xref: /openbmc/linux/kernel/time/hrtimer.c (revision d91cbe83)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static const struct debug_obj_descr hrtimer_debug_descr;
346 
347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 			   enum hrtimer_mode mode);
430 
431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode)
433 {
434 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 	__hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438 
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 				   clockid_t clock_id, enum hrtimer_mode mode);
441 
442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 	__hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449 
450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 	debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455 
456 #else
457 
458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 					  enum hrtimer_mode mode) { }
461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463 
464 static inline void
465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 	   enum hrtimer_mode mode)
467 {
468 	debug_hrtimer_init(timer);
469 	trace_hrtimer_init(timer, clockid, mode);
470 }
471 
472 static inline void debug_activate(struct hrtimer *timer,
473 				  enum hrtimer_mode mode)
474 {
475 	debug_hrtimer_activate(timer, mode);
476 	trace_hrtimer_start(timer, mode);
477 }
478 
479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 static struct hrtimer_clock_base *
486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 	unsigned int idx;
489 
490 	if (!*active)
491 		return NULL;
492 
493 	idx = __ffs(*active);
494 	*active &= ~(1U << idx);
495 
496 	return &cpu_base->clock_base[idx];
497 }
498 
499 #define for_each_active_base(base, cpu_base, active)	\
500 	while ((base = __next_base((cpu_base), &(active))))
501 
502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 					 const struct hrtimer *exclude,
504 					 unsigned int active,
505 					 ktime_t expires_next)
506 {
507 	struct hrtimer_clock_base *base;
508 	ktime_t expires;
509 
510 	for_each_active_base(base, cpu_base, active) {
511 		struct timerqueue_node *next;
512 		struct hrtimer *timer;
513 
514 		next = timerqueue_getnext(&base->active);
515 		timer = container_of(next, struct hrtimer, node);
516 		if (timer == exclude) {
517 			/* Get to the next timer in the queue. */
518 			next = timerqueue_iterate_next(next);
519 			if (!next)
520 				continue;
521 
522 			timer = container_of(next, struct hrtimer, node);
523 		}
524 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 		if (expires < expires_next) {
526 			expires_next = expires;
527 
528 			/* Skip cpu_base update if a timer is being excluded. */
529 			if (exclude)
530 				continue;
531 
532 			if (timer->is_soft)
533 				cpu_base->softirq_next_timer = timer;
534 			else
535 				cpu_base->next_timer = timer;
536 		}
537 	}
538 	/*
539 	 * clock_was_set() might have changed base->offset of any of
540 	 * the clock bases so the result might be negative. Fix it up
541 	 * to prevent a false positive in clockevents_program_event().
542 	 */
543 	if (expires_next < 0)
544 		expires_next = 0;
545 	return expires_next;
546 }
547 
548 /*
549  * Recomputes cpu_base::*next_timer and returns the earliest expires_next
550  * but does not set cpu_base::*expires_next, that is done by
551  * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating
552  * cpu_base::*expires_next right away, reprogramming logic would no longer
553  * work.
554  *
555  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
556  * those timers will get run whenever the softirq gets handled, at the end of
557  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
558  *
559  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
560  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
561  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
562  *
563  * @active_mask must be one of:
564  *  - HRTIMER_ACTIVE_ALL,
565  *  - HRTIMER_ACTIVE_SOFT, or
566  *  - HRTIMER_ACTIVE_HARD.
567  */
568 static ktime_t
569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
570 {
571 	unsigned int active;
572 	struct hrtimer *next_timer = NULL;
573 	ktime_t expires_next = KTIME_MAX;
574 
575 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
576 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
577 		cpu_base->softirq_next_timer = NULL;
578 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
579 							 active, KTIME_MAX);
580 
581 		next_timer = cpu_base->softirq_next_timer;
582 	}
583 
584 	if (active_mask & HRTIMER_ACTIVE_HARD) {
585 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
586 		cpu_base->next_timer = next_timer;
587 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
588 							 expires_next);
589 	}
590 
591 	return expires_next;
592 }
593 
594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base)
595 {
596 	ktime_t expires_next, soft = KTIME_MAX;
597 
598 	/*
599 	 * If the soft interrupt has already been activated, ignore the
600 	 * soft bases. They will be handled in the already raised soft
601 	 * interrupt.
602 	 */
603 	if (!cpu_base->softirq_activated) {
604 		soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
605 		/*
606 		 * Update the soft expiry time. clock_settime() might have
607 		 * affected it.
608 		 */
609 		cpu_base->softirq_expires_next = soft;
610 	}
611 
612 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD);
613 	/*
614 	 * If a softirq timer is expiring first, update cpu_base->next_timer
615 	 * and program the hardware with the soft expiry time.
616 	 */
617 	if (expires_next > soft) {
618 		cpu_base->next_timer = cpu_base->softirq_next_timer;
619 		expires_next = soft;
620 	}
621 
622 	return expires_next;
623 }
624 
625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
626 {
627 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
628 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
629 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
630 
631 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
632 					    offs_real, offs_boot, offs_tai);
633 
634 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
635 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
636 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
637 
638 	return now;
639 }
640 
641 /*
642  * Is the high resolution mode active ?
643  */
644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
645 {
646 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
647 		cpu_base->hres_active : 0;
648 }
649 
650 static inline int hrtimer_hres_active(void)
651 {
652 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
653 }
654 
655 /*
656  * Reprogram the event source with checking both queues for the
657  * next event
658  * Called with interrupts disabled and base->lock held
659  */
660 static void
661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
662 {
663 	ktime_t expires_next;
664 
665 	expires_next = hrtimer_update_next_event(cpu_base);
666 
667 	if (skip_equal && expires_next == cpu_base->expires_next)
668 		return;
669 
670 	cpu_base->expires_next = expires_next;
671 
672 	/*
673 	 * If hres is not active, hardware does not have to be
674 	 * reprogrammed yet.
675 	 *
676 	 * If a hang was detected in the last timer interrupt then we
677 	 * leave the hang delay active in the hardware. We want the
678 	 * system to make progress. That also prevents the following
679 	 * scenario:
680 	 * T1 expires 50ms from now
681 	 * T2 expires 5s from now
682 	 *
683 	 * T1 is removed, so this code is called and would reprogram
684 	 * the hardware to 5s from now. Any hrtimer_start after that
685 	 * will not reprogram the hardware due to hang_detected being
686 	 * set. So we'd effectivly block all timers until the T2 event
687 	 * fires.
688 	 */
689 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
690 		return;
691 
692 	tick_program_event(cpu_base->expires_next, 1);
693 }
694 
695 /* High resolution timer related functions */
696 #ifdef CONFIG_HIGH_RES_TIMERS
697 
698 /*
699  * High resolution timer enabled ?
700  */
701 static bool hrtimer_hres_enabled __read_mostly  = true;
702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
703 EXPORT_SYMBOL_GPL(hrtimer_resolution);
704 
705 /*
706  * Enable / Disable high resolution mode
707  */
708 static int __init setup_hrtimer_hres(char *str)
709 {
710 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
711 }
712 
713 __setup("highres=", setup_hrtimer_hres);
714 
715 /*
716  * hrtimer_high_res_enabled - query, if the highres mode is enabled
717  */
718 static inline int hrtimer_is_hres_enabled(void)
719 {
720 	return hrtimer_hres_enabled;
721 }
722 
723 /*
724  * Retrigger next event is called after clock was set
725  *
726  * Called with interrupts disabled via on_each_cpu()
727  */
728 static void retrigger_next_event(void *arg)
729 {
730 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
731 
732 	if (!__hrtimer_hres_active(base))
733 		return;
734 
735 	raw_spin_lock(&base->lock);
736 	hrtimer_update_base(base);
737 	hrtimer_force_reprogram(base, 0);
738 	raw_spin_unlock(&base->lock);
739 }
740 
741 /*
742  * Switch to high resolution mode
743  */
744 static void hrtimer_switch_to_hres(void)
745 {
746 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
747 
748 	if (tick_init_highres()) {
749 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
750 			base->cpu);
751 		return;
752 	}
753 	base->hres_active = 1;
754 	hrtimer_resolution = HIGH_RES_NSEC;
755 
756 	tick_setup_sched_timer();
757 	/* "Retrigger" the interrupt to get things going */
758 	retrigger_next_event(NULL);
759 }
760 
761 static void clock_was_set_work(struct work_struct *work)
762 {
763 	clock_was_set();
764 }
765 
766 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
767 
768 /*
769  * Called from timekeeping and resume code to reprogram the hrtimer
770  * interrupt device on all cpus.
771  */
772 void clock_was_set_delayed(void)
773 {
774 	schedule_work(&hrtimer_work);
775 }
776 
777 #else
778 
779 static inline int hrtimer_is_hres_enabled(void) { return 0; }
780 static inline void hrtimer_switch_to_hres(void) { }
781 static inline void retrigger_next_event(void *arg) { }
782 
783 #endif /* CONFIG_HIGH_RES_TIMERS */
784 
785 /*
786  * When a timer is enqueued and expires earlier than the already enqueued
787  * timers, we have to check, whether it expires earlier than the timer for
788  * which the clock event device was armed.
789  *
790  * Called with interrupts disabled and base->cpu_base.lock held
791  */
792 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
793 {
794 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
795 	struct hrtimer_clock_base *base = timer->base;
796 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
797 
798 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
799 
800 	/*
801 	 * CLOCK_REALTIME timer might be requested with an absolute
802 	 * expiry time which is less than base->offset. Set it to 0.
803 	 */
804 	if (expires < 0)
805 		expires = 0;
806 
807 	if (timer->is_soft) {
808 		/*
809 		 * soft hrtimer could be started on a remote CPU. In this
810 		 * case softirq_expires_next needs to be updated on the
811 		 * remote CPU. The soft hrtimer will not expire before the
812 		 * first hard hrtimer on the remote CPU -
813 		 * hrtimer_check_target() prevents this case.
814 		 */
815 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
816 
817 		if (timer_cpu_base->softirq_activated)
818 			return;
819 
820 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
821 			return;
822 
823 		timer_cpu_base->softirq_next_timer = timer;
824 		timer_cpu_base->softirq_expires_next = expires;
825 
826 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
827 		    !reprogram)
828 			return;
829 	}
830 
831 	/*
832 	 * If the timer is not on the current cpu, we cannot reprogram
833 	 * the other cpus clock event device.
834 	 */
835 	if (base->cpu_base != cpu_base)
836 		return;
837 
838 	/*
839 	 * If the hrtimer interrupt is running, then it will
840 	 * reevaluate the clock bases and reprogram the clock event
841 	 * device. The callbacks are always executed in hard interrupt
842 	 * context so we don't need an extra check for a running
843 	 * callback.
844 	 */
845 	if (cpu_base->in_hrtirq)
846 		return;
847 
848 	if (expires >= cpu_base->expires_next)
849 		return;
850 
851 	/* Update the pointer to the next expiring timer */
852 	cpu_base->next_timer = timer;
853 	cpu_base->expires_next = expires;
854 
855 	/*
856 	 * If hres is not active, hardware does not have to be
857 	 * programmed yet.
858 	 *
859 	 * If a hang was detected in the last timer interrupt then we
860 	 * do not schedule a timer which is earlier than the expiry
861 	 * which we enforced in the hang detection. We want the system
862 	 * to make progress.
863 	 */
864 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
865 		return;
866 
867 	/*
868 	 * Program the timer hardware. We enforce the expiry for
869 	 * events which are already in the past.
870 	 */
871 	tick_program_event(expires, 1);
872 }
873 
874 /*
875  * Clock realtime was set
876  *
877  * Change the offset of the realtime clock vs. the monotonic
878  * clock.
879  *
880  * We might have to reprogram the high resolution timer interrupt. On
881  * SMP we call the architecture specific code to retrigger _all_ high
882  * resolution timer interrupts. On UP we just disable interrupts and
883  * call the high resolution interrupt code.
884  */
885 void clock_was_set(void)
886 {
887 #ifdef CONFIG_HIGH_RES_TIMERS
888 	/* Retrigger the CPU local events everywhere */
889 	on_each_cpu(retrigger_next_event, NULL, 1);
890 #endif
891 	timerfd_clock_was_set();
892 }
893 
894 /*
895  * During resume we might have to reprogram the high resolution timer
896  * interrupt on all online CPUs.  However, all other CPUs will be
897  * stopped with IRQs interrupts disabled so the clock_was_set() call
898  * must be deferred.
899  */
900 void hrtimers_resume(void)
901 {
902 	lockdep_assert_irqs_disabled();
903 	/* Retrigger on the local CPU */
904 	retrigger_next_event(NULL);
905 	/* And schedule a retrigger for all others */
906 	clock_was_set_delayed();
907 }
908 
909 /*
910  * Counterpart to lock_hrtimer_base above:
911  */
912 static inline
913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
914 {
915 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
916 }
917 
918 /**
919  * hrtimer_forward - forward the timer expiry
920  * @timer:	hrtimer to forward
921  * @now:	forward past this time
922  * @interval:	the interval to forward
923  *
924  * Forward the timer expiry so it will expire in the future.
925  * Returns the number of overruns.
926  *
927  * Can be safely called from the callback function of @timer. If
928  * called from other contexts @timer must neither be enqueued nor
929  * running the callback and the caller needs to take care of
930  * serialization.
931  *
932  * Note: This only updates the timer expiry value and does not requeue
933  * the timer.
934  */
935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
936 {
937 	u64 orun = 1;
938 	ktime_t delta;
939 
940 	delta = ktime_sub(now, hrtimer_get_expires(timer));
941 
942 	if (delta < 0)
943 		return 0;
944 
945 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
946 		return 0;
947 
948 	if (interval < hrtimer_resolution)
949 		interval = hrtimer_resolution;
950 
951 	if (unlikely(delta >= interval)) {
952 		s64 incr = ktime_to_ns(interval);
953 
954 		orun = ktime_divns(delta, incr);
955 		hrtimer_add_expires_ns(timer, incr * orun);
956 		if (hrtimer_get_expires_tv64(timer) > now)
957 			return orun;
958 		/*
959 		 * This (and the ktime_add() below) is the
960 		 * correction for exact:
961 		 */
962 		orun++;
963 	}
964 	hrtimer_add_expires(timer, interval);
965 
966 	return orun;
967 }
968 EXPORT_SYMBOL_GPL(hrtimer_forward);
969 
970 /*
971  * enqueue_hrtimer - internal function to (re)start a timer
972  *
973  * The timer is inserted in expiry order. Insertion into the
974  * red black tree is O(log(n)). Must hold the base lock.
975  *
976  * Returns 1 when the new timer is the leftmost timer in the tree.
977  */
978 static int enqueue_hrtimer(struct hrtimer *timer,
979 			   struct hrtimer_clock_base *base,
980 			   enum hrtimer_mode mode)
981 {
982 	debug_activate(timer, mode);
983 
984 	base->cpu_base->active_bases |= 1 << base->index;
985 
986 	/* Pairs with the lockless read in hrtimer_is_queued() */
987 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
988 
989 	return timerqueue_add(&base->active, &timer->node);
990 }
991 
992 /*
993  * __remove_hrtimer - internal function to remove a timer
994  *
995  * Caller must hold the base lock.
996  *
997  * High resolution timer mode reprograms the clock event device when the
998  * timer is the one which expires next. The caller can disable this by setting
999  * reprogram to zero. This is useful, when the context does a reprogramming
1000  * anyway (e.g. timer interrupt)
1001  */
1002 static void __remove_hrtimer(struct hrtimer *timer,
1003 			     struct hrtimer_clock_base *base,
1004 			     u8 newstate, int reprogram)
1005 {
1006 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1007 	u8 state = timer->state;
1008 
1009 	/* Pairs with the lockless read in hrtimer_is_queued() */
1010 	WRITE_ONCE(timer->state, newstate);
1011 	if (!(state & HRTIMER_STATE_ENQUEUED))
1012 		return;
1013 
1014 	if (!timerqueue_del(&base->active, &timer->node))
1015 		cpu_base->active_bases &= ~(1 << base->index);
1016 
1017 	/*
1018 	 * Note: If reprogram is false we do not update
1019 	 * cpu_base->next_timer. This happens when we remove the first
1020 	 * timer on a remote cpu. No harm as we never dereference
1021 	 * cpu_base->next_timer. So the worst thing what can happen is
1022 	 * an superflous call to hrtimer_force_reprogram() on the
1023 	 * remote cpu later on if the same timer gets enqueued again.
1024 	 */
1025 	if (reprogram && timer == cpu_base->next_timer)
1026 		hrtimer_force_reprogram(cpu_base, 1);
1027 }
1028 
1029 /*
1030  * remove hrtimer, called with base lock held
1031  */
1032 static inline int
1033 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1034 {
1035 	u8 state = timer->state;
1036 
1037 	if (state & HRTIMER_STATE_ENQUEUED) {
1038 		int reprogram;
1039 
1040 		/*
1041 		 * Remove the timer and force reprogramming when high
1042 		 * resolution mode is active and the timer is on the current
1043 		 * CPU. If we remove a timer on another CPU, reprogramming is
1044 		 * skipped. The interrupt event on this CPU is fired and
1045 		 * reprogramming happens in the interrupt handler. This is a
1046 		 * rare case and less expensive than a smp call.
1047 		 */
1048 		debug_deactivate(timer);
1049 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1050 
1051 		if (!restart)
1052 			state = HRTIMER_STATE_INACTIVE;
1053 
1054 		__remove_hrtimer(timer, base, state, reprogram);
1055 		return 1;
1056 	}
1057 	return 0;
1058 }
1059 
1060 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1061 					    const enum hrtimer_mode mode)
1062 {
1063 #ifdef CONFIG_TIME_LOW_RES
1064 	/*
1065 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1066 	 * granular time values. For relative timers we add hrtimer_resolution
1067 	 * (i.e. one jiffie) to prevent short timeouts.
1068 	 */
1069 	timer->is_rel = mode & HRTIMER_MODE_REL;
1070 	if (timer->is_rel)
1071 		tim = ktime_add_safe(tim, hrtimer_resolution);
1072 #endif
1073 	return tim;
1074 }
1075 
1076 static void
1077 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1078 {
1079 	ktime_t expires;
1080 
1081 	/*
1082 	 * Find the next SOFT expiration.
1083 	 */
1084 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1085 
1086 	/*
1087 	 * reprogramming needs to be triggered, even if the next soft
1088 	 * hrtimer expires at the same time than the next hard
1089 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1090 	 */
1091 	if (expires == KTIME_MAX)
1092 		return;
1093 
1094 	/*
1095 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1096 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1097 	 */
1098 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1099 }
1100 
1101 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1102 				    u64 delta_ns, const enum hrtimer_mode mode,
1103 				    struct hrtimer_clock_base *base)
1104 {
1105 	struct hrtimer_clock_base *new_base;
1106 
1107 	/* Remove an active timer from the queue: */
1108 	remove_hrtimer(timer, base, true);
1109 
1110 	if (mode & HRTIMER_MODE_REL)
1111 		tim = ktime_add_safe(tim, base->get_time());
1112 
1113 	tim = hrtimer_update_lowres(timer, tim, mode);
1114 
1115 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1116 
1117 	/* Switch the timer base, if necessary: */
1118 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1119 
1120 	return enqueue_hrtimer(timer, new_base, mode);
1121 }
1122 
1123 /**
1124  * hrtimer_start_range_ns - (re)start an hrtimer
1125  * @timer:	the timer to be added
1126  * @tim:	expiry time
1127  * @delta_ns:	"slack" range for the timer
1128  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1129  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1130  *		softirq based mode is considered for debug purpose only!
1131  */
1132 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1133 			    u64 delta_ns, const enum hrtimer_mode mode)
1134 {
1135 	struct hrtimer_clock_base *base;
1136 	unsigned long flags;
1137 
1138 	/*
1139 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1140 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1141 	 * expiry mode because unmarked timers are moved to softirq expiry.
1142 	 */
1143 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1144 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1145 	else
1146 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1147 
1148 	base = lock_hrtimer_base(timer, &flags);
1149 
1150 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1151 		hrtimer_reprogram(timer, true);
1152 
1153 	unlock_hrtimer_base(timer, &flags);
1154 }
1155 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1156 
1157 /**
1158  * hrtimer_try_to_cancel - try to deactivate a timer
1159  * @timer:	hrtimer to stop
1160  *
1161  * Returns:
1162  *
1163  *  *  0 when the timer was not active
1164  *  *  1 when the timer was active
1165  *  * -1 when the timer is currently executing the callback function and
1166  *    cannot be stopped
1167  */
1168 int hrtimer_try_to_cancel(struct hrtimer *timer)
1169 {
1170 	struct hrtimer_clock_base *base;
1171 	unsigned long flags;
1172 	int ret = -1;
1173 
1174 	/*
1175 	 * Check lockless first. If the timer is not active (neither
1176 	 * enqueued nor running the callback, nothing to do here.  The
1177 	 * base lock does not serialize against a concurrent enqueue,
1178 	 * so we can avoid taking it.
1179 	 */
1180 	if (!hrtimer_active(timer))
1181 		return 0;
1182 
1183 	base = lock_hrtimer_base(timer, &flags);
1184 
1185 	if (!hrtimer_callback_running(timer))
1186 		ret = remove_hrtimer(timer, base, false);
1187 
1188 	unlock_hrtimer_base(timer, &flags);
1189 
1190 	return ret;
1191 
1192 }
1193 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1194 
1195 #ifdef CONFIG_PREEMPT_RT
1196 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1197 {
1198 	spin_lock_init(&base->softirq_expiry_lock);
1199 }
1200 
1201 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1202 {
1203 	spin_lock(&base->softirq_expiry_lock);
1204 }
1205 
1206 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1207 {
1208 	spin_unlock(&base->softirq_expiry_lock);
1209 }
1210 
1211 /*
1212  * The counterpart to hrtimer_cancel_wait_running().
1213  *
1214  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1215  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1216  * allows the waiter to acquire the lock and make progress.
1217  */
1218 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1219 				      unsigned long flags)
1220 {
1221 	if (atomic_read(&cpu_base->timer_waiters)) {
1222 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1223 		spin_unlock(&cpu_base->softirq_expiry_lock);
1224 		spin_lock(&cpu_base->softirq_expiry_lock);
1225 		raw_spin_lock_irq(&cpu_base->lock);
1226 	}
1227 }
1228 
1229 /*
1230  * This function is called on PREEMPT_RT kernels when the fast path
1231  * deletion of a timer failed because the timer callback function was
1232  * running.
1233  *
1234  * This prevents priority inversion: if the soft irq thread is preempted
1235  * in the middle of a timer callback, then calling del_timer_sync() can
1236  * lead to two issues:
1237  *
1238  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1239  *    handler to complete. This can result in unbound priority inversion.
1240  *
1241  *  - If the caller originates from the task which preempted the timer
1242  *    handler on the same CPU, then spin waiting for the timer handler to
1243  *    complete is never going to end.
1244  */
1245 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1246 {
1247 	/* Lockless read. Prevent the compiler from reloading it below */
1248 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1249 
1250 	/*
1251 	 * Just relax if the timer expires in hard interrupt context or if
1252 	 * it is currently on the migration base.
1253 	 */
1254 	if (!timer->is_soft || is_migration_base(base)) {
1255 		cpu_relax();
1256 		return;
1257 	}
1258 
1259 	/*
1260 	 * Mark the base as contended and grab the expiry lock, which is
1261 	 * held by the softirq across the timer callback. Drop the lock
1262 	 * immediately so the softirq can expire the next timer. In theory
1263 	 * the timer could already be running again, but that's more than
1264 	 * unlikely and just causes another wait loop.
1265 	 */
1266 	atomic_inc(&base->cpu_base->timer_waiters);
1267 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1268 	atomic_dec(&base->cpu_base->timer_waiters);
1269 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1270 }
1271 #else
1272 static inline void
1273 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1274 static inline void
1275 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1276 static inline void
1277 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1278 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1279 					     unsigned long flags) { }
1280 #endif
1281 
1282 /**
1283  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1284  * @timer:	the timer to be cancelled
1285  *
1286  * Returns:
1287  *  0 when the timer was not active
1288  *  1 when the timer was active
1289  */
1290 int hrtimer_cancel(struct hrtimer *timer)
1291 {
1292 	int ret;
1293 
1294 	do {
1295 		ret = hrtimer_try_to_cancel(timer);
1296 
1297 		if (ret < 0)
1298 			hrtimer_cancel_wait_running(timer);
1299 	} while (ret < 0);
1300 	return ret;
1301 }
1302 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1303 
1304 /**
1305  * __hrtimer_get_remaining - get remaining time for the timer
1306  * @timer:	the timer to read
1307  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1308  */
1309 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1310 {
1311 	unsigned long flags;
1312 	ktime_t rem;
1313 
1314 	lock_hrtimer_base(timer, &flags);
1315 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1316 		rem = hrtimer_expires_remaining_adjusted(timer);
1317 	else
1318 		rem = hrtimer_expires_remaining(timer);
1319 	unlock_hrtimer_base(timer, &flags);
1320 
1321 	return rem;
1322 }
1323 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1324 
1325 #ifdef CONFIG_NO_HZ_COMMON
1326 /**
1327  * hrtimer_get_next_event - get the time until next expiry event
1328  *
1329  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1330  */
1331 u64 hrtimer_get_next_event(void)
1332 {
1333 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1334 	u64 expires = KTIME_MAX;
1335 	unsigned long flags;
1336 
1337 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1338 
1339 	if (!__hrtimer_hres_active(cpu_base))
1340 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1341 
1342 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1343 
1344 	return expires;
1345 }
1346 
1347 /**
1348  * hrtimer_next_event_without - time until next expiry event w/o one timer
1349  * @exclude:	timer to exclude
1350  *
1351  * Returns the next expiry time over all timers except for the @exclude one or
1352  * KTIME_MAX if none of them is pending.
1353  */
1354 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1355 {
1356 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1357 	u64 expires = KTIME_MAX;
1358 	unsigned long flags;
1359 
1360 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1361 
1362 	if (__hrtimer_hres_active(cpu_base)) {
1363 		unsigned int active;
1364 
1365 		if (!cpu_base->softirq_activated) {
1366 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1367 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1368 							    active, KTIME_MAX);
1369 		}
1370 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1371 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1372 						    expires);
1373 	}
1374 
1375 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1376 
1377 	return expires;
1378 }
1379 #endif
1380 
1381 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1382 {
1383 	if (likely(clock_id < MAX_CLOCKS)) {
1384 		int base = hrtimer_clock_to_base_table[clock_id];
1385 
1386 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1387 			return base;
1388 	}
1389 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1390 	return HRTIMER_BASE_MONOTONIC;
1391 }
1392 
1393 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1394 			   enum hrtimer_mode mode)
1395 {
1396 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1397 	struct hrtimer_cpu_base *cpu_base;
1398 	int base;
1399 
1400 	/*
1401 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1402 	 * marked for hard interrupt expiry mode are moved into soft
1403 	 * interrupt context for latency reasons and because the callbacks
1404 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1405 	 */
1406 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1407 		softtimer = true;
1408 
1409 	memset(timer, 0, sizeof(struct hrtimer));
1410 
1411 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1412 
1413 	/*
1414 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1415 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1416 	 * ensure POSIX compliance.
1417 	 */
1418 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1419 		clock_id = CLOCK_MONOTONIC;
1420 
1421 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1422 	base += hrtimer_clockid_to_base(clock_id);
1423 	timer->is_soft = softtimer;
1424 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1425 	timer->base = &cpu_base->clock_base[base];
1426 	timerqueue_init(&timer->node);
1427 }
1428 
1429 /**
1430  * hrtimer_init - initialize a timer to the given clock
1431  * @timer:	the timer to be initialized
1432  * @clock_id:	the clock to be used
1433  * @mode:       The modes which are relevant for intitialization:
1434  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1435  *              HRTIMER_MODE_REL_SOFT
1436  *
1437  *              The PINNED variants of the above can be handed in,
1438  *              but the PINNED bit is ignored as pinning happens
1439  *              when the hrtimer is started
1440  */
1441 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1442 		  enum hrtimer_mode mode)
1443 {
1444 	debug_init(timer, clock_id, mode);
1445 	__hrtimer_init(timer, clock_id, mode);
1446 }
1447 EXPORT_SYMBOL_GPL(hrtimer_init);
1448 
1449 /*
1450  * A timer is active, when it is enqueued into the rbtree or the
1451  * callback function is running or it's in the state of being migrated
1452  * to another cpu.
1453  *
1454  * It is important for this function to not return a false negative.
1455  */
1456 bool hrtimer_active(const struct hrtimer *timer)
1457 {
1458 	struct hrtimer_clock_base *base;
1459 	unsigned int seq;
1460 
1461 	do {
1462 		base = READ_ONCE(timer->base);
1463 		seq = raw_read_seqcount_begin(&base->seq);
1464 
1465 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1466 		    base->running == timer)
1467 			return true;
1468 
1469 	} while (read_seqcount_retry(&base->seq, seq) ||
1470 		 base != READ_ONCE(timer->base));
1471 
1472 	return false;
1473 }
1474 EXPORT_SYMBOL_GPL(hrtimer_active);
1475 
1476 /*
1477  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1478  * distinct sections:
1479  *
1480  *  - queued:	the timer is queued
1481  *  - callback:	the timer is being ran
1482  *  - post:	the timer is inactive or (re)queued
1483  *
1484  * On the read side we ensure we observe timer->state and cpu_base->running
1485  * from the same section, if anything changed while we looked at it, we retry.
1486  * This includes timer->base changing because sequence numbers alone are
1487  * insufficient for that.
1488  *
1489  * The sequence numbers are required because otherwise we could still observe
1490  * a false negative if the read side got smeared over multiple consequtive
1491  * __run_hrtimer() invocations.
1492  */
1493 
1494 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1495 			  struct hrtimer_clock_base *base,
1496 			  struct hrtimer *timer, ktime_t *now,
1497 			  unsigned long flags) __must_hold(&cpu_base->lock)
1498 {
1499 	enum hrtimer_restart (*fn)(struct hrtimer *);
1500 	bool expires_in_hardirq;
1501 	int restart;
1502 
1503 	lockdep_assert_held(&cpu_base->lock);
1504 
1505 	debug_deactivate(timer);
1506 	base->running = timer;
1507 
1508 	/*
1509 	 * Separate the ->running assignment from the ->state assignment.
1510 	 *
1511 	 * As with a regular write barrier, this ensures the read side in
1512 	 * hrtimer_active() cannot observe base->running == NULL &&
1513 	 * timer->state == INACTIVE.
1514 	 */
1515 	raw_write_seqcount_barrier(&base->seq);
1516 
1517 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1518 	fn = timer->function;
1519 
1520 	/*
1521 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1522 	 * timer is restarted with a period then it becomes an absolute
1523 	 * timer. If its not restarted it does not matter.
1524 	 */
1525 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1526 		timer->is_rel = false;
1527 
1528 	/*
1529 	 * The timer is marked as running in the CPU base, so it is
1530 	 * protected against migration to a different CPU even if the lock
1531 	 * is dropped.
1532 	 */
1533 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1534 	trace_hrtimer_expire_entry(timer, now);
1535 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1536 
1537 	restart = fn(timer);
1538 
1539 	lockdep_hrtimer_exit(expires_in_hardirq);
1540 	trace_hrtimer_expire_exit(timer);
1541 	raw_spin_lock_irq(&cpu_base->lock);
1542 
1543 	/*
1544 	 * Note: We clear the running state after enqueue_hrtimer and
1545 	 * we do not reprogram the event hardware. Happens either in
1546 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1547 	 *
1548 	 * Note: Because we dropped the cpu_base->lock above,
1549 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1550 	 * for us already.
1551 	 */
1552 	if (restart != HRTIMER_NORESTART &&
1553 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1554 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1555 
1556 	/*
1557 	 * Separate the ->running assignment from the ->state assignment.
1558 	 *
1559 	 * As with a regular write barrier, this ensures the read side in
1560 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1561 	 * timer->state == INACTIVE.
1562 	 */
1563 	raw_write_seqcount_barrier(&base->seq);
1564 
1565 	WARN_ON_ONCE(base->running != timer);
1566 	base->running = NULL;
1567 }
1568 
1569 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1570 				 unsigned long flags, unsigned int active_mask)
1571 {
1572 	struct hrtimer_clock_base *base;
1573 	unsigned int active = cpu_base->active_bases & active_mask;
1574 
1575 	for_each_active_base(base, cpu_base, active) {
1576 		struct timerqueue_node *node;
1577 		ktime_t basenow;
1578 
1579 		basenow = ktime_add(now, base->offset);
1580 
1581 		while ((node = timerqueue_getnext(&base->active))) {
1582 			struct hrtimer *timer;
1583 
1584 			timer = container_of(node, struct hrtimer, node);
1585 
1586 			/*
1587 			 * The immediate goal for using the softexpires is
1588 			 * minimizing wakeups, not running timers at the
1589 			 * earliest interrupt after their soft expiration.
1590 			 * This allows us to avoid using a Priority Search
1591 			 * Tree, which can answer a stabbing querry for
1592 			 * overlapping intervals and instead use the simple
1593 			 * BST we already have.
1594 			 * We don't add extra wakeups by delaying timers that
1595 			 * are right-of a not yet expired timer, because that
1596 			 * timer will have to trigger a wakeup anyway.
1597 			 */
1598 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1599 				break;
1600 
1601 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1602 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1603 				hrtimer_sync_wait_running(cpu_base, flags);
1604 		}
1605 	}
1606 }
1607 
1608 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1609 {
1610 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 	unsigned long flags;
1612 	ktime_t now;
1613 
1614 	hrtimer_cpu_base_lock_expiry(cpu_base);
1615 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1616 
1617 	now = hrtimer_update_base(cpu_base);
1618 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1619 
1620 	cpu_base->softirq_activated = 0;
1621 	hrtimer_update_softirq_timer(cpu_base, true);
1622 
1623 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1624 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1625 }
1626 
1627 #ifdef CONFIG_HIGH_RES_TIMERS
1628 
1629 /*
1630  * High resolution timer interrupt
1631  * Called with interrupts disabled
1632  */
1633 void hrtimer_interrupt(struct clock_event_device *dev)
1634 {
1635 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1636 	ktime_t expires_next, now, entry_time, delta;
1637 	unsigned long flags;
1638 	int retries = 0;
1639 
1640 	BUG_ON(!cpu_base->hres_active);
1641 	cpu_base->nr_events++;
1642 	dev->next_event = KTIME_MAX;
1643 
1644 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1645 	entry_time = now = hrtimer_update_base(cpu_base);
1646 retry:
1647 	cpu_base->in_hrtirq = 1;
1648 	/*
1649 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1650 	 * held to prevent that a timer is enqueued in our queue via
1651 	 * the migration code. This does not affect enqueueing of
1652 	 * timers which run their callback and need to be requeued on
1653 	 * this CPU.
1654 	 */
1655 	cpu_base->expires_next = KTIME_MAX;
1656 
1657 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1658 		cpu_base->softirq_expires_next = KTIME_MAX;
1659 		cpu_base->softirq_activated = 1;
1660 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1661 	}
1662 
1663 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1664 
1665 	/* Reevaluate the clock bases for the [soft] next expiry */
1666 	expires_next = hrtimer_update_next_event(cpu_base);
1667 	/*
1668 	 * Store the new expiry value so the migration code can verify
1669 	 * against it.
1670 	 */
1671 	cpu_base->expires_next = expires_next;
1672 	cpu_base->in_hrtirq = 0;
1673 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1674 
1675 	/* Reprogramming necessary ? */
1676 	if (!tick_program_event(expires_next, 0)) {
1677 		cpu_base->hang_detected = 0;
1678 		return;
1679 	}
1680 
1681 	/*
1682 	 * The next timer was already expired due to:
1683 	 * - tracing
1684 	 * - long lasting callbacks
1685 	 * - being scheduled away when running in a VM
1686 	 *
1687 	 * We need to prevent that we loop forever in the hrtimer
1688 	 * interrupt routine. We give it 3 attempts to avoid
1689 	 * overreacting on some spurious event.
1690 	 *
1691 	 * Acquire base lock for updating the offsets and retrieving
1692 	 * the current time.
1693 	 */
1694 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1695 	now = hrtimer_update_base(cpu_base);
1696 	cpu_base->nr_retries++;
1697 	if (++retries < 3)
1698 		goto retry;
1699 	/*
1700 	 * Give the system a chance to do something else than looping
1701 	 * here. We stored the entry time, so we know exactly how long
1702 	 * we spent here. We schedule the next event this amount of
1703 	 * time away.
1704 	 */
1705 	cpu_base->nr_hangs++;
1706 	cpu_base->hang_detected = 1;
1707 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1708 
1709 	delta = ktime_sub(now, entry_time);
1710 	if ((unsigned int)delta > cpu_base->max_hang_time)
1711 		cpu_base->max_hang_time = (unsigned int) delta;
1712 	/*
1713 	 * Limit it to a sensible value as we enforce a longer
1714 	 * delay. Give the CPU at least 100ms to catch up.
1715 	 */
1716 	if (delta > 100 * NSEC_PER_MSEC)
1717 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1718 	else
1719 		expires_next = ktime_add(now, delta);
1720 	tick_program_event(expires_next, 1);
1721 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1722 }
1723 
1724 /* called with interrupts disabled */
1725 static inline void __hrtimer_peek_ahead_timers(void)
1726 {
1727 	struct tick_device *td;
1728 
1729 	if (!hrtimer_hres_active())
1730 		return;
1731 
1732 	td = this_cpu_ptr(&tick_cpu_device);
1733 	if (td && td->evtdev)
1734 		hrtimer_interrupt(td->evtdev);
1735 }
1736 
1737 #else /* CONFIG_HIGH_RES_TIMERS */
1738 
1739 static inline void __hrtimer_peek_ahead_timers(void) { }
1740 
1741 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1742 
1743 /*
1744  * Called from run_local_timers in hardirq context every jiffy
1745  */
1746 void hrtimer_run_queues(void)
1747 {
1748 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1749 	unsigned long flags;
1750 	ktime_t now;
1751 
1752 	if (__hrtimer_hres_active(cpu_base))
1753 		return;
1754 
1755 	/*
1756 	 * This _is_ ugly: We have to check periodically, whether we
1757 	 * can switch to highres and / or nohz mode. The clocksource
1758 	 * switch happens with xtime_lock held. Notification from
1759 	 * there only sets the check bit in the tick_oneshot code,
1760 	 * otherwise we might deadlock vs. xtime_lock.
1761 	 */
1762 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1763 		hrtimer_switch_to_hres();
1764 		return;
1765 	}
1766 
1767 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1768 	now = hrtimer_update_base(cpu_base);
1769 
1770 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1771 		cpu_base->softirq_expires_next = KTIME_MAX;
1772 		cpu_base->softirq_activated = 1;
1773 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1774 	}
1775 
1776 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1777 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1778 }
1779 
1780 /*
1781  * Sleep related functions:
1782  */
1783 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1784 {
1785 	struct hrtimer_sleeper *t =
1786 		container_of(timer, struct hrtimer_sleeper, timer);
1787 	struct task_struct *task = t->task;
1788 
1789 	t->task = NULL;
1790 	if (task)
1791 		wake_up_process(task);
1792 
1793 	return HRTIMER_NORESTART;
1794 }
1795 
1796 /**
1797  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1798  * @sl:		sleeper to be started
1799  * @mode:	timer mode abs/rel
1800  *
1801  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1802  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1803  */
1804 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1805 				   enum hrtimer_mode mode)
1806 {
1807 	/*
1808 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1809 	 * was initialized for hard interrupt delivery, force the mode bit.
1810 	 * This is a special case for hrtimer_sleepers because
1811 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1812 	 * fiddling with this decision is avoided at the call sites.
1813 	 */
1814 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1815 		mode |= HRTIMER_MODE_HARD;
1816 
1817 	hrtimer_start_expires(&sl->timer, mode);
1818 }
1819 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1820 
1821 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1822 				   clockid_t clock_id, enum hrtimer_mode mode)
1823 {
1824 	/*
1825 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1826 	 * marked for hard interrupt expiry mode are moved into soft
1827 	 * interrupt context either for latency reasons or because the
1828 	 * hrtimer callback takes regular spinlocks or invokes other
1829 	 * functions which are not suitable for hard interrupt context on
1830 	 * PREEMPT_RT.
1831 	 *
1832 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1833 	 * context, but there is a latency concern: Untrusted userspace can
1834 	 * spawn many threads which arm timers for the same expiry time on
1835 	 * the same CPU. That causes a latency spike due to the wakeup of
1836 	 * a gazillion threads.
1837 	 *
1838 	 * OTOH, priviledged real-time user space applications rely on the
1839 	 * low latency of hard interrupt wakeups. If the current task is in
1840 	 * a real-time scheduling class, mark the mode for hard interrupt
1841 	 * expiry.
1842 	 */
1843 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1844 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1845 			mode |= HRTIMER_MODE_HARD;
1846 	}
1847 
1848 	__hrtimer_init(&sl->timer, clock_id, mode);
1849 	sl->timer.function = hrtimer_wakeup;
1850 	sl->task = current;
1851 }
1852 
1853 /**
1854  * hrtimer_init_sleeper - initialize sleeper to the given clock
1855  * @sl:		sleeper to be initialized
1856  * @clock_id:	the clock to be used
1857  * @mode:	timer mode abs/rel
1858  */
1859 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1860 			  enum hrtimer_mode mode)
1861 {
1862 	debug_init(&sl->timer, clock_id, mode);
1863 	__hrtimer_init_sleeper(sl, clock_id, mode);
1864 
1865 }
1866 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1867 
1868 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1869 {
1870 	switch(restart->nanosleep.type) {
1871 #ifdef CONFIG_COMPAT_32BIT_TIME
1872 	case TT_COMPAT:
1873 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1874 			return -EFAULT;
1875 		break;
1876 #endif
1877 	case TT_NATIVE:
1878 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1879 			return -EFAULT;
1880 		break;
1881 	default:
1882 		BUG();
1883 	}
1884 	return -ERESTART_RESTARTBLOCK;
1885 }
1886 
1887 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1888 {
1889 	struct restart_block *restart;
1890 
1891 	do {
1892 		set_current_state(TASK_INTERRUPTIBLE);
1893 		hrtimer_sleeper_start_expires(t, mode);
1894 
1895 		if (likely(t->task))
1896 			freezable_schedule();
1897 
1898 		hrtimer_cancel(&t->timer);
1899 		mode = HRTIMER_MODE_ABS;
1900 
1901 	} while (t->task && !signal_pending(current));
1902 
1903 	__set_current_state(TASK_RUNNING);
1904 
1905 	if (!t->task)
1906 		return 0;
1907 
1908 	restart = &current->restart_block;
1909 	if (restart->nanosleep.type != TT_NONE) {
1910 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1911 		struct timespec64 rmt;
1912 
1913 		if (rem <= 0)
1914 			return 0;
1915 		rmt = ktime_to_timespec64(rem);
1916 
1917 		return nanosleep_copyout(restart, &rmt);
1918 	}
1919 	return -ERESTART_RESTARTBLOCK;
1920 }
1921 
1922 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1923 {
1924 	struct hrtimer_sleeper t;
1925 	int ret;
1926 
1927 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1928 				      HRTIMER_MODE_ABS);
1929 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1930 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1931 	destroy_hrtimer_on_stack(&t.timer);
1932 	return ret;
1933 }
1934 
1935 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1936 		       const clockid_t clockid)
1937 {
1938 	struct restart_block *restart;
1939 	struct hrtimer_sleeper t;
1940 	int ret = 0;
1941 	u64 slack;
1942 
1943 	slack = current->timer_slack_ns;
1944 	if (dl_task(current) || rt_task(current))
1945 		slack = 0;
1946 
1947 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1948 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1949 	ret = do_nanosleep(&t, mode);
1950 	if (ret != -ERESTART_RESTARTBLOCK)
1951 		goto out;
1952 
1953 	/* Absolute timers do not update the rmtp value and restart: */
1954 	if (mode == HRTIMER_MODE_ABS) {
1955 		ret = -ERESTARTNOHAND;
1956 		goto out;
1957 	}
1958 
1959 	restart = &current->restart_block;
1960 	restart->nanosleep.clockid = t.timer.base->clockid;
1961 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1962 	set_restart_fn(restart, hrtimer_nanosleep_restart);
1963 out:
1964 	destroy_hrtimer_on_stack(&t.timer);
1965 	return ret;
1966 }
1967 
1968 #ifdef CONFIG_64BIT
1969 
1970 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1971 		struct __kernel_timespec __user *, rmtp)
1972 {
1973 	struct timespec64 tu;
1974 
1975 	if (get_timespec64(&tu, rqtp))
1976 		return -EFAULT;
1977 
1978 	if (!timespec64_valid(&tu))
1979 		return -EINVAL;
1980 
1981 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1982 	current->restart_block.nanosleep.rmtp = rmtp;
1983 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1984 				 CLOCK_MONOTONIC);
1985 }
1986 
1987 #endif
1988 
1989 #ifdef CONFIG_COMPAT_32BIT_TIME
1990 
1991 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1992 		       struct old_timespec32 __user *, rmtp)
1993 {
1994 	struct timespec64 tu;
1995 
1996 	if (get_old_timespec32(&tu, rqtp))
1997 		return -EFAULT;
1998 
1999 	if (!timespec64_valid(&tu))
2000 		return -EINVAL;
2001 
2002 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
2003 	current->restart_block.nanosleep.compat_rmtp = rmtp;
2004 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
2005 				 CLOCK_MONOTONIC);
2006 }
2007 #endif
2008 
2009 /*
2010  * Functions related to boot-time initialization:
2011  */
2012 int hrtimers_prepare_cpu(unsigned int cpu)
2013 {
2014 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2015 	int i;
2016 
2017 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2018 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2019 
2020 		clock_b->cpu_base = cpu_base;
2021 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2022 		timerqueue_init_head(&clock_b->active);
2023 	}
2024 
2025 	cpu_base->cpu = cpu;
2026 	cpu_base->active_bases = 0;
2027 	cpu_base->hres_active = 0;
2028 	cpu_base->hang_detected = 0;
2029 	cpu_base->next_timer = NULL;
2030 	cpu_base->softirq_next_timer = NULL;
2031 	cpu_base->expires_next = KTIME_MAX;
2032 	cpu_base->softirq_expires_next = KTIME_MAX;
2033 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2034 	return 0;
2035 }
2036 
2037 #ifdef CONFIG_HOTPLUG_CPU
2038 
2039 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2040 				struct hrtimer_clock_base *new_base)
2041 {
2042 	struct hrtimer *timer;
2043 	struct timerqueue_node *node;
2044 
2045 	while ((node = timerqueue_getnext(&old_base->active))) {
2046 		timer = container_of(node, struct hrtimer, node);
2047 		BUG_ON(hrtimer_callback_running(timer));
2048 		debug_deactivate(timer);
2049 
2050 		/*
2051 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2052 		 * timer could be seen as !active and just vanish away
2053 		 * under us on another CPU
2054 		 */
2055 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2056 		timer->base = new_base;
2057 		/*
2058 		 * Enqueue the timers on the new cpu. This does not
2059 		 * reprogram the event device in case the timer
2060 		 * expires before the earliest on this CPU, but we run
2061 		 * hrtimer_interrupt after we migrated everything to
2062 		 * sort out already expired timers and reprogram the
2063 		 * event device.
2064 		 */
2065 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2066 	}
2067 }
2068 
2069 int hrtimers_dead_cpu(unsigned int scpu)
2070 {
2071 	struct hrtimer_cpu_base *old_base, *new_base;
2072 	int i;
2073 
2074 	BUG_ON(cpu_online(scpu));
2075 	tick_cancel_sched_timer(scpu);
2076 
2077 	/*
2078 	 * this BH disable ensures that raise_softirq_irqoff() does
2079 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2080 	 * holding the cpu_base lock
2081 	 */
2082 	local_bh_disable();
2083 	local_irq_disable();
2084 	old_base = &per_cpu(hrtimer_bases, scpu);
2085 	new_base = this_cpu_ptr(&hrtimer_bases);
2086 	/*
2087 	 * The caller is globally serialized and nobody else
2088 	 * takes two locks at once, deadlock is not possible.
2089 	 */
2090 	raw_spin_lock(&new_base->lock);
2091 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2092 
2093 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2094 		migrate_hrtimer_list(&old_base->clock_base[i],
2095 				     &new_base->clock_base[i]);
2096 	}
2097 
2098 	/*
2099 	 * The migration might have changed the first expiring softirq
2100 	 * timer on this CPU. Update it.
2101 	 */
2102 	hrtimer_update_softirq_timer(new_base, false);
2103 
2104 	raw_spin_unlock(&old_base->lock);
2105 	raw_spin_unlock(&new_base->lock);
2106 
2107 	/* Check, if we got expired work to do */
2108 	__hrtimer_peek_ahead_timers();
2109 	local_irq_enable();
2110 	local_bh_enable();
2111 	return 0;
2112 }
2113 
2114 #endif /* CONFIG_HOTPLUG_CPU */
2115 
2116 void __init hrtimers_init(void)
2117 {
2118 	hrtimers_prepare_cpu(smp_processor_id());
2119 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2120 }
2121 
2122 /**
2123  * schedule_hrtimeout_range_clock - sleep until timeout
2124  * @expires:	timeout value (ktime_t)
2125  * @delta:	slack in expires timeout (ktime_t)
2126  * @mode:	timer mode
2127  * @clock_id:	timer clock to be used
2128  */
2129 int __sched
2130 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2131 			       const enum hrtimer_mode mode, clockid_t clock_id)
2132 {
2133 	struct hrtimer_sleeper t;
2134 
2135 	/*
2136 	 * Optimize when a zero timeout value is given. It does not
2137 	 * matter whether this is an absolute or a relative time.
2138 	 */
2139 	if (expires && *expires == 0) {
2140 		__set_current_state(TASK_RUNNING);
2141 		return 0;
2142 	}
2143 
2144 	/*
2145 	 * A NULL parameter means "infinite"
2146 	 */
2147 	if (!expires) {
2148 		schedule();
2149 		return -EINTR;
2150 	}
2151 
2152 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2153 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2154 	hrtimer_sleeper_start_expires(&t, mode);
2155 
2156 	if (likely(t.task))
2157 		schedule();
2158 
2159 	hrtimer_cancel(&t.timer);
2160 	destroy_hrtimer_on_stack(&t.timer);
2161 
2162 	__set_current_state(TASK_RUNNING);
2163 
2164 	return !t.task ? 0 : -EINTR;
2165 }
2166 
2167 /**
2168  * schedule_hrtimeout_range - sleep until timeout
2169  * @expires:	timeout value (ktime_t)
2170  * @delta:	slack in expires timeout (ktime_t)
2171  * @mode:	timer mode
2172  *
2173  * Make the current task sleep until the given expiry time has
2174  * elapsed. The routine will return immediately unless
2175  * the current task state has been set (see set_current_state()).
2176  *
2177  * The @delta argument gives the kernel the freedom to schedule the
2178  * actual wakeup to a time that is both power and performance friendly.
2179  * The kernel give the normal best effort behavior for "@expires+@delta",
2180  * but may decide to fire the timer earlier, but no earlier than @expires.
2181  *
2182  * You can set the task state as follows -
2183  *
2184  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2185  * pass before the routine returns unless the current task is explicitly
2186  * woken up, (e.g. by wake_up_process()).
2187  *
2188  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2189  * delivered to the current task or the current task is explicitly woken
2190  * up.
2191  *
2192  * The current task state is guaranteed to be TASK_RUNNING when this
2193  * routine returns.
2194  *
2195  * Returns 0 when the timer has expired. If the task was woken before the
2196  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2197  * by an explicit wakeup, it returns -EINTR.
2198  */
2199 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2200 				     const enum hrtimer_mode mode)
2201 {
2202 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2203 					      CLOCK_MONOTONIC);
2204 }
2205 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2206 
2207 /**
2208  * schedule_hrtimeout - sleep until timeout
2209  * @expires:	timeout value (ktime_t)
2210  * @mode:	timer mode
2211  *
2212  * Make the current task sleep until the given expiry time has
2213  * elapsed. The routine will return immediately unless
2214  * the current task state has been set (see set_current_state()).
2215  *
2216  * You can set the task state as follows -
2217  *
2218  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2219  * pass before the routine returns unless the current task is explicitly
2220  * woken up, (e.g. by wake_up_process()).
2221  *
2222  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2223  * delivered to the current task or the current task is explicitly woken
2224  * up.
2225  *
2226  * The current task state is guaranteed to be TASK_RUNNING when this
2227  * routine returns.
2228  *
2229  * Returns 0 when the timer has expired. If the task was woken before the
2230  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2231  * by an explicit wakeup, it returns -EINTR.
2232  */
2233 int __sched schedule_hrtimeout(ktime_t *expires,
2234 			       const enum hrtimer_mode mode)
2235 {
2236 	return schedule_hrtimeout_range(expires, 0, mode);
2237 }
2238 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2239