xref: /openbmc/linux/kernel/time/hrtimer.c (revision b240b419db5d624ce7a5a397d6f62a1a686009ec)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
41 #include <linux/tick.h>
42 #include <linux/seq_file.h>
43 #include <linux/err.h>
44 #include <linux/debugobjects.h>
45 #include <linux/sched/signal.h>
46 #include <linux/sched/sysctl.h>
47 #include <linux/sched/rt.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/nohz.h>
50 #include <linux/sched/debug.h>
51 #include <linux/timer.h>
52 #include <linux/freezer.h>
53 #include <linux/compat.h>
54 
55 #include <linux/uaccess.h>
56 
57 #include <trace/events/timer.h>
58 
59 #include "tick-internal.h"
60 
61 /*
62  * Masks for selecting the soft and hard context timers from
63  * cpu_base->active
64  */
65 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
66 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
67 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69 
70 /*
71  * The timer bases:
72  *
73  * There are more clockids than hrtimer bases. Thus, we index
74  * into the timer bases by the hrtimer_base_type enum. When trying
75  * to reach a base using a clockid, hrtimer_clockid_to_base()
76  * is used to convert from clockid to the proper hrtimer_base_type.
77  */
78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79 {
80 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81 	.clock_base =
82 	{
83 		{
84 			.index = HRTIMER_BASE_MONOTONIC,
85 			.clockid = CLOCK_MONOTONIC,
86 			.get_time = &ktime_get,
87 		},
88 		{
89 			.index = HRTIMER_BASE_REALTIME,
90 			.clockid = CLOCK_REALTIME,
91 			.get_time = &ktime_get_real,
92 		},
93 		{
94 			.index = HRTIMER_BASE_TAI,
95 			.clockid = CLOCK_TAI,
96 			.get_time = &ktime_get_clocktai,
97 		},
98 		{
99 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
100 			.clockid = CLOCK_MONOTONIC,
101 			.get_time = &ktime_get,
102 		},
103 		{
104 			.index = HRTIMER_BASE_REALTIME_SOFT,
105 			.clockid = CLOCK_REALTIME,
106 			.get_time = &ktime_get_real,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_MONOTONIC,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 /*
144  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
145  * means that all timers which are tied to this base via timer->base are
146  * locked, and the base itself is locked too.
147  *
148  * So __run_timers/migrate_timers can safely modify all timers which could
149  * be found on the lists/queues.
150  *
151  * When the timer's base is locked, and the timer removed from list, it is
152  * possible to set timer->base = &migration_base and drop the lock: the timer
153  * remains locked.
154  */
155 static
156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
157 					     unsigned long *flags)
158 {
159 	struct hrtimer_clock_base *base;
160 
161 	for (;;) {
162 		base = timer->base;
163 		if (likely(base != &migration_base)) {
164 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
165 			if (likely(base == timer->base))
166 				return base;
167 			/* The timer has migrated to another CPU: */
168 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
169 		}
170 		cpu_relax();
171 	}
172 }
173 
174 /*
175  * We do not migrate the timer when it is expiring before the next
176  * event on the target cpu. When high resolution is enabled, we cannot
177  * reprogram the target cpu hardware and we would cause it to fire
178  * late. To keep it simple, we handle the high resolution enabled and
179  * disabled case similar.
180  *
181  * Called with cpu_base->lock of target cpu held.
182  */
183 static int
184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
185 {
186 	ktime_t expires;
187 
188 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
189 	return expires < new_base->cpu_base->expires_next;
190 }
191 
192 static inline
193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
194 					 int pinned)
195 {
196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
197 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
198 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
199 #endif
200 	return base;
201 }
202 
203 /*
204  * We switch the timer base to a power-optimized selected CPU target,
205  * if:
206  *	- NO_HZ_COMMON is enabled
207  *	- timer migration is enabled
208  *	- the timer callback is not running
209  *	- the timer is not the first expiring timer on the new target
210  *
211  * If one of the above requirements is not fulfilled we move the timer
212  * to the current CPU or leave it on the previously assigned CPU if
213  * the timer callback is currently running.
214  */
215 static inline struct hrtimer_clock_base *
216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
217 		    int pinned)
218 {
219 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
220 	struct hrtimer_clock_base *new_base;
221 	int basenum = base->index;
222 
223 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
224 	new_cpu_base = get_target_base(this_cpu_base, pinned);
225 again:
226 	new_base = &new_cpu_base->clock_base[basenum];
227 
228 	if (base != new_base) {
229 		/*
230 		 * We are trying to move timer to new_base.
231 		 * However we can't change timer's base while it is running,
232 		 * so we keep it on the same CPU. No hassle vs. reprogramming
233 		 * the event source in the high resolution case. The softirq
234 		 * code will take care of this when the timer function has
235 		 * completed. There is no conflict as we hold the lock until
236 		 * the timer is enqueued.
237 		 */
238 		if (unlikely(hrtimer_callback_running(timer)))
239 			return base;
240 
241 		/* See the comment in lock_hrtimer_base() */
242 		timer->base = &migration_base;
243 		raw_spin_unlock(&base->cpu_base->lock);
244 		raw_spin_lock(&new_base->cpu_base->lock);
245 
246 		if (new_cpu_base != this_cpu_base &&
247 		    hrtimer_check_target(timer, new_base)) {
248 			raw_spin_unlock(&new_base->cpu_base->lock);
249 			raw_spin_lock(&base->cpu_base->lock);
250 			new_cpu_base = this_cpu_base;
251 			timer->base = base;
252 			goto again;
253 		}
254 		timer->base = new_base;
255 	} else {
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			new_cpu_base = this_cpu_base;
259 			goto again;
260 		}
261 	}
262 	return new_base;
263 }
264 
265 #else /* CONFIG_SMP */
266 
267 static inline struct hrtimer_clock_base *
268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
269 {
270 	struct hrtimer_clock_base *base = timer->base;
271 
272 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
273 
274 	return base;
275 }
276 
277 # define switch_hrtimer_base(t, b, p)	(b)
278 
279 #endif	/* !CONFIG_SMP */
280 
281 /*
282  * Functions for the union type storage format of ktime_t which are
283  * too large for inlining:
284  */
285 #if BITS_PER_LONG < 64
286 /*
287  * Divide a ktime value by a nanosecond value
288  */
289 s64 __ktime_divns(const ktime_t kt, s64 div)
290 {
291 	int sft = 0;
292 	s64 dclc;
293 	u64 tmp;
294 
295 	dclc = ktime_to_ns(kt);
296 	tmp = dclc < 0 ? -dclc : dclc;
297 
298 	/* Make sure the divisor is less than 2^32: */
299 	while (div >> 32) {
300 		sft++;
301 		div >>= 1;
302 	}
303 	tmp >>= sft;
304 	do_div(tmp, (unsigned long) div);
305 	return dclc < 0 ? -tmp : tmp;
306 }
307 EXPORT_SYMBOL_GPL(__ktime_divns);
308 #endif /* BITS_PER_LONG >= 64 */
309 
310 /*
311  * Add two ktime values and do a safety check for overflow:
312  */
313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
314 {
315 	ktime_t res = ktime_add_unsafe(lhs, rhs);
316 
317 	/*
318 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
319 	 * return to user space in a timespec:
320 	 */
321 	if (res < 0 || res < lhs || res < rhs)
322 		res = ktime_set(KTIME_SEC_MAX, 0);
323 
324 	return res;
325 }
326 
327 EXPORT_SYMBOL_GPL(ktime_add_safe);
328 
329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
330 
331 static struct debug_obj_descr hrtimer_debug_descr;
332 
333 static void *hrtimer_debug_hint(void *addr)
334 {
335 	return ((struct hrtimer *) addr)->function;
336 }
337 
338 /*
339  * fixup_init is called when:
340  * - an active object is initialized
341  */
342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
343 {
344 	struct hrtimer *timer = addr;
345 
346 	switch (state) {
347 	case ODEBUG_STATE_ACTIVE:
348 		hrtimer_cancel(timer);
349 		debug_object_init(timer, &hrtimer_debug_descr);
350 		return true;
351 	default:
352 		return false;
353 	}
354 }
355 
356 /*
357  * fixup_activate is called when:
358  * - an active object is activated
359  * - an unknown non-static object is activated
360  */
361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
362 {
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 
367 	default:
368 		return false;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return true;
385 	default:
386 		return false;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer,
404 					  enum hrtimer_mode mode)
405 {
406 	debug_object_activate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
410 {
411 	debug_object_deactivate(timer, &hrtimer_debug_descr);
412 }
413 
414 static inline void debug_hrtimer_free(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
420 			   enum hrtimer_mode mode);
421 
422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
423 			   enum hrtimer_mode mode)
424 {
425 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
426 	__hrtimer_init(timer, clock_id, mode);
427 }
428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
429 
430 void destroy_hrtimer_on_stack(struct hrtimer *timer)
431 {
432 	debug_object_free(timer, &hrtimer_debug_descr);
433 }
434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
435 
436 #else
437 
438 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
439 static inline void debug_hrtimer_activate(struct hrtimer *timer,
440 					  enum hrtimer_mode mode) { }
441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
442 #endif
443 
444 static inline void
445 debug_init(struct hrtimer *timer, clockid_t clockid,
446 	   enum hrtimer_mode mode)
447 {
448 	debug_hrtimer_init(timer);
449 	trace_hrtimer_init(timer, clockid, mode);
450 }
451 
452 static inline void debug_activate(struct hrtimer *timer,
453 				  enum hrtimer_mode mode)
454 {
455 	debug_hrtimer_activate(timer, mode);
456 	trace_hrtimer_start(timer, mode);
457 }
458 
459 static inline void debug_deactivate(struct hrtimer *timer)
460 {
461 	debug_hrtimer_deactivate(timer);
462 	trace_hrtimer_cancel(timer);
463 }
464 
465 static struct hrtimer_clock_base *
466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
467 {
468 	unsigned int idx;
469 
470 	if (!*active)
471 		return NULL;
472 
473 	idx = __ffs(*active);
474 	*active &= ~(1U << idx);
475 
476 	return &cpu_base->clock_base[idx];
477 }
478 
479 #define for_each_active_base(base, cpu_base, active)	\
480 	while ((base = __next_base((cpu_base), &(active))))
481 
482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
483 					 unsigned int active,
484 					 ktime_t expires_next)
485 {
486 	struct hrtimer_clock_base *base;
487 	ktime_t expires;
488 
489 	for_each_active_base(base, cpu_base, active) {
490 		struct timerqueue_node *next;
491 		struct hrtimer *timer;
492 
493 		next = timerqueue_getnext(&base->active);
494 		timer = container_of(next, struct hrtimer, node);
495 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
496 		if (expires < expires_next) {
497 			expires_next = expires;
498 			if (timer->is_soft)
499 				cpu_base->softirq_next_timer = timer;
500 			else
501 				cpu_base->next_timer = timer;
502 		}
503 	}
504 	/*
505 	 * clock_was_set() might have changed base->offset of any of
506 	 * the clock bases so the result might be negative. Fix it up
507 	 * to prevent a false positive in clockevents_program_event().
508 	 */
509 	if (expires_next < 0)
510 		expires_next = 0;
511 	return expires_next;
512 }
513 
514 /*
515  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
516  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
517  *
518  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
519  * those timers will get run whenever the softirq gets handled, at the end of
520  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
521  *
522  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
523  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
524  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
525  *
526  * @active_mask must be one of:
527  *  - HRTIMER_ACTIVE_ALL,
528  *  - HRTIMER_ACTIVE_SOFT, or
529  *  - HRTIMER_ACTIVE_HARD.
530  */
531 static ktime_t
532 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
533 {
534 	unsigned int active;
535 	struct hrtimer *next_timer = NULL;
536 	ktime_t expires_next = KTIME_MAX;
537 
538 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
539 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
540 		cpu_base->softirq_next_timer = NULL;
541 		expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);
542 
543 		next_timer = cpu_base->softirq_next_timer;
544 	}
545 
546 	if (active_mask & HRTIMER_ACTIVE_HARD) {
547 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
548 		cpu_base->next_timer = next_timer;
549 		expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
550 	}
551 
552 	return expires_next;
553 }
554 
555 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
556 {
557 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
558 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
559 
560 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
561 						   offs_real, offs_tai);
562 
563 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
564 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
565 
566 	return now;
567 }
568 
569 /*
570  * Is the high resolution mode active ?
571  */
572 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
573 {
574 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
575 		cpu_base->hres_active : 0;
576 }
577 
578 static inline int hrtimer_hres_active(void)
579 {
580 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
581 }
582 
583 /*
584  * Reprogram the event source with checking both queues for the
585  * next event
586  * Called with interrupts disabled and base->lock held
587  */
588 static void
589 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
590 {
591 	ktime_t expires_next;
592 
593 	/*
594 	 * Find the current next expiration time.
595 	 */
596 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
597 
598 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
599 		/*
600 		 * When the softirq is activated, hrtimer has to be
601 		 * programmed with the first hard hrtimer because soft
602 		 * timer interrupt could occur too late.
603 		 */
604 		if (cpu_base->softirq_activated)
605 			expires_next = __hrtimer_get_next_event(cpu_base,
606 								HRTIMER_ACTIVE_HARD);
607 		else
608 			cpu_base->softirq_expires_next = expires_next;
609 	}
610 
611 	if (skip_equal && expires_next == cpu_base->expires_next)
612 		return;
613 
614 	cpu_base->expires_next = expires_next;
615 
616 	/*
617 	 * If hres is not active, hardware does not have to be
618 	 * reprogrammed yet.
619 	 *
620 	 * If a hang was detected in the last timer interrupt then we
621 	 * leave the hang delay active in the hardware. We want the
622 	 * system to make progress. That also prevents the following
623 	 * scenario:
624 	 * T1 expires 50ms from now
625 	 * T2 expires 5s from now
626 	 *
627 	 * T1 is removed, so this code is called and would reprogram
628 	 * the hardware to 5s from now. Any hrtimer_start after that
629 	 * will not reprogram the hardware due to hang_detected being
630 	 * set. So we'd effectivly block all timers until the T2 event
631 	 * fires.
632 	 */
633 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
634 		return;
635 
636 	tick_program_event(cpu_base->expires_next, 1);
637 }
638 
639 /* High resolution timer related functions */
640 #ifdef CONFIG_HIGH_RES_TIMERS
641 
642 /*
643  * High resolution timer enabled ?
644  */
645 static bool hrtimer_hres_enabled __read_mostly  = true;
646 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
647 EXPORT_SYMBOL_GPL(hrtimer_resolution);
648 
649 /*
650  * Enable / Disable high resolution mode
651  */
652 static int __init setup_hrtimer_hres(char *str)
653 {
654 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
655 }
656 
657 __setup("highres=", setup_hrtimer_hres);
658 
659 /*
660  * hrtimer_high_res_enabled - query, if the highres mode is enabled
661  */
662 static inline int hrtimer_is_hres_enabled(void)
663 {
664 	return hrtimer_hres_enabled;
665 }
666 
667 /*
668  * Retrigger next event is called after clock was set
669  *
670  * Called with interrupts disabled via on_each_cpu()
671  */
672 static void retrigger_next_event(void *arg)
673 {
674 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
675 
676 	if (!__hrtimer_hres_active(base))
677 		return;
678 
679 	raw_spin_lock(&base->lock);
680 	hrtimer_update_base(base);
681 	hrtimer_force_reprogram(base, 0);
682 	raw_spin_unlock(&base->lock);
683 }
684 
685 /*
686  * Switch to high resolution mode
687  */
688 static void hrtimer_switch_to_hres(void)
689 {
690 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
691 
692 	if (tick_init_highres()) {
693 		printk(KERN_WARNING "Could not switch to high resolution "
694 				    "mode on CPU %d\n", base->cpu);
695 		return;
696 	}
697 	base->hres_active = 1;
698 	hrtimer_resolution = HIGH_RES_NSEC;
699 
700 	tick_setup_sched_timer();
701 	/* "Retrigger" the interrupt to get things going */
702 	retrigger_next_event(NULL);
703 }
704 
705 static void clock_was_set_work(struct work_struct *work)
706 {
707 	clock_was_set();
708 }
709 
710 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
711 
712 /*
713  * Called from timekeeping and resume code to reprogram the hrtimer
714  * interrupt device on all cpus.
715  */
716 void clock_was_set_delayed(void)
717 {
718 	schedule_work(&hrtimer_work);
719 }
720 
721 #else
722 
723 static inline int hrtimer_is_hres_enabled(void) { return 0; }
724 static inline void hrtimer_switch_to_hres(void) { }
725 static inline void retrigger_next_event(void *arg) { }
726 
727 #endif /* CONFIG_HIGH_RES_TIMERS */
728 
729 /*
730  * When a timer is enqueued and expires earlier than the already enqueued
731  * timers, we have to check, whether it expires earlier than the timer for
732  * which the clock event device was armed.
733  *
734  * Called with interrupts disabled and base->cpu_base.lock held
735  */
736 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
737 {
738 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
739 	struct hrtimer_clock_base *base = timer->base;
740 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
741 
742 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
743 
744 	/*
745 	 * CLOCK_REALTIME timer might be requested with an absolute
746 	 * expiry time which is less than base->offset. Set it to 0.
747 	 */
748 	if (expires < 0)
749 		expires = 0;
750 
751 	if (timer->is_soft) {
752 		/*
753 		 * soft hrtimer could be started on a remote CPU. In this
754 		 * case softirq_expires_next needs to be updated on the
755 		 * remote CPU. The soft hrtimer will not expire before the
756 		 * first hard hrtimer on the remote CPU -
757 		 * hrtimer_check_target() prevents this case.
758 		 */
759 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
760 
761 		if (timer_cpu_base->softirq_activated)
762 			return;
763 
764 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
765 			return;
766 
767 		timer_cpu_base->softirq_next_timer = timer;
768 		timer_cpu_base->softirq_expires_next = expires;
769 
770 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
771 		    !reprogram)
772 			return;
773 	}
774 
775 	/*
776 	 * If the timer is not on the current cpu, we cannot reprogram
777 	 * the other cpus clock event device.
778 	 */
779 	if (base->cpu_base != cpu_base)
780 		return;
781 
782 	/*
783 	 * If the hrtimer interrupt is running, then it will
784 	 * reevaluate the clock bases and reprogram the clock event
785 	 * device. The callbacks are always executed in hard interrupt
786 	 * context so we don't need an extra check for a running
787 	 * callback.
788 	 */
789 	if (cpu_base->in_hrtirq)
790 		return;
791 
792 	if (expires >= cpu_base->expires_next)
793 		return;
794 
795 	/* Update the pointer to the next expiring timer */
796 	cpu_base->next_timer = timer;
797 	cpu_base->expires_next = expires;
798 
799 	/*
800 	 * If hres is not active, hardware does not have to be
801 	 * programmed yet.
802 	 *
803 	 * If a hang was detected in the last timer interrupt then we
804 	 * do not schedule a timer which is earlier than the expiry
805 	 * which we enforced in the hang detection. We want the system
806 	 * to make progress.
807 	 */
808 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
809 		return;
810 
811 	/*
812 	 * Program the timer hardware. We enforce the expiry for
813 	 * events which are already in the past.
814 	 */
815 	tick_program_event(expires, 1);
816 }
817 
818 /*
819  * Clock realtime was set
820  *
821  * Change the offset of the realtime clock vs. the monotonic
822  * clock.
823  *
824  * We might have to reprogram the high resolution timer interrupt. On
825  * SMP we call the architecture specific code to retrigger _all_ high
826  * resolution timer interrupts. On UP we just disable interrupts and
827  * call the high resolution interrupt code.
828  */
829 void clock_was_set(void)
830 {
831 #ifdef CONFIG_HIGH_RES_TIMERS
832 	/* Retrigger the CPU local events everywhere */
833 	on_each_cpu(retrigger_next_event, NULL, 1);
834 #endif
835 	timerfd_clock_was_set();
836 }
837 
838 /*
839  * During resume we might have to reprogram the high resolution timer
840  * interrupt on all online CPUs.  However, all other CPUs will be
841  * stopped with IRQs interrupts disabled so the clock_was_set() call
842  * must be deferred.
843  */
844 void hrtimers_resume(void)
845 {
846 	lockdep_assert_irqs_disabled();
847 	/* Retrigger on the local CPU */
848 	retrigger_next_event(NULL);
849 	/* And schedule a retrigger for all others */
850 	clock_was_set_delayed();
851 }
852 
853 /*
854  * Counterpart to lock_hrtimer_base above:
855  */
856 static inline
857 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
858 {
859 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
860 }
861 
862 /**
863  * hrtimer_forward - forward the timer expiry
864  * @timer:	hrtimer to forward
865  * @now:	forward past this time
866  * @interval:	the interval to forward
867  *
868  * Forward the timer expiry so it will expire in the future.
869  * Returns the number of overruns.
870  *
871  * Can be safely called from the callback function of @timer. If
872  * called from other contexts @timer must neither be enqueued nor
873  * running the callback and the caller needs to take care of
874  * serialization.
875  *
876  * Note: This only updates the timer expiry value and does not requeue
877  * the timer.
878  */
879 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
880 {
881 	u64 orun = 1;
882 	ktime_t delta;
883 
884 	delta = ktime_sub(now, hrtimer_get_expires(timer));
885 
886 	if (delta < 0)
887 		return 0;
888 
889 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
890 		return 0;
891 
892 	if (interval < hrtimer_resolution)
893 		interval = hrtimer_resolution;
894 
895 	if (unlikely(delta >= interval)) {
896 		s64 incr = ktime_to_ns(interval);
897 
898 		orun = ktime_divns(delta, incr);
899 		hrtimer_add_expires_ns(timer, incr * orun);
900 		if (hrtimer_get_expires_tv64(timer) > now)
901 			return orun;
902 		/*
903 		 * This (and the ktime_add() below) is the
904 		 * correction for exact:
905 		 */
906 		orun++;
907 	}
908 	hrtimer_add_expires(timer, interval);
909 
910 	return orun;
911 }
912 EXPORT_SYMBOL_GPL(hrtimer_forward);
913 
914 /*
915  * enqueue_hrtimer - internal function to (re)start a timer
916  *
917  * The timer is inserted in expiry order. Insertion into the
918  * red black tree is O(log(n)). Must hold the base lock.
919  *
920  * Returns 1 when the new timer is the leftmost timer in the tree.
921  */
922 static int enqueue_hrtimer(struct hrtimer *timer,
923 			   struct hrtimer_clock_base *base,
924 			   enum hrtimer_mode mode)
925 {
926 	debug_activate(timer, mode);
927 
928 	base->cpu_base->active_bases |= 1 << base->index;
929 
930 	timer->state = HRTIMER_STATE_ENQUEUED;
931 
932 	return timerqueue_add(&base->active, &timer->node);
933 }
934 
935 /*
936  * __remove_hrtimer - internal function to remove a timer
937  *
938  * Caller must hold the base lock.
939  *
940  * High resolution timer mode reprograms the clock event device when the
941  * timer is the one which expires next. The caller can disable this by setting
942  * reprogram to zero. This is useful, when the context does a reprogramming
943  * anyway (e.g. timer interrupt)
944  */
945 static void __remove_hrtimer(struct hrtimer *timer,
946 			     struct hrtimer_clock_base *base,
947 			     u8 newstate, int reprogram)
948 {
949 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
950 	u8 state = timer->state;
951 
952 	timer->state = newstate;
953 	if (!(state & HRTIMER_STATE_ENQUEUED))
954 		return;
955 
956 	if (!timerqueue_del(&base->active, &timer->node))
957 		cpu_base->active_bases &= ~(1 << base->index);
958 
959 	/*
960 	 * Note: If reprogram is false we do not update
961 	 * cpu_base->next_timer. This happens when we remove the first
962 	 * timer on a remote cpu. No harm as we never dereference
963 	 * cpu_base->next_timer. So the worst thing what can happen is
964 	 * an superflous call to hrtimer_force_reprogram() on the
965 	 * remote cpu later on if the same timer gets enqueued again.
966 	 */
967 	if (reprogram && timer == cpu_base->next_timer)
968 		hrtimer_force_reprogram(cpu_base, 1);
969 }
970 
971 /*
972  * remove hrtimer, called with base lock held
973  */
974 static inline int
975 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
976 {
977 	if (hrtimer_is_queued(timer)) {
978 		u8 state = timer->state;
979 		int reprogram;
980 
981 		/*
982 		 * Remove the timer and force reprogramming when high
983 		 * resolution mode is active and the timer is on the current
984 		 * CPU. If we remove a timer on another CPU, reprogramming is
985 		 * skipped. The interrupt event on this CPU is fired and
986 		 * reprogramming happens in the interrupt handler. This is a
987 		 * rare case and less expensive than a smp call.
988 		 */
989 		debug_deactivate(timer);
990 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
991 
992 		if (!restart)
993 			state = HRTIMER_STATE_INACTIVE;
994 
995 		__remove_hrtimer(timer, base, state, reprogram);
996 		return 1;
997 	}
998 	return 0;
999 }
1000 
1001 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1002 					    const enum hrtimer_mode mode)
1003 {
1004 #ifdef CONFIG_TIME_LOW_RES
1005 	/*
1006 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1007 	 * granular time values. For relative timers we add hrtimer_resolution
1008 	 * (i.e. one jiffie) to prevent short timeouts.
1009 	 */
1010 	timer->is_rel = mode & HRTIMER_MODE_REL;
1011 	if (timer->is_rel)
1012 		tim = ktime_add_safe(tim, hrtimer_resolution);
1013 #endif
1014 	return tim;
1015 }
1016 
1017 static void
1018 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1019 {
1020 	ktime_t expires;
1021 
1022 	/*
1023 	 * Find the next SOFT expiration.
1024 	 */
1025 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1026 
1027 	/*
1028 	 * reprogramming needs to be triggered, even if the next soft
1029 	 * hrtimer expires at the same time than the next hard
1030 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1031 	 */
1032 	if (expires == KTIME_MAX)
1033 		return;
1034 
1035 	/*
1036 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1037 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1038 	 */
1039 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1040 }
1041 
1042 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1043 				    u64 delta_ns, const enum hrtimer_mode mode,
1044 				    struct hrtimer_clock_base *base)
1045 {
1046 	struct hrtimer_clock_base *new_base;
1047 
1048 	/* Remove an active timer from the queue: */
1049 	remove_hrtimer(timer, base, true);
1050 
1051 	if (mode & HRTIMER_MODE_REL)
1052 		tim = ktime_add_safe(tim, base->get_time());
1053 
1054 	tim = hrtimer_update_lowres(timer, tim, mode);
1055 
1056 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1057 
1058 	/* Switch the timer base, if necessary: */
1059 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1060 
1061 	return enqueue_hrtimer(timer, new_base, mode);
1062 }
1063 
1064 /**
1065  * hrtimer_start_range_ns - (re)start an hrtimer
1066  * @timer:	the timer to be added
1067  * @tim:	expiry time
1068  * @delta_ns:	"slack" range for the timer
1069  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1070  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1071  *		softirq based mode is considered for debug purpose only!
1072  */
1073 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1074 			    u64 delta_ns, const enum hrtimer_mode mode)
1075 {
1076 	struct hrtimer_clock_base *base;
1077 	unsigned long flags;
1078 
1079 	/*
1080 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1081 	 * match.
1082 	 */
1083 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1084 
1085 	base = lock_hrtimer_base(timer, &flags);
1086 
1087 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1088 		hrtimer_reprogram(timer, true);
1089 
1090 	unlock_hrtimer_base(timer, &flags);
1091 }
1092 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1093 
1094 /**
1095  * hrtimer_try_to_cancel - try to deactivate a timer
1096  * @timer:	hrtimer to stop
1097  *
1098  * Returns:
1099  *  0 when the timer was not active
1100  *  1 when the timer was active
1101  * -1 when the timer is currently executing the callback function and
1102  *    cannot be stopped
1103  */
1104 int hrtimer_try_to_cancel(struct hrtimer *timer)
1105 {
1106 	struct hrtimer_clock_base *base;
1107 	unsigned long flags;
1108 	int ret = -1;
1109 
1110 	/*
1111 	 * Check lockless first. If the timer is not active (neither
1112 	 * enqueued nor running the callback, nothing to do here.  The
1113 	 * base lock does not serialize against a concurrent enqueue,
1114 	 * so we can avoid taking it.
1115 	 */
1116 	if (!hrtimer_active(timer))
1117 		return 0;
1118 
1119 	base = lock_hrtimer_base(timer, &flags);
1120 
1121 	if (!hrtimer_callback_running(timer))
1122 		ret = remove_hrtimer(timer, base, false);
1123 
1124 	unlock_hrtimer_base(timer, &flags);
1125 
1126 	return ret;
1127 
1128 }
1129 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1130 
1131 /**
1132  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1133  * @timer:	the timer to be cancelled
1134  *
1135  * Returns:
1136  *  0 when the timer was not active
1137  *  1 when the timer was active
1138  */
1139 int hrtimer_cancel(struct hrtimer *timer)
1140 {
1141 	for (;;) {
1142 		int ret = hrtimer_try_to_cancel(timer);
1143 
1144 		if (ret >= 0)
1145 			return ret;
1146 		cpu_relax();
1147 	}
1148 }
1149 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1150 
1151 /**
1152  * hrtimer_get_remaining - get remaining time for the timer
1153  * @timer:	the timer to read
1154  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1155  */
1156 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1157 {
1158 	unsigned long flags;
1159 	ktime_t rem;
1160 
1161 	lock_hrtimer_base(timer, &flags);
1162 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1163 		rem = hrtimer_expires_remaining_adjusted(timer);
1164 	else
1165 		rem = hrtimer_expires_remaining(timer);
1166 	unlock_hrtimer_base(timer, &flags);
1167 
1168 	return rem;
1169 }
1170 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1171 
1172 #ifdef CONFIG_NO_HZ_COMMON
1173 /**
1174  * hrtimer_get_next_event - get the time until next expiry event
1175  *
1176  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1177  */
1178 u64 hrtimer_get_next_event(void)
1179 {
1180 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1181 	u64 expires = KTIME_MAX;
1182 	unsigned long flags;
1183 
1184 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1185 
1186 	if (!__hrtimer_hres_active(cpu_base))
1187 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1188 
1189 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1190 
1191 	return expires;
1192 }
1193 #endif
1194 
1195 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1196 {
1197 	if (likely(clock_id < MAX_CLOCKS)) {
1198 		int base = hrtimer_clock_to_base_table[clock_id];
1199 
1200 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1201 			return base;
1202 	}
1203 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1204 	return HRTIMER_BASE_MONOTONIC;
1205 }
1206 
1207 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1208 			   enum hrtimer_mode mode)
1209 {
1210 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1211 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1212 	struct hrtimer_cpu_base *cpu_base;
1213 
1214 	memset(timer, 0, sizeof(struct hrtimer));
1215 
1216 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1217 
1218 	/*
1219 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1220 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1221 	 * ensure POSIX compliance.
1222 	 */
1223 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1224 		clock_id = CLOCK_MONOTONIC;
1225 
1226 	base += hrtimer_clockid_to_base(clock_id);
1227 	timer->is_soft = softtimer;
1228 	timer->base = &cpu_base->clock_base[base];
1229 	timerqueue_init(&timer->node);
1230 }
1231 
1232 /**
1233  * hrtimer_init - initialize a timer to the given clock
1234  * @timer:	the timer to be initialized
1235  * @clock_id:	the clock to be used
1236  * @mode:       The modes which are relevant for intitialization:
1237  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1238  *              HRTIMER_MODE_REL_SOFT
1239  *
1240  *              The PINNED variants of the above can be handed in,
1241  *              but the PINNED bit is ignored as pinning happens
1242  *              when the hrtimer is started
1243  */
1244 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1245 		  enum hrtimer_mode mode)
1246 {
1247 	debug_init(timer, clock_id, mode);
1248 	__hrtimer_init(timer, clock_id, mode);
1249 }
1250 EXPORT_SYMBOL_GPL(hrtimer_init);
1251 
1252 /*
1253  * A timer is active, when it is enqueued into the rbtree or the
1254  * callback function is running or it's in the state of being migrated
1255  * to another cpu.
1256  *
1257  * It is important for this function to not return a false negative.
1258  */
1259 bool hrtimer_active(const struct hrtimer *timer)
1260 {
1261 	struct hrtimer_clock_base *base;
1262 	unsigned int seq;
1263 
1264 	do {
1265 		base = READ_ONCE(timer->base);
1266 		seq = raw_read_seqcount_begin(&base->seq);
1267 
1268 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1269 		    base->running == timer)
1270 			return true;
1271 
1272 	} while (read_seqcount_retry(&base->seq, seq) ||
1273 		 base != READ_ONCE(timer->base));
1274 
1275 	return false;
1276 }
1277 EXPORT_SYMBOL_GPL(hrtimer_active);
1278 
1279 /*
1280  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1281  * distinct sections:
1282  *
1283  *  - queued:	the timer is queued
1284  *  - callback:	the timer is being ran
1285  *  - post:	the timer is inactive or (re)queued
1286  *
1287  * On the read side we ensure we observe timer->state and cpu_base->running
1288  * from the same section, if anything changed while we looked at it, we retry.
1289  * This includes timer->base changing because sequence numbers alone are
1290  * insufficient for that.
1291  *
1292  * The sequence numbers are required because otherwise we could still observe
1293  * a false negative if the read side got smeared over multiple consequtive
1294  * __run_hrtimer() invocations.
1295  */
1296 
1297 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1298 			  struct hrtimer_clock_base *base,
1299 			  struct hrtimer *timer, ktime_t *now,
1300 			  unsigned long flags)
1301 {
1302 	enum hrtimer_restart (*fn)(struct hrtimer *);
1303 	int restart;
1304 
1305 	lockdep_assert_held(&cpu_base->lock);
1306 
1307 	debug_deactivate(timer);
1308 	base->running = timer;
1309 
1310 	/*
1311 	 * Separate the ->running assignment from the ->state assignment.
1312 	 *
1313 	 * As with a regular write barrier, this ensures the read side in
1314 	 * hrtimer_active() cannot observe base->running == NULL &&
1315 	 * timer->state == INACTIVE.
1316 	 */
1317 	raw_write_seqcount_barrier(&base->seq);
1318 
1319 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1320 	fn = timer->function;
1321 
1322 	/*
1323 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1324 	 * timer is restarted with a period then it becomes an absolute
1325 	 * timer. If its not restarted it does not matter.
1326 	 */
1327 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1328 		timer->is_rel = false;
1329 
1330 	/*
1331 	 * The timer is marked as running in the CPU base, so it is
1332 	 * protected against migration to a different CPU even if the lock
1333 	 * is dropped.
1334 	 */
1335 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1336 	trace_hrtimer_expire_entry(timer, now);
1337 	restart = fn(timer);
1338 	trace_hrtimer_expire_exit(timer);
1339 	raw_spin_lock_irq(&cpu_base->lock);
1340 
1341 	/*
1342 	 * Note: We clear the running state after enqueue_hrtimer and
1343 	 * we do not reprogram the event hardware. Happens either in
1344 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1345 	 *
1346 	 * Note: Because we dropped the cpu_base->lock above,
1347 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1348 	 * for us already.
1349 	 */
1350 	if (restart != HRTIMER_NORESTART &&
1351 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1352 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1353 
1354 	/*
1355 	 * Separate the ->running assignment from the ->state assignment.
1356 	 *
1357 	 * As with a regular write barrier, this ensures the read side in
1358 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1359 	 * timer->state == INACTIVE.
1360 	 */
1361 	raw_write_seqcount_barrier(&base->seq);
1362 
1363 	WARN_ON_ONCE(base->running != timer);
1364 	base->running = NULL;
1365 }
1366 
1367 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1368 				 unsigned long flags, unsigned int active_mask)
1369 {
1370 	struct hrtimer_clock_base *base;
1371 	unsigned int active = cpu_base->active_bases & active_mask;
1372 
1373 	for_each_active_base(base, cpu_base, active) {
1374 		struct timerqueue_node *node;
1375 		ktime_t basenow;
1376 
1377 		basenow = ktime_add(now, base->offset);
1378 
1379 		while ((node = timerqueue_getnext(&base->active))) {
1380 			struct hrtimer *timer;
1381 
1382 			timer = container_of(node, struct hrtimer, node);
1383 
1384 			/*
1385 			 * The immediate goal for using the softexpires is
1386 			 * minimizing wakeups, not running timers at the
1387 			 * earliest interrupt after their soft expiration.
1388 			 * This allows us to avoid using a Priority Search
1389 			 * Tree, which can answer a stabbing querry for
1390 			 * overlapping intervals and instead use the simple
1391 			 * BST we already have.
1392 			 * We don't add extra wakeups by delaying timers that
1393 			 * are right-of a not yet expired timer, because that
1394 			 * timer will have to trigger a wakeup anyway.
1395 			 */
1396 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1397 				break;
1398 
1399 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1400 		}
1401 	}
1402 }
1403 
1404 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1405 {
1406 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1407 	unsigned long flags;
1408 	ktime_t now;
1409 
1410 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1411 
1412 	now = hrtimer_update_base(cpu_base);
1413 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1414 
1415 	cpu_base->softirq_activated = 0;
1416 	hrtimer_update_softirq_timer(cpu_base, true);
1417 
1418 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1419 }
1420 
1421 #ifdef CONFIG_HIGH_RES_TIMERS
1422 
1423 /*
1424  * High resolution timer interrupt
1425  * Called with interrupts disabled
1426  */
1427 void hrtimer_interrupt(struct clock_event_device *dev)
1428 {
1429 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1430 	ktime_t expires_next, now, entry_time, delta;
1431 	unsigned long flags;
1432 	int retries = 0;
1433 
1434 	BUG_ON(!cpu_base->hres_active);
1435 	cpu_base->nr_events++;
1436 	dev->next_event = KTIME_MAX;
1437 
1438 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1439 	entry_time = now = hrtimer_update_base(cpu_base);
1440 retry:
1441 	cpu_base->in_hrtirq = 1;
1442 	/*
1443 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1444 	 * held to prevent that a timer is enqueued in our queue via
1445 	 * the migration code. This does not affect enqueueing of
1446 	 * timers which run their callback and need to be requeued on
1447 	 * this CPU.
1448 	 */
1449 	cpu_base->expires_next = KTIME_MAX;
1450 
1451 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1452 		cpu_base->softirq_expires_next = KTIME_MAX;
1453 		cpu_base->softirq_activated = 1;
1454 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1455 	}
1456 
1457 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1458 
1459 	/* Reevaluate the clock bases for the next expiry */
1460 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1461 	/*
1462 	 * Store the new expiry value so the migration code can verify
1463 	 * against it.
1464 	 */
1465 	cpu_base->expires_next = expires_next;
1466 	cpu_base->in_hrtirq = 0;
1467 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1468 
1469 	/* Reprogramming necessary ? */
1470 	if (!tick_program_event(expires_next, 0)) {
1471 		cpu_base->hang_detected = 0;
1472 		return;
1473 	}
1474 
1475 	/*
1476 	 * The next timer was already expired due to:
1477 	 * - tracing
1478 	 * - long lasting callbacks
1479 	 * - being scheduled away when running in a VM
1480 	 *
1481 	 * We need to prevent that we loop forever in the hrtimer
1482 	 * interrupt routine. We give it 3 attempts to avoid
1483 	 * overreacting on some spurious event.
1484 	 *
1485 	 * Acquire base lock for updating the offsets and retrieving
1486 	 * the current time.
1487 	 */
1488 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1489 	now = hrtimer_update_base(cpu_base);
1490 	cpu_base->nr_retries++;
1491 	if (++retries < 3)
1492 		goto retry;
1493 	/*
1494 	 * Give the system a chance to do something else than looping
1495 	 * here. We stored the entry time, so we know exactly how long
1496 	 * we spent here. We schedule the next event this amount of
1497 	 * time away.
1498 	 */
1499 	cpu_base->nr_hangs++;
1500 	cpu_base->hang_detected = 1;
1501 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1502 
1503 	delta = ktime_sub(now, entry_time);
1504 	if ((unsigned int)delta > cpu_base->max_hang_time)
1505 		cpu_base->max_hang_time = (unsigned int) delta;
1506 	/*
1507 	 * Limit it to a sensible value as we enforce a longer
1508 	 * delay. Give the CPU at least 100ms to catch up.
1509 	 */
1510 	if (delta > 100 * NSEC_PER_MSEC)
1511 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1512 	else
1513 		expires_next = ktime_add(now, delta);
1514 	tick_program_event(expires_next, 1);
1515 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1516 		    ktime_to_ns(delta));
1517 }
1518 
1519 /* called with interrupts disabled */
1520 static inline void __hrtimer_peek_ahead_timers(void)
1521 {
1522 	struct tick_device *td;
1523 
1524 	if (!hrtimer_hres_active())
1525 		return;
1526 
1527 	td = this_cpu_ptr(&tick_cpu_device);
1528 	if (td && td->evtdev)
1529 		hrtimer_interrupt(td->evtdev);
1530 }
1531 
1532 #else /* CONFIG_HIGH_RES_TIMERS */
1533 
1534 static inline void __hrtimer_peek_ahead_timers(void) { }
1535 
1536 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1537 
1538 /*
1539  * Called from run_local_timers in hardirq context every jiffy
1540  */
1541 void hrtimer_run_queues(void)
1542 {
1543 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1544 	unsigned long flags;
1545 	ktime_t now;
1546 
1547 	if (__hrtimer_hres_active(cpu_base))
1548 		return;
1549 
1550 	/*
1551 	 * This _is_ ugly: We have to check periodically, whether we
1552 	 * can switch to highres and / or nohz mode. The clocksource
1553 	 * switch happens with xtime_lock held. Notification from
1554 	 * there only sets the check bit in the tick_oneshot code,
1555 	 * otherwise we might deadlock vs. xtime_lock.
1556 	 */
1557 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1558 		hrtimer_switch_to_hres();
1559 		return;
1560 	}
1561 
1562 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1563 	now = hrtimer_update_base(cpu_base);
1564 
1565 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1566 		cpu_base->softirq_expires_next = KTIME_MAX;
1567 		cpu_base->softirq_activated = 1;
1568 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1569 	}
1570 
1571 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1572 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1573 }
1574 
1575 /*
1576  * Sleep related functions:
1577  */
1578 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1579 {
1580 	struct hrtimer_sleeper *t =
1581 		container_of(timer, struct hrtimer_sleeper, timer);
1582 	struct task_struct *task = t->task;
1583 
1584 	t->task = NULL;
1585 	if (task)
1586 		wake_up_process(task);
1587 
1588 	return HRTIMER_NORESTART;
1589 }
1590 
1591 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1592 {
1593 	sl->timer.function = hrtimer_wakeup;
1594 	sl->task = task;
1595 }
1596 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1597 
1598 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1599 {
1600 	switch(restart->nanosleep.type) {
1601 #ifdef CONFIG_COMPAT
1602 	case TT_COMPAT:
1603 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1604 			return -EFAULT;
1605 		break;
1606 #endif
1607 	case TT_NATIVE:
1608 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1609 			return -EFAULT;
1610 		break;
1611 	default:
1612 		BUG();
1613 	}
1614 	return -ERESTART_RESTARTBLOCK;
1615 }
1616 
1617 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1618 {
1619 	struct restart_block *restart;
1620 
1621 	hrtimer_init_sleeper(t, current);
1622 
1623 	do {
1624 		set_current_state(TASK_INTERRUPTIBLE);
1625 		hrtimer_start_expires(&t->timer, mode);
1626 
1627 		if (likely(t->task))
1628 			freezable_schedule();
1629 
1630 		hrtimer_cancel(&t->timer);
1631 		mode = HRTIMER_MODE_ABS;
1632 
1633 	} while (t->task && !signal_pending(current));
1634 
1635 	__set_current_state(TASK_RUNNING);
1636 
1637 	if (!t->task)
1638 		return 0;
1639 
1640 	restart = &current->restart_block;
1641 	if (restart->nanosleep.type != TT_NONE) {
1642 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1643 		struct timespec64 rmt;
1644 
1645 		if (rem <= 0)
1646 			return 0;
1647 		rmt = ktime_to_timespec64(rem);
1648 
1649 		return nanosleep_copyout(restart, &rmt);
1650 	}
1651 	return -ERESTART_RESTARTBLOCK;
1652 }
1653 
1654 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1655 {
1656 	struct hrtimer_sleeper t;
1657 	int ret;
1658 
1659 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1660 				HRTIMER_MODE_ABS);
1661 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1662 
1663 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1664 	destroy_hrtimer_on_stack(&t.timer);
1665 	return ret;
1666 }
1667 
1668 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1669 		       const enum hrtimer_mode mode, const clockid_t clockid)
1670 {
1671 	struct restart_block *restart;
1672 	struct hrtimer_sleeper t;
1673 	int ret = 0;
1674 	u64 slack;
1675 
1676 	slack = current->timer_slack_ns;
1677 	if (dl_task(current) || rt_task(current))
1678 		slack = 0;
1679 
1680 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1681 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1682 	ret = do_nanosleep(&t, mode);
1683 	if (ret != -ERESTART_RESTARTBLOCK)
1684 		goto out;
1685 
1686 	/* Absolute timers do not update the rmtp value and restart: */
1687 	if (mode == HRTIMER_MODE_ABS) {
1688 		ret = -ERESTARTNOHAND;
1689 		goto out;
1690 	}
1691 
1692 	restart = &current->restart_block;
1693 	restart->fn = hrtimer_nanosleep_restart;
1694 	restart->nanosleep.clockid = t.timer.base->clockid;
1695 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1696 out:
1697 	destroy_hrtimer_on_stack(&t.timer);
1698 	return ret;
1699 }
1700 
1701 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1702 		struct timespec __user *, rmtp)
1703 {
1704 	struct timespec64 tu;
1705 
1706 	if (get_timespec64(&tu, rqtp))
1707 		return -EFAULT;
1708 
1709 	if (!timespec64_valid(&tu))
1710 		return -EINVAL;
1711 
1712 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1713 	current->restart_block.nanosleep.rmtp = rmtp;
1714 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1715 }
1716 
1717 #ifdef CONFIG_COMPAT
1718 
1719 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1720 		       struct compat_timespec __user *, rmtp)
1721 {
1722 	struct timespec64 tu;
1723 
1724 	if (compat_get_timespec64(&tu, rqtp))
1725 		return -EFAULT;
1726 
1727 	if (!timespec64_valid(&tu))
1728 		return -EINVAL;
1729 
1730 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1731 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1732 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1733 }
1734 #endif
1735 
1736 /*
1737  * Functions related to boot-time initialization:
1738  */
1739 int hrtimers_prepare_cpu(unsigned int cpu)
1740 {
1741 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1742 	int i;
1743 
1744 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1745 		cpu_base->clock_base[i].cpu_base = cpu_base;
1746 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1747 	}
1748 
1749 	cpu_base->cpu = cpu;
1750 	cpu_base->active_bases = 0;
1751 	cpu_base->hres_active = 0;
1752 	cpu_base->hang_detected = 0;
1753 	cpu_base->next_timer = NULL;
1754 	cpu_base->softirq_next_timer = NULL;
1755 	cpu_base->expires_next = KTIME_MAX;
1756 	cpu_base->softirq_expires_next = KTIME_MAX;
1757 	return 0;
1758 }
1759 
1760 #ifdef CONFIG_HOTPLUG_CPU
1761 
1762 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1763 				struct hrtimer_clock_base *new_base)
1764 {
1765 	struct hrtimer *timer;
1766 	struct timerqueue_node *node;
1767 
1768 	while ((node = timerqueue_getnext(&old_base->active))) {
1769 		timer = container_of(node, struct hrtimer, node);
1770 		BUG_ON(hrtimer_callback_running(timer));
1771 		debug_deactivate(timer);
1772 
1773 		/*
1774 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1775 		 * timer could be seen as !active and just vanish away
1776 		 * under us on another CPU
1777 		 */
1778 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1779 		timer->base = new_base;
1780 		/*
1781 		 * Enqueue the timers on the new cpu. This does not
1782 		 * reprogram the event device in case the timer
1783 		 * expires before the earliest on this CPU, but we run
1784 		 * hrtimer_interrupt after we migrated everything to
1785 		 * sort out already expired timers and reprogram the
1786 		 * event device.
1787 		 */
1788 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1789 	}
1790 }
1791 
1792 int hrtimers_dead_cpu(unsigned int scpu)
1793 {
1794 	struct hrtimer_cpu_base *old_base, *new_base;
1795 	int i;
1796 
1797 	BUG_ON(cpu_online(scpu));
1798 	tick_cancel_sched_timer(scpu);
1799 
1800 	/*
1801 	 * this BH disable ensures that raise_softirq_irqoff() does
1802 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1803 	 * holding the cpu_base lock
1804 	 */
1805 	local_bh_disable();
1806 	local_irq_disable();
1807 	old_base = &per_cpu(hrtimer_bases, scpu);
1808 	new_base = this_cpu_ptr(&hrtimer_bases);
1809 	/*
1810 	 * The caller is globally serialized and nobody else
1811 	 * takes two locks at once, deadlock is not possible.
1812 	 */
1813 	raw_spin_lock(&new_base->lock);
1814 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1815 
1816 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1817 		migrate_hrtimer_list(&old_base->clock_base[i],
1818 				     &new_base->clock_base[i]);
1819 	}
1820 
1821 	/*
1822 	 * The migration might have changed the first expiring softirq
1823 	 * timer on this CPU. Update it.
1824 	 */
1825 	hrtimer_update_softirq_timer(new_base, false);
1826 
1827 	raw_spin_unlock(&old_base->lock);
1828 	raw_spin_unlock(&new_base->lock);
1829 
1830 	/* Check, if we got expired work to do */
1831 	__hrtimer_peek_ahead_timers();
1832 	local_irq_enable();
1833 	local_bh_enable();
1834 	return 0;
1835 }
1836 
1837 #endif /* CONFIG_HOTPLUG_CPU */
1838 
1839 void __init hrtimers_init(void)
1840 {
1841 	hrtimers_prepare_cpu(smp_processor_id());
1842 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1843 }
1844 
1845 /**
1846  * schedule_hrtimeout_range_clock - sleep until timeout
1847  * @expires:	timeout value (ktime_t)
1848  * @delta:	slack in expires timeout (ktime_t)
1849  * @mode:	timer mode
1850  * @clock_id:	timer clock to be used
1851  */
1852 int __sched
1853 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1854 			       const enum hrtimer_mode mode, clockid_t clock_id)
1855 {
1856 	struct hrtimer_sleeper t;
1857 
1858 	/*
1859 	 * Optimize when a zero timeout value is given. It does not
1860 	 * matter whether this is an absolute or a relative time.
1861 	 */
1862 	if (expires && *expires == 0) {
1863 		__set_current_state(TASK_RUNNING);
1864 		return 0;
1865 	}
1866 
1867 	/*
1868 	 * A NULL parameter means "infinite"
1869 	 */
1870 	if (!expires) {
1871 		schedule();
1872 		return -EINTR;
1873 	}
1874 
1875 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1876 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1877 
1878 	hrtimer_init_sleeper(&t, current);
1879 
1880 	hrtimer_start_expires(&t.timer, mode);
1881 
1882 	if (likely(t.task))
1883 		schedule();
1884 
1885 	hrtimer_cancel(&t.timer);
1886 	destroy_hrtimer_on_stack(&t.timer);
1887 
1888 	__set_current_state(TASK_RUNNING);
1889 
1890 	return !t.task ? 0 : -EINTR;
1891 }
1892 
1893 /**
1894  * schedule_hrtimeout_range - sleep until timeout
1895  * @expires:	timeout value (ktime_t)
1896  * @delta:	slack in expires timeout (ktime_t)
1897  * @mode:	timer mode
1898  *
1899  * Make the current task sleep until the given expiry time has
1900  * elapsed. The routine will return immediately unless
1901  * the current task state has been set (see set_current_state()).
1902  *
1903  * The @delta argument gives the kernel the freedom to schedule the
1904  * actual wakeup to a time that is both power and performance friendly.
1905  * The kernel give the normal best effort behavior for "@expires+@delta",
1906  * but may decide to fire the timer earlier, but no earlier than @expires.
1907  *
1908  * You can set the task state as follows -
1909  *
1910  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1911  * pass before the routine returns unless the current task is explicitly
1912  * woken up, (e.g. by wake_up_process()).
1913  *
1914  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1915  * delivered to the current task or the current task is explicitly woken
1916  * up.
1917  *
1918  * The current task state is guaranteed to be TASK_RUNNING when this
1919  * routine returns.
1920  *
1921  * Returns 0 when the timer has expired. If the task was woken before the
1922  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1923  * by an explicit wakeup, it returns -EINTR.
1924  */
1925 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1926 				     const enum hrtimer_mode mode)
1927 {
1928 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1929 					      CLOCK_MONOTONIC);
1930 }
1931 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1932 
1933 /**
1934  * schedule_hrtimeout - sleep until timeout
1935  * @expires:	timeout value (ktime_t)
1936  * @mode:	timer mode
1937  *
1938  * Make the current task sleep until the given expiry time has
1939  * elapsed. The routine will return immediately unless
1940  * the current task state has been set (see set_current_state()).
1941  *
1942  * You can set the task state as follows -
1943  *
1944  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1945  * pass before the routine returns unless the current task is explicitly
1946  * woken up, (e.g. by wake_up_process()).
1947  *
1948  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1949  * delivered to the current task or the current task is explicitly woken
1950  * up.
1951  *
1952  * The current task state is guaranteed to be TASK_RUNNING when this
1953  * routine returns.
1954  *
1955  * Returns 0 when the timer has expired. If the task was woken before the
1956  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1957  * by an explicit wakeup, it returns -EINTR.
1958  */
1959 int __sched schedule_hrtimeout(ktime_t *expires,
1960 			       const enum hrtimer_mode mode)
1961 {
1962 	return schedule_hrtimeout_range(expires, 0, mode);
1963 }
1964 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1965