1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/interrupt.h> 41 #include <linux/tick.h> 42 #include <linux/seq_file.h> 43 #include <linux/err.h> 44 #include <linux/debugobjects.h> 45 #include <linux/sched/signal.h> 46 #include <linux/sched/sysctl.h> 47 #include <linux/sched/rt.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/nohz.h> 50 #include <linux/sched/debug.h> 51 #include <linux/timer.h> 52 #include <linux/freezer.h> 53 #include <linux/compat.h> 54 55 #include <linux/uaccess.h> 56 57 #include <trace/events/timer.h> 58 59 #include "tick-internal.h" 60 61 /* 62 * Masks for selecting the soft and hard context timers from 63 * cpu_base->active 64 */ 65 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 66 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 67 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 68 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 69 70 /* 71 * The timer bases: 72 * 73 * There are more clockids than hrtimer bases. Thus, we index 74 * into the timer bases by the hrtimer_base_type enum. When trying 75 * to reach a base using a clockid, hrtimer_clockid_to_base() 76 * is used to convert from clockid to the proper hrtimer_base_type. 77 */ 78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 79 { 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 81 .clock_base = 82 { 83 { 84 .index = HRTIMER_BASE_MONOTONIC, 85 .clockid = CLOCK_MONOTONIC, 86 .get_time = &ktime_get, 87 }, 88 { 89 .index = HRTIMER_BASE_REALTIME, 90 .clockid = CLOCK_REALTIME, 91 .get_time = &ktime_get_real, 92 }, 93 { 94 .index = HRTIMER_BASE_TAI, 95 .clockid = CLOCK_TAI, 96 .get_time = &ktime_get_clocktai, 97 }, 98 { 99 .index = HRTIMER_BASE_MONOTONIC_SOFT, 100 .clockid = CLOCK_MONOTONIC, 101 .get_time = &ktime_get, 102 }, 103 { 104 .index = HRTIMER_BASE_REALTIME_SOFT, 105 .clockid = CLOCK_REALTIME, 106 .get_time = &ktime_get_real, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 139 }; 140 141 #define migration_base migration_cpu_base.clock_base[0] 142 143 /* 144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 145 * means that all timers which are tied to this base via timer->base are 146 * locked, and the base itself is locked too. 147 * 148 * So __run_timers/migrate_timers can safely modify all timers which could 149 * be found on the lists/queues. 150 * 151 * When the timer's base is locked, and the timer removed from list, it is 152 * possible to set timer->base = &migration_base and drop the lock: the timer 153 * remains locked. 154 */ 155 static 156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 157 unsigned long *flags) 158 { 159 struct hrtimer_clock_base *base; 160 161 for (;;) { 162 base = timer->base; 163 if (likely(base != &migration_base)) { 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 165 if (likely(base == timer->base)) 166 return base; 167 /* The timer has migrated to another CPU: */ 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 169 } 170 cpu_relax(); 171 } 172 } 173 174 /* 175 * We do not migrate the timer when it is expiring before the next 176 * event on the target cpu. When high resolution is enabled, we cannot 177 * reprogram the target cpu hardware and we would cause it to fire 178 * late. To keep it simple, we handle the high resolution enabled and 179 * disabled case similar. 180 * 181 * Called with cpu_base->lock of target cpu held. 182 */ 183 static int 184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 185 { 186 ktime_t expires; 187 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 189 return expires < new_base->cpu_base->expires_next; 190 } 191 192 static inline 193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 194 int pinned) 195 { 196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 197 if (static_branch_likely(&timers_migration_enabled) && !pinned) 198 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 199 #endif 200 return base; 201 } 202 203 /* 204 * We switch the timer base to a power-optimized selected CPU target, 205 * if: 206 * - NO_HZ_COMMON is enabled 207 * - timer migration is enabled 208 * - the timer callback is not running 209 * - the timer is not the first expiring timer on the new target 210 * 211 * If one of the above requirements is not fulfilled we move the timer 212 * to the current CPU or leave it on the previously assigned CPU if 213 * the timer callback is currently running. 214 */ 215 static inline struct hrtimer_clock_base * 216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 217 int pinned) 218 { 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 220 struct hrtimer_clock_base *new_base; 221 int basenum = base->index; 222 223 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 224 new_cpu_base = get_target_base(this_cpu_base, pinned); 225 again: 226 new_base = &new_cpu_base->clock_base[basenum]; 227 228 if (base != new_base) { 229 /* 230 * We are trying to move timer to new_base. 231 * However we can't change timer's base while it is running, 232 * so we keep it on the same CPU. No hassle vs. reprogramming 233 * the event source in the high resolution case. The softirq 234 * code will take care of this when the timer function has 235 * completed. There is no conflict as we hold the lock until 236 * the timer is enqueued. 237 */ 238 if (unlikely(hrtimer_callback_running(timer))) 239 return base; 240 241 /* See the comment in lock_hrtimer_base() */ 242 timer->base = &migration_base; 243 raw_spin_unlock(&base->cpu_base->lock); 244 raw_spin_lock(&new_base->cpu_base->lock); 245 246 if (new_cpu_base != this_cpu_base && 247 hrtimer_check_target(timer, new_base)) { 248 raw_spin_unlock(&new_base->cpu_base->lock); 249 raw_spin_lock(&base->cpu_base->lock); 250 new_cpu_base = this_cpu_base; 251 timer->base = base; 252 goto again; 253 } 254 timer->base = new_base; 255 } else { 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 new_cpu_base = this_cpu_base; 259 goto again; 260 } 261 } 262 return new_base; 263 } 264 265 #else /* CONFIG_SMP */ 266 267 static inline struct hrtimer_clock_base * 268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 269 { 270 struct hrtimer_clock_base *base = timer->base; 271 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 273 274 return base; 275 } 276 277 # define switch_hrtimer_base(t, b, p) (b) 278 279 #endif /* !CONFIG_SMP */ 280 281 /* 282 * Functions for the union type storage format of ktime_t which are 283 * too large for inlining: 284 */ 285 #if BITS_PER_LONG < 64 286 /* 287 * Divide a ktime value by a nanosecond value 288 */ 289 s64 __ktime_divns(const ktime_t kt, s64 div) 290 { 291 int sft = 0; 292 s64 dclc; 293 u64 tmp; 294 295 dclc = ktime_to_ns(kt); 296 tmp = dclc < 0 ? -dclc : dclc; 297 298 /* Make sure the divisor is less than 2^32: */ 299 while (div >> 32) { 300 sft++; 301 div >>= 1; 302 } 303 tmp >>= sft; 304 do_div(tmp, (unsigned long) div); 305 return dclc < 0 ? -tmp : tmp; 306 } 307 EXPORT_SYMBOL_GPL(__ktime_divns); 308 #endif /* BITS_PER_LONG >= 64 */ 309 310 /* 311 * Add two ktime values and do a safety check for overflow: 312 */ 313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 314 { 315 ktime_t res = ktime_add_unsafe(lhs, rhs); 316 317 /* 318 * We use KTIME_SEC_MAX here, the maximum timeout which we can 319 * return to user space in a timespec: 320 */ 321 if (res < 0 || res < lhs || res < rhs) 322 res = ktime_set(KTIME_SEC_MAX, 0); 323 324 return res; 325 } 326 327 EXPORT_SYMBOL_GPL(ktime_add_safe); 328 329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 330 331 static struct debug_obj_descr hrtimer_debug_descr; 332 333 static void *hrtimer_debug_hint(void *addr) 334 { 335 return ((struct hrtimer *) addr)->function; 336 } 337 338 /* 339 * fixup_init is called when: 340 * - an active object is initialized 341 */ 342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 343 { 344 struct hrtimer *timer = addr; 345 346 switch (state) { 347 case ODEBUG_STATE_ACTIVE: 348 hrtimer_cancel(timer); 349 debug_object_init(timer, &hrtimer_debug_descr); 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 /* 357 * fixup_activate is called when: 358 * - an active object is activated 359 * - an unknown non-static object is activated 360 */ 361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 362 { 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 WARN_ON(1); 366 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_free is called when: 374 * - an active object is freed 375 */ 376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_free(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 static struct debug_obj_descr hrtimer_debug_descr = { 391 .name = "hrtimer", 392 .debug_hint = hrtimer_debug_hint, 393 .fixup_init = hrtimer_fixup_init, 394 .fixup_activate = hrtimer_fixup_activate, 395 .fixup_free = hrtimer_fixup_free, 396 }; 397 398 static inline void debug_hrtimer_init(struct hrtimer *timer) 399 { 400 debug_object_init(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_activate(struct hrtimer *timer, 404 enum hrtimer_mode mode) 405 { 406 debug_object_activate(timer, &hrtimer_debug_descr); 407 } 408 409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 410 { 411 debug_object_deactivate(timer, &hrtimer_debug_descr); 412 } 413 414 static inline void debug_hrtimer_free(struct hrtimer *timer) 415 { 416 debug_object_free(timer, &hrtimer_debug_descr); 417 } 418 419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 420 enum hrtimer_mode mode); 421 422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 423 enum hrtimer_mode mode) 424 { 425 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 426 __hrtimer_init(timer, clock_id, mode); 427 } 428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 429 430 void destroy_hrtimer_on_stack(struct hrtimer *timer) 431 { 432 debug_object_free(timer, &hrtimer_debug_descr); 433 } 434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 435 436 #else 437 438 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 439 static inline void debug_hrtimer_activate(struct hrtimer *timer, 440 enum hrtimer_mode mode) { } 441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 442 #endif 443 444 static inline void 445 debug_init(struct hrtimer *timer, clockid_t clockid, 446 enum hrtimer_mode mode) 447 { 448 debug_hrtimer_init(timer); 449 trace_hrtimer_init(timer, clockid, mode); 450 } 451 452 static inline void debug_activate(struct hrtimer *timer, 453 enum hrtimer_mode mode) 454 { 455 debug_hrtimer_activate(timer, mode); 456 trace_hrtimer_start(timer, mode); 457 } 458 459 static inline void debug_deactivate(struct hrtimer *timer) 460 { 461 debug_hrtimer_deactivate(timer); 462 trace_hrtimer_cancel(timer); 463 } 464 465 static struct hrtimer_clock_base * 466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 467 { 468 unsigned int idx; 469 470 if (!*active) 471 return NULL; 472 473 idx = __ffs(*active); 474 *active &= ~(1U << idx); 475 476 return &cpu_base->clock_base[idx]; 477 } 478 479 #define for_each_active_base(base, cpu_base, active) \ 480 while ((base = __next_base((cpu_base), &(active)))) 481 482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 483 unsigned int active, 484 ktime_t expires_next) 485 { 486 struct hrtimer_clock_base *base; 487 ktime_t expires; 488 489 for_each_active_base(base, cpu_base, active) { 490 struct timerqueue_node *next; 491 struct hrtimer *timer; 492 493 next = timerqueue_getnext(&base->active); 494 timer = container_of(next, struct hrtimer, node); 495 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 496 if (expires < expires_next) { 497 expires_next = expires; 498 if (timer->is_soft) 499 cpu_base->softirq_next_timer = timer; 500 else 501 cpu_base->next_timer = timer; 502 } 503 } 504 /* 505 * clock_was_set() might have changed base->offset of any of 506 * the clock bases so the result might be negative. Fix it up 507 * to prevent a false positive in clockevents_program_event(). 508 */ 509 if (expires_next < 0) 510 expires_next = 0; 511 return expires_next; 512 } 513 514 /* 515 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 516 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 517 * 518 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 519 * those timers will get run whenever the softirq gets handled, at the end of 520 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 521 * 522 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 523 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 524 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 525 * 526 * @active_mask must be one of: 527 * - HRTIMER_ACTIVE_ALL, 528 * - HRTIMER_ACTIVE_SOFT, or 529 * - HRTIMER_ACTIVE_HARD. 530 */ 531 static ktime_t 532 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 533 { 534 unsigned int active; 535 struct hrtimer *next_timer = NULL; 536 ktime_t expires_next = KTIME_MAX; 537 538 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 539 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 540 cpu_base->softirq_next_timer = NULL; 541 expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX); 542 543 next_timer = cpu_base->softirq_next_timer; 544 } 545 546 if (active_mask & HRTIMER_ACTIVE_HARD) { 547 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 548 cpu_base->next_timer = next_timer; 549 expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next); 550 } 551 552 return expires_next; 553 } 554 555 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 556 { 557 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 558 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 559 560 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 561 offs_real, offs_tai); 562 563 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 564 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 565 566 return now; 567 } 568 569 /* 570 * Is the high resolution mode active ? 571 */ 572 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 573 { 574 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 575 cpu_base->hres_active : 0; 576 } 577 578 static inline int hrtimer_hres_active(void) 579 { 580 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 581 } 582 583 /* 584 * Reprogram the event source with checking both queues for the 585 * next event 586 * Called with interrupts disabled and base->lock held 587 */ 588 static void 589 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 590 { 591 ktime_t expires_next; 592 593 /* 594 * Find the current next expiration time. 595 */ 596 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 597 598 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 599 /* 600 * When the softirq is activated, hrtimer has to be 601 * programmed with the first hard hrtimer because soft 602 * timer interrupt could occur too late. 603 */ 604 if (cpu_base->softirq_activated) 605 expires_next = __hrtimer_get_next_event(cpu_base, 606 HRTIMER_ACTIVE_HARD); 607 else 608 cpu_base->softirq_expires_next = expires_next; 609 } 610 611 if (skip_equal && expires_next == cpu_base->expires_next) 612 return; 613 614 cpu_base->expires_next = expires_next; 615 616 /* 617 * If hres is not active, hardware does not have to be 618 * reprogrammed yet. 619 * 620 * If a hang was detected in the last timer interrupt then we 621 * leave the hang delay active in the hardware. We want the 622 * system to make progress. That also prevents the following 623 * scenario: 624 * T1 expires 50ms from now 625 * T2 expires 5s from now 626 * 627 * T1 is removed, so this code is called and would reprogram 628 * the hardware to 5s from now. Any hrtimer_start after that 629 * will not reprogram the hardware due to hang_detected being 630 * set. So we'd effectivly block all timers until the T2 event 631 * fires. 632 */ 633 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 634 return; 635 636 tick_program_event(cpu_base->expires_next, 1); 637 } 638 639 /* High resolution timer related functions */ 640 #ifdef CONFIG_HIGH_RES_TIMERS 641 642 /* 643 * High resolution timer enabled ? 644 */ 645 static bool hrtimer_hres_enabled __read_mostly = true; 646 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 647 EXPORT_SYMBOL_GPL(hrtimer_resolution); 648 649 /* 650 * Enable / Disable high resolution mode 651 */ 652 static int __init setup_hrtimer_hres(char *str) 653 { 654 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 655 } 656 657 __setup("highres=", setup_hrtimer_hres); 658 659 /* 660 * hrtimer_high_res_enabled - query, if the highres mode is enabled 661 */ 662 static inline int hrtimer_is_hres_enabled(void) 663 { 664 return hrtimer_hres_enabled; 665 } 666 667 /* 668 * Retrigger next event is called after clock was set 669 * 670 * Called with interrupts disabled via on_each_cpu() 671 */ 672 static void retrigger_next_event(void *arg) 673 { 674 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 675 676 if (!__hrtimer_hres_active(base)) 677 return; 678 679 raw_spin_lock(&base->lock); 680 hrtimer_update_base(base); 681 hrtimer_force_reprogram(base, 0); 682 raw_spin_unlock(&base->lock); 683 } 684 685 /* 686 * Switch to high resolution mode 687 */ 688 static void hrtimer_switch_to_hres(void) 689 { 690 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 691 692 if (tick_init_highres()) { 693 printk(KERN_WARNING "Could not switch to high resolution " 694 "mode on CPU %d\n", base->cpu); 695 return; 696 } 697 base->hres_active = 1; 698 hrtimer_resolution = HIGH_RES_NSEC; 699 700 tick_setup_sched_timer(); 701 /* "Retrigger" the interrupt to get things going */ 702 retrigger_next_event(NULL); 703 } 704 705 static void clock_was_set_work(struct work_struct *work) 706 { 707 clock_was_set(); 708 } 709 710 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 711 712 /* 713 * Called from timekeeping and resume code to reprogram the hrtimer 714 * interrupt device on all cpus. 715 */ 716 void clock_was_set_delayed(void) 717 { 718 schedule_work(&hrtimer_work); 719 } 720 721 #else 722 723 static inline int hrtimer_is_hres_enabled(void) { return 0; } 724 static inline void hrtimer_switch_to_hres(void) { } 725 static inline void retrigger_next_event(void *arg) { } 726 727 #endif /* CONFIG_HIGH_RES_TIMERS */ 728 729 /* 730 * When a timer is enqueued and expires earlier than the already enqueued 731 * timers, we have to check, whether it expires earlier than the timer for 732 * which the clock event device was armed. 733 * 734 * Called with interrupts disabled and base->cpu_base.lock held 735 */ 736 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 737 { 738 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 739 struct hrtimer_clock_base *base = timer->base; 740 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 741 742 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 743 744 /* 745 * CLOCK_REALTIME timer might be requested with an absolute 746 * expiry time which is less than base->offset. Set it to 0. 747 */ 748 if (expires < 0) 749 expires = 0; 750 751 if (timer->is_soft) { 752 /* 753 * soft hrtimer could be started on a remote CPU. In this 754 * case softirq_expires_next needs to be updated on the 755 * remote CPU. The soft hrtimer will not expire before the 756 * first hard hrtimer on the remote CPU - 757 * hrtimer_check_target() prevents this case. 758 */ 759 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 760 761 if (timer_cpu_base->softirq_activated) 762 return; 763 764 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 765 return; 766 767 timer_cpu_base->softirq_next_timer = timer; 768 timer_cpu_base->softirq_expires_next = expires; 769 770 if (!ktime_before(expires, timer_cpu_base->expires_next) || 771 !reprogram) 772 return; 773 } 774 775 /* 776 * If the timer is not on the current cpu, we cannot reprogram 777 * the other cpus clock event device. 778 */ 779 if (base->cpu_base != cpu_base) 780 return; 781 782 /* 783 * If the hrtimer interrupt is running, then it will 784 * reevaluate the clock bases and reprogram the clock event 785 * device. The callbacks are always executed in hard interrupt 786 * context so we don't need an extra check for a running 787 * callback. 788 */ 789 if (cpu_base->in_hrtirq) 790 return; 791 792 if (expires >= cpu_base->expires_next) 793 return; 794 795 /* Update the pointer to the next expiring timer */ 796 cpu_base->next_timer = timer; 797 cpu_base->expires_next = expires; 798 799 /* 800 * If hres is not active, hardware does not have to be 801 * programmed yet. 802 * 803 * If a hang was detected in the last timer interrupt then we 804 * do not schedule a timer which is earlier than the expiry 805 * which we enforced in the hang detection. We want the system 806 * to make progress. 807 */ 808 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 809 return; 810 811 /* 812 * Program the timer hardware. We enforce the expiry for 813 * events which are already in the past. 814 */ 815 tick_program_event(expires, 1); 816 } 817 818 /* 819 * Clock realtime was set 820 * 821 * Change the offset of the realtime clock vs. the monotonic 822 * clock. 823 * 824 * We might have to reprogram the high resolution timer interrupt. On 825 * SMP we call the architecture specific code to retrigger _all_ high 826 * resolution timer interrupts. On UP we just disable interrupts and 827 * call the high resolution interrupt code. 828 */ 829 void clock_was_set(void) 830 { 831 #ifdef CONFIG_HIGH_RES_TIMERS 832 /* Retrigger the CPU local events everywhere */ 833 on_each_cpu(retrigger_next_event, NULL, 1); 834 #endif 835 timerfd_clock_was_set(); 836 } 837 838 /* 839 * During resume we might have to reprogram the high resolution timer 840 * interrupt on all online CPUs. However, all other CPUs will be 841 * stopped with IRQs interrupts disabled so the clock_was_set() call 842 * must be deferred. 843 */ 844 void hrtimers_resume(void) 845 { 846 lockdep_assert_irqs_disabled(); 847 /* Retrigger on the local CPU */ 848 retrigger_next_event(NULL); 849 /* And schedule a retrigger for all others */ 850 clock_was_set_delayed(); 851 } 852 853 /* 854 * Counterpart to lock_hrtimer_base above: 855 */ 856 static inline 857 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 858 { 859 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 860 } 861 862 /** 863 * hrtimer_forward - forward the timer expiry 864 * @timer: hrtimer to forward 865 * @now: forward past this time 866 * @interval: the interval to forward 867 * 868 * Forward the timer expiry so it will expire in the future. 869 * Returns the number of overruns. 870 * 871 * Can be safely called from the callback function of @timer. If 872 * called from other contexts @timer must neither be enqueued nor 873 * running the callback and the caller needs to take care of 874 * serialization. 875 * 876 * Note: This only updates the timer expiry value and does not requeue 877 * the timer. 878 */ 879 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 880 { 881 u64 orun = 1; 882 ktime_t delta; 883 884 delta = ktime_sub(now, hrtimer_get_expires(timer)); 885 886 if (delta < 0) 887 return 0; 888 889 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 890 return 0; 891 892 if (interval < hrtimer_resolution) 893 interval = hrtimer_resolution; 894 895 if (unlikely(delta >= interval)) { 896 s64 incr = ktime_to_ns(interval); 897 898 orun = ktime_divns(delta, incr); 899 hrtimer_add_expires_ns(timer, incr * orun); 900 if (hrtimer_get_expires_tv64(timer) > now) 901 return orun; 902 /* 903 * This (and the ktime_add() below) is the 904 * correction for exact: 905 */ 906 orun++; 907 } 908 hrtimer_add_expires(timer, interval); 909 910 return orun; 911 } 912 EXPORT_SYMBOL_GPL(hrtimer_forward); 913 914 /* 915 * enqueue_hrtimer - internal function to (re)start a timer 916 * 917 * The timer is inserted in expiry order. Insertion into the 918 * red black tree is O(log(n)). Must hold the base lock. 919 * 920 * Returns 1 when the new timer is the leftmost timer in the tree. 921 */ 922 static int enqueue_hrtimer(struct hrtimer *timer, 923 struct hrtimer_clock_base *base, 924 enum hrtimer_mode mode) 925 { 926 debug_activate(timer, mode); 927 928 base->cpu_base->active_bases |= 1 << base->index; 929 930 timer->state = HRTIMER_STATE_ENQUEUED; 931 932 return timerqueue_add(&base->active, &timer->node); 933 } 934 935 /* 936 * __remove_hrtimer - internal function to remove a timer 937 * 938 * Caller must hold the base lock. 939 * 940 * High resolution timer mode reprograms the clock event device when the 941 * timer is the one which expires next. The caller can disable this by setting 942 * reprogram to zero. This is useful, when the context does a reprogramming 943 * anyway (e.g. timer interrupt) 944 */ 945 static void __remove_hrtimer(struct hrtimer *timer, 946 struct hrtimer_clock_base *base, 947 u8 newstate, int reprogram) 948 { 949 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 950 u8 state = timer->state; 951 952 timer->state = newstate; 953 if (!(state & HRTIMER_STATE_ENQUEUED)) 954 return; 955 956 if (!timerqueue_del(&base->active, &timer->node)) 957 cpu_base->active_bases &= ~(1 << base->index); 958 959 /* 960 * Note: If reprogram is false we do not update 961 * cpu_base->next_timer. This happens when we remove the first 962 * timer on a remote cpu. No harm as we never dereference 963 * cpu_base->next_timer. So the worst thing what can happen is 964 * an superflous call to hrtimer_force_reprogram() on the 965 * remote cpu later on if the same timer gets enqueued again. 966 */ 967 if (reprogram && timer == cpu_base->next_timer) 968 hrtimer_force_reprogram(cpu_base, 1); 969 } 970 971 /* 972 * remove hrtimer, called with base lock held 973 */ 974 static inline int 975 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 976 { 977 if (hrtimer_is_queued(timer)) { 978 u8 state = timer->state; 979 int reprogram; 980 981 /* 982 * Remove the timer and force reprogramming when high 983 * resolution mode is active and the timer is on the current 984 * CPU. If we remove a timer on another CPU, reprogramming is 985 * skipped. The interrupt event on this CPU is fired and 986 * reprogramming happens in the interrupt handler. This is a 987 * rare case and less expensive than a smp call. 988 */ 989 debug_deactivate(timer); 990 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 991 992 if (!restart) 993 state = HRTIMER_STATE_INACTIVE; 994 995 __remove_hrtimer(timer, base, state, reprogram); 996 return 1; 997 } 998 return 0; 999 } 1000 1001 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1002 const enum hrtimer_mode mode) 1003 { 1004 #ifdef CONFIG_TIME_LOW_RES 1005 /* 1006 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1007 * granular time values. For relative timers we add hrtimer_resolution 1008 * (i.e. one jiffie) to prevent short timeouts. 1009 */ 1010 timer->is_rel = mode & HRTIMER_MODE_REL; 1011 if (timer->is_rel) 1012 tim = ktime_add_safe(tim, hrtimer_resolution); 1013 #endif 1014 return tim; 1015 } 1016 1017 static void 1018 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1019 { 1020 ktime_t expires; 1021 1022 /* 1023 * Find the next SOFT expiration. 1024 */ 1025 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1026 1027 /* 1028 * reprogramming needs to be triggered, even if the next soft 1029 * hrtimer expires at the same time than the next hard 1030 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1031 */ 1032 if (expires == KTIME_MAX) 1033 return; 1034 1035 /* 1036 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1037 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1038 */ 1039 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1040 } 1041 1042 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1043 u64 delta_ns, const enum hrtimer_mode mode, 1044 struct hrtimer_clock_base *base) 1045 { 1046 struct hrtimer_clock_base *new_base; 1047 1048 /* Remove an active timer from the queue: */ 1049 remove_hrtimer(timer, base, true); 1050 1051 if (mode & HRTIMER_MODE_REL) 1052 tim = ktime_add_safe(tim, base->get_time()); 1053 1054 tim = hrtimer_update_lowres(timer, tim, mode); 1055 1056 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1057 1058 /* Switch the timer base, if necessary: */ 1059 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1060 1061 return enqueue_hrtimer(timer, new_base, mode); 1062 } 1063 1064 /** 1065 * hrtimer_start_range_ns - (re)start an hrtimer 1066 * @timer: the timer to be added 1067 * @tim: expiry time 1068 * @delta_ns: "slack" range for the timer 1069 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1070 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1071 * softirq based mode is considered for debug purpose only! 1072 */ 1073 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1074 u64 delta_ns, const enum hrtimer_mode mode) 1075 { 1076 struct hrtimer_clock_base *base; 1077 unsigned long flags; 1078 1079 /* 1080 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1081 * match. 1082 */ 1083 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1084 1085 base = lock_hrtimer_base(timer, &flags); 1086 1087 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1088 hrtimer_reprogram(timer, true); 1089 1090 unlock_hrtimer_base(timer, &flags); 1091 } 1092 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1093 1094 /** 1095 * hrtimer_try_to_cancel - try to deactivate a timer 1096 * @timer: hrtimer to stop 1097 * 1098 * Returns: 1099 * 0 when the timer was not active 1100 * 1 when the timer was active 1101 * -1 when the timer is currently executing the callback function and 1102 * cannot be stopped 1103 */ 1104 int hrtimer_try_to_cancel(struct hrtimer *timer) 1105 { 1106 struct hrtimer_clock_base *base; 1107 unsigned long flags; 1108 int ret = -1; 1109 1110 /* 1111 * Check lockless first. If the timer is not active (neither 1112 * enqueued nor running the callback, nothing to do here. The 1113 * base lock does not serialize against a concurrent enqueue, 1114 * so we can avoid taking it. 1115 */ 1116 if (!hrtimer_active(timer)) 1117 return 0; 1118 1119 base = lock_hrtimer_base(timer, &flags); 1120 1121 if (!hrtimer_callback_running(timer)) 1122 ret = remove_hrtimer(timer, base, false); 1123 1124 unlock_hrtimer_base(timer, &flags); 1125 1126 return ret; 1127 1128 } 1129 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1130 1131 /** 1132 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1133 * @timer: the timer to be cancelled 1134 * 1135 * Returns: 1136 * 0 when the timer was not active 1137 * 1 when the timer was active 1138 */ 1139 int hrtimer_cancel(struct hrtimer *timer) 1140 { 1141 for (;;) { 1142 int ret = hrtimer_try_to_cancel(timer); 1143 1144 if (ret >= 0) 1145 return ret; 1146 cpu_relax(); 1147 } 1148 } 1149 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1150 1151 /** 1152 * hrtimer_get_remaining - get remaining time for the timer 1153 * @timer: the timer to read 1154 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1155 */ 1156 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1157 { 1158 unsigned long flags; 1159 ktime_t rem; 1160 1161 lock_hrtimer_base(timer, &flags); 1162 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1163 rem = hrtimer_expires_remaining_adjusted(timer); 1164 else 1165 rem = hrtimer_expires_remaining(timer); 1166 unlock_hrtimer_base(timer, &flags); 1167 1168 return rem; 1169 } 1170 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1171 1172 #ifdef CONFIG_NO_HZ_COMMON 1173 /** 1174 * hrtimer_get_next_event - get the time until next expiry event 1175 * 1176 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1177 */ 1178 u64 hrtimer_get_next_event(void) 1179 { 1180 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1181 u64 expires = KTIME_MAX; 1182 unsigned long flags; 1183 1184 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1185 1186 if (!__hrtimer_hres_active(cpu_base)) 1187 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1188 1189 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1190 1191 return expires; 1192 } 1193 #endif 1194 1195 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1196 { 1197 if (likely(clock_id < MAX_CLOCKS)) { 1198 int base = hrtimer_clock_to_base_table[clock_id]; 1199 1200 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1201 return base; 1202 } 1203 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1204 return HRTIMER_BASE_MONOTONIC; 1205 } 1206 1207 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1208 enum hrtimer_mode mode) 1209 { 1210 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1211 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1212 struct hrtimer_cpu_base *cpu_base; 1213 1214 memset(timer, 0, sizeof(struct hrtimer)); 1215 1216 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1217 1218 /* 1219 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1220 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1221 * ensure POSIX compliance. 1222 */ 1223 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1224 clock_id = CLOCK_MONOTONIC; 1225 1226 base += hrtimer_clockid_to_base(clock_id); 1227 timer->is_soft = softtimer; 1228 timer->base = &cpu_base->clock_base[base]; 1229 timerqueue_init(&timer->node); 1230 } 1231 1232 /** 1233 * hrtimer_init - initialize a timer to the given clock 1234 * @timer: the timer to be initialized 1235 * @clock_id: the clock to be used 1236 * @mode: The modes which are relevant for intitialization: 1237 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1238 * HRTIMER_MODE_REL_SOFT 1239 * 1240 * The PINNED variants of the above can be handed in, 1241 * but the PINNED bit is ignored as pinning happens 1242 * when the hrtimer is started 1243 */ 1244 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1245 enum hrtimer_mode mode) 1246 { 1247 debug_init(timer, clock_id, mode); 1248 __hrtimer_init(timer, clock_id, mode); 1249 } 1250 EXPORT_SYMBOL_GPL(hrtimer_init); 1251 1252 /* 1253 * A timer is active, when it is enqueued into the rbtree or the 1254 * callback function is running or it's in the state of being migrated 1255 * to another cpu. 1256 * 1257 * It is important for this function to not return a false negative. 1258 */ 1259 bool hrtimer_active(const struct hrtimer *timer) 1260 { 1261 struct hrtimer_clock_base *base; 1262 unsigned int seq; 1263 1264 do { 1265 base = READ_ONCE(timer->base); 1266 seq = raw_read_seqcount_begin(&base->seq); 1267 1268 if (timer->state != HRTIMER_STATE_INACTIVE || 1269 base->running == timer) 1270 return true; 1271 1272 } while (read_seqcount_retry(&base->seq, seq) || 1273 base != READ_ONCE(timer->base)); 1274 1275 return false; 1276 } 1277 EXPORT_SYMBOL_GPL(hrtimer_active); 1278 1279 /* 1280 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1281 * distinct sections: 1282 * 1283 * - queued: the timer is queued 1284 * - callback: the timer is being ran 1285 * - post: the timer is inactive or (re)queued 1286 * 1287 * On the read side we ensure we observe timer->state and cpu_base->running 1288 * from the same section, if anything changed while we looked at it, we retry. 1289 * This includes timer->base changing because sequence numbers alone are 1290 * insufficient for that. 1291 * 1292 * The sequence numbers are required because otherwise we could still observe 1293 * a false negative if the read side got smeared over multiple consequtive 1294 * __run_hrtimer() invocations. 1295 */ 1296 1297 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1298 struct hrtimer_clock_base *base, 1299 struct hrtimer *timer, ktime_t *now, 1300 unsigned long flags) 1301 { 1302 enum hrtimer_restart (*fn)(struct hrtimer *); 1303 int restart; 1304 1305 lockdep_assert_held(&cpu_base->lock); 1306 1307 debug_deactivate(timer); 1308 base->running = timer; 1309 1310 /* 1311 * Separate the ->running assignment from the ->state assignment. 1312 * 1313 * As with a regular write barrier, this ensures the read side in 1314 * hrtimer_active() cannot observe base->running == NULL && 1315 * timer->state == INACTIVE. 1316 */ 1317 raw_write_seqcount_barrier(&base->seq); 1318 1319 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1320 fn = timer->function; 1321 1322 /* 1323 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1324 * timer is restarted with a period then it becomes an absolute 1325 * timer. If its not restarted it does not matter. 1326 */ 1327 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1328 timer->is_rel = false; 1329 1330 /* 1331 * The timer is marked as running in the CPU base, so it is 1332 * protected against migration to a different CPU even if the lock 1333 * is dropped. 1334 */ 1335 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1336 trace_hrtimer_expire_entry(timer, now); 1337 restart = fn(timer); 1338 trace_hrtimer_expire_exit(timer); 1339 raw_spin_lock_irq(&cpu_base->lock); 1340 1341 /* 1342 * Note: We clear the running state after enqueue_hrtimer and 1343 * we do not reprogram the event hardware. Happens either in 1344 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1345 * 1346 * Note: Because we dropped the cpu_base->lock above, 1347 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1348 * for us already. 1349 */ 1350 if (restart != HRTIMER_NORESTART && 1351 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1352 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1353 1354 /* 1355 * Separate the ->running assignment from the ->state assignment. 1356 * 1357 * As with a regular write barrier, this ensures the read side in 1358 * hrtimer_active() cannot observe base->running.timer == NULL && 1359 * timer->state == INACTIVE. 1360 */ 1361 raw_write_seqcount_barrier(&base->seq); 1362 1363 WARN_ON_ONCE(base->running != timer); 1364 base->running = NULL; 1365 } 1366 1367 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1368 unsigned long flags, unsigned int active_mask) 1369 { 1370 struct hrtimer_clock_base *base; 1371 unsigned int active = cpu_base->active_bases & active_mask; 1372 1373 for_each_active_base(base, cpu_base, active) { 1374 struct timerqueue_node *node; 1375 ktime_t basenow; 1376 1377 basenow = ktime_add(now, base->offset); 1378 1379 while ((node = timerqueue_getnext(&base->active))) { 1380 struct hrtimer *timer; 1381 1382 timer = container_of(node, struct hrtimer, node); 1383 1384 /* 1385 * The immediate goal for using the softexpires is 1386 * minimizing wakeups, not running timers at the 1387 * earliest interrupt after their soft expiration. 1388 * This allows us to avoid using a Priority Search 1389 * Tree, which can answer a stabbing querry for 1390 * overlapping intervals and instead use the simple 1391 * BST we already have. 1392 * We don't add extra wakeups by delaying timers that 1393 * are right-of a not yet expired timer, because that 1394 * timer will have to trigger a wakeup anyway. 1395 */ 1396 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1397 break; 1398 1399 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1400 } 1401 } 1402 } 1403 1404 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1405 { 1406 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1407 unsigned long flags; 1408 ktime_t now; 1409 1410 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1411 1412 now = hrtimer_update_base(cpu_base); 1413 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1414 1415 cpu_base->softirq_activated = 0; 1416 hrtimer_update_softirq_timer(cpu_base, true); 1417 1418 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1419 } 1420 1421 #ifdef CONFIG_HIGH_RES_TIMERS 1422 1423 /* 1424 * High resolution timer interrupt 1425 * Called with interrupts disabled 1426 */ 1427 void hrtimer_interrupt(struct clock_event_device *dev) 1428 { 1429 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1430 ktime_t expires_next, now, entry_time, delta; 1431 unsigned long flags; 1432 int retries = 0; 1433 1434 BUG_ON(!cpu_base->hres_active); 1435 cpu_base->nr_events++; 1436 dev->next_event = KTIME_MAX; 1437 1438 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1439 entry_time = now = hrtimer_update_base(cpu_base); 1440 retry: 1441 cpu_base->in_hrtirq = 1; 1442 /* 1443 * We set expires_next to KTIME_MAX here with cpu_base->lock 1444 * held to prevent that a timer is enqueued in our queue via 1445 * the migration code. This does not affect enqueueing of 1446 * timers which run their callback and need to be requeued on 1447 * this CPU. 1448 */ 1449 cpu_base->expires_next = KTIME_MAX; 1450 1451 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1452 cpu_base->softirq_expires_next = KTIME_MAX; 1453 cpu_base->softirq_activated = 1; 1454 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1455 } 1456 1457 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1458 1459 /* Reevaluate the clock bases for the next expiry */ 1460 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1461 /* 1462 * Store the new expiry value so the migration code can verify 1463 * against it. 1464 */ 1465 cpu_base->expires_next = expires_next; 1466 cpu_base->in_hrtirq = 0; 1467 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1468 1469 /* Reprogramming necessary ? */ 1470 if (!tick_program_event(expires_next, 0)) { 1471 cpu_base->hang_detected = 0; 1472 return; 1473 } 1474 1475 /* 1476 * The next timer was already expired due to: 1477 * - tracing 1478 * - long lasting callbacks 1479 * - being scheduled away when running in a VM 1480 * 1481 * We need to prevent that we loop forever in the hrtimer 1482 * interrupt routine. We give it 3 attempts to avoid 1483 * overreacting on some spurious event. 1484 * 1485 * Acquire base lock for updating the offsets and retrieving 1486 * the current time. 1487 */ 1488 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1489 now = hrtimer_update_base(cpu_base); 1490 cpu_base->nr_retries++; 1491 if (++retries < 3) 1492 goto retry; 1493 /* 1494 * Give the system a chance to do something else than looping 1495 * here. We stored the entry time, so we know exactly how long 1496 * we spent here. We schedule the next event this amount of 1497 * time away. 1498 */ 1499 cpu_base->nr_hangs++; 1500 cpu_base->hang_detected = 1; 1501 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1502 1503 delta = ktime_sub(now, entry_time); 1504 if ((unsigned int)delta > cpu_base->max_hang_time) 1505 cpu_base->max_hang_time = (unsigned int) delta; 1506 /* 1507 * Limit it to a sensible value as we enforce a longer 1508 * delay. Give the CPU at least 100ms to catch up. 1509 */ 1510 if (delta > 100 * NSEC_PER_MSEC) 1511 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1512 else 1513 expires_next = ktime_add(now, delta); 1514 tick_program_event(expires_next, 1); 1515 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1516 ktime_to_ns(delta)); 1517 } 1518 1519 /* called with interrupts disabled */ 1520 static inline void __hrtimer_peek_ahead_timers(void) 1521 { 1522 struct tick_device *td; 1523 1524 if (!hrtimer_hres_active()) 1525 return; 1526 1527 td = this_cpu_ptr(&tick_cpu_device); 1528 if (td && td->evtdev) 1529 hrtimer_interrupt(td->evtdev); 1530 } 1531 1532 #else /* CONFIG_HIGH_RES_TIMERS */ 1533 1534 static inline void __hrtimer_peek_ahead_timers(void) { } 1535 1536 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1537 1538 /* 1539 * Called from run_local_timers in hardirq context every jiffy 1540 */ 1541 void hrtimer_run_queues(void) 1542 { 1543 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1544 unsigned long flags; 1545 ktime_t now; 1546 1547 if (__hrtimer_hres_active(cpu_base)) 1548 return; 1549 1550 /* 1551 * This _is_ ugly: We have to check periodically, whether we 1552 * can switch to highres and / or nohz mode. The clocksource 1553 * switch happens with xtime_lock held. Notification from 1554 * there only sets the check bit in the tick_oneshot code, 1555 * otherwise we might deadlock vs. xtime_lock. 1556 */ 1557 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1558 hrtimer_switch_to_hres(); 1559 return; 1560 } 1561 1562 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1563 now = hrtimer_update_base(cpu_base); 1564 1565 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1566 cpu_base->softirq_expires_next = KTIME_MAX; 1567 cpu_base->softirq_activated = 1; 1568 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1569 } 1570 1571 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1572 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1573 } 1574 1575 /* 1576 * Sleep related functions: 1577 */ 1578 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1579 { 1580 struct hrtimer_sleeper *t = 1581 container_of(timer, struct hrtimer_sleeper, timer); 1582 struct task_struct *task = t->task; 1583 1584 t->task = NULL; 1585 if (task) 1586 wake_up_process(task); 1587 1588 return HRTIMER_NORESTART; 1589 } 1590 1591 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1592 { 1593 sl->timer.function = hrtimer_wakeup; 1594 sl->task = task; 1595 } 1596 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1597 1598 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1599 { 1600 switch(restart->nanosleep.type) { 1601 #ifdef CONFIG_COMPAT 1602 case TT_COMPAT: 1603 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp)) 1604 return -EFAULT; 1605 break; 1606 #endif 1607 case TT_NATIVE: 1608 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1609 return -EFAULT; 1610 break; 1611 default: 1612 BUG(); 1613 } 1614 return -ERESTART_RESTARTBLOCK; 1615 } 1616 1617 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1618 { 1619 struct restart_block *restart; 1620 1621 hrtimer_init_sleeper(t, current); 1622 1623 do { 1624 set_current_state(TASK_INTERRUPTIBLE); 1625 hrtimer_start_expires(&t->timer, mode); 1626 1627 if (likely(t->task)) 1628 freezable_schedule(); 1629 1630 hrtimer_cancel(&t->timer); 1631 mode = HRTIMER_MODE_ABS; 1632 1633 } while (t->task && !signal_pending(current)); 1634 1635 __set_current_state(TASK_RUNNING); 1636 1637 if (!t->task) 1638 return 0; 1639 1640 restart = ¤t->restart_block; 1641 if (restart->nanosleep.type != TT_NONE) { 1642 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1643 struct timespec64 rmt; 1644 1645 if (rem <= 0) 1646 return 0; 1647 rmt = ktime_to_timespec64(rem); 1648 1649 return nanosleep_copyout(restart, &rmt); 1650 } 1651 return -ERESTART_RESTARTBLOCK; 1652 } 1653 1654 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1655 { 1656 struct hrtimer_sleeper t; 1657 int ret; 1658 1659 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1660 HRTIMER_MODE_ABS); 1661 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1662 1663 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1664 destroy_hrtimer_on_stack(&t.timer); 1665 return ret; 1666 } 1667 1668 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1669 const enum hrtimer_mode mode, const clockid_t clockid) 1670 { 1671 struct restart_block *restart; 1672 struct hrtimer_sleeper t; 1673 int ret = 0; 1674 u64 slack; 1675 1676 slack = current->timer_slack_ns; 1677 if (dl_task(current) || rt_task(current)) 1678 slack = 0; 1679 1680 hrtimer_init_on_stack(&t.timer, clockid, mode); 1681 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1682 ret = do_nanosleep(&t, mode); 1683 if (ret != -ERESTART_RESTARTBLOCK) 1684 goto out; 1685 1686 /* Absolute timers do not update the rmtp value and restart: */ 1687 if (mode == HRTIMER_MODE_ABS) { 1688 ret = -ERESTARTNOHAND; 1689 goto out; 1690 } 1691 1692 restart = ¤t->restart_block; 1693 restart->fn = hrtimer_nanosleep_restart; 1694 restart->nanosleep.clockid = t.timer.base->clockid; 1695 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1696 out: 1697 destroy_hrtimer_on_stack(&t.timer); 1698 return ret; 1699 } 1700 1701 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1702 struct timespec __user *, rmtp) 1703 { 1704 struct timespec64 tu; 1705 1706 if (get_timespec64(&tu, rqtp)) 1707 return -EFAULT; 1708 1709 if (!timespec64_valid(&tu)) 1710 return -EINVAL; 1711 1712 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1713 current->restart_block.nanosleep.rmtp = rmtp; 1714 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1715 } 1716 1717 #ifdef CONFIG_COMPAT 1718 1719 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp, 1720 struct compat_timespec __user *, rmtp) 1721 { 1722 struct timespec64 tu; 1723 1724 if (compat_get_timespec64(&tu, rqtp)) 1725 return -EFAULT; 1726 1727 if (!timespec64_valid(&tu)) 1728 return -EINVAL; 1729 1730 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1731 current->restart_block.nanosleep.compat_rmtp = rmtp; 1732 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1733 } 1734 #endif 1735 1736 /* 1737 * Functions related to boot-time initialization: 1738 */ 1739 int hrtimers_prepare_cpu(unsigned int cpu) 1740 { 1741 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1742 int i; 1743 1744 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1745 cpu_base->clock_base[i].cpu_base = cpu_base; 1746 timerqueue_init_head(&cpu_base->clock_base[i].active); 1747 } 1748 1749 cpu_base->cpu = cpu; 1750 cpu_base->active_bases = 0; 1751 cpu_base->hres_active = 0; 1752 cpu_base->hang_detected = 0; 1753 cpu_base->next_timer = NULL; 1754 cpu_base->softirq_next_timer = NULL; 1755 cpu_base->expires_next = KTIME_MAX; 1756 cpu_base->softirq_expires_next = KTIME_MAX; 1757 return 0; 1758 } 1759 1760 #ifdef CONFIG_HOTPLUG_CPU 1761 1762 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1763 struct hrtimer_clock_base *new_base) 1764 { 1765 struct hrtimer *timer; 1766 struct timerqueue_node *node; 1767 1768 while ((node = timerqueue_getnext(&old_base->active))) { 1769 timer = container_of(node, struct hrtimer, node); 1770 BUG_ON(hrtimer_callback_running(timer)); 1771 debug_deactivate(timer); 1772 1773 /* 1774 * Mark it as ENQUEUED not INACTIVE otherwise the 1775 * timer could be seen as !active and just vanish away 1776 * under us on another CPU 1777 */ 1778 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1779 timer->base = new_base; 1780 /* 1781 * Enqueue the timers on the new cpu. This does not 1782 * reprogram the event device in case the timer 1783 * expires before the earliest on this CPU, but we run 1784 * hrtimer_interrupt after we migrated everything to 1785 * sort out already expired timers and reprogram the 1786 * event device. 1787 */ 1788 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1789 } 1790 } 1791 1792 int hrtimers_dead_cpu(unsigned int scpu) 1793 { 1794 struct hrtimer_cpu_base *old_base, *new_base; 1795 int i; 1796 1797 BUG_ON(cpu_online(scpu)); 1798 tick_cancel_sched_timer(scpu); 1799 1800 /* 1801 * this BH disable ensures that raise_softirq_irqoff() does 1802 * not wakeup ksoftirqd (and acquire the pi-lock) while 1803 * holding the cpu_base lock 1804 */ 1805 local_bh_disable(); 1806 local_irq_disable(); 1807 old_base = &per_cpu(hrtimer_bases, scpu); 1808 new_base = this_cpu_ptr(&hrtimer_bases); 1809 /* 1810 * The caller is globally serialized and nobody else 1811 * takes two locks at once, deadlock is not possible. 1812 */ 1813 raw_spin_lock(&new_base->lock); 1814 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1815 1816 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1817 migrate_hrtimer_list(&old_base->clock_base[i], 1818 &new_base->clock_base[i]); 1819 } 1820 1821 /* 1822 * The migration might have changed the first expiring softirq 1823 * timer on this CPU. Update it. 1824 */ 1825 hrtimer_update_softirq_timer(new_base, false); 1826 1827 raw_spin_unlock(&old_base->lock); 1828 raw_spin_unlock(&new_base->lock); 1829 1830 /* Check, if we got expired work to do */ 1831 __hrtimer_peek_ahead_timers(); 1832 local_irq_enable(); 1833 local_bh_enable(); 1834 return 0; 1835 } 1836 1837 #endif /* CONFIG_HOTPLUG_CPU */ 1838 1839 void __init hrtimers_init(void) 1840 { 1841 hrtimers_prepare_cpu(smp_processor_id()); 1842 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1843 } 1844 1845 /** 1846 * schedule_hrtimeout_range_clock - sleep until timeout 1847 * @expires: timeout value (ktime_t) 1848 * @delta: slack in expires timeout (ktime_t) 1849 * @mode: timer mode 1850 * @clock_id: timer clock to be used 1851 */ 1852 int __sched 1853 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1854 const enum hrtimer_mode mode, clockid_t clock_id) 1855 { 1856 struct hrtimer_sleeper t; 1857 1858 /* 1859 * Optimize when a zero timeout value is given. It does not 1860 * matter whether this is an absolute or a relative time. 1861 */ 1862 if (expires && *expires == 0) { 1863 __set_current_state(TASK_RUNNING); 1864 return 0; 1865 } 1866 1867 /* 1868 * A NULL parameter means "infinite" 1869 */ 1870 if (!expires) { 1871 schedule(); 1872 return -EINTR; 1873 } 1874 1875 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1876 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1877 1878 hrtimer_init_sleeper(&t, current); 1879 1880 hrtimer_start_expires(&t.timer, mode); 1881 1882 if (likely(t.task)) 1883 schedule(); 1884 1885 hrtimer_cancel(&t.timer); 1886 destroy_hrtimer_on_stack(&t.timer); 1887 1888 __set_current_state(TASK_RUNNING); 1889 1890 return !t.task ? 0 : -EINTR; 1891 } 1892 1893 /** 1894 * schedule_hrtimeout_range - sleep until timeout 1895 * @expires: timeout value (ktime_t) 1896 * @delta: slack in expires timeout (ktime_t) 1897 * @mode: timer mode 1898 * 1899 * Make the current task sleep until the given expiry time has 1900 * elapsed. The routine will return immediately unless 1901 * the current task state has been set (see set_current_state()). 1902 * 1903 * The @delta argument gives the kernel the freedom to schedule the 1904 * actual wakeup to a time that is both power and performance friendly. 1905 * The kernel give the normal best effort behavior for "@expires+@delta", 1906 * but may decide to fire the timer earlier, but no earlier than @expires. 1907 * 1908 * You can set the task state as follows - 1909 * 1910 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1911 * pass before the routine returns unless the current task is explicitly 1912 * woken up, (e.g. by wake_up_process()). 1913 * 1914 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1915 * delivered to the current task or the current task is explicitly woken 1916 * up. 1917 * 1918 * The current task state is guaranteed to be TASK_RUNNING when this 1919 * routine returns. 1920 * 1921 * Returns 0 when the timer has expired. If the task was woken before the 1922 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1923 * by an explicit wakeup, it returns -EINTR. 1924 */ 1925 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1926 const enum hrtimer_mode mode) 1927 { 1928 return schedule_hrtimeout_range_clock(expires, delta, mode, 1929 CLOCK_MONOTONIC); 1930 } 1931 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1932 1933 /** 1934 * schedule_hrtimeout - sleep until timeout 1935 * @expires: timeout value (ktime_t) 1936 * @mode: timer mode 1937 * 1938 * Make the current task sleep until the given expiry time has 1939 * elapsed. The routine will return immediately unless 1940 * the current task state has been set (see set_current_state()). 1941 * 1942 * You can set the task state as follows - 1943 * 1944 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1945 * pass before the routine returns unless the current task is explicitly 1946 * woken up, (e.g. by wake_up_process()). 1947 * 1948 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1949 * delivered to the current task or the current task is explicitly woken 1950 * up. 1951 * 1952 * The current task state is guaranteed to be TASK_RUNNING when this 1953 * routine returns. 1954 * 1955 * Returns 0 when the timer has expired. If the task was woken before the 1956 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1957 * by an explicit wakeup, it returns -EINTR. 1958 */ 1959 int __sched schedule_hrtimeout(ktime_t *expires, 1960 const enum hrtimer_mode mode) 1961 { 1962 return schedule_hrtimeout_range(expires, 0, mode); 1963 } 1964 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1965