    int pinned)
228 {
229 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230 	struct hrtimer_clock_base *new_base;
231 	int basenum = base->index;
232 
233 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
234 	new_cpu_base = get_target_base(this_cpu_base, pinned);
235 again:
236 	new_base = &new_cpu_base->clock_base[basenum];
237 
238 	if (base != new_base) {
239 		/*
240 		 * We are trying to move timer to new_base.
241 		 * However we can't change timer's base while it is running,
242 		 * so we keep it on the same CPU. No hassle vs. reprogramming
243 		 * the event source in the high resolution case. The softirq
244 		 * code will take care of this when the timer function has
245 		 * completed. There is no conflict as we hold the lock until
246 		 * the timer is enqueued.
247 		 */
248 		if (unlikely(hrtimer_callback_running(timer)))
249 			return base;
250 
251 		/* See the comment in lock_hrtimer_base() */
252 		timer->base = &migration_base;
253 		raw_spin_unlock(&base->cpu_base->lock);
254 		raw_spin_lock(&new_base->cpu_base->lock);
255 
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			raw_spin_unlock(&new_base->cpu_base->lock);
259 			raw_spin_lock(&base->cpu_base->lock);
260 			new_cpu_base = this_cpu_base;
261 			timer->base = base;
262 			goto again;
263 		}
264 		timer->base = new_base;
265 	} else {
266 		if (new_cpu_base != this_cpu_base &&
267 		    hrtimer_check_target(timer, new_base)) {
268 			new_cpu_base = this_cpu_base;
269 			goto again;
270 		}
271 	}
272 	return new_base;
273 }
274 
275 #else /* CONFIG_SMP */
276 
277 static inline struct hrtimer_clock_base *
278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279 {
280 	struct hrtimer_clock_base *base = timer->base;
281 
282 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 
284 	return base;
285 }
286 
287 # define switch_hrtimer_base(t, b, p)	(b)
288 
289 #endif	/* !CONFIG_SMP */
290 
291 /*
292  * Functions for the union type storage format of ktime_t which are
293  * too large for inlining:
294  */
295 #if BITS_PER_LONG < 64
296 /*
297  * Divide a ktime value by a nanosecond value
298  */
299 s64 __ktime_divns(const ktime_t kt, s64 div)
300 {
301 	int sft = 0;
302 	s64 dclc;
303 	u64 tmp;
304 
305 	dclc = ktime_to_ns(kt);
306 	tmp = dclc < 0 ? -dclc : dclc;
307 
308 	/* Make sure the divisor is less than 2^32: */
309 	while (div >> 32) {
310 		sft++;
311 		div >>= 1;
312 	}
313 	tmp >>= sft;
314 	do_div(tmp, (unsigned long) div);
315 	return dclc < 0 ? -tmp : tmp;
316 }
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
319 
320 /*
321  * Add two ktime values and do a safety check for overflow:
322  */
323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324 {
325 	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 
327 	/*
328 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 	 * return to user space in a timespec:
330 	 */
331 	if (res < 0 || res < lhs || res < rhs)
332 		res = ktime_set(KTIME_SEC_MAX, 0);
333 
334 	return res;
335 }
336 
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
338 
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340 
341 static struct debug_obj_descr hrtimer_debug_descr;
342 
343 static void *hrtimer_debug_hint(void *addr)
344 {
345 	return ((struct hrtimer *) addr)->function;
346 }
347 
348 /*
349  * fixup_init is called when:
350  * - an active object is initialized
351  */
352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 {
354 	struct hrtimer *timer = addr;
355 
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		hrtimer_cancel(timer);
359 		debug_object_init(timer, &hrtimer_debug_descr);
360 		return true;
361 	default:
362 		return false;
363 	}
364 }
365 
366 /*
367  * fixup_activate is called when:
368  * - an active object is activated
369  * - an unknown non-static object is activated
370  */
371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 {
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		WARN_ON(1);
376 
377 	default:
378 		return false;
379 	}
380 }
381 
382 /*
383  * fixup_free is called when:
384  * - an active object is freed
385  */
386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 {
388 	struct hrtimer *timer = addr;
389 
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		hrtimer_cancel(timer);
393 		debug_object_free(timer, &hrtimer_debug_descr);
394 		return true;
395 	default:
396 		return false;
397 	}
398 }
399 
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 	.name		= "hrtimer",
402 	.debug_hint	= hrtimer_debug_hint,
403 	.fixup_init	= hrtimer_fixup_init,
404 	.fixup_activate	= hrtimer_fixup_activate,
405 	.fixup_free	= hrtimer_fixup_free,
406 };
407 
408 static inline void debug_hrtimer_init(struct hrtimer *timer)
409 {
410 	debug_object_init(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 					  enum hrtimer_mode mode)
415 {
416 	debug_object_activate(timer, &hrtimer_debug_descr);
417 }
418 
419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420 {
421 	debug_object_deactivate(timer, &hrtimer_debug_descr);
422 }
423 
424 static inline void debug_hrtimer_free(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 			   enum hrtimer_mode mode);
431 
432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 			   enum hrtimer_mode mode)
434 {
435 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 	__hrtimer_init(timer, clock_id, mode);
437 }
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 
440 void destroy_hrtimer_on_stack(struct hrtimer *timer)
441 {
442 	debug_object_free(timer, &hrtimer_debug_descr);
443 }
444 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
445 
446 #else
447 
448 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
449 static inline void debug_hrtimer_activate(struct hrtimer *timer,
450 					  enum hrtimer_mode mode) { }
451 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
452 #endif
453 
454 static inline void
455 debug_init(struct hrtimer *timer, clockid_t clockid,
456 	   enum hrtimer_mode mode)
457 {
458 	debug_hrtimer_init(timer);
459 	trace_hrtimer_init(timer, clockid, mode);
460 }
461 
462 static inline void debug_activate(struct hrtimer *timer,
463 				  enum hrtimer_mode mode)
464 {
465 	debug_hrtimer_activate(timer, mode);
466 	trace_hrtimer_start(timer, mode);
467 }
468 
469 static inline void debug_deactivate(struct hrtimer *timer)
470 {
471 	debug_hrtimer_deactivate(timer);
472 	trace_hrtimer_cancel(timer);
473 }
474 
475 static struct hrtimer_clock_base *
476 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
477 {
478 	unsigned int idx;
479 
480 	if (!*active)
481 		return NULL;
482 
483 	idx = __ffs(*active);
484 	*active &= ~(1U << idx);
485 
486 	return &cpu_base->clock_base[idx];
487 }
488 
489 #define for_each_active_base(base, cpu_base, active)	\
490 	while ((base = __next_base((cpu_base), &(active))))
491 
492 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
493 					 const struct hrtimer *exclude,
494 					 unsigned int active,
495 					 ktime_t expires_next)
496 {
497 	struct hrtimer_clock_base *base;
498 	ktime_t expires;
499 
500 	for_each_active_base(base, cpu_base, active) {
501 		struct timerqueue_node *next;
502 		struct hrtimer *timer;
503 
504 		next = timerqueue_getnext(&base->active);
505 		timer = container_of(next, struct hrtimer, node);
506 		if (timer == exclude) {
507 			/* Get to the next timer in the queue. */
508 			next = timerqueue_iterate_next(next);
509 			if (!next)
510 				continue;
511 
512 			timer = container_of(next, struct hrtimer, node);
513 		}
514 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
515 		if (expires < expires_next) {
516 			expires_next = expires;
517 
518 			/* Skip cpu_base update if a timer is being excluded. */
519 			if (exclude)
520 				continue;
521 
522 			if (timer->is_soft)
523 				cpu_base->softirq_next_timer = timer;
524 			else
525 				cpu_base->next_timer = timer;
526 		}
527 	}
528 	/*
529 	 * clock_was_set() might have changed base->offset of any of
530 	 * the clock bases so the result might be negative. Fix it up
531 	 * to prevent a false positive in clockevents_program_event().
532 	 */
533 	if (expires_next < 0)
534 		expires_next = 0;
535 	return expires_next;
536 }
537 
538 /*
539  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
540  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
541  *
542  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
543  * those timers will get run whenever the softirq gets handled, at the end of
544  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
545  *
546  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
547  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
548  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
549  *
550  * @active_mask must be one of:
551  *  - HRTIMER_ACTIVE_ALL,
552  *  - HRTIMER_ACTIVE_SOFT, or
553  *  - HRTIMER_ACTIVE_HARD.
554  */
555 static ktime_t
556 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
557 {
558 	unsigned int active;
559 	struct hrtimer *next_timer = NULL;
560 	ktime_t expires_next = KTIME_MAX;
561 
562 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
563 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
564 		cpu_base->softirq_next_timer = NULL;
565 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
566 							 active, KTIME_MAX);
567 
568 		next_timer = cpu_base->softirq_next_timer;
569 	}
570 
571 	if (active_mask & HRTIMER_ACTIVE_HARD) {
572 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
573 		cpu_base->next_timer = next_timer;
574 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
575 							 expires_next);
576 	}
577 
578 	return expires_next;
579 }
580 
581 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
582 {
583 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
584 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
585 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
586 
587 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
588 					    offs_real, offs_boot, offs_tai);
589 
590 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
591 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
592 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
593 
594 	return now;
595 }
596 
597 /*
598  * Is the high resolution mode active ?
599  */
600 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
601 {
602 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
603 		cpu_base->hres_active : 0;
604 }
605 
606 static inline int hrtimer_hres_active(void)
607 {
608 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
609 }
610 
611 /*
612  * Reprogram the event source with checking both queues for the
613  * next event
614  * Called with interrupts disabled and base->lock held
615  */
616 static void
617 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
618 {
619 	ktime_t expires_next;
620 
621 	/*
622 	 * Find the current next expiration time.
623 	 */
624 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
625 
626 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
627 		/*
628 		 * When the softirq is activated, hrtimer has to be
629 		 * programmed with the first hard hrtimer because soft
630 		 * timer interrupt could occur too late.
631 		 */
632 		if (cpu_base->softirq_activated)
633 			expires_next = __hrtimer_get_next_event(cpu_base,
634 								HRTIMER_ACTIVE_HARD);
635 		else
636 			cpu_base->softirq_expires_next = expires_next;
637 	}
638 
639 	if (skip_equal && expires_next == cpu_base->expires_next)
640 		return;
641 
642 	cpu_base->expires_next = expires_next;
643 
644 	/*
645 	 * If hres is not active, hardware does not have to be
646 	 * reprogrammed yet.
647 	 *
648 	 * If a hang was detected in the last timer interrupt then we
649 	 * leave the hang delay active in the hardware. We want the
650 	 * system to make progress. That also prevents the following
651 	 * scenario:
652 	 * T1 expires 50ms from now
653 	 * T2 expires 5s from now
654 	 *
655 	 * T1 is removed, so this code is called and would reprogram
656 	 * the hardware to 5s from now. Any hrtimer_start after that
657 	 * will not reprogram the hardware due to hang_detected being
658 	 * set. So we'd effectivly block all timers until the T2 event
659 	 * fires.
660 	 */
661 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
662 		return;
663 
664 	tick_program_event(cpu_base->expires_next, 1);
665 }
666 
667 /* High resolution timer related functions */
668 #ifdef CONFIG_HIGH_RES_TIMERS
669 
670 /*
671  * High resolution timer enabled ?
672  */
673 static bool hrtimer_hres_enabled __read_mostly  = true;
674 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
675 EXPORT_SYMBOL_GPL(hrtimer_resolution);
676 
677 /*
678  * Enable / Disable high resolution mode
679  */
680 static int __init setup_hrtimer_hres(char *str)
681 {
682 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
683 }
684 
685 __setup("highres=", setup_hrtimer_hres);
686 
687 /*
688  * hrtimer_high_res_enabled - query, if the highres mode is enabled
689  */
690 static inline int hrtimer_is_hres_enabled(void)
691 {
692 	return hrtimer_hres_enabled;
693 }
694 
695 /*
696  * Retrigger next event is called after clock was set
697  *
698  * Called with interrupts disabled via on_each_cpu()
699  */
700 static void retrigger_next_event(void *arg)
701 {
702 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703 
704 	if (!__hrtimer_hres_active(base))
705 		return;
706 
707 	raw_spin_lock(&base->lock);
708 	hrtimer_update_base(base);
709 	hrtimer_force_reprogram(base, 0);
710 	raw_spin_unlock(&base->lock);
711 }
712 
713 /*
714  * Switch to high resolution mode
715  */
716 static void hrtimer_switch_to_hres(void)
717 {
718 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
719 
720 	if (tick_init_highres()) {
721 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
722 			base->cpu);
723 		return;
724 	}
725 	base->hres_active = 1;
726 	hrtimer_resolution = HIGH_RES_NSEC;
727 
728 	tick_setup_sched_timer();
729 	/* "Retrigger" the interrupt to get things going */
730 	retrigger_next_event(NULL);
731 }
732 
733 static void clock_was_set_work(struct work_struct *work)
734 {
735 	clock_was_set();
736 }
737 
738 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
739 
740 /*
741  * Called from timekeeping and resume code to reprogram the hrtimer
742  * interrupt device on all cpus.
743  */
744 void clock_was_set_delayed(void)
745 {
746 	schedule_work(&hrtimer_work);
747 }
748 
749 #else
750 
751 static inline int hrtimer_is_hres_enabled(void) { return 0; }
752 static inline void hrtimer_switch_to_hres(void) { }
753 static inline void retrigger_next_event(void *arg) { }
754 
755 #endif /* CONFIG_HIGH_RES_TIMERS */
756 
757 /*
758  * When a timer is enqueued and expires earlier than the already enqueued
759  * timers, we have to check, whether it expires earlier than the timer for
760  * which the clock event device was armed.
761  *
762  * Called with interrupts disabled and base->cpu_base.lock held
763  */
764 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
765 {
766 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
767 	struct hrtimer_clock_base *base = timer->base;
768 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
769 
770 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
771 
772 	/*
773 	 * CLOCK_REALTIME timer might be requested with an absolute
774 	 * expiry time which is less than base->offset. Set it to 0.
775 	 */
776 	if (expires < 0)
777 		expires = 0;
778 
779 	if (timer->is_soft) {
780 		/*
781 		 * soft hrtimer could be started on a remote CPU. In this
782 		 * case softirq_expires_next needs to be updated on the
783 		 * remote CPU. The soft hrtimer will not expire before the
784 		 * first hard hrtimer on the remote CPU -
785 		 * hrtimer_check_target() prevents this case.
786 		 */
787 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
788 
789 		if (timer_cpu_base->softirq_activated)
790 			return;
791 
792 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
793 			return;
794 
795 		timer_cpu_base->softirq_next_timer = timer;
796 		timer_cpu_base->softirq_expires_next = expires;
797 
798 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
799 		    !reprogram)
800 			return;
801 	}
802 
803 	/*
804 	 * If the timer is not on the current cpu, we cannot reprogram
805 	 * the other cpus clock event device.
806 	 */
807 	if (base->cpu_base != cpu_base)
808 		return;
809 
810 	/*
811 	 * If the hrtimer interrupt is running, then it will
812 	 * reevaluate the clock bases and reprogram the clock event
813 	 * device. The callbacks are always executed in hard interrupt
814 	 * context so we don't need an extra check for a running
815 	 * callback.
816 	 */
817 	if (cpu_base->in_hrtirq)
818 		return;
819 
820 	if (expires >= cpu_base->expires_next)
821 		return;
822 
823 	/* Update the pointer to the next expiring timer */
824 	cpu_base->next_timer = timer;
825 	cpu_base->expires_next = expires;
826 
827 	/*
828 	 * If hres is not active, hardware does not have to be
829 	 * programmed yet.
830 	 *
831 	 * If a hang was detected in the last timer interrupt then we
832 	 * do not schedule a timer which is earlier than the expiry
833 	 * which we enforced in the hang detection. We want the system
834 	 * to make progress.
835 	 */
836 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
837 		return;
838 
839 	/*
840 	 * Program the timer hardware. We enforce the expiry for
841 	 * events which are already in the past.
842 	 */
843 	tick_program_event(expires, 1);
844 }
845 
846 /*
847  * Clock realtime was set
848  *
849  * Change the offset of the realtime clock vs. the monotonic
850  * clock.
851  *
852  * We might have to reprogram the high resolution timer interrupt. On
853  * SMP we call the architecture specific code to retrigger _all_ high
854  * resolution timer interrupts. On UP we just disable interrupts and
855  * call the high resolution interrupt code.
856  */
857 void clock_was_set(void)
858 {
859 #ifdef CONFIG_HIGH_RES_TIMERS
860 	/* Retrigger the CPU local events everywhere */
861 	on_each_cpu(retrigger_next_event, NULL, 1);
862 #endif
863 	timerfd_clock_was_set();
864 }
865 
866 /*
867  * During resume we might have to reprogram the high resolution timer
868  * interrupt on all online CPUs.  However, all other CPUs will be
869  * stopped with IRQs interrupts disabled so the clock_was_set() call
870  * must be deferred.
871  */
872 void hrtimers_resume(void)
873 {
874 	lockdep_assert_irqs_disabled();
875 	/* Retrigger on the local CPU */
876 	retrigger_next_event(NULL);
877 	/* And schedule a retrigger for all others */
878 	clock_was_set_delayed();
879 }
880 
881 /*
882  * Counterpart to lock_hrtimer_base above:
883  */
884 static inline
885 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
886 {
887 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
888 }
889 
890 /**
891  * hrtimer_forward - forward the timer expiry
892  * @timer:	hrtimer to forward
893  * @now:	forward past this time
894  * @interval:	the interval to forward
895  *
896  * Forward the timer expiry so it will expire in the future.
897  * Returns the number of overruns.
898  *
899  * Can be safely called from the callback function of @timer. If
900  * called from other contexts @timer must neither be enqueued nor
901  * running the callback and the caller needs to take care of
902  * serialization.
903  *
904  * Note: This only updates the timer expiry value and does not requeue
905  * the timer.
906  */
907 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
908 {
909 	u64 orun = 1;
910 	ktime_t delta;
911 
912 	delta = ktime_sub(now, hrtimer_get_expires(timer));
913 
914 	if (delta < 0)
915 		return 0;
916 
917 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
918 		return 0;
919 
920 	if (interval < hrtimer_resolution)
921 		interval = hrtimer_resolution;
922 
923 	if (unlikely(delta >= interval)) {
924 		s64 incr = ktime_to_ns(interval);
925 
926 		orun = ktime_divns(delta, incr);
927 		hrtimer_add_expires_ns(timer, incr * orun);
928 		if (hrtimer_get_expires_tv64(timer) > now)
929 			return orun;
930 		/*
931 		 * This (and the ktime_add() below) is the
932 		 * correction for exact:
933 		 */
934 		orun++;
935 	}
936 	hrtimer_add_expires(timer, interval);
937 
938 	return orun;
939 }
940 EXPORT_SYMBOL_GPL(hrtimer_forward);
941 
942 /*
943  * enqueue_hrtimer - internal function to (re)start a timer
944  *
945  * The timer is inserted in expiry order. Insertion into the
946  * red black tree is O(log(n)). Must hold the base lock.
947  *
948  * Returns 1 when the new timer is the leftmost timer in the tree.
949  */
950 static int enqueue_hrtimer(struct hrtimer *timer,
951 			   struct hrtimer_clock_base *base,
952 			   enum hrtimer_mode mode)
953 {
954 	debug_activate(timer, mode);
955 
956 	base->cpu_base->active_bases |= 1 << base->index;
957 
958 	timer->state = HRTIMER_STATE_ENQUEUED;
959 
960 	return timerqueue_add(&base->active, &timer->node);
961 }
962 
963 /*
964  * __remove_hrtimer - internal function to remove a timer
965  *
966  * Caller must hold the base lock.
967  *
968  * High resolution timer mode reprograms the clock event device when the
969  * timer is the one which expires next. The caller can disable this by setting
970  * reprogram to zero. This is useful, when the context does a reprogramming
971  * anyway (e.g. timer interrupt)
972  */
973 static void __remove_hrtimer(struct hrtimer *timer,
974 			     struct hrtimer_clock_base *base,
975 			     u8 newstate, int reprogram)
976 {
977 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
978 	u8 state = timer->state;
979 
980 	timer->state = newstate;
981 	if (!(state & HRTIMER_STATE_ENQUEUED))
982 		return;
983 
984 	if (!timerqueue_del(&base->active, &timer->node))
985 		cpu_base->active_bases &= ~(1 << base->index);
986 
987 	/*
988 	 * Note: If reprogram is false we do not update
989 	 * cpu_base->next_timer. This happens when we remove the first
990 	 * timer on a remote cpu. No harm as we never dereference
991 	 * cpu_base->next_timer. So the worst thing what can happen is
992 	 * an superflous call to hrtimer_force_reprogram() on the
993 	 * remote cpu later on if the same timer gets enqueued again.
994 	 */
995 	if (reprogram && timer == cpu_base->next_timer)
996 		hrtimer_force_reprogram(cpu_base, 1);
997 }
998 
999 /*
1000  * remove hrtimer, called with base lock held
1001  */
1002 static inline int
1003 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1004 {
1005 	if (hrtimer_is_queued(timer)) {
1006 		u8 state = timer->state;
1007 		int reprogram;
1008 
1009 		/*
1010 		 * Remove the timer and force reprogramming when high
1011 		 * resolution mode is active and the timer is on the current
1012 		 * CPU. If we remove a timer on another CPU, reprogramming is
1013 		 * skipped. The interrupt event on this CPU is fired and
1014 		 * reprogramming happens in the interrupt handler. This is a
1015 		 * rare case and less expensive than a smp call.
1016 		 */
1017 		debug_deactivate(timer);
1018 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1019 
1020 		if (!restart)
1021 			state = HRTIMER_STATE_INACTIVE;
1022 
1023 		__remove_hrtimer(timer, base, state, reprogram);
1024 		return 1;
1025 	}
1026 	return 0;
1027 }
1028 
1029 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1030 					    const enum hrtimer_mode mode)
1031 {
1032 #ifdef CONFIG_TIME_LOW_RES
1033 	/*
1034 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1035 	 * granular time values. For relative timers we add hrtimer_resolution
1036 	 * (i.e. one jiffie) to prevent short timeouts.
1037 	 */
1038 	timer->is_rel = mode & HRTIMER_MODE_REL;
1039 	if (timer->is_rel)
1040 		tim = ktime_add_safe(tim, hrtimer_resolution);
1041 #endif
1042 	return tim;
1043 }
1044 
1045 static void
1046 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1047 {
1048 	ktime_t expires;
1049 
1050 	/*
1051 	 * Find the next SOFT expiration.
1052 	 */
1053 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1054 
1055 	/*
1056 	 * reprogramming needs to be triggered, even if the next soft
1057 	 * hrtimer expires at the same time than the next hard
1058 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1059 	 */
1060 	if (expires == KTIME_MAX)
1061 		return;
1062 
1063 	/*
1064 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1065 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1066 	 */
1067 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1068 }
1069 
1070 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1071 				    u64 delta_ns, const enum hrtimer_mode mode,
1072 				    struct hrtimer_clock_base *base)
1073 {
1074 	struct hrtimer_clock_base *new_base;
1075 
1076 	/* Remove an active timer from the queue: */
1077 	remove_hrtimer(timer, base, true);
1078 
1079 	if (mode & HRTIMER_MODE_REL)
1080 		tim = ktime_add_safe(tim, base->get_time());
1081 
1082 	tim = hrtimer_update_lowres(timer, tim, mode);
1083 
1084 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1085 
1086 	/* Switch the timer base, if necessary: */
1087 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1088 
1089 	return enqueue_hrtimer(timer, new_base, mode);
1090 }
1091 
1092 /**
1093  * hrtimer_start_range_ns - (re)start an hrtimer
1094  * @timer:	the timer to be added
1095  * @tim:	expiry time
1096  * @delta_ns:	"slack" range for the timer
1097  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1098  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1099  *		softirq based mode is considered for debug purpose only!
1100  */
1101 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102 			    u64 delta_ns, const enum hrtimer_mode mode)
1103 {
1104 	struct hrtimer_clock_base *base;
1105 	unsigned long flags;
1106 
1107 	/*
1108 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1109 	 * match.
1110 	 */
1111 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1112 
1113 	base = lock_hrtimer_base(timer, &flags);
1114 
1115 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1116 		hrtimer_reprogram(timer, true);
1117 
1118 	unlock_hrtimer_base(timer, &flags);
1119 }
1120 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1121 
1122 /**
1123  * hrtimer_try_to_cancel - try to deactivate a timer
1124  * @timer:	hrtimer to stop
1125  *
1126  * Returns:
1127  *  0 when the timer was not active
1128  *  1 when the timer was active
1129  * -1 when the timer is currently executing the callback function and
1130  *    cannot be stopped
1131  */
1132 int hrtimer_try_to_cancel(struct hrtimer *timer)
1133 {
1134 	struct hrtimer_clock_base *base;
1135 	unsigned long flags;
1136 	int ret = -1;
1137 
1138 	/*
1139 	 * Check lockless first. If the timer is not active (neither
1140 	 * enqueued nor running the callback, nothing to do here.  The
1141 	 * base lock does not serialize against a concurrent enqueue,
1142 	 * so we can avoid taking it.
1143 	 */
1144 	if (!hrtimer_active(timer))
1145 		return 0;
1146 
1147 	base = lock_hrtimer_base(timer, &flags);
1148 
1149 	if (!hrtimer_callback_running(timer))
1150 		ret = remove_hrtimer(timer, base, false);
1151 
1152 	unlock_hrtimer_base(timer, &flags);
1153 
1154 	return ret;
1155 
1156 }
1157 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1158 
1159 /**
1160  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1161  * @timer:	the timer to be cancelled
1162  *
1163  * Returns:
1164  *  0 when the timer was not active
1165  *  1 when the timer was active
1166  */
1167 int hrtimer_cancel(struct hrtimer *timer)
1168 {
1169 	for (;;) {
1170 		int ret = hrtimer_try_to_cancel(timer);
1171 
1172 		if (ret >= 0)
1173 			return ret;
1174 		cpu_relax();
1175 	}
1176 }
1177 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1178 
1179 /**
1180  * hrtimer_get_remaining - get remaining time for the timer
1181  * @timer:	the timer to read
1182  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1183  */
1184 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1185 {
1186 	unsigned long flags;
1187 	ktime_t rem;
1188 
1189 	lock_hrtimer_base(timer, &flags);
1190 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1191 		rem = hrtimer_expires_remaining_adjusted(timer);
1192 	else
1193 		rem = hrtimer_expires_remaining(timer);
1194 	unlock_hrtimer_base(timer, &flags);
1195 
1196 	return rem;
1197 }
1198 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1199 
1200 #ifdef CONFIG_NO_HZ_COMMON
1201 /**
1202  * hrtimer_get_next_event - get the time until next expiry event
1203  *
1204  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1205  */
1206 u64 hrtimer_get_next_event(void)
1207 {
1208 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1209 	u64 expires = KTIME_MAX;
1210 	unsigned long flags;
1211 
1212 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1213 
1214 	if (!__hrtimer_hres_active(cpu_base))
1215 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1216 
1217 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1218 
1219 	return expires;
1220 }
1221 
1222 /**
1223  * hrtimer_next_event_without - time until next expiry event w/o one timer
1224  * @exclude:	timer to exclude
1225  *
1226  * Returns the next expiry time over all timers except for the @exclude one or
1227  * KTIME_MAX if none of them is pending.
1228  */
1229 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1230 {
1231 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1232 	u64 expires = KTIME_MAX;
1233 	unsigned long flags;
1234 
1235 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1236 
1237 	if (__hrtimer_hres_active(cpu_base)) {
1238 		unsigned int active;
1239 
1240 		if (!cpu_base->softirq_activated) {
1241 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1242 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1243 							    active, KTIME_MAX);
1244 		}
1245 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1246 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1247 						    expires);
1248 	}
1249 
1250 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1251 
1252 	return expires;
1253 }
1254 #endif
1255 
1256 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1257 {
1258 	if (likely(clock_id < MAX_CLOCKS)) {
1259 		int base = hrtimer_clock_to_base_table[clock_id];
1260 
1261 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1262 			return base;
1263 	}
1264 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1265 	return HRTIMER_BASE_MONOTONIC;
1266 }
1267 
1268 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1269 			   enum hrtimer_mode mode)
1270 {
1271 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1272 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1273 	struct hrtimer_cpu_base *cpu_base;
1274 
1275 	memset(timer, 0, sizeof(struct hrtimer));
1276 
1277 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1278 
1279 	/*
1280 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1281 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1282 	 * ensure POSIX compliance.
1283 	 */
1284 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1285 		clock_id = CLOCK_MONOTONIC;
1286 
1287 	base += hrtimer_clockid_to_base(clock_id);
1288 	timer->is_soft = softtimer;
1289 	timer->base = &cpu_base->clock_base[base];
1290 	timerqueue_init(&timer->node);
1291 }
1292 
1293 /**
1294  * hrtimer_init - initialize a timer to the given clock
1295  * @timer:	the timer to be initialized
1296  * @clock_id:	the clock to be used
1297  * @mode:       The modes which are relevant for intitialization:
1298  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1299  *              HRTIMER_MODE_REL_SOFT
1300  *
1301  *              The PINNED variants of the above can be handed in,
1302  *              but the PINNED bit is ignored as pinning happens
1303  *              when the hrtimer is started
1304  */
1305 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1306 		  enum hrtimer_mode mode)
1307 {
1308 	debug_init(timer, clock_id, mode);
1309 	__hrtimer_init(timer, clock_id, mode);
1310 }
1311 EXPORT_SYMBOL_GPL(hrtimer_init);
1312 
1313 /*
1314  * A timer is active, when it is enqueued into the rbtree or the
1315  * callback function is running or it's in the state of being migrated
1316  * to another cpu.
1317  *
1318  * It is important for this function to not return a false negative.
1319  */
1320 bool hrtimer_active(const struct hrtimer *timer)
1321 {
1322 	struct hrtimer_clock_base *base;
1323 	unsigned int seq;
1324 
1325 	do {
1326 		base = READ_ONCE(timer->base);
1327 		seq = raw_read_seqcount_begin(&base->seq);
1328 
1329 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1330 		    base->running == timer)
1331 			return true;
1332 
1333 	} while (read_seqcount_retry(&base->seq, seq) ||
1334 		 base != READ_ONCE(timer->base));
1335 
1336 	return false;
1337 }
1338 EXPORT_SYMBOL_GPL(hrtimer_active);
1339 
1340 /*
1341  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1342  * distinct sections:
1343  *
1344  *  - queued:	the timer is queued
1345  *  - callback:	the timer is being ran
1346  *  - post:	the timer is inactive or (re)queued
1347  *
1348  * On the read side we ensure we observe timer->state and cpu_base->running
1349  * from the same section, if anything changed while we looked at it, we retry.
1350  * This includes timer->base changing because sequence numbers alone are
1351  * insufficient for that.
1352  *
1353  * The sequence numbers are required because otherwise we could still observe
1354  * a false negative if the read side got smeared over multiple consequtive
1355  * __run_hrtimer() invocations.
1356  */
1357 
1358 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1359 			  struct hrtimer_clock_base *base,
1360 			  struct hrtimer *timer, ktime_t *now,
1361 			  unsigned long flags)
1362 {
1363 	enum hrtimer_restart (*fn)(struct hrtimer *);
1364 	int restart;
1365 
1366 	lockdep_assert_held(&cpu_base->lock);
1367 
1368 	debug_deactivate(timer);
1369 	base->running = timer;
1370 
1371 	/*
1372 	 * Separate the ->running assignment from the ->state assignment.
1373 	 *
1374 	 * As with a regular write barrier, this ensures the read side in
1375 	 * hrtimer_active() cannot observe base->running == NULL &&
1376 	 * timer->state == INACTIVE.
1377 	 */
1378 	raw_write_seqcount_barrier(&base->seq);
1379 
1380 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1381 	fn = timer->function;
1382 
1383 	/*
1384 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1385 	 * timer is restarted with a period then it becomes an absolute
1386 	 * timer. If its not restarted it does not matter.
1387 	 */
1388 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1389 		timer->is_rel = false;
1390 
1391 	/*
1392 	 * The timer is marked as running in the CPU base, so it is
1393 	 * protected against migration to a different CPU even if the lock
1394 	 * is dropped.
1395 	 */
1396 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1397 	trace_hrtimer_expire_entry(timer, now);
1398 	restart = fn(timer);
1399 	trace_hrtimer_expire_exit(timer);
1400 	raw_spin_lock_irq(&cpu_base->lock);
1401 
1402 	/*
1403 	 * Note: We clear the running state after enqueue_hrtimer and
1404 	 * we do not reprogram the event hardware. Happens either in
1405 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1406 	 *
1407 	 * Note: Because we dropped the cpu_base->lock above,
1408 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1409 	 * for us already.
1410 	 */
1411 	if (restart != HRTIMER_NORESTART &&
1412 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1413 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1414 
1415 	/*
1416 	 * Separate the ->running assignment from the ->state assignment.
1417 	 *
1418 	 * As with a regular write barrier, this ensures the read side in
1419 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1420 	 * timer->state == INACTIVE.
1421 	 */
1422 	raw_write_seqcount_barrier(&base->seq);
1423 
1424 	WARN_ON_ONCE(base->running != timer);
1425 	base->running = NULL;
1426 }
1427 
1428 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1429 				 unsigned long flags, unsigned int active_mask)
1430 {
1431 	struct hrtimer_clock_base *base;
1432 	unsigned int active = cpu_base->active_bases & active_mask;
1433 
1434 	for_each_active_base(base, cpu_base, active) {
1435 		struct timerqueue_node *node;
1436 		ktime_t basenow;
1437 
1438 		basenow = ktime_add(now, base->offset);
1439 
1440 		while ((node = timerqueue_getnext(&base->active))) {
1441 			struct hrtimer *timer;
1442 
1443 			timer = container_of(node, struct hrtimer, node);
1444 
1445 			/*
1446 			 * The immediate goal for using the softexpires is
1447 			 * minimizing wakeups, not running timers at the
1448 			 * earliest interrupt after their soft expiration.
1449 			 * This allows us to avoid using a Priority Search
1450 			 * Tree, which can answer a stabbing querry for
1451 			 * overlapping intervals and instead use the simple
1452 			 * BST we already have.
1453 			 * We don't add extra wakeups by delaying timers that
1454 			 * are right-of a not yet expired timer, because that
1455 			 * timer will have to trigger a wakeup anyway.
1456 			 */
1457 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1458 				break;
1459 
1460 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1461 		}
1462 	}
1463 }
1464 
1465 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1466 {
1467 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1468 	unsigned long flags;
1469 	ktime_t now;
1470 
1471 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1472 
1473 	now = hrtimer_update_base(cpu_base);
1474 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1475 
1476 	cpu_base->softirq_activated = 0;
1477 	hrtimer_update_softirq_timer(cpu_base, true);
1478 
1479 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1480 }
1481 
1482 #ifdef CONFIG_HIGH_RES_TIMERS
1483 
1484 /*
1485  * High resolution timer interrupt
1486  * Called with interrupts disabled
1487  */
1488 void hrtimer_interrupt(struct clock_event_device *dev)
1489 {
1490 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1491 	ktime_t expires_next, now, entry_time, delta;
1492 	unsigned long flags;
1493 	int retries = 0;
1494 
1495 	BUG_ON(!cpu_base->hres_active);
1496 	cpu_base->nr_events++;
1497 	dev->next_event = KTIME_MAX;
1498 
1499 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1500 	entry_time = now = hrtimer_update_base(cpu_base);
1501 retry:
1502 	cpu_base->in_hrtirq = 1;
1503 	/*
1504 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1505 	 * held to prevent that a timer is enqueued in our queue via
1506 	 * the migration code. This does not affect enqueueing of
1507 	 * timers which run their callback and need to be requeued on
1508 	 * this CPU.
1509 	 */
1510 	cpu_base->expires_next = KTIME_MAX;
1511 
1512 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1513 		cpu_base->softirq_expires_next = KTIME_MAX;
1514 		cpu_base->softirq_activated = 1;
1515 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1516 	}
1517 
1518 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1519 
1520 	/* Reevaluate the clock bases for the next expiry */
1521 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1522 	/*
1523 	 * Store the new expiry value so the migration code can verify
1524 	 * against it.
1525 	 */
1526 	cpu_base->expires_next = expires_next;
1527 	cpu_base->in_hrtirq = 0;
1528 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1529 
1530 	/* Reprogramming necessary ? */
1531 	if (!tick_program_event(expires_next, 0)) {
1532 		cpu_base->hang_detected = 0;
1533 		return;
1534 	}
1535 
1536 	/*
1537 	 * The next timer was already expired due to:
1538 	 * - tracing
1539 	 * - long lasting callbacks
1540 	 * - being scheduled away when running in a VM
1541 	 *
1542 	 * We need to prevent that we loop forever in the hrtimer
1543 	 * interrupt routine. We give it 3 attempts to avoid
1544 	 * overreacting on some spurious event.
1545 	 *
1546 	 * Acquire base lock for updating the offsets and retrieving
1547 	 * the current time.
1548 	 */
1549 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1550 	now = hrtimer_update_base(cpu_base);
1551 	cpu_base->nr_retries++;
1552 	if (++retries < 3)
1553 		goto retry;
1554 	/*
1555 	 * Give the system a chance to do something else than looping
1556 	 * here. We stored the entry time, so we know exactly how long
1557 	 * we spent here. We schedule the next event this amount of
1558 	 * time away.
1559 	 */
1560 	cpu_base->nr_hangs++;
1561 	cpu_base->hang_detected = 1;
1562 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1563 
1564 	delta = ktime_sub(now, entry_time);
1565 	if ((unsigned int)delta > cpu_base->max_hang_time)
1566 		cpu_base->max_hang_time = (unsigned int) delta;
1567 	/*
1568 	 * Limit it to a sensible value as we enforce a longer
1569 	 * delay. Give the CPU at least 100ms to catch up.
1570 	 */
1571 	if (delta > 100 * NSEC_PER_MSEC)
1572 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1573 	else
1574 		expires_next = ktime_add(now, delta);
1575 	tick_program_event(expires_next, 1);
1576 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1577 }
1578 
1579 /* called with interrupts disabled */
1580 static inline void __hrtimer_peek_ahead_timers(void)
1581 {
1582 	struct tick_device *td;
1583 
1584 	if (!hrtimer_hres_active())
1585 		return;
1586 
1587 	td = this_cpu_ptr(&tick_cpu_device);
1588 	if (td && td->evtdev)
1589 		hrtimer_interrupt(td->evtdev);
1590 }
1591 
1592 #else /* CONFIG_HIGH_RES_TIMERS */
1593 
1594 static inline void __hrtimer_peek_ahead_timers(void) { }
1595 
1596 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1597 
1598 /*
1599  * Called from run_local_timers in hardirq context every jiffy
1600  */
1601 void hrtimer_run_queues(void)
1602 {
1603 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1604 	unsigned long flags;
1605 	ktime_t now;
1606 
1607 	if (__hrtimer_hres_active(cpu_base))
1608 		return;
1609 
1610 	/*
1611 	 * This _is_ ugly: We have to check periodically, whether we
1612 	 * can switch to highres and / or nohz mode. The clocksource
1613 	 * switch happens with xtime_lock held. Notification from
1614 	 * there only sets the check bit in the tick_oneshot code,
1615 	 * otherwise we might deadlock vs. xtime_lock.
1616 	 */
1617 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1618 		hrtimer_switch_to_hres();
1619 		return;
1620 	}
1621 
1622 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1623 	now = hrtimer_update_base(cpu_base);
1624 
1625 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1626 		cpu_base->softirq_expires_next = KTIME_MAX;
1627 		cpu_base->softirq_activated = 1;
1628 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1629 	}
1630 
1631 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1632 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1633 }
1634 
1635 /*
1636  * Sleep related functions:
1637  */
1638 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1639 {
1640 	struct hrtimer_sleeper *t =
1641 		container_of(timer, struct hrtimer_sleeper, timer);
1642 	struct task_struct *task = t->task;
1643 
1644 	t->task = NULL;
1645 	if (task)
1646 		wake_up_process(task);
1647 
1648 	return HRTIMER_NORESTART;
1649 }
1650 
1651 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1652 {
1653 	sl->timer.function = hrtimer_wakeup;
1654 	sl->task = task;
1655 }
1656 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1657 
1658 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1659 {
1660 	switch(restart->nanosleep.type) {
1661 #ifdef CONFIG_COMPAT_32BIT_TIME
1662 	case TT_COMPAT:
1663 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1664 			return -EFAULT;
1665 		break;
1666 #endif
1667 	case TT_NATIVE:
1668 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1669 			return -EFAULT;
1670 		break;
1671 	default:
1672 		BUG();
1673 	}
1674 	return -ERESTART_RESTARTBLOCK;
1675 }
1676 
1677 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1678 {
1679 	struct restart_block *restart;
1680 
1681 	hrtimer_init_sleeper(t, current);
1682 
1683 	do {
1684 		set_current_state(TASK_INTERRUPTIBLE);
1685 		hrtimer_start_expires(&t->timer, mode);
1686 
1687 		if (likely(t->task))
1688 			freezable_schedule();
1689 
1690 		hrtimer_cancel(&t->timer);
1691 		mode = HRTIMER_MODE_ABS;
1692 
1693 	} while (t->task && !signal_pending(current));
1694 
1695 	__set_current_state(TASK_RUNNING);
1696 
1697 	if (!t->task)
1698 		return 0;
1699 
1700 	restart = &current->restart_block;
1701 	if (restart->nanosleep.type != TT_NONE) {
1702 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1703 		struct timespec64 rmt;
1704 
1705 		if (rem <= 0)
1706 			return 0;
1707 		rmt = ktime_to_timespec64(rem);
1708 
1709 		return nanosleep_copyout(restart, &rmt);
1710 	}
1711 	return -ERESTART_RESTARTBLOCK;
1712 }
1713 
1714 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1715 {
1716 	struct hrtimer_sleeper t;
1717 	int ret;
1718 
1719 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1720 				HRTIMER_MODE_ABS);
1721 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1722 
1723 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1724 	destroy_hrtimer_on_stack(&t.timer);
1725 	return ret;
1726 }
1727 
1728 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1729 		       const enum hrtimer_mode mode, const clockid_t clockid)
1730 {
1731 	struct restart_block *restart;
1732 	struct hrtimer_sleeper t;
1733 	int ret = 0;
1734 	u64 slack;
1735 
1736 	slack = current->timer_slack_ns;
1737 	if (dl_task(current) || rt_task(current))
1738 		slack = 0;
1739 
1740 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1741 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1742 	ret = do_nanosleep(&t, mode);
1743 	if (ret != -ERESTART_RESTARTBLOCK)
1744 		goto out;
1745 
1746 	/* Absolute timers do not update the rmtp value and restart: */
1747 	if (mode == HRTIMER_MODE_ABS) {
1748 		ret = -ERESTARTNOHAND;
1749 		goto out;
1750 	}
1751 
1752 	restart = &current->restart_block;
1753 	restart->fn = hrtimer_nanosleep_restart;
1754 	restart->nanosleep.clockid = t.timer.base->clockid;
1755 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1756 out:
1757 	destroy_hrtimer_on_stack(&t.timer);
1758 	return ret;
1759 }
1760 
1761 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1762 
1763 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1764 		struct __kernel_timespec __user *, rmtp)
1765 {
1766 	struct timespec64 tu;
1767 
1768 	if (get_timespec64(&tu, rqtp))
1769 		return -EFAULT;
1770 
1771 	if (!timespec64_valid(&tu))
1772 		return -EINVAL;
1773 
1774 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1775 	current->restart_block.nanosleep.rmtp = rmtp;
1776 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1777 }
1778 
1779 #endif
1780 
1781 #ifdef CONFIG_COMPAT_32BIT_TIME
1782 
1783 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1784 		       struct compat_timespec __user *, rmtp)
1785 {
1786 	struct timespec64 tu;
1787 
1788 	if (compat_get_timespec64(&tu, rqtp))
1789 		return -EFAULT;
1790 
1791 	if (!timespec64_valid(&tu))
1792 		return -EINVAL;
1793 
1794 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1795 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1796 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1797 }
1798 #endif
1799 
1800 /*
1801  * Functions related to boot-time initialization:
1802  */
1803 int hrtimers_prepare_cpu(unsigned int cpu)
1804 {
1805 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1806 	int i;
1807 
1808 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1809 		cpu_base->clock_base[i].cpu_base = cpu_base;
1810 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1811 	}
1812 
1813 	cpu_base->cpu = cpu;
1814 	cpu_base->active_bases = 0;
1815 	cpu_base->hres_active = 0;
1816 	cpu_base->hang_detected = 0;
1817 	cpu_base->next_timer = NULL;
1818 	cpu_base->softirq_next_timer = NULL;
1819 	cpu_base->expires_next = KTIME_MAX;
1820 	cpu_base->softirq_expires_next = KTIME_MAX;
1821 	return 0;
1822 }
1823 
1824 #ifdef CONFIG_HOTPLUG_CPU
1825 
1826 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1827 				struct hrtimer_clock_base *new_base)
1828 {
1829 	struct hrtimer *timer;
1830 	struct timerqueue_node *node;
1831 
1832 	while ((node = timerqueue_getnext(&old_base->active))) {
1833 		timer = container_of(node, struct hrtimer, node);
1834 		BUG_ON(hrtimer_callback_running(timer));
1835 		debug_deactivate(timer);
1836 
1837 		/*
1838 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1839 		 * timer could be seen as !active and just vanish away
1840 		 * under us on another CPU
1841 		 */
1842 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1843 		timer->base = new_base;
1844 		/*
1845 		 * Enqueue the timers on the new cpu. This does not
1846 		 * reprogram the event device in case the timer
1847 		 * expires before the earliest on this CPU, but we run
1848 		 * hrtimer_interrupt after we migrated everything to
1849 		 * sort out already expired timers and reprogram the
1850 		 * event device.
1851 		 */
1852 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1853 	}
1854 }
1855 
1856 int hrtimers_dead_cpu(unsigned int scpu)
1857 {
1858 	struct hrtimer_cpu_base *old_base, *new_base;
1859 	int i;
1860 
1861 	BUG_ON(cpu_online(scpu));
1862 	tick_cancel_sched_timer(scpu);
1863 
1864 	/*
1865 	 * this BH disable ensures that raise_softirq_irqoff() does
1866 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1867 	 * holding the cpu_base lock
1868 	 */
1869 	local_bh_disable();
1870 	local_irq_disable();
1871 	old_base = &per_cpu(hrtimer_bases, scpu);
1872 	new_base = this_cpu_ptr(&hrtimer_bases);
1873 	/*
1874 	 * The caller is globally serialized and nobody else
1875 	 * takes two locks at once, deadlock is not possible.
1876 	 */
1877 	raw_spin_lock(&new_base->lock);
1878 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1879 
1880 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1881 		migrate_hrtimer_list(&old_base->clock_base[i],
1882 				     &new_base->clock_base[i]);
1883 	}
1884 
1885 	/*
1886 	 * The migration might have changed the first expiring softirq
1887 	 * timer on this CPU. Update it.
1888 	 */
1889 	hrtimer_update_softirq_timer(new_base, false);
1890 
1891 	raw_spin_unlock(&old_base->lock);
1892 	raw_spin_unlock(&new_base->lock);
1893 
1894 	/* Check, if we got expired work to do */
1895 	__hrtimer_peek_ahead_timers();
1896 	local_irq_enable();
1897 	local_bh_enable();
1898 	return 0;
1899 }
1900 
1901 #endif /* CONFIG_HOTPLUG_CPU */
1902 
1903 void __init hrtimers_init(void)
1904 {
1905 	hrtimers_prepare_cpu(smp_processor_id());
1906 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1907 }
1908 
1909 /**
1910  * schedule_hrtimeout_range_clock - sleep until timeout
1911  * @expires:	timeout value (ktime_t)
1912  * @delta:	slack in expires timeout (ktime_t)
1913  * @mode:	timer mode
1914  * @clock_id:	timer clock to be used
1915  */
1916 int __sched
1917 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1918 			       const enum hrtimer_mode mode, clockid_t clock_id)
1919 {
1920 	struct hrtimer_sleeper t;
1921 
1922 	/*
1923 	 * Optimize when a zero timeout value is given. It does not
1924 	 * matter whether this is an absolute or a relative time.
1925 	 */
1926 	if (expires && *expires == 0) {
1927 		__set_current_state(TASK_RUNNING);
1928 		return 0;
1929 	}
1930 
1931 	/*
1932 	 * A NULL parameter means "infinite"
1933 	 */
1934 	if (!expires) {
1935 		schedule();
1936 		return -EINTR;
1937 	}
1938 
1939 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1940 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1941 
1942 	hrtimer_init_sleeper(&t, current);
1943 
1944 	hrtimer_start_expires(&t.timer, mode);
1945 
1946 	if (likely(t.task))
1947 		schedule();
1948 
1949 	hrtimer_cancel(&t.timer);
1950 	destroy_hrtimer_on_stack(&t.timer);
1951 
1952 	__set_current_state(TASK_RUNNING);
1953 
1954 	return !t.task ? 0 : -EINTR;
1955 }
1956 
1957 /**
1958  * schedule_hrtimeout_range - sleep until timeout
1959  * @expires:	timeout value (ktime_t)
1960  * @delta:	slack in expires timeout (ktime_t)
1961  * @mode:	timer mode
1962  *
1963  * Make the current task sleep until the given expiry time has
1964  * elapsed. The routine will return immediately unless
1965  * the current task state has been set (see set_current_state()).
1966  *
1967  * The @delta argument gives the kernel the freedom to schedule the
1968  * actual wakeup to a time that is both power and performance friendly.
1969  * The kernel give the normal best effort behavior for "@expires+@delta",
1970  * but may decide to fire the timer earlier, but no earlier than @expires.
1971  *
1972  * You can set the task state as follows -
1973  *
1974  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1975  * pass before the routine returns unless the current task is explicitly
1976  * woken up, (e.g. by wake_up_process()).
1977  *
1978  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1979  * delivered to the current task or the current task is explicitly woken
1980  * up.
1981  *
1982  * The current task state is guaranteed to be TASK_RUNNING when this
1983  * routine returns.
1984  *
1985  * Returns 0 when the timer has expired. If the task was woken before the
1986  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1987  * by an explicit wakeup, it returns -EINTR.
1988  */
1989 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1990 				     const enum hrtimer_mode mode)
1991 {
1992 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1993 					      CLOCK_MONOTONIC);
1994 }
1995 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1996 
1997 /**
1998  * schedule_hrtimeout - sleep until timeout
1999  * @expires:	timeout value (ktime_t)
2000  * @mode:	timer mode
2001  *
2002  * Make the current task sleep until the given expiry time has
2003  * elapsed. The routine will return immediately unless
2004  * the current task state has been set (see set_current_state()).
2005  *
2006  * You can set the task state as follows -
2007  *
2008  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2009  * pass before the routine returns unless the current task is explicitly
2010  * woken up, (e.g. by wake_up_process()).
2011  *
2012  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2013  * delivered to the current task or the current task is explicitly woken
2014  * up.
2015  *
2016  * The current task state is guaranteed to be TASK_RUNNING when this
2017  * routine returns.
2018  *
2019  * Returns 0 when the timer has expired. If the task was woken before the
2020  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2021  * by an explicit wakeup, it returns -EINTR.
2022  */
2023 int __sched schedule_hrtimeout(ktime_t *expires,
2024 			       const enum hrtimer_mode mode)
2025 {
2026 	return schedule_hrtimeout_range(expires, 0, mode);
2027 }
2028 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2029