1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 139 }; 140 141 #define migration_base migration_cpu_base.clock_base[0] 142 143 /* 144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 145 * means that all timers which are tied to this base via timer->base are 146 * locked, and the base itself is locked too. 147 * 148 * So __run_timers/migrate_timers can safely modify all timers which could 149 * be found on the lists/queues. 150 * 151 * When the timer's base is locked, and the timer removed from list, it is 152 * possible to set timer->base = &migration_base and drop the lock: the timer 153 * remains locked. 154 */ 155 static 156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 157 unsigned long *flags) 158 { 159 struct hrtimer_clock_base *base; 160 161 for (;;) { 162 base = timer->base; 163 if (likely(base != &migration_base)) { 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 165 if (likely(base == timer->base)) 166 return base; 167 /* The timer has migrated to another CPU: */ 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 169 } 170 cpu_relax(); 171 } 172 } 173 174 /* 175 * We do not migrate the timer when it is expiring before the next 176 * event on the target cpu. When high resolution is enabled, we cannot 177 * reprogram the target cpu hardware and we would cause it to fire 178 * late. To keep it simple, we handle the high resolution enabled and 179 * disabled case similar. 180 * 181 * Called with cpu_base->lock of target cpu held. 182 */ 183 static int 184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 185 { 186 ktime_t expires; 187 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 189 return expires < new_base->cpu_base->expires_next; 190 } 191 192 static inline 193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 194 int pinned) 195 { 196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 197 if (static_branch_likely(&timers_migration_enabled) && !pinned) 198 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 199 #endif 200 return base; 201 } 202 203 /* 204 * We switch the timer base to a power-optimized selected CPU target, 205 * if: 206 * - NO_HZ_COMMON is enabled 207 * - timer migration is enabled 208 * - the timer callback is not running 209 * - the timer is not the first expiring timer on the new target 210 * 211 * If one of the above requirements is not fulfilled we move the timer 212 * to the current CPU or leave it on the previously assigned CPU if 213 * the timer callback is currently running. 214 */ 215 static inline struct hrtimer_clock_base * 216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 217 int pinned) 218 { 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 220 struct hrtimer_clock_base *new_base; 221 int basenum = base->index; 222 223 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 224 new_cpu_base = get_target_base(this_cpu_base, pinned); 225 again: 226 new_base = &new_cpu_base->clock_base[basenum]; 227 228 if (base != new_base) { 229 /* 230 * We are trying to move timer to new_base. 231 * However we can't change timer's base while it is running, 232 * so we keep it on the same CPU. No hassle vs. reprogramming 233 * the event source in the high resolution case. The softirq 234 * code will take care of this when the timer function has 235 * completed. There is no conflict as we hold the lock until 236 * the timer is enqueued. 237 */ 238 if (unlikely(hrtimer_callback_running(timer))) 239 return base; 240 241 /* See the comment in lock_hrtimer_base() */ 242 timer->base = &migration_base; 243 raw_spin_unlock(&base->cpu_base->lock); 244 raw_spin_lock(&new_base->cpu_base->lock); 245 246 if (new_cpu_base != this_cpu_base && 247 hrtimer_check_target(timer, new_base)) { 248 raw_spin_unlock(&new_base->cpu_base->lock); 249 raw_spin_lock(&base->cpu_base->lock); 250 new_cpu_base = this_cpu_base; 251 timer->base = base; 252 goto again; 253 } 254 timer->base = new_base; 255 } else { 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 new_cpu_base = this_cpu_base; 259 goto again; 260 } 261 } 262 return new_base; 263 } 264 265 #else /* CONFIG_SMP */ 266 267 static inline struct hrtimer_clock_base * 268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 269 { 270 struct hrtimer_clock_base *base = timer->base; 271 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 273 274 return base; 275 } 276 277 # define switch_hrtimer_base(t, b, p) (b) 278 279 #endif /* !CONFIG_SMP */ 280 281 /* 282 * Functions for the union type storage format of ktime_t which are 283 * too large for inlining: 284 */ 285 #if BITS_PER_LONG < 64 286 /* 287 * Divide a ktime value by a nanosecond value 288 */ 289 s64 __ktime_divns(const ktime_t kt, s64 div) 290 { 291 int sft = 0; 292 s64 dclc; 293 u64 tmp; 294 295 dclc = ktime_to_ns(kt); 296 tmp = dclc < 0 ? -dclc : dclc; 297 298 /* Make sure the divisor is less than 2^32: */ 299 while (div >> 32) { 300 sft++; 301 div >>= 1; 302 } 303 tmp >>= sft; 304 do_div(tmp, (unsigned long) div); 305 return dclc < 0 ? -tmp : tmp; 306 } 307 EXPORT_SYMBOL_GPL(__ktime_divns); 308 #endif /* BITS_PER_LONG >= 64 */ 309 310 /* 311 * Add two ktime values and do a safety check for overflow: 312 */ 313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 314 { 315 ktime_t res = ktime_add_unsafe(lhs, rhs); 316 317 /* 318 * We use KTIME_SEC_MAX here, the maximum timeout which we can 319 * return to user space in a timespec: 320 */ 321 if (res < 0 || res < lhs || res < rhs) 322 res = ktime_set(KTIME_SEC_MAX, 0); 323 324 return res; 325 } 326 327 EXPORT_SYMBOL_GPL(ktime_add_safe); 328 329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 330 331 static struct debug_obj_descr hrtimer_debug_descr; 332 333 static void *hrtimer_debug_hint(void *addr) 334 { 335 return ((struct hrtimer *) addr)->function; 336 } 337 338 /* 339 * fixup_init is called when: 340 * - an active object is initialized 341 */ 342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 343 { 344 struct hrtimer *timer = addr; 345 346 switch (state) { 347 case ODEBUG_STATE_ACTIVE: 348 hrtimer_cancel(timer); 349 debug_object_init(timer, &hrtimer_debug_descr); 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 /* 357 * fixup_activate is called when: 358 * - an active object is activated 359 * - an unknown non-static object is activated 360 */ 361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 362 { 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 WARN_ON(1); 366 /* fall through */ 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_free is called when: 374 * - an active object is freed 375 */ 376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_free(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 static struct debug_obj_descr hrtimer_debug_descr = { 391 .name = "hrtimer", 392 .debug_hint = hrtimer_debug_hint, 393 .fixup_init = hrtimer_fixup_init, 394 .fixup_activate = hrtimer_fixup_activate, 395 .fixup_free = hrtimer_fixup_free, 396 }; 397 398 static inline void debug_hrtimer_init(struct hrtimer *timer) 399 { 400 debug_object_init(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_activate(struct hrtimer *timer, 404 enum hrtimer_mode mode) 405 { 406 debug_object_activate(timer, &hrtimer_debug_descr); 407 } 408 409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 410 { 411 debug_object_deactivate(timer, &hrtimer_debug_descr); 412 } 413 414 static inline void debug_hrtimer_free(struct hrtimer *timer) 415 { 416 debug_object_free(timer, &hrtimer_debug_descr); 417 } 418 419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 420 enum hrtimer_mode mode); 421 422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 423 enum hrtimer_mode mode) 424 { 425 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 426 __hrtimer_init(timer, clock_id, mode); 427 } 428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 429 430 void destroy_hrtimer_on_stack(struct hrtimer *timer) 431 { 432 debug_object_free(timer, &hrtimer_debug_descr); 433 } 434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 435 436 #else 437 438 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 439 static inline void debug_hrtimer_activate(struct hrtimer *timer, 440 enum hrtimer_mode mode) { } 441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 442 #endif 443 444 static inline void 445 debug_init(struct hrtimer *timer, clockid_t clockid, 446 enum hrtimer_mode mode) 447 { 448 debug_hrtimer_init(timer); 449 trace_hrtimer_init(timer, clockid, mode); 450 } 451 452 static inline void debug_activate(struct hrtimer *timer, 453 enum hrtimer_mode mode) 454 { 455 debug_hrtimer_activate(timer, mode); 456 trace_hrtimer_start(timer, mode); 457 } 458 459 static inline void debug_deactivate(struct hrtimer *timer) 460 { 461 debug_hrtimer_deactivate(timer); 462 trace_hrtimer_cancel(timer); 463 } 464 465 static struct hrtimer_clock_base * 466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 467 { 468 unsigned int idx; 469 470 if (!*active) 471 return NULL; 472 473 idx = __ffs(*active); 474 *active &= ~(1U << idx); 475 476 return &cpu_base->clock_base[idx]; 477 } 478 479 #define for_each_active_base(base, cpu_base, active) \ 480 while ((base = __next_base((cpu_base), &(active)))) 481 482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 483 const struct hrtimer *exclude, 484 unsigned int active, 485 ktime_t expires_next) 486 { 487 struct hrtimer_clock_base *base; 488 ktime_t expires; 489 490 for_each_active_base(base, cpu_base, active) { 491 struct timerqueue_node *next; 492 struct hrtimer *timer; 493 494 next = timerqueue_getnext(&base->active); 495 timer = container_of(next, struct hrtimer, node); 496 if (timer == exclude) { 497 /* Get to the next timer in the queue. */ 498 next = timerqueue_iterate_next(next); 499 if (!next) 500 continue; 501 502 timer = container_of(next, struct hrtimer, node); 503 } 504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 505 if (expires < expires_next) { 506 expires_next = expires; 507 508 /* Skip cpu_base update if a timer is being excluded. */ 509 if (exclude) 510 continue; 511 512 if (timer->is_soft) 513 cpu_base->softirq_next_timer = timer; 514 else 515 cpu_base->next_timer = timer; 516 } 517 } 518 /* 519 * clock_was_set() might have changed base->offset of any of 520 * the clock bases so the result might be negative. Fix it up 521 * to prevent a false positive in clockevents_program_event(). 522 */ 523 if (expires_next < 0) 524 expires_next = 0; 525 return expires_next; 526 } 527 528 /* 529 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 530 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 531 * 532 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 533 * those timers will get run whenever the softirq gets handled, at the end of 534 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 535 * 536 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 537 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 538 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 539 * 540 * @active_mask must be one of: 541 * - HRTIMER_ACTIVE_ALL, 542 * - HRTIMER_ACTIVE_SOFT, or 543 * - HRTIMER_ACTIVE_HARD. 544 */ 545 static ktime_t 546 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 547 { 548 unsigned int active; 549 struct hrtimer *next_timer = NULL; 550 ktime_t expires_next = KTIME_MAX; 551 552 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 553 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 554 cpu_base->softirq_next_timer = NULL; 555 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 556 active, KTIME_MAX); 557 558 next_timer = cpu_base->softirq_next_timer; 559 } 560 561 if (active_mask & HRTIMER_ACTIVE_HARD) { 562 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 563 cpu_base->next_timer = next_timer; 564 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 565 expires_next); 566 } 567 568 return expires_next; 569 } 570 571 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 572 { 573 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 574 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 575 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 576 577 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 578 offs_real, offs_boot, offs_tai); 579 580 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 581 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 582 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 583 584 return now; 585 } 586 587 /* 588 * Is the high resolution mode active ? 589 */ 590 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 591 { 592 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 593 cpu_base->hres_active : 0; 594 } 595 596 static inline int hrtimer_hres_active(void) 597 { 598 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 599 } 600 601 /* 602 * Reprogram the event source with checking both queues for the 603 * next event 604 * Called with interrupts disabled and base->lock held 605 */ 606 static void 607 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 608 { 609 ktime_t expires_next; 610 611 /* 612 * Find the current next expiration time. 613 */ 614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 615 616 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 617 /* 618 * When the softirq is activated, hrtimer has to be 619 * programmed with the first hard hrtimer because soft 620 * timer interrupt could occur too late. 621 */ 622 if (cpu_base->softirq_activated) 623 expires_next = __hrtimer_get_next_event(cpu_base, 624 HRTIMER_ACTIVE_HARD); 625 else 626 cpu_base->softirq_expires_next = expires_next; 627 } 628 629 if (skip_equal && expires_next == cpu_base->expires_next) 630 return; 631 632 cpu_base->expires_next = expires_next; 633 634 /* 635 * If hres is not active, hardware does not have to be 636 * reprogrammed yet. 637 * 638 * If a hang was detected in the last timer interrupt then we 639 * leave the hang delay active in the hardware. We want the 640 * system to make progress. That also prevents the following 641 * scenario: 642 * T1 expires 50ms from now 643 * T2 expires 5s from now 644 * 645 * T1 is removed, so this code is called and would reprogram 646 * the hardware to 5s from now. Any hrtimer_start after that 647 * will not reprogram the hardware due to hang_detected being 648 * set. So we'd effectivly block all timers until the T2 event 649 * fires. 650 */ 651 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 652 return; 653 654 tick_program_event(cpu_base->expires_next, 1); 655 } 656 657 /* High resolution timer related functions */ 658 #ifdef CONFIG_HIGH_RES_TIMERS 659 660 /* 661 * High resolution timer enabled ? 662 */ 663 static bool hrtimer_hres_enabled __read_mostly = true; 664 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 665 EXPORT_SYMBOL_GPL(hrtimer_resolution); 666 667 /* 668 * Enable / Disable high resolution mode 669 */ 670 static int __init setup_hrtimer_hres(char *str) 671 { 672 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 673 } 674 675 __setup("highres=", setup_hrtimer_hres); 676 677 /* 678 * hrtimer_high_res_enabled - query, if the highres mode is enabled 679 */ 680 static inline int hrtimer_is_hres_enabled(void) 681 { 682 return hrtimer_hres_enabled; 683 } 684 685 /* 686 * Retrigger next event is called after clock was set 687 * 688 * Called with interrupts disabled via on_each_cpu() 689 */ 690 static void retrigger_next_event(void *arg) 691 { 692 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 693 694 if (!__hrtimer_hres_active(base)) 695 return; 696 697 raw_spin_lock(&base->lock); 698 hrtimer_update_base(base); 699 hrtimer_force_reprogram(base, 0); 700 raw_spin_unlock(&base->lock); 701 } 702 703 /* 704 * Switch to high resolution mode 705 */ 706 static void hrtimer_switch_to_hres(void) 707 { 708 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 709 710 if (tick_init_highres()) { 711 pr_warn("Could not switch to high resolution mode on CPU %u\n", 712 base->cpu); 713 return; 714 } 715 base->hres_active = 1; 716 hrtimer_resolution = HIGH_RES_NSEC; 717 718 tick_setup_sched_timer(); 719 /* "Retrigger" the interrupt to get things going */ 720 retrigger_next_event(NULL); 721 } 722 723 static void clock_was_set_work(struct work_struct *work) 724 { 725 clock_was_set(); 726 } 727 728 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 729 730 /* 731 * Called from timekeeping and resume code to reprogram the hrtimer 732 * interrupt device on all cpus. 733 */ 734 void clock_was_set_delayed(void) 735 { 736 schedule_work(&hrtimer_work); 737 } 738 739 #else 740 741 static inline int hrtimer_is_hres_enabled(void) { return 0; } 742 static inline void hrtimer_switch_to_hres(void) { } 743 static inline void retrigger_next_event(void *arg) { } 744 745 #endif /* CONFIG_HIGH_RES_TIMERS */ 746 747 /* 748 * When a timer is enqueued and expires earlier than the already enqueued 749 * timers, we have to check, whether it expires earlier than the timer for 750 * which the clock event device was armed. 751 * 752 * Called with interrupts disabled and base->cpu_base.lock held 753 */ 754 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 755 { 756 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 757 struct hrtimer_clock_base *base = timer->base; 758 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 759 760 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 761 762 /* 763 * CLOCK_REALTIME timer might be requested with an absolute 764 * expiry time which is less than base->offset. Set it to 0. 765 */ 766 if (expires < 0) 767 expires = 0; 768 769 if (timer->is_soft) { 770 /* 771 * soft hrtimer could be started on a remote CPU. In this 772 * case softirq_expires_next needs to be updated on the 773 * remote CPU. The soft hrtimer will not expire before the 774 * first hard hrtimer on the remote CPU - 775 * hrtimer_check_target() prevents this case. 776 */ 777 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 778 779 if (timer_cpu_base->softirq_activated) 780 return; 781 782 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 783 return; 784 785 timer_cpu_base->softirq_next_timer = timer; 786 timer_cpu_base->softirq_expires_next = expires; 787 788 if (!ktime_before(expires, timer_cpu_base->expires_next) || 789 !reprogram) 790 return; 791 } 792 793 /* 794 * If the timer is not on the current cpu, we cannot reprogram 795 * the other cpus clock event device. 796 */ 797 if (base->cpu_base != cpu_base) 798 return; 799 800 /* 801 * If the hrtimer interrupt is running, then it will 802 * reevaluate the clock bases and reprogram the clock event 803 * device. The callbacks are always executed in hard interrupt 804 * context so we don't need an extra check for a running 805 * callback. 806 */ 807 if (cpu_base->in_hrtirq) 808 return; 809 810 if (expires >= cpu_base->expires_next) 811 return; 812 813 /* Update the pointer to the next expiring timer */ 814 cpu_base->next_timer = timer; 815 cpu_base->expires_next = expires; 816 817 /* 818 * If hres is not active, hardware does not have to be 819 * programmed yet. 820 * 821 * If a hang was detected in the last timer interrupt then we 822 * do not schedule a timer which is earlier than the expiry 823 * which we enforced in the hang detection. We want the system 824 * to make progress. 825 */ 826 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 827 return; 828 829 /* 830 * Program the timer hardware. We enforce the expiry for 831 * events which are already in the past. 832 */ 833 tick_program_event(expires, 1); 834 } 835 836 /* 837 * Clock realtime was set 838 * 839 * Change the offset of the realtime clock vs. the monotonic 840 * clock. 841 * 842 * We might have to reprogram the high resolution timer interrupt. On 843 * SMP we call the architecture specific code to retrigger _all_ high 844 * resolution timer interrupts. On UP we just disable interrupts and 845 * call the high resolution interrupt code. 846 */ 847 void clock_was_set(void) 848 { 849 #ifdef CONFIG_HIGH_RES_TIMERS 850 /* Retrigger the CPU local events everywhere */ 851 on_each_cpu(retrigger_next_event, NULL, 1); 852 #endif 853 timerfd_clock_was_set(); 854 } 855 856 /* 857 * During resume we might have to reprogram the high resolution timer 858 * interrupt on all online CPUs. However, all other CPUs will be 859 * stopped with IRQs interrupts disabled so the clock_was_set() call 860 * must be deferred. 861 */ 862 void hrtimers_resume(void) 863 { 864 lockdep_assert_irqs_disabled(); 865 /* Retrigger on the local CPU */ 866 retrigger_next_event(NULL); 867 /* And schedule a retrigger for all others */ 868 clock_was_set_delayed(); 869 } 870 871 /* 872 * Counterpart to lock_hrtimer_base above: 873 */ 874 static inline 875 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 876 { 877 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 878 } 879 880 /** 881 * hrtimer_forward - forward the timer expiry 882 * @timer: hrtimer to forward 883 * @now: forward past this time 884 * @interval: the interval to forward 885 * 886 * Forward the timer expiry so it will expire in the future. 887 * Returns the number of overruns. 888 * 889 * Can be safely called from the callback function of @timer. If 890 * called from other contexts @timer must neither be enqueued nor 891 * running the callback and the caller needs to take care of 892 * serialization. 893 * 894 * Note: This only updates the timer expiry value and does not requeue 895 * the timer. 896 */ 897 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 898 { 899 u64 orun = 1; 900 ktime_t delta; 901 902 delta = ktime_sub(now, hrtimer_get_expires(timer)); 903 904 if (delta < 0) 905 return 0; 906 907 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 908 return 0; 909 910 if (interval < hrtimer_resolution) 911 interval = hrtimer_resolution; 912 913 if (unlikely(delta >= interval)) { 914 s64 incr = ktime_to_ns(interval); 915 916 orun = ktime_divns(delta, incr); 917 hrtimer_add_expires_ns(timer, incr * orun); 918 if (hrtimer_get_expires_tv64(timer) > now) 919 return orun; 920 /* 921 * This (and the ktime_add() below) is the 922 * correction for exact: 923 */ 924 orun++; 925 } 926 hrtimer_add_expires(timer, interval); 927 928 return orun; 929 } 930 EXPORT_SYMBOL_GPL(hrtimer_forward); 931 932 /* 933 * enqueue_hrtimer - internal function to (re)start a timer 934 * 935 * The timer is inserted in expiry order. Insertion into the 936 * red black tree is O(log(n)). Must hold the base lock. 937 * 938 * Returns 1 when the new timer is the leftmost timer in the tree. 939 */ 940 static int enqueue_hrtimer(struct hrtimer *timer, 941 struct hrtimer_clock_base *base, 942 enum hrtimer_mode mode) 943 { 944 debug_activate(timer, mode); 945 946 base->cpu_base->active_bases |= 1 << base->index; 947 948 timer->state = HRTIMER_STATE_ENQUEUED; 949 950 return timerqueue_add(&base->active, &timer->node); 951 } 952 953 /* 954 * __remove_hrtimer - internal function to remove a timer 955 * 956 * Caller must hold the base lock. 957 * 958 * High resolution timer mode reprograms the clock event device when the 959 * timer is the one which expires next. The caller can disable this by setting 960 * reprogram to zero. This is useful, when the context does a reprogramming 961 * anyway (e.g. timer interrupt) 962 */ 963 static void __remove_hrtimer(struct hrtimer *timer, 964 struct hrtimer_clock_base *base, 965 u8 newstate, int reprogram) 966 { 967 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 968 u8 state = timer->state; 969 970 timer->state = newstate; 971 if (!(state & HRTIMER_STATE_ENQUEUED)) 972 return; 973 974 if (!timerqueue_del(&base->active, &timer->node)) 975 cpu_base->active_bases &= ~(1 << base->index); 976 977 /* 978 * Note: If reprogram is false we do not update 979 * cpu_base->next_timer. This happens when we remove the first 980 * timer on a remote cpu. No harm as we never dereference 981 * cpu_base->next_timer. So the worst thing what can happen is 982 * an superflous call to hrtimer_force_reprogram() on the 983 * remote cpu later on if the same timer gets enqueued again. 984 */ 985 if (reprogram && timer == cpu_base->next_timer) 986 hrtimer_force_reprogram(cpu_base, 1); 987 } 988 989 /* 990 * remove hrtimer, called with base lock held 991 */ 992 static inline int 993 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 994 { 995 if (hrtimer_is_queued(timer)) { 996 u8 state = timer->state; 997 int reprogram; 998 999 /* 1000 * Remove the timer and force reprogramming when high 1001 * resolution mode is active and the timer is on the current 1002 * CPU. If we remove a timer on another CPU, reprogramming is 1003 * skipped. The interrupt event on this CPU is fired and 1004 * reprogramming happens in the interrupt handler. This is a 1005 * rare case and less expensive than a smp call. 1006 */ 1007 debug_deactivate(timer); 1008 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1009 1010 if (!restart) 1011 state = HRTIMER_STATE_INACTIVE; 1012 1013 __remove_hrtimer(timer, base, state, reprogram); 1014 return 1; 1015 } 1016 return 0; 1017 } 1018 1019 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1020 const enum hrtimer_mode mode) 1021 { 1022 #ifdef CONFIG_TIME_LOW_RES 1023 /* 1024 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1025 * granular time values. For relative timers we add hrtimer_resolution 1026 * (i.e. one jiffie) to prevent short timeouts. 1027 */ 1028 timer->is_rel = mode & HRTIMER_MODE_REL; 1029 if (timer->is_rel) 1030 tim = ktime_add_safe(tim, hrtimer_resolution); 1031 #endif 1032 return tim; 1033 } 1034 1035 static void 1036 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1037 { 1038 ktime_t expires; 1039 1040 /* 1041 * Find the next SOFT expiration. 1042 */ 1043 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1044 1045 /* 1046 * reprogramming needs to be triggered, even if the next soft 1047 * hrtimer expires at the same time than the next hard 1048 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1049 */ 1050 if (expires == KTIME_MAX) 1051 return; 1052 1053 /* 1054 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1055 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1056 */ 1057 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1058 } 1059 1060 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1061 u64 delta_ns, const enum hrtimer_mode mode, 1062 struct hrtimer_clock_base *base) 1063 { 1064 struct hrtimer_clock_base *new_base; 1065 1066 /* Remove an active timer from the queue: */ 1067 remove_hrtimer(timer, base, true); 1068 1069 if (mode & HRTIMER_MODE_REL) 1070 tim = ktime_add_safe(tim, base->get_time()); 1071 1072 tim = hrtimer_update_lowres(timer, tim, mode); 1073 1074 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1075 1076 /* Switch the timer base, if necessary: */ 1077 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1078 1079 return enqueue_hrtimer(timer, new_base, mode); 1080 } 1081 1082 /** 1083 * hrtimer_start_range_ns - (re)start an hrtimer 1084 * @timer: the timer to be added 1085 * @tim: expiry time 1086 * @delta_ns: "slack" range for the timer 1087 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1088 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1089 * softirq based mode is considered for debug purpose only! 1090 */ 1091 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1092 u64 delta_ns, const enum hrtimer_mode mode) 1093 { 1094 struct hrtimer_clock_base *base; 1095 unsigned long flags; 1096 1097 /* 1098 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1099 * match. 1100 */ 1101 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1102 1103 base = lock_hrtimer_base(timer, &flags); 1104 1105 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1106 hrtimer_reprogram(timer, true); 1107 1108 unlock_hrtimer_base(timer, &flags); 1109 } 1110 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1111 1112 /** 1113 * hrtimer_try_to_cancel - try to deactivate a timer 1114 * @timer: hrtimer to stop 1115 * 1116 * Returns: 1117 * 1118 * * 0 when the timer was not active 1119 * * 1 when the timer was active 1120 * * -1 when the timer is currently executing the callback function and 1121 * cannot be stopped 1122 */ 1123 int hrtimer_try_to_cancel(struct hrtimer *timer) 1124 { 1125 struct hrtimer_clock_base *base; 1126 unsigned long flags; 1127 int ret = -1; 1128 1129 /* 1130 * Check lockless first. If the timer is not active (neither 1131 * enqueued nor running the callback, nothing to do here. The 1132 * base lock does not serialize against a concurrent enqueue, 1133 * so we can avoid taking it. 1134 */ 1135 if (!hrtimer_active(timer)) 1136 return 0; 1137 1138 base = lock_hrtimer_base(timer, &flags); 1139 1140 if (!hrtimer_callback_running(timer)) 1141 ret = remove_hrtimer(timer, base, false); 1142 1143 unlock_hrtimer_base(timer, &flags); 1144 1145 return ret; 1146 1147 } 1148 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1149 1150 /** 1151 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1152 * @timer: the timer to be cancelled 1153 * 1154 * Returns: 1155 * 0 when the timer was not active 1156 * 1 when the timer was active 1157 */ 1158 int hrtimer_cancel(struct hrtimer *timer) 1159 { 1160 for (;;) { 1161 int ret = hrtimer_try_to_cancel(timer); 1162 1163 if (ret >= 0) 1164 return ret; 1165 cpu_relax(); 1166 } 1167 } 1168 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1169 1170 /** 1171 * hrtimer_get_remaining - get remaining time for the timer 1172 * @timer: the timer to read 1173 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1174 */ 1175 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1176 { 1177 unsigned long flags; 1178 ktime_t rem; 1179 1180 lock_hrtimer_base(timer, &flags); 1181 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1182 rem = hrtimer_expires_remaining_adjusted(timer); 1183 else 1184 rem = hrtimer_expires_remaining(timer); 1185 unlock_hrtimer_base(timer, &flags); 1186 1187 return rem; 1188 } 1189 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1190 1191 #ifdef CONFIG_NO_HZ_COMMON 1192 /** 1193 * hrtimer_get_next_event - get the time until next expiry event 1194 * 1195 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1196 */ 1197 u64 hrtimer_get_next_event(void) 1198 { 1199 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1200 u64 expires = KTIME_MAX; 1201 unsigned long flags; 1202 1203 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1204 1205 if (!__hrtimer_hres_active(cpu_base)) 1206 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1207 1208 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1209 1210 return expires; 1211 } 1212 1213 /** 1214 * hrtimer_next_event_without - time until next expiry event w/o one timer 1215 * @exclude: timer to exclude 1216 * 1217 * Returns the next expiry time over all timers except for the @exclude one or 1218 * KTIME_MAX if none of them is pending. 1219 */ 1220 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1221 { 1222 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1223 u64 expires = KTIME_MAX; 1224 unsigned long flags; 1225 1226 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1227 1228 if (__hrtimer_hres_active(cpu_base)) { 1229 unsigned int active; 1230 1231 if (!cpu_base->softirq_activated) { 1232 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1233 expires = __hrtimer_next_event_base(cpu_base, exclude, 1234 active, KTIME_MAX); 1235 } 1236 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1237 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1238 expires); 1239 } 1240 1241 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1242 1243 return expires; 1244 } 1245 #endif 1246 1247 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1248 { 1249 if (likely(clock_id < MAX_CLOCKS)) { 1250 int base = hrtimer_clock_to_base_table[clock_id]; 1251 1252 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1253 return base; 1254 } 1255 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1256 return HRTIMER_BASE_MONOTONIC; 1257 } 1258 1259 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1260 enum hrtimer_mode mode) 1261 { 1262 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1263 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1264 struct hrtimer_cpu_base *cpu_base; 1265 1266 memset(timer, 0, sizeof(struct hrtimer)); 1267 1268 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1269 1270 /* 1271 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1272 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1273 * ensure POSIX compliance. 1274 */ 1275 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1276 clock_id = CLOCK_MONOTONIC; 1277 1278 base += hrtimer_clockid_to_base(clock_id); 1279 timer->is_soft = softtimer; 1280 timer->base = &cpu_base->clock_base[base]; 1281 timerqueue_init(&timer->node); 1282 } 1283 1284 /** 1285 * hrtimer_init - initialize a timer to the given clock 1286 * @timer: the timer to be initialized 1287 * @clock_id: the clock to be used 1288 * @mode: The modes which are relevant for intitialization: 1289 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1290 * HRTIMER_MODE_REL_SOFT 1291 * 1292 * The PINNED variants of the above can be handed in, 1293 * but the PINNED bit is ignored as pinning happens 1294 * when the hrtimer is started 1295 */ 1296 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1297 enum hrtimer_mode mode) 1298 { 1299 debug_init(timer, clock_id, mode); 1300 __hrtimer_init(timer, clock_id, mode); 1301 } 1302 EXPORT_SYMBOL_GPL(hrtimer_init); 1303 1304 /* 1305 * A timer is active, when it is enqueued into the rbtree or the 1306 * callback function is running or it's in the state of being migrated 1307 * to another cpu. 1308 * 1309 * It is important for this function to not return a false negative. 1310 */ 1311 bool hrtimer_active(const struct hrtimer *timer) 1312 { 1313 struct hrtimer_clock_base *base; 1314 unsigned int seq; 1315 1316 do { 1317 base = READ_ONCE(timer->base); 1318 seq = raw_read_seqcount_begin(&base->seq); 1319 1320 if (timer->state != HRTIMER_STATE_INACTIVE || 1321 base->running == timer) 1322 return true; 1323 1324 } while (read_seqcount_retry(&base->seq, seq) || 1325 base != READ_ONCE(timer->base)); 1326 1327 return false; 1328 } 1329 EXPORT_SYMBOL_GPL(hrtimer_active); 1330 1331 /* 1332 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1333 * distinct sections: 1334 * 1335 * - queued: the timer is queued 1336 * - callback: the timer is being ran 1337 * - post: the timer is inactive or (re)queued 1338 * 1339 * On the read side we ensure we observe timer->state and cpu_base->running 1340 * from the same section, if anything changed while we looked at it, we retry. 1341 * This includes timer->base changing because sequence numbers alone are 1342 * insufficient for that. 1343 * 1344 * The sequence numbers are required because otherwise we could still observe 1345 * a false negative if the read side got smeared over multiple consequtive 1346 * __run_hrtimer() invocations. 1347 */ 1348 1349 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1350 struct hrtimer_clock_base *base, 1351 struct hrtimer *timer, ktime_t *now, 1352 unsigned long flags) 1353 { 1354 enum hrtimer_restart (*fn)(struct hrtimer *); 1355 int restart; 1356 1357 lockdep_assert_held(&cpu_base->lock); 1358 1359 debug_deactivate(timer); 1360 base->running = timer; 1361 1362 /* 1363 * Separate the ->running assignment from the ->state assignment. 1364 * 1365 * As with a regular write barrier, this ensures the read side in 1366 * hrtimer_active() cannot observe base->running == NULL && 1367 * timer->state == INACTIVE. 1368 */ 1369 raw_write_seqcount_barrier(&base->seq); 1370 1371 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1372 fn = timer->function; 1373 1374 /* 1375 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1376 * timer is restarted with a period then it becomes an absolute 1377 * timer. If its not restarted it does not matter. 1378 */ 1379 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1380 timer->is_rel = false; 1381 1382 /* 1383 * The timer is marked as running in the CPU base, so it is 1384 * protected against migration to a different CPU even if the lock 1385 * is dropped. 1386 */ 1387 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1388 trace_hrtimer_expire_entry(timer, now); 1389 restart = fn(timer); 1390 trace_hrtimer_expire_exit(timer); 1391 raw_spin_lock_irq(&cpu_base->lock); 1392 1393 /* 1394 * Note: We clear the running state after enqueue_hrtimer and 1395 * we do not reprogram the event hardware. Happens either in 1396 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1397 * 1398 * Note: Because we dropped the cpu_base->lock above, 1399 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1400 * for us already. 1401 */ 1402 if (restart != HRTIMER_NORESTART && 1403 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1404 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1405 1406 /* 1407 * Separate the ->running assignment from the ->state assignment. 1408 * 1409 * As with a regular write barrier, this ensures the read side in 1410 * hrtimer_active() cannot observe base->running.timer == NULL && 1411 * timer->state == INACTIVE. 1412 */ 1413 raw_write_seqcount_barrier(&base->seq); 1414 1415 WARN_ON_ONCE(base->running != timer); 1416 base->running = NULL; 1417 } 1418 1419 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1420 unsigned long flags, unsigned int active_mask) 1421 { 1422 struct hrtimer_clock_base *base; 1423 unsigned int active = cpu_base->active_bases & active_mask; 1424 1425 for_each_active_base(base, cpu_base, active) { 1426 struct timerqueue_node *node; 1427 ktime_t basenow; 1428 1429 basenow = ktime_add(now, base->offset); 1430 1431 while ((node = timerqueue_getnext(&base->active))) { 1432 struct hrtimer *timer; 1433 1434 timer = container_of(node, struct hrtimer, node); 1435 1436 /* 1437 * The immediate goal for using the softexpires is 1438 * minimizing wakeups, not running timers at the 1439 * earliest interrupt after their soft expiration. 1440 * This allows us to avoid using a Priority Search 1441 * Tree, which can answer a stabbing querry for 1442 * overlapping intervals and instead use the simple 1443 * BST we already have. 1444 * We don't add extra wakeups by delaying timers that 1445 * are right-of a not yet expired timer, because that 1446 * timer will have to trigger a wakeup anyway. 1447 */ 1448 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1449 break; 1450 1451 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1452 } 1453 } 1454 } 1455 1456 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1457 { 1458 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1459 unsigned long flags; 1460 ktime_t now; 1461 1462 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1463 1464 now = hrtimer_update_base(cpu_base); 1465 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1466 1467 cpu_base->softirq_activated = 0; 1468 hrtimer_update_softirq_timer(cpu_base, true); 1469 1470 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1471 } 1472 1473 #ifdef CONFIG_HIGH_RES_TIMERS 1474 1475 /* 1476 * High resolution timer interrupt 1477 * Called with interrupts disabled 1478 */ 1479 void hrtimer_interrupt(struct clock_event_device *dev) 1480 { 1481 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1482 ktime_t expires_next, now, entry_time, delta; 1483 unsigned long flags; 1484 int retries = 0; 1485 1486 BUG_ON(!cpu_base->hres_active); 1487 cpu_base->nr_events++; 1488 dev->next_event = KTIME_MAX; 1489 1490 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1491 entry_time = now = hrtimer_update_base(cpu_base); 1492 retry: 1493 cpu_base->in_hrtirq = 1; 1494 /* 1495 * We set expires_next to KTIME_MAX here with cpu_base->lock 1496 * held to prevent that a timer is enqueued in our queue via 1497 * the migration code. This does not affect enqueueing of 1498 * timers which run their callback and need to be requeued on 1499 * this CPU. 1500 */ 1501 cpu_base->expires_next = KTIME_MAX; 1502 1503 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1504 cpu_base->softirq_expires_next = KTIME_MAX; 1505 cpu_base->softirq_activated = 1; 1506 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1507 } 1508 1509 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1510 1511 /* Reevaluate the clock bases for the next expiry */ 1512 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1513 /* 1514 * Store the new expiry value so the migration code can verify 1515 * against it. 1516 */ 1517 cpu_base->expires_next = expires_next; 1518 cpu_base->in_hrtirq = 0; 1519 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1520 1521 /* Reprogramming necessary ? */ 1522 if (!tick_program_event(expires_next, 0)) { 1523 cpu_base->hang_detected = 0; 1524 return; 1525 } 1526 1527 /* 1528 * The next timer was already expired due to: 1529 * - tracing 1530 * - long lasting callbacks 1531 * - being scheduled away when running in a VM 1532 * 1533 * We need to prevent that we loop forever in the hrtimer 1534 * interrupt routine. We give it 3 attempts to avoid 1535 * overreacting on some spurious event. 1536 * 1537 * Acquire base lock for updating the offsets and retrieving 1538 * the current time. 1539 */ 1540 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1541 now = hrtimer_update_base(cpu_base); 1542 cpu_base->nr_retries++; 1543 if (++retries < 3) 1544 goto retry; 1545 /* 1546 * Give the system a chance to do something else than looping 1547 * here. We stored the entry time, so we know exactly how long 1548 * we spent here. We schedule the next event this amount of 1549 * time away. 1550 */ 1551 cpu_base->nr_hangs++; 1552 cpu_base->hang_detected = 1; 1553 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1554 1555 delta = ktime_sub(now, entry_time); 1556 if ((unsigned int)delta > cpu_base->max_hang_time) 1557 cpu_base->max_hang_time = (unsigned int) delta; 1558 /* 1559 * Limit it to a sensible value as we enforce a longer 1560 * delay. Give the CPU at least 100ms to catch up. 1561 */ 1562 if (delta > 100 * NSEC_PER_MSEC) 1563 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1564 else 1565 expires_next = ktime_add(now, delta); 1566 tick_program_event(expires_next, 1); 1567 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1568 } 1569 1570 /* called with interrupts disabled */ 1571 static inline void __hrtimer_peek_ahead_timers(void) 1572 { 1573 struct tick_device *td; 1574 1575 if (!hrtimer_hres_active()) 1576 return; 1577 1578 td = this_cpu_ptr(&tick_cpu_device); 1579 if (td && td->evtdev) 1580 hrtimer_interrupt(td->evtdev); 1581 } 1582 1583 #else /* CONFIG_HIGH_RES_TIMERS */ 1584 1585 static inline void __hrtimer_peek_ahead_timers(void) { } 1586 1587 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1588 1589 /* 1590 * Called from run_local_timers in hardirq context every jiffy 1591 */ 1592 void hrtimer_run_queues(void) 1593 { 1594 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1595 unsigned long flags; 1596 ktime_t now; 1597 1598 if (__hrtimer_hres_active(cpu_base)) 1599 return; 1600 1601 /* 1602 * This _is_ ugly: We have to check periodically, whether we 1603 * can switch to highres and / or nohz mode. The clocksource 1604 * switch happens with xtime_lock held. Notification from 1605 * there only sets the check bit in the tick_oneshot code, 1606 * otherwise we might deadlock vs. xtime_lock. 1607 */ 1608 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1609 hrtimer_switch_to_hres(); 1610 return; 1611 } 1612 1613 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1614 now = hrtimer_update_base(cpu_base); 1615 1616 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1617 cpu_base->softirq_expires_next = KTIME_MAX; 1618 cpu_base->softirq_activated = 1; 1619 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1620 } 1621 1622 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1623 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1624 } 1625 1626 /* 1627 * Sleep related functions: 1628 */ 1629 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1630 { 1631 struct hrtimer_sleeper *t = 1632 container_of(timer, struct hrtimer_sleeper, timer); 1633 struct task_struct *task = t->task; 1634 1635 t->task = NULL; 1636 if (task) 1637 wake_up_process(task); 1638 1639 return HRTIMER_NORESTART; 1640 } 1641 1642 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1643 { 1644 sl->timer.function = hrtimer_wakeup; 1645 sl->task = task; 1646 } 1647 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1648 1649 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1650 { 1651 switch(restart->nanosleep.type) { 1652 #ifdef CONFIG_COMPAT_32BIT_TIME 1653 case TT_COMPAT: 1654 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1655 return -EFAULT; 1656 break; 1657 #endif 1658 case TT_NATIVE: 1659 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1660 return -EFAULT; 1661 break; 1662 default: 1663 BUG(); 1664 } 1665 return -ERESTART_RESTARTBLOCK; 1666 } 1667 1668 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1669 { 1670 struct restart_block *restart; 1671 1672 hrtimer_init_sleeper(t, current); 1673 1674 do { 1675 set_current_state(TASK_INTERRUPTIBLE); 1676 hrtimer_start_expires(&t->timer, mode); 1677 1678 if (likely(t->task)) 1679 freezable_schedule(); 1680 1681 hrtimer_cancel(&t->timer); 1682 mode = HRTIMER_MODE_ABS; 1683 1684 } while (t->task && !signal_pending(current)); 1685 1686 __set_current_state(TASK_RUNNING); 1687 1688 if (!t->task) 1689 return 0; 1690 1691 restart = ¤t->restart_block; 1692 if (restart->nanosleep.type != TT_NONE) { 1693 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1694 struct timespec64 rmt; 1695 1696 if (rem <= 0) 1697 return 0; 1698 rmt = ktime_to_timespec64(rem); 1699 1700 return nanosleep_copyout(restart, &rmt); 1701 } 1702 return -ERESTART_RESTARTBLOCK; 1703 } 1704 1705 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1706 { 1707 struct hrtimer_sleeper t; 1708 int ret; 1709 1710 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1711 HRTIMER_MODE_ABS); 1712 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1713 1714 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1715 destroy_hrtimer_on_stack(&t.timer); 1716 return ret; 1717 } 1718 1719 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1720 const enum hrtimer_mode mode, const clockid_t clockid) 1721 { 1722 struct restart_block *restart; 1723 struct hrtimer_sleeper t; 1724 int ret = 0; 1725 u64 slack; 1726 1727 slack = current->timer_slack_ns; 1728 if (dl_task(current) || rt_task(current)) 1729 slack = 0; 1730 1731 hrtimer_init_on_stack(&t.timer, clockid, mode); 1732 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1733 ret = do_nanosleep(&t, mode); 1734 if (ret != -ERESTART_RESTARTBLOCK) 1735 goto out; 1736 1737 /* Absolute timers do not update the rmtp value and restart: */ 1738 if (mode == HRTIMER_MODE_ABS) { 1739 ret = -ERESTARTNOHAND; 1740 goto out; 1741 } 1742 1743 restart = ¤t->restart_block; 1744 restart->fn = hrtimer_nanosleep_restart; 1745 restart->nanosleep.clockid = t.timer.base->clockid; 1746 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1747 out: 1748 destroy_hrtimer_on_stack(&t.timer); 1749 return ret; 1750 } 1751 1752 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 1753 1754 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1755 struct __kernel_timespec __user *, rmtp) 1756 { 1757 struct timespec64 tu; 1758 1759 if (get_timespec64(&tu, rqtp)) 1760 return -EFAULT; 1761 1762 if (!timespec64_valid(&tu)) 1763 return -EINVAL; 1764 1765 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1766 current->restart_block.nanosleep.rmtp = rmtp; 1767 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1768 } 1769 1770 #endif 1771 1772 #ifdef CONFIG_COMPAT_32BIT_TIME 1773 1774 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1775 struct old_timespec32 __user *, rmtp) 1776 { 1777 struct timespec64 tu; 1778 1779 if (get_old_timespec32(&tu, rqtp)) 1780 return -EFAULT; 1781 1782 if (!timespec64_valid(&tu)) 1783 return -EINVAL; 1784 1785 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1786 current->restart_block.nanosleep.compat_rmtp = rmtp; 1787 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1788 } 1789 #endif 1790 1791 /* 1792 * Functions related to boot-time initialization: 1793 */ 1794 int hrtimers_prepare_cpu(unsigned int cpu) 1795 { 1796 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1797 int i; 1798 1799 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1800 cpu_base->clock_base[i].cpu_base = cpu_base; 1801 timerqueue_init_head(&cpu_base->clock_base[i].active); 1802 } 1803 1804 cpu_base->cpu = cpu; 1805 cpu_base->active_bases = 0; 1806 cpu_base->hres_active = 0; 1807 cpu_base->hang_detected = 0; 1808 cpu_base->next_timer = NULL; 1809 cpu_base->softirq_next_timer = NULL; 1810 cpu_base->expires_next = KTIME_MAX; 1811 cpu_base->softirq_expires_next = KTIME_MAX; 1812 return 0; 1813 } 1814 1815 #ifdef CONFIG_HOTPLUG_CPU 1816 1817 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1818 struct hrtimer_clock_base *new_base) 1819 { 1820 struct hrtimer *timer; 1821 struct timerqueue_node *node; 1822 1823 while ((node = timerqueue_getnext(&old_base->active))) { 1824 timer = container_of(node, struct hrtimer, node); 1825 BUG_ON(hrtimer_callback_running(timer)); 1826 debug_deactivate(timer); 1827 1828 /* 1829 * Mark it as ENQUEUED not INACTIVE otherwise the 1830 * timer could be seen as !active and just vanish away 1831 * under us on another CPU 1832 */ 1833 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1834 timer->base = new_base; 1835 /* 1836 * Enqueue the timers on the new cpu. This does not 1837 * reprogram the event device in case the timer 1838 * expires before the earliest on this CPU, but we run 1839 * hrtimer_interrupt after we migrated everything to 1840 * sort out already expired timers and reprogram the 1841 * event device. 1842 */ 1843 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1844 } 1845 } 1846 1847 int hrtimers_dead_cpu(unsigned int scpu) 1848 { 1849 struct hrtimer_cpu_base *old_base, *new_base; 1850 int i; 1851 1852 BUG_ON(cpu_online(scpu)); 1853 tick_cancel_sched_timer(scpu); 1854 1855 /* 1856 * this BH disable ensures that raise_softirq_irqoff() does 1857 * not wakeup ksoftirqd (and acquire the pi-lock) while 1858 * holding the cpu_base lock 1859 */ 1860 local_bh_disable(); 1861 local_irq_disable(); 1862 old_base = &per_cpu(hrtimer_bases, scpu); 1863 new_base = this_cpu_ptr(&hrtimer_bases); 1864 /* 1865 * The caller is globally serialized and nobody else 1866 * takes two locks at once, deadlock is not possible. 1867 */ 1868 raw_spin_lock(&new_base->lock); 1869 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1870 1871 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1872 migrate_hrtimer_list(&old_base->clock_base[i], 1873 &new_base->clock_base[i]); 1874 } 1875 1876 /* 1877 * The migration might have changed the first expiring softirq 1878 * timer on this CPU. Update it. 1879 */ 1880 hrtimer_update_softirq_timer(new_base, false); 1881 1882 raw_spin_unlock(&old_base->lock); 1883 raw_spin_unlock(&new_base->lock); 1884 1885 /* Check, if we got expired work to do */ 1886 __hrtimer_peek_ahead_timers(); 1887 local_irq_enable(); 1888 local_bh_enable(); 1889 return 0; 1890 } 1891 1892 #endif /* CONFIG_HOTPLUG_CPU */ 1893 1894 void __init hrtimers_init(void) 1895 { 1896 hrtimers_prepare_cpu(smp_processor_id()); 1897 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1898 } 1899 1900 /** 1901 * schedule_hrtimeout_range_clock - sleep until timeout 1902 * @expires: timeout value (ktime_t) 1903 * @delta: slack in expires timeout (ktime_t) 1904 * @mode: timer mode 1905 * @clock_id: timer clock to be used 1906 */ 1907 int __sched 1908 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1909 const enum hrtimer_mode mode, clockid_t clock_id) 1910 { 1911 struct hrtimer_sleeper t; 1912 1913 /* 1914 * Optimize when a zero timeout value is given. It does not 1915 * matter whether this is an absolute or a relative time. 1916 */ 1917 if (expires && *expires == 0) { 1918 __set_current_state(TASK_RUNNING); 1919 return 0; 1920 } 1921 1922 /* 1923 * A NULL parameter means "infinite" 1924 */ 1925 if (!expires) { 1926 schedule(); 1927 return -EINTR; 1928 } 1929 1930 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1931 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1932 1933 hrtimer_init_sleeper(&t, current); 1934 1935 hrtimer_start_expires(&t.timer, mode); 1936 1937 if (likely(t.task)) 1938 schedule(); 1939 1940 hrtimer_cancel(&t.timer); 1941 destroy_hrtimer_on_stack(&t.timer); 1942 1943 __set_current_state(TASK_RUNNING); 1944 1945 return !t.task ? 0 : -EINTR; 1946 } 1947 1948 /** 1949 * schedule_hrtimeout_range - sleep until timeout 1950 * @expires: timeout value (ktime_t) 1951 * @delta: slack in expires timeout (ktime_t) 1952 * @mode: timer mode 1953 * 1954 * Make the current task sleep until the given expiry time has 1955 * elapsed. The routine will return immediately unless 1956 * the current task state has been set (see set_current_state()). 1957 * 1958 * The @delta argument gives the kernel the freedom to schedule the 1959 * actual wakeup to a time that is both power and performance friendly. 1960 * The kernel give the normal best effort behavior for "@expires+@delta", 1961 * but may decide to fire the timer earlier, but no earlier than @expires. 1962 * 1963 * You can set the task state as follows - 1964 * 1965 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1966 * pass before the routine returns unless the current task is explicitly 1967 * woken up, (e.g. by wake_up_process()). 1968 * 1969 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1970 * delivered to the current task or the current task is explicitly woken 1971 * up. 1972 * 1973 * The current task state is guaranteed to be TASK_RUNNING when this 1974 * routine returns. 1975 * 1976 * Returns 0 when the timer has expired. If the task was woken before the 1977 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1978 * by an explicit wakeup, it returns -EINTR. 1979 */ 1980 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1981 const enum hrtimer_mode mode) 1982 { 1983 return schedule_hrtimeout_range_clock(expires, delta, mode, 1984 CLOCK_MONOTONIC); 1985 } 1986 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1987 1988 /** 1989 * schedule_hrtimeout - sleep until timeout 1990 * @expires: timeout value (ktime_t) 1991 * @mode: timer mode 1992 * 1993 * Make the current task sleep until the given expiry time has 1994 * elapsed. The routine will return immediately unless 1995 * the current task state has been set (see set_current_state()). 1996 * 1997 * You can set the task state as follows - 1998 * 1999 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2000 * pass before the routine returns unless the current task is explicitly 2001 * woken up, (e.g. by wake_up_process()). 2002 * 2003 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2004 * delivered to the current task or the current task is explicitly woken 2005 * up. 2006 * 2007 * The current task state is guaranteed to be TASK_RUNNING when this 2008 * routine returns. 2009 * 2010 * Returns 0 when the timer has expired. If the task was woken before the 2011 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2012 * by an explicit wakeup, it returns -EINTR. 2013 */ 2014 int __sched schedule_hrtimeout(ktime_t *expires, 2015 const enum hrtimer_mode mode) 2016 { 2017 return schedule_hrtimeout_range(expires, 0, mode); 2018 } 2019 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2020