1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 { 168 struct hrtimer_clock_base *base; 169 170 for (;;) { 171 base = READ_ONCE(timer->base); 172 if (likely(base != &migration_base)) { 173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 174 if (likely(base == timer->base)) 175 return base; 176 /* The timer has migrated to another CPU: */ 177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 178 } 179 cpu_relax(); 180 } 181 } 182 183 /* 184 * We do not migrate the timer when it is expiring before the next 185 * event on the target cpu. When high resolution is enabled, we cannot 186 * reprogram the target cpu hardware and we would cause it to fire 187 * late. To keep it simple, we handle the high resolution enabled and 188 * disabled case similar. 189 * 190 * Called with cpu_base->lock of target cpu held. 191 */ 192 static int 193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 194 { 195 ktime_t expires; 196 197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 198 return expires < new_base->cpu_base->expires_next; 199 } 200 201 static inline 202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 203 int pinned) 204 { 205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 206 if (static_branch_likely(&timers_migration_enabled) && !pinned) 207 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 208 #endif 209 return base; 210 } 211 212 /* 213 * We switch the timer base to a power-optimized selected CPU target, 214 * if: 215 * - NO_HZ_COMMON is enabled 216 * - timer migration is enabled 217 * - the timer callback is not running 218 * - the timer is not the first expiring timer on the new target 219 * 220 * If one of the above requirements is not fulfilled we move the timer 221 * to the current CPU or leave it on the previously assigned CPU if 222 * the timer callback is currently running. 223 */ 224 static inline struct hrtimer_clock_base * 225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 226 int pinned) 227 { 228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 229 struct hrtimer_clock_base *new_base; 230 int basenum = base->index; 231 232 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 233 new_cpu_base = get_target_base(this_cpu_base, pinned); 234 again: 235 new_base = &new_cpu_base->clock_base[basenum]; 236 237 if (base != new_base) { 238 /* 239 * We are trying to move timer to new_base. 240 * However we can't change timer's base while it is running, 241 * so we keep it on the same CPU. No hassle vs. reprogramming 242 * the event source in the high resolution case. The softirq 243 * code will take care of this when the timer function has 244 * completed. There is no conflict as we hold the lock until 245 * the timer is enqueued. 246 */ 247 if (unlikely(hrtimer_callback_running(timer))) 248 return base; 249 250 /* See the comment in lock_hrtimer_base() */ 251 WRITE_ONCE(timer->base, &migration_base); 252 raw_spin_unlock(&base->cpu_base->lock); 253 raw_spin_lock(&new_base->cpu_base->lock); 254 255 if (new_cpu_base != this_cpu_base && 256 hrtimer_check_target(timer, new_base)) { 257 raw_spin_unlock(&new_base->cpu_base->lock); 258 raw_spin_lock(&base->cpu_base->lock); 259 new_cpu_base = this_cpu_base; 260 WRITE_ONCE(timer->base, base); 261 goto again; 262 } 263 WRITE_ONCE(timer->base, new_base); 264 } else { 265 if (new_cpu_base != this_cpu_base && 266 hrtimer_check_target(timer, new_base)) { 267 new_cpu_base = this_cpu_base; 268 goto again; 269 } 270 } 271 return new_base; 272 } 273 274 #else /* CONFIG_SMP */ 275 276 static inline bool is_migration_base(struct hrtimer_clock_base *base) 277 { 278 return false; 279 } 280 281 static inline struct hrtimer_clock_base * 282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 283 { 284 struct hrtimer_clock_base *base = timer->base; 285 286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 287 288 return base; 289 } 290 291 # define switch_hrtimer_base(t, b, p) (b) 292 293 #endif /* !CONFIG_SMP */ 294 295 /* 296 * Functions for the union type storage format of ktime_t which are 297 * too large for inlining: 298 */ 299 #if BITS_PER_LONG < 64 300 /* 301 * Divide a ktime value by a nanosecond value 302 */ 303 s64 __ktime_divns(const ktime_t kt, s64 div) 304 { 305 int sft = 0; 306 s64 dclc; 307 u64 tmp; 308 309 dclc = ktime_to_ns(kt); 310 tmp = dclc < 0 ? -dclc : dclc; 311 312 /* Make sure the divisor is less than 2^32: */ 313 while (div >> 32) { 314 sft++; 315 div >>= 1; 316 } 317 tmp >>= sft; 318 do_div(tmp, (u32) div); 319 return dclc < 0 ? -tmp : tmp; 320 } 321 EXPORT_SYMBOL_GPL(__ktime_divns); 322 #endif /* BITS_PER_LONG >= 64 */ 323 324 /* 325 * Add two ktime values and do a safety check for overflow: 326 */ 327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 328 { 329 ktime_t res = ktime_add_unsafe(lhs, rhs); 330 331 /* 332 * We use KTIME_SEC_MAX here, the maximum timeout which we can 333 * return to user space in a timespec: 334 */ 335 if (res < 0 || res < lhs || res < rhs) 336 res = ktime_set(KTIME_SEC_MAX, 0); 337 338 return res; 339 } 340 341 EXPORT_SYMBOL_GPL(ktime_add_safe); 342 343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 344 345 static const struct debug_obj_descr hrtimer_debug_descr; 346 347 static void *hrtimer_debug_hint(void *addr) 348 { 349 return ((struct hrtimer *) addr)->function; 350 } 351 352 /* 353 * fixup_init is called when: 354 * - an active object is initialized 355 */ 356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 357 { 358 struct hrtimer *timer = addr; 359 360 switch (state) { 361 case ODEBUG_STATE_ACTIVE: 362 hrtimer_cancel(timer); 363 debug_object_init(timer, &hrtimer_debug_descr); 364 return true; 365 default: 366 return false; 367 } 368 } 369 370 /* 371 * fixup_activate is called when: 372 * - an active object is activated 373 * - an unknown non-static object is activated 374 */ 375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 376 { 377 switch (state) { 378 case ODEBUG_STATE_ACTIVE: 379 WARN_ON(1); 380 fallthrough; 381 default: 382 return false; 383 } 384 } 385 386 /* 387 * fixup_free is called when: 388 * - an active object is freed 389 */ 390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 391 { 392 struct hrtimer *timer = addr; 393 394 switch (state) { 395 case ODEBUG_STATE_ACTIVE: 396 hrtimer_cancel(timer); 397 debug_object_free(timer, &hrtimer_debug_descr); 398 return true; 399 default: 400 return false; 401 } 402 } 403 404 static const struct debug_obj_descr hrtimer_debug_descr = { 405 .name = "hrtimer", 406 .debug_hint = hrtimer_debug_hint, 407 .fixup_init = hrtimer_fixup_init, 408 .fixup_activate = hrtimer_fixup_activate, 409 .fixup_free = hrtimer_fixup_free, 410 }; 411 412 static inline void debug_hrtimer_init(struct hrtimer *timer) 413 { 414 debug_object_init(timer, &hrtimer_debug_descr); 415 } 416 417 static inline void debug_hrtimer_activate(struct hrtimer *timer, 418 enum hrtimer_mode mode) 419 { 420 debug_object_activate(timer, &hrtimer_debug_descr); 421 } 422 423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 424 { 425 debug_object_deactivate(timer, &hrtimer_debug_descr); 426 } 427 428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 429 enum hrtimer_mode mode); 430 431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode) 433 { 434 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 435 __hrtimer_init(timer, clock_id, mode); 436 } 437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 438 439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 440 clockid_t clock_id, enum hrtimer_mode mode); 441 442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode) 444 { 445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 446 __hrtimer_init_sleeper(sl, clock_id, mode); 447 } 448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 449 450 void destroy_hrtimer_on_stack(struct hrtimer *timer) 451 { 452 debug_object_free(timer, &hrtimer_debug_descr); 453 } 454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 455 456 #else 457 458 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 459 static inline void debug_hrtimer_activate(struct hrtimer *timer, 460 enum hrtimer_mode mode) { } 461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 462 #endif 463 464 static inline void 465 debug_init(struct hrtimer *timer, clockid_t clockid, 466 enum hrtimer_mode mode) 467 { 468 debug_hrtimer_init(timer); 469 trace_hrtimer_init(timer, clockid, mode); 470 } 471 472 static inline void debug_activate(struct hrtimer *timer, 473 enum hrtimer_mode mode) 474 { 475 debug_hrtimer_activate(timer, mode); 476 trace_hrtimer_start(timer, mode); 477 } 478 479 static inline void debug_deactivate(struct hrtimer *timer) 480 { 481 debug_hrtimer_deactivate(timer); 482 trace_hrtimer_cancel(timer); 483 } 484 485 static struct hrtimer_clock_base * 486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 487 { 488 unsigned int idx; 489 490 if (!*active) 491 return NULL; 492 493 idx = __ffs(*active); 494 *active &= ~(1U << idx); 495 496 return &cpu_base->clock_base[idx]; 497 } 498 499 #define for_each_active_base(base, cpu_base, active) \ 500 while ((base = __next_base((cpu_base), &(active)))) 501 502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 503 const struct hrtimer *exclude, 504 unsigned int active, 505 ktime_t expires_next) 506 { 507 struct hrtimer_clock_base *base; 508 ktime_t expires; 509 510 for_each_active_base(base, cpu_base, active) { 511 struct timerqueue_node *next; 512 struct hrtimer *timer; 513 514 next = timerqueue_getnext(&base->active); 515 timer = container_of(next, struct hrtimer, node); 516 if (timer == exclude) { 517 /* Get to the next timer in the queue. */ 518 next = timerqueue_iterate_next(next); 519 if (!next) 520 continue; 521 522 timer = container_of(next, struct hrtimer, node); 523 } 524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 525 if (expires < expires_next) { 526 expires_next = expires; 527 528 /* Skip cpu_base update if a timer is being excluded. */ 529 if (exclude) 530 continue; 531 532 if (timer->is_soft) 533 cpu_base->softirq_next_timer = timer; 534 else 535 cpu_base->next_timer = timer; 536 } 537 } 538 /* 539 * clock_was_set() might have changed base->offset of any of 540 * the clock bases so the result might be negative. Fix it up 541 * to prevent a false positive in clockevents_program_event(). 542 */ 543 if (expires_next < 0) 544 expires_next = 0; 545 return expires_next; 546 } 547 548 /* 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 550 * but does not set cpu_base::*expires_next, that is done by 551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 552 * cpu_base::*expires_next right away, reprogramming logic would no longer 553 * work. 554 * 555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 556 * those timers will get run whenever the softirq gets handled, at the end of 557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 558 * 559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 562 * 563 * @active_mask must be one of: 564 * - HRTIMER_ACTIVE_ALL, 565 * - HRTIMER_ACTIVE_SOFT, or 566 * - HRTIMER_ACTIVE_HARD. 567 */ 568 static ktime_t 569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 570 { 571 unsigned int active; 572 struct hrtimer *next_timer = NULL; 573 ktime_t expires_next = KTIME_MAX; 574 575 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 576 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 577 cpu_base->softirq_next_timer = NULL; 578 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 579 active, KTIME_MAX); 580 581 next_timer = cpu_base->softirq_next_timer; 582 } 583 584 if (active_mask & HRTIMER_ACTIVE_HARD) { 585 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 586 cpu_base->next_timer = next_timer; 587 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 588 expires_next); 589 } 590 591 return expires_next; 592 } 593 594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 595 { 596 ktime_t expires_next, soft = KTIME_MAX; 597 598 /* 599 * If the soft interrupt has already been activated, ignore the 600 * soft bases. They will be handled in the already raised soft 601 * interrupt. 602 */ 603 if (!cpu_base->softirq_activated) { 604 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 605 /* 606 * Update the soft expiry time. clock_settime() might have 607 * affected it. 608 */ 609 cpu_base->softirq_expires_next = soft; 610 } 611 612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 613 /* 614 * If a softirq timer is expiring first, update cpu_base->next_timer 615 * and program the hardware with the soft expiry time. 616 */ 617 if (expires_next > soft) { 618 cpu_base->next_timer = cpu_base->softirq_next_timer; 619 expires_next = soft; 620 } 621 622 return expires_next; 623 } 624 625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 626 { 627 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 628 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 629 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 630 631 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 632 offs_real, offs_boot, offs_tai); 633 634 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 635 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 636 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 637 638 return now; 639 } 640 641 /* 642 * Is the high resolution mode active ? 643 */ 644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 645 { 646 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 647 cpu_base->hres_active : 0; 648 } 649 650 static inline int hrtimer_hres_active(void) 651 { 652 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 653 } 654 655 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 656 struct hrtimer *next_timer, 657 ktime_t expires_next) 658 { 659 cpu_base->expires_next = expires_next; 660 661 /* 662 * If hres is not active, hardware does not have to be 663 * reprogrammed yet. 664 * 665 * If a hang was detected in the last timer interrupt then we 666 * leave the hang delay active in the hardware. We want the 667 * system to make progress. That also prevents the following 668 * scenario: 669 * T1 expires 50ms from now 670 * T2 expires 5s from now 671 * 672 * T1 is removed, so this code is called and would reprogram 673 * the hardware to 5s from now. Any hrtimer_start after that 674 * will not reprogram the hardware due to hang_detected being 675 * set. So we'd effectively block all timers until the T2 event 676 * fires. 677 */ 678 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 679 return; 680 681 tick_program_event(expires_next, 1); 682 } 683 684 /* 685 * Reprogram the event source with checking both queues for the 686 * next event 687 * Called with interrupts disabled and base->lock held 688 */ 689 static void 690 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 691 { 692 ktime_t expires_next; 693 694 expires_next = hrtimer_update_next_event(cpu_base); 695 696 if (skip_equal && expires_next == cpu_base->expires_next) 697 return; 698 699 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 700 } 701 702 /* High resolution timer related functions */ 703 #ifdef CONFIG_HIGH_RES_TIMERS 704 705 /* 706 * High resolution timer enabled ? 707 */ 708 static bool hrtimer_hres_enabled __read_mostly = true; 709 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 710 EXPORT_SYMBOL_GPL(hrtimer_resolution); 711 712 /* 713 * Enable / Disable high resolution mode 714 */ 715 static int __init setup_hrtimer_hres(char *str) 716 { 717 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 718 } 719 720 __setup("highres=", setup_hrtimer_hres); 721 722 /* 723 * hrtimer_high_res_enabled - query, if the highres mode is enabled 724 */ 725 static inline int hrtimer_is_hres_enabled(void) 726 { 727 return hrtimer_hres_enabled; 728 } 729 730 static void retrigger_next_event(void *arg); 731 732 /* 733 * Switch to high resolution mode 734 */ 735 static void hrtimer_switch_to_hres(void) 736 { 737 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 738 739 if (tick_init_highres()) { 740 pr_warn("Could not switch to high resolution mode on CPU %u\n", 741 base->cpu); 742 return; 743 } 744 base->hres_active = 1; 745 hrtimer_resolution = HIGH_RES_NSEC; 746 747 tick_setup_sched_timer(); 748 /* "Retrigger" the interrupt to get things going */ 749 retrigger_next_event(NULL); 750 } 751 752 #else 753 754 static inline int hrtimer_is_hres_enabled(void) { return 0; } 755 static inline void hrtimer_switch_to_hres(void) { } 756 757 #endif /* CONFIG_HIGH_RES_TIMERS */ 758 /* 759 * Retrigger next event is called after clock was set with interrupts 760 * disabled through an SMP function call or directly from low level 761 * resume code. 762 * 763 * This is only invoked when: 764 * - CONFIG_HIGH_RES_TIMERS is enabled. 765 * - CONFIG_NOHZ_COMMON is enabled 766 * 767 * For the other cases this function is empty and because the call sites 768 * are optimized out it vanishes as well, i.e. no need for lots of 769 * #ifdeffery. 770 */ 771 static void retrigger_next_event(void *arg) 772 { 773 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 774 775 /* 776 * When high resolution mode or nohz is active, then the offsets of 777 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 778 * next tick will take care of that. 779 * 780 * If high resolution mode is active then the next expiring timer 781 * must be reevaluated and the clock event device reprogrammed if 782 * necessary. 783 * 784 * In the NOHZ case the update of the offset and the reevaluation 785 * of the next expiring timer is enough. The return from the SMP 786 * function call will take care of the reprogramming in case the 787 * CPU was in a NOHZ idle sleep. 788 */ 789 if (!__hrtimer_hres_active(base) && !tick_nohz_active) 790 return; 791 792 raw_spin_lock(&base->lock); 793 hrtimer_update_base(base); 794 if (__hrtimer_hres_active(base)) 795 hrtimer_force_reprogram(base, 0); 796 else 797 hrtimer_update_next_event(base); 798 raw_spin_unlock(&base->lock); 799 } 800 801 /* 802 * When a timer is enqueued and expires earlier than the already enqueued 803 * timers, we have to check, whether it expires earlier than the timer for 804 * which the clock event device was armed. 805 * 806 * Called with interrupts disabled and base->cpu_base.lock held 807 */ 808 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 809 { 810 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 811 struct hrtimer_clock_base *base = timer->base; 812 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 813 814 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 815 816 /* 817 * CLOCK_REALTIME timer might be requested with an absolute 818 * expiry time which is less than base->offset. Set it to 0. 819 */ 820 if (expires < 0) 821 expires = 0; 822 823 if (timer->is_soft) { 824 /* 825 * soft hrtimer could be started on a remote CPU. In this 826 * case softirq_expires_next needs to be updated on the 827 * remote CPU. The soft hrtimer will not expire before the 828 * first hard hrtimer on the remote CPU - 829 * hrtimer_check_target() prevents this case. 830 */ 831 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 832 833 if (timer_cpu_base->softirq_activated) 834 return; 835 836 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 837 return; 838 839 timer_cpu_base->softirq_next_timer = timer; 840 timer_cpu_base->softirq_expires_next = expires; 841 842 if (!ktime_before(expires, timer_cpu_base->expires_next) || 843 !reprogram) 844 return; 845 } 846 847 /* 848 * If the timer is not on the current cpu, we cannot reprogram 849 * the other cpus clock event device. 850 */ 851 if (base->cpu_base != cpu_base) 852 return; 853 854 if (expires >= cpu_base->expires_next) 855 return; 856 857 /* 858 * If the hrtimer interrupt is running, then it will reevaluate the 859 * clock bases and reprogram the clock event device. 860 */ 861 if (cpu_base->in_hrtirq) 862 return; 863 864 cpu_base->next_timer = timer; 865 866 __hrtimer_reprogram(cpu_base, timer, expires); 867 } 868 869 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 870 unsigned int active) 871 { 872 struct hrtimer_clock_base *base; 873 unsigned int seq; 874 ktime_t expires; 875 876 /* 877 * Update the base offsets unconditionally so the following 878 * checks whether the SMP function call is required works. 879 * 880 * The update is safe even when the remote CPU is in the hrtimer 881 * interrupt or the hrtimer soft interrupt and expiring affected 882 * bases. Either it will see the update before handling a base or 883 * it will see it when it finishes the processing and reevaluates 884 * the next expiring timer. 885 */ 886 seq = cpu_base->clock_was_set_seq; 887 hrtimer_update_base(cpu_base); 888 889 /* 890 * If the sequence did not change over the update then the 891 * remote CPU already handled it. 892 */ 893 if (seq == cpu_base->clock_was_set_seq) 894 return false; 895 896 /* 897 * If the remote CPU is currently handling an hrtimer interrupt, it 898 * will reevaluate the first expiring timer of all clock bases 899 * before reprogramming. Nothing to do here. 900 */ 901 if (cpu_base->in_hrtirq) 902 return false; 903 904 /* 905 * Walk the affected clock bases and check whether the first expiring 906 * timer in a clock base is moving ahead of the first expiring timer of 907 * @cpu_base. If so, the IPI must be invoked because per CPU clock 908 * event devices cannot be remotely reprogrammed. 909 */ 910 active &= cpu_base->active_bases; 911 912 for_each_active_base(base, cpu_base, active) { 913 struct timerqueue_node *next; 914 915 next = timerqueue_getnext(&base->active); 916 expires = ktime_sub(next->expires, base->offset); 917 if (expires < cpu_base->expires_next) 918 return true; 919 920 /* Extra check for softirq clock bases */ 921 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 922 continue; 923 if (cpu_base->softirq_activated) 924 continue; 925 if (expires < cpu_base->softirq_expires_next) 926 return true; 927 } 928 return false; 929 } 930 931 /* 932 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 933 * CLOCK_BOOTTIME (for late sleep time injection). 934 * 935 * This requires to update the offsets for these clocks 936 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 937 * also requires to eventually reprogram the per CPU clock event devices 938 * when the change moves an affected timer ahead of the first expiring 939 * timer on that CPU. Obviously remote per CPU clock event devices cannot 940 * be reprogrammed. The other reason why an IPI has to be sent is when the 941 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 942 * in the tick, which obviously might be stopped, so this has to bring out 943 * the remote CPU which might sleep in idle to get this sorted. 944 */ 945 void clock_was_set(unsigned int bases) 946 { 947 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 948 cpumask_var_t mask; 949 int cpu; 950 951 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) 952 goto out_timerfd; 953 954 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 955 on_each_cpu(retrigger_next_event, NULL, 1); 956 goto out_timerfd; 957 } 958 959 /* Avoid interrupting CPUs if possible */ 960 cpus_read_lock(); 961 for_each_online_cpu(cpu) { 962 unsigned long flags; 963 964 cpu_base = &per_cpu(hrtimer_bases, cpu); 965 raw_spin_lock_irqsave(&cpu_base->lock, flags); 966 967 if (update_needs_ipi(cpu_base, bases)) 968 cpumask_set_cpu(cpu, mask); 969 970 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 971 } 972 973 preempt_disable(); 974 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 975 preempt_enable(); 976 cpus_read_unlock(); 977 free_cpumask_var(mask); 978 979 out_timerfd: 980 timerfd_clock_was_set(); 981 } 982 983 static void clock_was_set_work(struct work_struct *work) 984 { 985 clock_was_set(CLOCK_SET_WALL); 986 } 987 988 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 989 990 /* 991 * Called from timekeeping code to reprogram the hrtimer interrupt device 992 * on all cpus and to notify timerfd. 993 */ 994 void clock_was_set_delayed(void) 995 { 996 schedule_work(&hrtimer_work); 997 } 998 999 /* 1000 * Called during resume either directly from via timekeeping_resume() 1001 * or in the case of s2idle from tick_unfreeze() to ensure that the 1002 * hrtimers are up to date. 1003 */ 1004 void hrtimers_resume_local(void) 1005 { 1006 lockdep_assert_irqs_disabled(); 1007 /* Retrigger on the local CPU */ 1008 retrigger_next_event(NULL); 1009 } 1010 1011 /* 1012 * Counterpart to lock_hrtimer_base above: 1013 */ 1014 static inline 1015 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1016 { 1017 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1018 } 1019 1020 /** 1021 * hrtimer_forward - forward the timer expiry 1022 * @timer: hrtimer to forward 1023 * @now: forward past this time 1024 * @interval: the interval to forward 1025 * 1026 * Forward the timer expiry so it will expire in the future. 1027 * Returns the number of overruns. 1028 * 1029 * Can be safely called from the callback function of @timer. If 1030 * called from other contexts @timer must neither be enqueued nor 1031 * running the callback and the caller needs to take care of 1032 * serialization. 1033 * 1034 * Note: This only updates the timer expiry value and does not requeue 1035 * the timer. 1036 */ 1037 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1038 { 1039 u64 orun = 1; 1040 ktime_t delta; 1041 1042 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1043 1044 if (delta < 0) 1045 return 0; 1046 1047 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1048 return 0; 1049 1050 if (interval < hrtimer_resolution) 1051 interval = hrtimer_resolution; 1052 1053 if (unlikely(delta >= interval)) { 1054 s64 incr = ktime_to_ns(interval); 1055 1056 orun = ktime_divns(delta, incr); 1057 hrtimer_add_expires_ns(timer, incr * orun); 1058 if (hrtimer_get_expires_tv64(timer) > now) 1059 return orun; 1060 /* 1061 * This (and the ktime_add() below) is the 1062 * correction for exact: 1063 */ 1064 orun++; 1065 } 1066 hrtimer_add_expires(timer, interval); 1067 1068 return orun; 1069 } 1070 EXPORT_SYMBOL_GPL(hrtimer_forward); 1071 1072 /* 1073 * enqueue_hrtimer - internal function to (re)start a timer 1074 * 1075 * The timer is inserted in expiry order. Insertion into the 1076 * red black tree is O(log(n)). Must hold the base lock. 1077 * 1078 * Returns 1 when the new timer is the leftmost timer in the tree. 1079 */ 1080 static int enqueue_hrtimer(struct hrtimer *timer, 1081 struct hrtimer_clock_base *base, 1082 enum hrtimer_mode mode) 1083 { 1084 debug_activate(timer, mode); 1085 1086 base->cpu_base->active_bases |= 1 << base->index; 1087 1088 /* Pairs with the lockless read in hrtimer_is_queued() */ 1089 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1090 1091 return timerqueue_add(&base->active, &timer->node); 1092 } 1093 1094 /* 1095 * __remove_hrtimer - internal function to remove a timer 1096 * 1097 * Caller must hold the base lock. 1098 * 1099 * High resolution timer mode reprograms the clock event device when the 1100 * timer is the one which expires next. The caller can disable this by setting 1101 * reprogram to zero. This is useful, when the context does a reprogramming 1102 * anyway (e.g. timer interrupt) 1103 */ 1104 static void __remove_hrtimer(struct hrtimer *timer, 1105 struct hrtimer_clock_base *base, 1106 u8 newstate, int reprogram) 1107 { 1108 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1109 u8 state = timer->state; 1110 1111 /* Pairs with the lockless read in hrtimer_is_queued() */ 1112 WRITE_ONCE(timer->state, newstate); 1113 if (!(state & HRTIMER_STATE_ENQUEUED)) 1114 return; 1115 1116 if (!timerqueue_del(&base->active, &timer->node)) 1117 cpu_base->active_bases &= ~(1 << base->index); 1118 1119 /* 1120 * Note: If reprogram is false we do not update 1121 * cpu_base->next_timer. This happens when we remove the first 1122 * timer on a remote cpu. No harm as we never dereference 1123 * cpu_base->next_timer. So the worst thing what can happen is 1124 * an superfluous call to hrtimer_force_reprogram() on the 1125 * remote cpu later on if the same timer gets enqueued again. 1126 */ 1127 if (reprogram && timer == cpu_base->next_timer) 1128 hrtimer_force_reprogram(cpu_base, 1); 1129 } 1130 1131 /* 1132 * remove hrtimer, called with base lock held 1133 */ 1134 static inline int 1135 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1136 bool restart, bool keep_local) 1137 { 1138 u8 state = timer->state; 1139 1140 if (state & HRTIMER_STATE_ENQUEUED) { 1141 bool reprogram; 1142 1143 /* 1144 * Remove the timer and force reprogramming when high 1145 * resolution mode is active and the timer is on the current 1146 * CPU. If we remove a timer on another CPU, reprogramming is 1147 * skipped. The interrupt event on this CPU is fired and 1148 * reprogramming happens in the interrupt handler. This is a 1149 * rare case and less expensive than a smp call. 1150 */ 1151 debug_deactivate(timer); 1152 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1153 1154 /* 1155 * If the timer is not restarted then reprogramming is 1156 * required if the timer is local. If it is local and about 1157 * to be restarted, avoid programming it twice (on removal 1158 * and a moment later when it's requeued). 1159 */ 1160 if (!restart) 1161 state = HRTIMER_STATE_INACTIVE; 1162 else 1163 reprogram &= !keep_local; 1164 1165 __remove_hrtimer(timer, base, state, reprogram); 1166 return 1; 1167 } 1168 return 0; 1169 } 1170 1171 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1172 const enum hrtimer_mode mode) 1173 { 1174 #ifdef CONFIG_TIME_LOW_RES 1175 /* 1176 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1177 * granular time values. For relative timers we add hrtimer_resolution 1178 * (i.e. one jiffie) to prevent short timeouts. 1179 */ 1180 timer->is_rel = mode & HRTIMER_MODE_REL; 1181 if (timer->is_rel) 1182 tim = ktime_add_safe(tim, hrtimer_resolution); 1183 #endif 1184 return tim; 1185 } 1186 1187 static void 1188 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1189 { 1190 ktime_t expires; 1191 1192 /* 1193 * Find the next SOFT expiration. 1194 */ 1195 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1196 1197 /* 1198 * reprogramming needs to be triggered, even if the next soft 1199 * hrtimer expires at the same time than the next hard 1200 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1201 */ 1202 if (expires == KTIME_MAX) 1203 return; 1204 1205 /* 1206 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1207 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1208 */ 1209 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1210 } 1211 1212 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1213 u64 delta_ns, const enum hrtimer_mode mode, 1214 struct hrtimer_clock_base *base) 1215 { 1216 struct hrtimer_clock_base *new_base; 1217 bool force_local, first; 1218 1219 /* 1220 * If the timer is on the local cpu base and is the first expiring 1221 * timer then this might end up reprogramming the hardware twice 1222 * (on removal and on enqueue). To avoid that by prevent the 1223 * reprogram on removal, keep the timer local to the current CPU 1224 * and enforce reprogramming after it is queued no matter whether 1225 * it is the new first expiring timer again or not. 1226 */ 1227 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1228 force_local &= base->cpu_base->next_timer == timer; 1229 1230 /* 1231 * Remove an active timer from the queue. In case it is not queued 1232 * on the current CPU, make sure that remove_hrtimer() updates the 1233 * remote data correctly. 1234 * 1235 * If it's on the current CPU and the first expiring timer, then 1236 * skip reprogramming, keep the timer local and enforce 1237 * reprogramming later if it was the first expiring timer. This 1238 * avoids programming the underlying clock event twice (once at 1239 * removal and once after enqueue). 1240 */ 1241 remove_hrtimer(timer, base, true, force_local); 1242 1243 if (mode & HRTIMER_MODE_REL) 1244 tim = ktime_add_safe(tim, base->get_time()); 1245 1246 tim = hrtimer_update_lowres(timer, tim, mode); 1247 1248 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1249 1250 /* Switch the timer base, if necessary: */ 1251 if (!force_local) { 1252 new_base = switch_hrtimer_base(timer, base, 1253 mode & HRTIMER_MODE_PINNED); 1254 } else { 1255 new_base = base; 1256 } 1257 1258 first = enqueue_hrtimer(timer, new_base, mode); 1259 if (!force_local) 1260 return first; 1261 1262 /* 1263 * Timer was forced to stay on the current CPU to avoid 1264 * reprogramming on removal and enqueue. Force reprogram the 1265 * hardware by evaluating the new first expiring timer. 1266 */ 1267 hrtimer_force_reprogram(new_base->cpu_base, 1); 1268 return 0; 1269 } 1270 1271 /** 1272 * hrtimer_start_range_ns - (re)start an hrtimer 1273 * @timer: the timer to be added 1274 * @tim: expiry time 1275 * @delta_ns: "slack" range for the timer 1276 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1277 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1278 * softirq based mode is considered for debug purpose only! 1279 */ 1280 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1281 u64 delta_ns, const enum hrtimer_mode mode) 1282 { 1283 struct hrtimer_clock_base *base; 1284 unsigned long flags; 1285 1286 /* 1287 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1288 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1289 * expiry mode because unmarked timers are moved to softirq expiry. 1290 */ 1291 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1292 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1293 else 1294 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1295 1296 base = lock_hrtimer_base(timer, &flags); 1297 1298 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1299 hrtimer_reprogram(timer, true); 1300 1301 unlock_hrtimer_base(timer, &flags); 1302 } 1303 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1304 1305 /** 1306 * hrtimer_try_to_cancel - try to deactivate a timer 1307 * @timer: hrtimer to stop 1308 * 1309 * Returns: 1310 * 1311 * * 0 when the timer was not active 1312 * * 1 when the timer was active 1313 * * -1 when the timer is currently executing the callback function and 1314 * cannot be stopped 1315 */ 1316 int hrtimer_try_to_cancel(struct hrtimer *timer) 1317 { 1318 struct hrtimer_clock_base *base; 1319 unsigned long flags; 1320 int ret = -1; 1321 1322 /* 1323 * Check lockless first. If the timer is not active (neither 1324 * enqueued nor running the callback, nothing to do here. The 1325 * base lock does not serialize against a concurrent enqueue, 1326 * so we can avoid taking it. 1327 */ 1328 if (!hrtimer_active(timer)) 1329 return 0; 1330 1331 base = lock_hrtimer_base(timer, &flags); 1332 1333 if (!hrtimer_callback_running(timer)) 1334 ret = remove_hrtimer(timer, base, false, false); 1335 1336 unlock_hrtimer_base(timer, &flags); 1337 1338 return ret; 1339 1340 } 1341 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1342 1343 #ifdef CONFIG_PREEMPT_RT 1344 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1345 { 1346 spin_lock_init(&base->softirq_expiry_lock); 1347 } 1348 1349 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1350 { 1351 spin_lock(&base->softirq_expiry_lock); 1352 } 1353 1354 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1355 { 1356 spin_unlock(&base->softirq_expiry_lock); 1357 } 1358 1359 /* 1360 * The counterpart to hrtimer_cancel_wait_running(). 1361 * 1362 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1363 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1364 * allows the waiter to acquire the lock and make progress. 1365 */ 1366 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1367 unsigned long flags) 1368 { 1369 if (atomic_read(&cpu_base->timer_waiters)) { 1370 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1371 spin_unlock(&cpu_base->softirq_expiry_lock); 1372 spin_lock(&cpu_base->softirq_expiry_lock); 1373 raw_spin_lock_irq(&cpu_base->lock); 1374 } 1375 } 1376 1377 /* 1378 * This function is called on PREEMPT_RT kernels when the fast path 1379 * deletion of a timer failed because the timer callback function was 1380 * running. 1381 * 1382 * This prevents priority inversion: if the soft irq thread is preempted 1383 * in the middle of a timer callback, then calling del_timer_sync() can 1384 * lead to two issues: 1385 * 1386 * - If the caller is on a remote CPU then it has to spin wait for the timer 1387 * handler to complete. This can result in unbound priority inversion. 1388 * 1389 * - If the caller originates from the task which preempted the timer 1390 * handler on the same CPU, then spin waiting for the timer handler to 1391 * complete is never going to end. 1392 */ 1393 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1394 { 1395 /* Lockless read. Prevent the compiler from reloading it below */ 1396 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1397 1398 /* 1399 * Just relax if the timer expires in hard interrupt context or if 1400 * it is currently on the migration base. 1401 */ 1402 if (!timer->is_soft || is_migration_base(base)) { 1403 cpu_relax(); 1404 return; 1405 } 1406 1407 /* 1408 * Mark the base as contended and grab the expiry lock, which is 1409 * held by the softirq across the timer callback. Drop the lock 1410 * immediately so the softirq can expire the next timer. In theory 1411 * the timer could already be running again, but that's more than 1412 * unlikely and just causes another wait loop. 1413 */ 1414 atomic_inc(&base->cpu_base->timer_waiters); 1415 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1416 atomic_dec(&base->cpu_base->timer_waiters); 1417 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1418 } 1419 #else 1420 static inline void 1421 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1422 static inline void 1423 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1424 static inline void 1425 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1426 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1427 unsigned long flags) { } 1428 #endif 1429 1430 /** 1431 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1432 * @timer: the timer to be cancelled 1433 * 1434 * Returns: 1435 * 0 when the timer was not active 1436 * 1 when the timer was active 1437 */ 1438 int hrtimer_cancel(struct hrtimer *timer) 1439 { 1440 int ret; 1441 1442 do { 1443 ret = hrtimer_try_to_cancel(timer); 1444 1445 if (ret < 0) 1446 hrtimer_cancel_wait_running(timer); 1447 } while (ret < 0); 1448 return ret; 1449 } 1450 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1451 1452 /** 1453 * __hrtimer_get_remaining - get remaining time for the timer 1454 * @timer: the timer to read 1455 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1456 */ 1457 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1458 { 1459 unsigned long flags; 1460 ktime_t rem; 1461 1462 lock_hrtimer_base(timer, &flags); 1463 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1464 rem = hrtimer_expires_remaining_adjusted(timer); 1465 else 1466 rem = hrtimer_expires_remaining(timer); 1467 unlock_hrtimer_base(timer, &flags); 1468 1469 return rem; 1470 } 1471 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1472 1473 #ifdef CONFIG_NO_HZ_COMMON 1474 /** 1475 * hrtimer_get_next_event - get the time until next expiry event 1476 * 1477 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1478 */ 1479 u64 hrtimer_get_next_event(void) 1480 { 1481 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1482 u64 expires = KTIME_MAX; 1483 unsigned long flags; 1484 1485 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1486 1487 if (!__hrtimer_hres_active(cpu_base)) 1488 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1489 1490 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1491 1492 return expires; 1493 } 1494 1495 /** 1496 * hrtimer_next_event_without - time until next expiry event w/o one timer 1497 * @exclude: timer to exclude 1498 * 1499 * Returns the next expiry time over all timers except for the @exclude one or 1500 * KTIME_MAX if none of them is pending. 1501 */ 1502 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1503 { 1504 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1505 u64 expires = KTIME_MAX; 1506 unsigned long flags; 1507 1508 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1509 1510 if (__hrtimer_hres_active(cpu_base)) { 1511 unsigned int active; 1512 1513 if (!cpu_base->softirq_activated) { 1514 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1515 expires = __hrtimer_next_event_base(cpu_base, exclude, 1516 active, KTIME_MAX); 1517 } 1518 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1519 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1520 expires); 1521 } 1522 1523 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1524 1525 return expires; 1526 } 1527 #endif 1528 1529 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1530 { 1531 if (likely(clock_id < MAX_CLOCKS)) { 1532 int base = hrtimer_clock_to_base_table[clock_id]; 1533 1534 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1535 return base; 1536 } 1537 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1538 return HRTIMER_BASE_MONOTONIC; 1539 } 1540 1541 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1542 enum hrtimer_mode mode) 1543 { 1544 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1545 struct hrtimer_cpu_base *cpu_base; 1546 int base; 1547 1548 /* 1549 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1550 * marked for hard interrupt expiry mode are moved into soft 1551 * interrupt context for latency reasons and because the callbacks 1552 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1553 */ 1554 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1555 softtimer = true; 1556 1557 memset(timer, 0, sizeof(struct hrtimer)); 1558 1559 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1560 1561 /* 1562 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1563 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1564 * ensure POSIX compliance. 1565 */ 1566 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1567 clock_id = CLOCK_MONOTONIC; 1568 1569 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1570 base += hrtimer_clockid_to_base(clock_id); 1571 timer->is_soft = softtimer; 1572 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1573 timer->base = &cpu_base->clock_base[base]; 1574 timerqueue_init(&timer->node); 1575 } 1576 1577 /** 1578 * hrtimer_init - initialize a timer to the given clock 1579 * @timer: the timer to be initialized 1580 * @clock_id: the clock to be used 1581 * @mode: The modes which are relevant for initialization: 1582 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1583 * HRTIMER_MODE_REL_SOFT 1584 * 1585 * The PINNED variants of the above can be handed in, 1586 * but the PINNED bit is ignored as pinning happens 1587 * when the hrtimer is started 1588 */ 1589 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1590 enum hrtimer_mode mode) 1591 { 1592 debug_init(timer, clock_id, mode); 1593 __hrtimer_init(timer, clock_id, mode); 1594 } 1595 EXPORT_SYMBOL_GPL(hrtimer_init); 1596 1597 /* 1598 * A timer is active, when it is enqueued into the rbtree or the 1599 * callback function is running or it's in the state of being migrated 1600 * to another cpu. 1601 * 1602 * It is important for this function to not return a false negative. 1603 */ 1604 bool hrtimer_active(const struct hrtimer *timer) 1605 { 1606 struct hrtimer_clock_base *base; 1607 unsigned int seq; 1608 1609 do { 1610 base = READ_ONCE(timer->base); 1611 seq = raw_read_seqcount_begin(&base->seq); 1612 1613 if (timer->state != HRTIMER_STATE_INACTIVE || 1614 base->running == timer) 1615 return true; 1616 1617 } while (read_seqcount_retry(&base->seq, seq) || 1618 base != READ_ONCE(timer->base)); 1619 1620 return false; 1621 } 1622 EXPORT_SYMBOL_GPL(hrtimer_active); 1623 1624 /* 1625 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1626 * distinct sections: 1627 * 1628 * - queued: the timer is queued 1629 * - callback: the timer is being ran 1630 * - post: the timer is inactive or (re)queued 1631 * 1632 * On the read side we ensure we observe timer->state and cpu_base->running 1633 * from the same section, if anything changed while we looked at it, we retry. 1634 * This includes timer->base changing because sequence numbers alone are 1635 * insufficient for that. 1636 * 1637 * The sequence numbers are required because otherwise we could still observe 1638 * a false negative if the read side got smeared over multiple consecutive 1639 * __run_hrtimer() invocations. 1640 */ 1641 1642 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1643 struct hrtimer_clock_base *base, 1644 struct hrtimer *timer, ktime_t *now, 1645 unsigned long flags) __must_hold(&cpu_base->lock) 1646 { 1647 enum hrtimer_restart (*fn)(struct hrtimer *); 1648 bool expires_in_hardirq; 1649 int restart; 1650 1651 lockdep_assert_held(&cpu_base->lock); 1652 1653 debug_deactivate(timer); 1654 base->running = timer; 1655 1656 /* 1657 * Separate the ->running assignment from the ->state assignment. 1658 * 1659 * As with a regular write barrier, this ensures the read side in 1660 * hrtimer_active() cannot observe base->running == NULL && 1661 * timer->state == INACTIVE. 1662 */ 1663 raw_write_seqcount_barrier(&base->seq); 1664 1665 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1666 fn = timer->function; 1667 1668 /* 1669 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1670 * timer is restarted with a period then it becomes an absolute 1671 * timer. If its not restarted it does not matter. 1672 */ 1673 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1674 timer->is_rel = false; 1675 1676 /* 1677 * The timer is marked as running in the CPU base, so it is 1678 * protected against migration to a different CPU even if the lock 1679 * is dropped. 1680 */ 1681 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1682 trace_hrtimer_expire_entry(timer, now); 1683 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1684 1685 restart = fn(timer); 1686 1687 lockdep_hrtimer_exit(expires_in_hardirq); 1688 trace_hrtimer_expire_exit(timer); 1689 raw_spin_lock_irq(&cpu_base->lock); 1690 1691 /* 1692 * Note: We clear the running state after enqueue_hrtimer and 1693 * we do not reprogram the event hardware. Happens either in 1694 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1695 * 1696 * Note: Because we dropped the cpu_base->lock above, 1697 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1698 * for us already. 1699 */ 1700 if (restart != HRTIMER_NORESTART && 1701 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1702 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1703 1704 /* 1705 * Separate the ->running assignment from the ->state assignment. 1706 * 1707 * As with a regular write barrier, this ensures the read side in 1708 * hrtimer_active() cannot observe base->running.timer == NULL && 1709 * timer->state == INACTIVE. 1710 */ 1711 raw_write_seqcount_barrier(&base->seq); 1712 1713 WARN_ON_ONCE(base->running != timer); 1714 base->running = NULL; 1715 } 1716 1717 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1718 unsigned long flags, unsigned int active_mask) 1719 { 1720 struct hrtimer_clock_base *base; 1721 unsigned int active = cpu_base->active_bases & active_mask; 1722 1723 for_each_active_base(base, cpu_base, active) { 1724 struct timerqueue_node *node; 1725 ktime_t basenow; 1726 1727 basenow = ktime_add(now, base->offset); 1728 1729 while ((node = timerqueue_getnext(&base->active))) { 1730 struct hrtimer *timer; 1731 1732 timer = container_of(node, struct hrtimer, node); 1733 1734 /* 1735 * The immediate goal for using the softexpires is 1736 * minimizing wakeups, not running timers at the 1737 * earliest interrupt after their soft expiration. 1738 * This allows us to avoid using a Priority Search 1739 * Tree, which can answer a stabbing query for 1740 * overlapping intervals and instead use the simple 1741 * BST we already have. 1742 * We don't add extra wakeups by delaying timers that 1743 * are right-of a not yet expired timer, because that 1744 * timer will have to trigger a wakeup anyway. 1745 */ 1746 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1747 break; 1748 1749 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1750 if (active_mask == HRTIMER_ACTIVE_SOFT) 1751 hrtimer_sync_wait_running(cpu_base, flags); 1752 } 1753 } 1754 } 1755 1756 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1757 { 1758 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1759 unsigned long flags; 1760 ktime_t now; 1761 1762 hrtimer_cpu_base_lock_expiry(cpu_base); 1763 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1764 1765 now = hrtimer_update_base(cpu_base); 1766 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1767 1768 cpu_base->softirq_activated = 0; 1769 hrtimer_update_softirq_timer(cpu_base, true); 1770 1771 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1772 hrtimer_cpu_base_unlock_expiry(cpu_base); 1773 } 1774 1775 #ifdef CONFIG_HIGH_RES_TIMERS 1776 1777 /* 1778 * High resolution timer interrupt 1779 * Called with interrupts disabled 1780 */ 1781 void hrtimer_interrupt(struct clock_event_device *dev) 1782 { 1783 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1784 ktime_t expires_next, now, entry_time, delta; 1785 unsigned long flags; 1786 int retries = 0; 1787 1788 BUG_ON(!cpu_base->hres_active); 1789 cpu_base->nr_events++; 1790 dev->next_event = KTIME_MAX; 1791 1792 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1793 entry_time = now = hrtimer_update_base(cpu_base); 1794 retry: 1795 cpu_base->in_hrtirq = 1; 1796 /* 1797 * We set expires_next to KTIME_MAX here with cpu_base->lock 1798 * held to prevent that a timer is enqueued in our queue via 1799 * the migration code. This does not affect enqueueing of 1800 * timers which run their callback and need to be requeued on 1801 * this CPU. 1802 */ 1803 cpu_base->expires_next = KTIME_MAX; 1804 1805 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1806 cpu_base->softirq_expires_next = KTIME_MAX; 1807 cpu_base->softirq_activated = 1; 1808 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1809 } 1810 1811 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1812 1813 /* Reevaluate the clock bases for the [soft] next expiry */ 1814 expires_next = hrtimer_update_next_event(cpu_base); 1815 /* 1816 * Store the new expiry value so the migration code can verify 1817 * against it. 1818 */ 1819 cpu_base->expires_next = expires_next; 1820 cpu_base->in_hrtirq = 0; 1821 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1822 1823 /* Reprogramming necessary ? */ 1824 if (!tick_program_event(expires_next, 0)) { 1825 cpu_base->hang_detected = 0; 1826 return; 1827 } 1828 1829 /* 1830 * The next timer was already expired due to: 1831 * - tracing 1832 * - long lasting callbacks 1833 * - being scheduled away when running in a VM 1834 * 1835 * We need to prevent that we loop forever in the hrtimer 1836 * interrupt routine. We give it 3 attempts to avoid 1837 * overreacting on some spurious event. 1838 * 1839 * Acquire base lock for updating the offsets and retrieving 1840 * the current time. 1841 */ 1842 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1843 now = hrtimer_update_base(cpu_base); 1844 cpu_base->nr_retries++; 1845 if (++retries < 3) 1846 goto retry; 1847 /* 1848 * Give the system a chance to do something else than looping 1849 * here. We stored the entry time, so we know exactly how long 1850 * we spent here. We schedule the next event this amount of 1851 * time away. 1852 */ 1853 cpu_base->nr_hangs++; 1854 cpu_base->hang_detected = 1; 1855 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1856 1857 delta = ktime_sub(now, entry_time); 1858 if ((unsigned int)delta > cpu_base->max_hang_time) 1859 cpu_base->max_hang_time = (unsigned int) delta; 1860 /* 1861 * Limit it to a sensible value as we enforce a longer 1862 * delay. Give the CPU at least 100ms to catch up. 1863 */ 1864 if (delta > 100 * NSEC_PER_MSEC) 1865 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1866 else 1867 expires_next = ktime_add(now, delta); 1868 tick_program_event(expires_next, 1); 1869 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1870 } 1871 1872 /* called with interrupts disabled */ 1873 static inline void __hrtimer_peek_ahead_timers(void) 1874 { 1875 struct tick_device *td; 1876 1877 if (!hrtimer_hres_active()) 1878 return; 1879 1880 td = this_cpu_ptr(&tick_cpu_device); 1881 if (td && td->evtdev) 1882 hrtimer_interrupt(td->evtdev); 1883 } 1884 1885 #else /* CONFIG_HIGH_RES_TIMERS */ 1886 1887 static inline void __hrtimer_peek_ahead_timers(void) { } 1888 1889 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1890 1891 /* 1892 * Called from run_local_timers in hardirq context every jiffy 1893 */ 1894 void hrtimer_run_queues(void) 1895 { 1896 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1897 unsigned long flags; 1898 ktime_t now; 1899 1900 if (__hrtimer_hres_active(cpu_base)) 1901 return; 1902 1903 /* 1904 * This _is_ ugly: We have to check periodically, whether we 1905 * can switch to highres and / or nohz mode. The clocksource 1906 * switch happens with xtime_lock held. Notification from 1907 * there only sets the check bit in the tick_oneshot code, 1908 * otherwise we might deadlock vs. xtime_lock. 1909 */ 1910 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1911 hrtimer_switch_to_hres(); 1912 return; 1913 } 1914 1915 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1916 now = hrtimer_update_base(cpu_base); 1917 1918 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1919 cpu_base->softirq_expires_next = KTIME_MAX; 1920 cpu_base->softirq_activated = 1; 1921 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1922 } 1923 1924 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1925 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1926 } 1927 1928 /* 1929 * Sleep related functions: 1930 */ 1931 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1932 { 1933 struct hrtimer_sleeper *t = 1934 container_of(timer, struct hrtimer_sleeper, timer); 1935 struct task_struct *task = t->task; 1936 1937 t->task = NULL; 1938 if (task) 1939 wake_up_process(task); 1940 1941 return HRTIMER_NORESTART; 1942 } 1943 1944 /** 1945 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1946 * @sl: sleeper to be started 1947 * @mode: timer mode abs/rel 1948 * 1949 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1950 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1951 */ 1952 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1953 enum hrtimer_mode mode) 1954 { 1955 /* 1956 * Make the enqueue delivery mode check work on RT. If the sleeper 1957 * was initialized for hard interrupt delivery, force the mode bit. 1958 * This is a special case for hrtimer_sleepers because 1959 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1960 * fiddling with this decision is avoided at the call sites. 1961 */ 1962 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1963 mode |= HRTIMER_MODE_HARD; 1964 1965 hrtimer_start_expires(&sl->timer, mode); 1966 } 1967 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1968 1969 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1970 clockid_t clock_id, enum hrtimer_mode mode) 1971 { 1972 /* 1973 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1974 * marked for hard interrupt expiry mode are moved into soft 1975 * interrupt context either for latency reasons or because the 1976 * hrtimer callback takes regular spinlocks or invokes other 1977 * functions which are not suitable for hard interrupt context on 1978 * PREEMPT_RT. 1979 * 1980 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1981 * context, but there is a latency concern: Untrusted userspace can 1982 * spawn many threads which arm timers for the same expiry time on 1983 * the same CPU. That causes a latency spike due to the wakeup of 1984 * a gazillion threads. 1985 * 1986 * OTOH, privileged real-time user space applications rely on the 1987 * low latency of hard interrupt wakeups. If the current task is in 1988 * a real-time scheduling class, mark the mode for hard interrupt 1989 * expiry. 1990 */ 1991 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1992 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1993 mode |= HRTIMER_MODE_HARD; 1994 } 1995 1996 __hrtimer_init(&sl->timer, clock_id, mode); 1997 sl->timer.function = hrtimer_wakeup; 1998 sl->task = current; 1999 } 2000 2001 /** 2002 * hrtimer_init_sleeper - initialize sleeper to the given clock 2003 * @sl: sleeper to be initialized 2004 * @clock_id: the clock to be used 2005 * @mode: timer mode abs/rel 2006 */ 2007 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 2008 enum hrtimer_mode mode) 2009 { 2010 debug_init(&sl->timer, clock_id, mode); 2011 __hrtimer_init_sleeper(sl, clock_id, mode); 2012 2013 } 2014 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2015 2016 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2017 { 2018 switch(restart->nanosleep.type) { 2019 #ifdef CONFIG_COMPAT_32BIT_TIME 2020 case TT_COMPAT: 2021 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2022 return -EFAULT; 2023 break; 2024 #endif 2025 case TT_NATIVE: 2026 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2027 return -EFAULT; 2028 break; 2029 default: 2030 BUG(); 2031 } 2032 return -ERESTART_RESTARTBLOCK; 2033 } 2034 2035 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2036 { 2037 struct restart_block *restart; 2038 2039 do { 2040 set_current_state(TASK_INTERRUPTIBLE); 2041 hrtimer_sleeper_start_expires(t, mode); 2042 2043 if (likely(t->task)) 2044 freezable_schedule(); 2045 2046 hrtimer_cancel(&t->timer); 2047 mode = HRTIMER_MODE_ABS; 2048 2049 } while (t->task && !signal_pending(current)); 2050 2051 __set_current_state(TASK_RUNNING); 2052 2053 if (!t->task) 2054 return 0; 2055 2056 restart = ¤t->restart_block; 2057 if (restart->nanosleep.type != TT_NONE) { 2058 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2059 struct timespec64 rmt; 2060 2061 if (rem <= 0) 2062 return 0; 2063 rmt = ktime_to_timespec64(rem); 2064 2065 return nanosleep_copyout(restart, &rmt); 2066 } 2067 return -ERESTART_RESTARTBLOCK; 2068 } 2069 2070 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2071 { 2072 struct hrtimer_sleeper t; 2073 int ret; 2074 2075 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2076 HRTIMER_MODE_ABS); 2077 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2078 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2079 destroy_hrtimer_on_stack(&t.timer); 2080 return ret; 2081 } 2082 2083 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2084 const clockid_t clockid) 2085 { 2086 struct restart_block *restart; 2087 struct hrtimer_sleeper t; 2088 int ret = 0; 2089 u64 slack; 2090 2091 slack = current->timer_slack_ns; 2092 if (dl_task(current) || rt_task(current)) 2093 slack = 0; 2094 2095 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2096 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2097 ret = do_nanosleep(&t, mode); 2098 if (ret != -ERESTART_RESTARTBLOCK) 2099 goto out; 2100 2101 /* Absolute timers do not update the rmtp value and restart: */ 2102 if (mode == HRTIMER_MODE_ABS) { 2103 ret = -ERESTARTNOHAND; 2104 goto out; 2105 } 2106 2107 restart = ¤t->restart_block; 2108 restart->nanosleep.clockid = t.timer.base->clockid; 2109 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2110 set_restart_fn(restart, hrtimer_nanosleep_restart); 2111 out: 2112 destroy_hrtimer_on_stack(&t.timer); 2113 return ret; 2114 } 2115 2116 #ifdef CONFIG_64BIT 2117 2118 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2119 struct __kernel_timespec __user *, rmtp) 2120 { 2121 struct timespec64 tu; 2122 2123 if (get_timespec64(&tu, rqtp)) 2124 return -EFAULT; 2125 2126 if (!timespec64_valid(&tu)) 2127 return -EINVAL; 2128 2129 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2130 current->restart_block.nanosleep.rmtp = rmtp; 2131 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2132 CLOCK_MONOTONIC); 2133 } 2134 2135 #endif 2136 2137 #ifdef CONFIG_COMPAT_32BIT_TIME 2138 2139 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2140 struct old_timespec32 __user *, rmtp) 2141 { 2142 struct timespec64 tu; 2143 2144 if (get_old_timespec32(&tu, rqtp)) 2145 return -EFAULT; 2146 2147 if (!timespec64_valid(&tu)) 2148 return -EINVAL; 2149 2150 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2151 current->restart_block.nanosleep.compat_rmtp = rmtp; 2152 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2153 CLOCK_MONOTONIC); 2154 } 2155 #endif 2156 2157 /* 2158 * Functions related to boot-time initialization: 2159 */ 2160 int hrtimers_prepare_cpu(unsigned int cpu) 2161 { 2162 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2163 int i; 2164 2165 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2166 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2167 2168 clock_b->cpu_base = cpu_base; 2169 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2170 timerqueue_init_head(&clock_b->active); 2171 } 2172 2173 cpu_base->cpu = cpu; 2174 cpu_base->active_bases = 0; 2175 cpu_base->hres_active = 0; 2176 cpu_base->hang_detected = 0; 2177 cpu_base->next_timer = NULL; 2178 cpu_base->softirq_next_timer = NULL; 2179 cpu_base->expires_next = KTIME_MAX; 2180 cpu_base->softirq_expires_next = KTIME_MAX; 2181 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2182 return 0; 2183 } 2184 2185 #ifdef CONFIG_HOTPLUG_CPU 2186 2187 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2188 struct hrtimer_clock_base *new_base) 2189 { 2190 struct hrtimer *timer; 2191 struct timerqueue_node *node; 2192 2193 while ((node = timerqueue_getnext(&old_base->active))) { 2194 timer = container_of(node, struct hrtimer, node); 2195 BUG_ON(hrtimer_callback_running(timer)); 2196 debug_deactivate(timer); 2197 2198 /* 2199 * Mark it as ENQUEUED not INACTIVE otherwise the 2200 * timer could be seen as !active and just vanish away 2201 * under us on another CPU 2202 */ 2203 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2204 timer->base = new_base; 2205 /* 2206 * Enqueue the timers on the new cpu. This does not 2207 * reprogram the event device in case the timer 2208 * expires before the earliest on this CPU, but we run 2209 * hrtimer_interrupt after we migrated everything to 2210 * sort out already expired timers and reprogram the 2211 * event device. 2212 */ 2213 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2214 } 2215 } 2216 2217 int hrtimers_dead_cpu(unsigned int scpu) 2218 { 2219 struct hrtimer_cpu_base *old_base, *new_base; 2220 int i; 2221 2222 BUG_ON(cpu_online(scpu)); 2223 tick_cancel_sched_timer(scpu); 2224 2225 /* 2226 * this BH disable ensures that raise_softirq_irqoff() does 2227 * not wakeup ksoftirqd (and acquire the pi-lock) while 2228 * holding the cpu_base lock 2229 */ 2230 local_bh_disable(); 2231 local_irq_disable(); 2232 old_base = &per_cpu(hrtimer_bases, scpu); 2233 new_base = this_cpu_ptr(&hrtimer_bases); 2234 /* 2235 * The caller is globally serialized and nobody else 2236 * takes two locks at once, deadlock is not possible. 2237 */ 2238 raw_spin_lock(&new_base->lock); 2239 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2240 2241 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2242 migrate_hrtimer_list(&old_base->clock_base[i], 2243 &new_base->clock_base[i]); 2244 } 2245 2246 /* 2247 * The migration might have changed the first expiring softirq 2248 * timer on this CPU. Update it. 2249 */ 2250 hrtimer_update_softirq_timer(new_base, false); 2251 2252 raw_spin_unlock(&old_base->lock); 2253 raw_spin_unlock(&new_base->lock); 2254 2255 /* Check, if we got expired work to do */ 2256 __hrtimer_peek_ahead_timers(); 2257 local_irq_enable(); 2258 local_bh_enable(); 2259 return 0; 2260 } 2261 2262 #endif /* CONFIG_HOTPLUG_CPU */ 2263 2264 void __init hrtimers_init(void) 2265 { 2266 hrtimers_prepare_cpu(smp_processor_id()); 2267 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2268 } 2269 2270 /** 2271 * schedule_hrtimeout_range_clock - sleep until timeout 2272 * @expires: timeout value (ktime_t) 2273 * @delta: slack in expires timeout (ktime_t) 2274 * @mode: timer mode 2275 * @clock_id: timer clock to be used 2276 */ 2277 int __sched 2278 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2279 const enum hrtimer_mode mode, clockid_t clock_id) 2280 { 2281 struct hrtimer_sleeper t; 2282 2283 /* 2284 * Optimize when a zero timeout value is given. It does not 2285 * matter whether this is an absolute or a relative time. 2286 */ 2287 if (expires && *expires == 0) { 2288 __set_current_state(TASK_RUNNING); 2289 return 0; 2290 } 2291 2292 /* 2293 * A NULL parameter means "infinite" 2294 */ 2295 if (!expires) { 2296 schedule(); 2297 return -EINTR; 2298 } 2299 2300 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2301 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2302 hrtimer_sleeper_start_expires(&t, mode); 2303 2304 if (likely(t.task)) 2305 schedule(); 2306 2307 hrtimer_cancel(&t.timer); 2308 destroy_hrtimer_on_stack(&t.timer); 2309 2310 __set_current_state(TASK_RUNNING); 2311 2312 return !t.task ? 0 : -EINTR; 2313 } 2314 2315 /** 2316 * schedule_hrtimeout_range - sleep until timeout 2317 * @expires: timeout value (ktime_t) 2318 * @delta: slack in expires timeout (ktime_t) 2319 * @mode: timer mode 2320 * 2321 * Make the current task sleep until the given expiry time has 2322 * elapsed. The routine will return immediately unless 2323 * the current task state has been set (see set_current_state()). 2324 * 2325 * The @delta argument gives the kernel the freedom to schedule the 2326 * actual wakeup to a time that is both power and performance friendly. 2327 * The kernel give the normal best effort behavior for "@expires+@delta", 2328 * but may decide to fire the timer earlier, but no earlier than @expires. 2329 * 2330 * You can set the task state as follows - 2331 * 2332 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2333 * pass before the routine returns unless the current task is explicitly 2334 * woken up, (e.g. by wake_up_process()). 2335 * 2336 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2337 * delivered to the current task or the current task is explicitly woken 2338 * up. 2339 * 2340 * The current task state is guaranteed to be TASK_RUNNING when this 2341 * routine returns. 2342 * 2343 * Returns 0 when the timer has expired. If the task was woken before the 2344 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2345 * by an explicit wakeup, it returns -EINTR. 2346 */ 2347 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2348 const enum hrtimer_mode mode) 2349 { 2350 return schedule_hrtimeout_range_clock(expires, delta, mode, 2351 CLOCK_MONOTONIC); 2352 } 2353 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2354 2355 /** 2356 * schedule_hrtimeout - sleep until timeout 2357 * @expires: timeout value (ktime_t) 2358 * @mode: timer mode 2359 * 2360 * Make the current task sleep until the given expiry time has 2361 * elapsed. The routine will return immediately unless 2362 * the current task state has been set (see set_current_state()). 2363 * 2364 * You can set the task state as follows - 2365 * 2366 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2367 * pass before the routine returns unless the current task is explicitly 2368 * woken up, (e.g. by wake_up_process()). 2369 * 2370 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2371 * delivered to the current task or the current task is explicitly woken 2372 * up. 2373 * 2374 * The current task state is guaranteed to be TASK_RUNNING when this 2375 * routine returns. 2376 * 2377 * Returns 0 when the timer has expired. If the task was woken before the 2378 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2379 * by an explicit wakeup, it returns -EINTR. 2380 */ 2381 int __sched schedule_hrtimeout(ktime_t *expires, 2382 const enum hrtimer_mode mode) 2383 { 2384 return schedule_hrtimeout_range(expires, 0, mode); 2385 } 2386 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2387