xref: /openbmc/linux/kernel/time/hrtimer.c (revision 9da8320b)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return base;
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return base;
195 }
196 #endif
197 
198 /*
199  * We switch the timer base to a power-optimized selected CPU target,
200  * if:
201  *	- NO_HZ_COMMON is enabled
202  *	- timer migration is enabled
203  *	- the timer callback is not running
204  *	- the timer is not the first expiring timer on the new target
205  *
206  * If one of the above requirements is not fulfilled we move the timer
207  * to the current CPU or leave it on the previously assigned CPU if
208  * the timer callback is currently running.
209  */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 		    int pinned)
213 {
214 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 	struct hrtimer_clock_base *new_base;
216 	int basenum = base->index;
217 
218 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 	new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_hrtimer_base() */
237 		timer->base = &migration_base;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (new_cpu_base != this_cpu_base &&
242 		    hrtimer_check_target(timer, new_base)) {
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			new_cpu_base = this_cpu_base;
246 			timer->base = base;
247 			goto again;
248 		}
249 		timer->base = new_base;
250 	} else {
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			new_cpu_base = this_cpu_base;
254 			goto again;
255 		}
256 	}
257 	return new_base;
258 }
259 
260 #else /* CONFIG_SMP */
261 
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 	struct hrtimer_clock_base *base = timer->base;
266 
267 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 
269 	return base;
270 }
271 
272 # define switch_hrtimer_base(t, b, p)	(b)
273 
274 #endif	/* !CONFIG_SMP */
275 
276 /*
277  * Functions for the union type storage format of ktime_t which are
278  * too large for inlining:
279  */
280 #if BITS_PER_LONG < 64
281 /*
282  * Divide a ktime value by a nanosecond value
283  */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 	int sft = 0;
287 	s64 dclc;
288 	u64 tmp;
289 
290 	dclc = ktime_to_ns(kt);
291 	tmp = dclc < 0 ? -dclc : dclc;
292 
293 	/* Make sure the divisor is less than 2^32: */
294 	while (div >> 32) {
295 		sft++;
296 		div >>= 1;
297 	}
298 	tmp >>= sft;
299 	do_div(tmp, (unsigned long) div);
300 	return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304 
305 /*
306  * Add two ktime values and do a safety check for overflow:
307  */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 	ktime_t res = ktime_add(lhs, rhs);
311 
312 	/*
313 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 	 * return to user space in a timespec:
315 	 */
316 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 		res = ktime_set(KTIME_SEC_MAX, 0);
318 
319 	return res;
320 }
321 
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323 
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 
326 static struct debug_obj_descr hrtimer_debug_descr;
327 
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 	return ((struct hrtimer *) addr)->function;
331 }
332 
333 /*
334  * fixup_init is called when:
335  * - an active object is initialized
336  */
337 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 	struct hrtimer *timer = addr;
340 
341 	switch (state) {
342 	case ODEBUG_STATE_ACTIVE:
343 		hrtimer_cancel(timer);
344 		debug_object_init(timer, &hrtimer_debug_descr);
345 		return 1;
346 	default:
347 		return 0;
348 	}
349 }
350 
351 /*
352  * fixup_activate is called when:
353  * - an active object is activated
354  * - an unknown object is activated (might be a statically initialized object)
355  */
356 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 	switch (state) {
359 
360 	case ODEBUG_STATE_NOTAVAILABLE:
361 		WARN_ON_ONCE(1);
362 		return 0;
363 
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 
367 	default:
368 		return 0;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return 1;
385 	default:
386 		return 0;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer)
404 {
405 	debug_object_activate(timer, &hrtimer_debug_descr);
406 }
407 
408 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
409 {
410 	debug_object_deactivate(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_free(struct hrtimer *timer)
414 {
415 	debug_object_free(timer, &hrtimer_debug_descr);
416 }
417 
418 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
419 			   enum hrtimer_mode mode);
420 
421 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
422 			   enum hrtimer_mode mode)
423 {
424 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
425 	__hrtimer_init(timer, clock_id, mode);
426 }
427 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428 
429 void destroy_hrtimer_on_stack(struct hrtimer *timer)
430 {
431 	debug_object_free(timer, &hrtimer_debug_descr);
432 }
433 
434 #else
435 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
436 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
437 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
438 #endif
439 
440 static inline void
441 debug_init(struct hrtimer *timer, clockid_t clockid,
442 	   enum hrtimer_mode mode)
443 {
444 	debug_hrtimer_init(timer);
445 	trace_hrtimer_init(timer, clockid, mode);
446 }
447 
448 static inline void debug_activate(struct hrtimer *timer)
449 {
450 	debug_hrtimer_activate(timer);
451 	trace_hrtimer_start(timer);
452 }
453 
454 static inline void debug_deactivate(struct hrtimer *timer)
455 {
456 	debug_hrtimer_deactivate(timer);
457 	trace_hrtimer_cancel(timer);
458 }
459 
460 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
462 					     struct hrtimer *timer)
463 {
464 #ifdef CONFIG_HIGH_RES_TIMERS
465 	cpu_base->next_timer = timer;
466 #endif
467 }
468 
469 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 {
471 	struct hrtimer_clock_base *base = cpu_base->clock_base;
472 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473 	unsigned int active = cpu_base->active_bases;
474 
475 	hrtimer_update_next_timer(cpu_base, NULL);
476 	for (; active; base++, active >>= 1) {
477 		struct timerqueue_node *next;
478 		struct hrtimer *timer;
479 
480 		if (!(active & 0x01))
481 			continue;
482 
483 		next = timerqueue_getnext(&base->active);
484 		timer = container_of(next, struct hrtimer, node);
485 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486 		if (expires.tv64 < expires_next.tv64) {
487 			expires_next = expires;
488 			hrtimer_update_next_timer(cpu_base, timer);
489 		}
490 	}
491 	/*
492 	 * clock_was_set() might have changed base->offset of any of
493 	 * the clock bases so the result might be negative. Fix it up
494 	 * to prevent a false positive in clockevents_program_event().
495 	 */
496 	if (expires_next.tv64 < 0)
497 		expires_next.tv64 = 0;
498 	return expires_next;
499 }
500 #endif
501 
502 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
503 {
504 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
505 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
506 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
507 
508 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
509 					    offs_real, offs_boot, offs_tai);
510 }
511 
512 /* High resolution timer related functions */
513 #ifdef CONFIG_HIGH_RES_TIMERS
514 
515 /*
516  * High resolution timer enabled ?
517  */
518 static int hrtimer_hres_enabled __read_mostly  = 1;
519 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
520 EXPORT_SYMBOL_GPL(hrtimer_resolution);
521 
522 /*
523  * Enable / Disable high resolution mode
524  */
525 static int __init setup_hrtimer_hres(char *str)
526 {
527 	if (!strcmp(str, "off"))
528 		hrtimer_hres_enabled = 0;
529 	else if (!strcmp(str, "on"))
530 		hrtimer_hres_enabled = 1;
531 	else
532 		return 0;
533 	return 1;
534 }
535 
536 __setup("highres=", setup_hrtimer_hres);
537 
538 /*
539  * hrtimer_high_res_enabled - query, if the highres mode is enabled
540  */
541 static inline int hrtimer_is_hres_enabled(void)
542 {
543 	return hrtimer_hres_enabled;
544 }
545 
546 /*
547  * Is the high resolution mode active ?
548  */
549 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
550 {
551 	return cpu_base->hres_active;
552 }
553 
554 static inline int hrtimer_hres_active(void)
555 {
556 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
557 }
558 
559 /*
560  * Reprogram the event source with checking both queues for the
561  * next event
562  * Called with interrupts disabled and base->lock held
563  */
564 static void
565 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
566 {
567 	ktime_t expires_next;
568 
569 	if (!cpu_base->hres_active)
570 		return;
571 
572 	expires_next = __hrtimer_get_next_event(cpu_base);
573 
574 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
575 		return;
576 
577 	cpu_base->expires_next.tv64 = expires_next.tv64;
578 
579 	/*
580 	 * If a hang was detected in the last timer interrupt then we
581 	 * leave the hang delay active in the hardware. We want the
582 	 * system to make progress. That also prevents the following
583 	 * scenario:
584 	 * T1 expires 50ms from now
585 	 * T2 expires 5s from now
586 	 *
587 	 * T1 is removed, so this code is called and would reprogram
588 	 * the hardware to 5s from now. Any hrtimer_start after that
589 	 * will not reprogram the hardware due to hang_detected being
590 	 * set. So we'd effectivly block all timers until the T2 event
591 	 * fires.
592 	 */
593 	if (cpu_base->hang_detected)
594 		return;
595 
596 	tick_program_event(cpu_base->expires_next, 1);
597 }
598 
599 /*
600  * When a timer is enqueued and expires earlier than the already enqueued
601  * timers, we have to check, whether it expires earlier than the timer for
602  * which the clock event device was armed.
603  *
604  * Called with interrupts disabled and base->cpu_base.lock held
605  */
606 static void hrtimer_reprogram(struct hrtimer *timer,
607 			      struct hrtimer_clock_base *base)
608 {
609 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
610 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611 
612 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
613 
614 	/*
615 	 * If the timer is not on the current cpu, we cannot reprogram
616 	 * the other cpus clock event device.
617 	 */
618 	if (base->cpu_base != cpu_base)
619 		return;
620 
621 	/*
622 	 * If the hrtimer interrupt is running, then it will
623 	 * reevaluate the clock bases and reprogram the clock event
624 	 * device. The callbacks are always executed in hard interrupt
625 	 * context so we don't need an extra check for a running
626 	 * callback.
627 	 */
628 	if (cpu_base->in_hrtirq)
629 		return;
630 
631 	/*
632 	 * CLOCK_REALTIME timer might be requested with an absolute
633 	 * expiry time which is less than base->offset. Set it to 0.
634 	 */
635 	if (expires.tv64 < 0)
636 		expires.tv64 = 0;
637 
638 	if (expires.tv64 >= cpu_base->expires_next.tv64)
639 		return;
640 
641 	/* Update the pointer to the next expiring timer */
642 	cpu_base->next_timer = timer;
643 
644 	/*
645 	 * If a hang was detected in the last timer interrupt then we
646 	 * do not schedule a timer which is earlier than the expiry
647 	 * which we enforced in the hang detection. We want the system
648 	 * to make progress.
649 	 */
650 	if (cpu_base->hang_detected)
651 		return;
652 
653 	/*
654 	 * Program the timer hardware. We enforce the expiry for
655 	 * events which are already in the past.
656 	 */
657 	cpu_base->expires_next = expires;
658 	tick_program_event(expires, 1);
659 }
660 
661 /*
662  * Initialize the high resolution related parts of cpu_base
663  */
664 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
665 {
666 	base->expires_next.tv64 = KTIME_MAX;
667 	base->hres_active = 0;
668 }
669 
670 /*
671  * Retrigger next event is called after clock was set
672  *
673  * Called with interrupts disabled via on_each_cpu()
674  */
675 static void retrigger_next_event(void *arg)
676 {
677 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
678 
679 	if (!base->hres_active)
680 		return;
681 
682 	raw_spin_lock(&base->lock);
683 	hrtimer_update_base(base);
684 	hrtimer_force_reprogram(base, 0);
685 	raw_spin_unlock(&base->lock);
686 }
687 
688 /*
689  * Switch to high resolution mode
690  */
691 static void hrtimer_switch_to_hres(void)
692 {
693 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694 
695 	if (tick_init_highres()) {
696 		printk(KERN_WARNING "Could not switch to high resolution "
697 				    "mode on CPU %d\n", base->cpu);
698 		return;
699 	}
700 	base->hres_active = 1;
701 	hrtimer_resolution = HIGH_RES_NSEC;
702 
703 	tick_setup_sched_timer();
704 	/* "Retrigger" the interrupt to get things going */
705 	retrigger_next_event(NULL);
706 }
707 
708 static void clock_was_set_work(struct work_struct *work)
709 {
710 	clock_was_set();
711 }
712 
713 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
714 
715 /*
716  * Called from timekeeping and resume code to reprogramm the hrtimer
717  * interrupt device on all cpus.
718  */
719 void clock_was_set_delayed(void)
720 {
721 	schedule_work(&hrtimer_work);
722 }
723 
724 #else
725 
726 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
727 static inline int hrtimer_hres_active(void) { return 0; }
728 static inline int hrtimer_is_hres_enabled(void) { return 0; }
729 static inline void hrtimer_switch_to_hres(void) { }
730 static inline void
731 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
732 static inline int hrtimer_reprogram(struct hrtimer *timer,
733 				    struct hrtimer_clock_base *base)
734 {
735 	return 0;
736 }
737 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
738 static inline void retrigger_next_event(void *arg) { }
739 
740 #endif /* CONFIG_HIGH_RES_TIMERS */
741 
742 /*
743  * Clock realtime was set
744  *
745  * Change the offset of the realtime clock vs. the monotonic
746  * clock.
747  *
748  * We might have to reprogram the high resolution timer interrupt. On
749  * SMP we call the architecture specific code to retrigger _all_ high
750  * resolution timer interrupts. On UP we just disable interrupts and
751  * call the high resolution interrupt code.
752  */
753 void clock_was_set(void)
754 {
755 #ifdef CONFIG_HIGH_RES_TIMERS
756 	/* Retrigger the CPU local events everywhere */
757 	on_each_cpu(retrigger_next_event, NULL, 1);
758 #endif
759 	timerfd_clock_was_set();
760 }
761 
762 /*
763  * During resume we might have to reprogram the high resolution timer
764  * interrupt on all online CPUs.  However, all other CPUs will be
765  * stopped with IRQs interrupts disabled so the clock_was_set() call
766  * must be deferred.
767  */
768 void hrtimers_resume(void)
769 {
770 	WARN_ONCE(!irqs_disabled(),
771 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
772 
773 	/* Retrigger on the local CPU */
774 	retrigger_next_event(NULL);
775 	/* And schedule a retrigger for all others */
776 	clock_was_set_delayed();
777 }
778 
779 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
780 {
781 #ifdef CONFIG_TIMER_STATS
782 	if (timer->start_site)
783 		return;
784 	timer->start_site = __builtin_return_address(0);
785 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
786 	timer->start_pid = current->pid;
787 #endif
788 }
789 
790 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
791 {
792 #ifdef CONFIG_TIMER_STATS
793 	timer->start_site = NULL;
794 #endif
795 }
796 
797 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
798 {
799 #ifdef CONFIG_TIMER_STATS
800 	if (likely(!timer_stats_active))
801 		return;
802 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
803 				 timer->function, timer->start_comm, 0);
804 #endif
805 }
806 
807 /*
808  * Counterpart to lock_hrtimer_base above:
809  */
810 static inline
811 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
812 {
813 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
814 }
815 
816 /**
817  * hrtimer_forward - forward the timer expiry
818  * @timer:	hrtimer to forward
819  * @now:	forward past this time
820  * @interval:	the interval to forward
821  *
822  * Forward the timer expiry so it will expire in the future.
823  * Returns the number of overruns.
824  *
825  * Can be safely called from the callback function of @timer. If
826  * called from other contexts @timer must neither be enqueued nor
827  * running the callback and the caller needs to take care of
828  * serialization.
829  *
830  * Note: This only updates the timer expiry value and does not requeue
831  * the timer.
832  */
833 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
834 {
835 	u64 orun = 1;
836 	ktime_t delta;
837 
838 	delta = ktime_sub(now, hrtimer_get_expires(timer));
839 
840 	if (delta.tv64 < 0)
841 		return 0;
842 
843 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
844 		return 0;
845 
846 	if (interval.tv64 < hrtimer_resolution)
847 		interval.tv64 = hrtimer_resolution;
848 
849 	if (unlikely(delta.tv64 >= interval.tv64)) {
850 		s64 incr = ktime_to_ns(interval);
851 
852 		orun = ktime_divns(delta, incr);
853 		hrtimer_add_expires_ns(timer, incr * orun);
854 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
855 			return orun;
856 		/*
857 		 * This (and the ktime_add() below) is the
858 		 * correction for exact:
859 		 */
860 		orun++;
861 	}
862 	hrtimer_add_expires(timer, interval);
863 
864 	return orun;
865 }
866 EXPORT_SYMBOL_GPL(hrtimer_forward);
867 
868 /*
869  * enqueue_hrtimer - internal function to (re)start a timer
870  *
871  * The timer is inserted in expiry order. Insertion into the
872  * red black tree is O(log(n)). Must hold the base lock.
873  *
874  * Returns 1 when the new timer is the leftmost timer in the tree.
875  */
876 static int enqueue_hrtimer(struct hrtimer *timer,
877 			   struct hrtimer_clock_base *base)
878 {
879 	debug_activate(timer);
880 
881 	base->cpu_base->active_bases |= 1 << base->index;
882 
883 	timer->state = HRTIMER_STATE_ENQUEUED;
884 
885 	return timerqueue_add(&base->active, &timer->node);
886 }
887 
888 /*
889  * __remove_hrtimer - internal function to remove a timer
890  *
891  * Caller must hold the base lock.
892  *
893  * High resolution timer mode reprograms the clock event device when the
894  * timer is the one which expires next. The caller can disable this by setting
895  * reprogram to zero. This is useful, when the context does a reprogramming
896  * anyway (e.g. timer interrupt)
897  */
898 static void __remove_hrtimer(struct hrtimer *timer,
899 			     struct hrtimer_clock_base *base,
900 			     unsigned long newstate, int reprogram)
901 {
902 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
903 	unsigned int state = timer->state;
904 
905 	timer->state = newstate;
906 	if (!(state & HRTIMER_STATE_ENQUEUED))
907 		return;
908 
909 	if (!timerqueue_del(&base->active, &timer->node))
910 		cpu_base->active_bases &= ~(1 << base->index);
911 
912 #ifdef CONFIG_HIGH_RES_TIMERS
913 	/*
914 	 * Note: If reprogram is false we do not update
915 	 * cpu_base->next_timer. This happens when we remove the first
916 	 * timer on a remote cpu. No harm as we never dereference
917 	 * cpu_base->next_timer. So the worst thing what can happen is
918 	 * an superflous call to hrtimer_force_reprogram() on the
919 	 * remote cpu later on if the same timer gets enqueued again.
920 	 */
921 	if (reprogram && timer == cpu_base->next_timer)
922 		hrtimer_force_reprogram(cpu_base, 1);
923 #endif
924 }
925 
926 /*
927  * remove hrtimer, called with base lock held
928  */
929 static inline int
930 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
931 {
932 	if (hrtimer_is_queued(timer)) {
933 		unsigned long state = timer->state;
934 		int reprogram;
935 
936 		/*
937 		 * Remove the timer and force reprogramming when high
938 		 * resolution mode is active and the timer is on the current
939 		 * CPU. If we remove a timer on another CPU, reprogramming is
940 		 * skipped. The interrupt event on this CPU is fired and
941 		 * reprogramming happens in the interrupt handler. This is a
942 		 * rare case and less expensive than a smp call.
943 		 */
944 		debug_deactivate(timer);
945 		timer_stats_hrtimer_clear_start_info(timer);
946 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
947 
948 		if (!restart)
949 			state = HRTIMER_STATE_INACTIVE;
950 
951 		__remove_hrtimer(timer, base, state, reprogram);
952 		return 1;
953 	}
954 	return 0;
955 }
956 
957 /**
958  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
959  * @timer:	the timer to be added
960  * @tim:	expiry time
961  * @delta_ns:	"slack" range for the timer
962  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
963  *		relative (HRTIMER_MODE_REL)
964  */
965 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
966 			    unsigned long delta_ns, const enum hrtimer_mode mode)
967 {
968 	struct hrtimer_clock_base *base, *new_base;
969 	unsigned long flags;
970 	int leftmost;
971 
972 	base = lock_hrtimer_base(timer, &flags);
973 
974 	/* Remove an active timer from the queue: */
975 	remove_hrtimer(timer, base, true);
976 
977 	if (mode & HRTIMER_MODE_REL) {
978 		tim = ktime_add_safe(tim, base->get_time());
979 		/*
980 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
981 		 * to signal that they simply return xtime in
982 		 * do_gettimeoffset(). In this case we want to round up by
983 		 * resolution when starting a relative timer, to avoid short
984 		 * timeouts. This will go away with the GTOD framework.
985 		 */
986 #ifdef CONFIG_TIME_LOW_RES
987 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
988 #endif
989 	}
990 
991 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
992 
993 	/* Switch the timer base, if necessary: */
994 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
995 
996 	timer_stats_hrtimer_set_start_info(timer);
997 
998 	leftmost = enqueue_hrtimer(timer, new_base);
999 	if (!leftmost)
1000 		goto unlock;
1001 
1002 	if (!hrtimer_is_hres_active(timer)) {
1003 		/*
1004 		 * Kick to reschedule the next tick to handle the new timer
1005 		 * on dynticks target.
1006 		 */
1007 		if (new_base->cpu_base->nohz_active)
1008 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1009 	} else {
1010 		hrtimer_reprogram(timer, new_base);
1011 	}
1012 unlock:
1013 	unlock_hrtimer_base(timer, &flags);
1014 }
1015 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1016 
1017 /**
1018  * hrtimer_try_to_cancel - try to deactivate a timer
1019  * @timer:	hrtimer to stop
1020  *
1021  * Returns:
1022  *  0 when the timer was not active
1023  *  1 when the timer was active
1024  * -1 when the timer is currently excuting the callback function and
1025  *    cannot be stopped
1026  */
1027 int hrtimer_try_to_cancel(struct hrtimer *timer)
1028 {
1029 	struct hrtimer_clock_base *base;
1030 	unsigned long flags;
1031 	int ret = -1;
1032 
1033 	/*
1034 	 * Check lockless first. If the timer is not active (neither
1035 	 * enqueued nor running the callback, nothing to do here.  The
1036 	 * base lock does not serialize against a concurrent enqueue,
1037 	 * so we can avoid taking it.
1038 	 */
1039 	if (!hrtimer_active(timer))
1040 		return 0;
1041 
1042 	base = lock_hrtimer_base(timer, &flags);
1043 
1044 	if (!hrtimer_callback_running(timer))
1045 		ret = remove_hrtimer(timer, base, false);
1046 
1047 	unlock_hrtimer_base(timer, &flags);
1048 
1049 	return ret;
1050 
1051 }
1052 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1053 
1054 /**
1055  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1056  * @timer:	the timer to be cancelled
1057  *
1058  * Returns:
1059  *  0 when the timer was not active
1060  *  1 when the timer was active
1061  */
1062 int hrtimer_cancel(struct hrtimer *timer)
1063 {
1064 	for (;;) {
1065 		int ret = hrtimer_try_to_cancel(timer);
1066 
1067 		if (ret >= 0)
1068 			return ret;
1069 		cpu_relax();
1070 	}
1071 }
1072 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1073 
1074 /**
1075  * hrtimer_get_remaining - get remaining time for the timer
1076  * @timer:	the timer to read
1077  */
1078 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1079 {
1080 	unsigned long flags;
1081 	ktime_t rem;
1082 
1083 	lock_hrtimer_base(timer, &flags);
1084 	rem = hrtimer_expires_remaining(timer);
1085 	unlock_hrtimer_base(timer, &flags);
1086 
1087 	return rem;
1088 }
1089 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1090 
1091 #ifdef CONFIG_NO_HZ_COMMON
1092 /**
1093  * hrtimer_get_next_event - get the time until next expiry event
1094  *
1095  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1096  */
1097 u64 hrtimer_get_next_event(void)
1098 {
1099 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1100 	u64 expires = KTIME_MAX;
1101 	unsigned long flags;
1102 
1103 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104 
1105 	if (!__hrtimer_hres_active(cpu_base))
1106 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1107 
1108 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1109 
1110 	return expires;
1111 }
1112 #endif
1113 
1114 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1115 			   enum hrtimer_mode mode)
1116 {
1117 	struct hrtimer_cpu_base *cpu_base;
1118 	int base;
1119 
1120 	memset(timer, 0, sizeof(struct hrtimer));
1121 
1122 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1123 
1124 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1125 		clock_id = CLOCK_MONOTONIC;
1126 
1127 	base = hrtimer_clockid_to_base(clock_id);
1128 	timer->base = &cpu_base->clock_base[base];
1129 	timerqueue_init(&timer->node);
1130 
1131 #ifdef CONFIG_TIMER_STATS
1132 	timer->start_site = NULL;
1133 	timer->start_pid = -1;
1134 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1135 #endif
1136 }
1137 
1138 /**
1139  * hrtimer_init - initialize a timer to the given clock
1140  * @timer:	the timer to be initialized
1141  * @clock_id:	the clock to be used
1142  * @mode:	timer mode abs/rel
1143  */
1144 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145 		  enum hrtimer_mode mode)
1146 {
1147 	debug_init(timer, clock_id, mode);
1148 	__hrtimer_init(timer, clock_id, mode);
1149 }
1150 EXPORT_SYMBOL_GPL(hrtimer_init);
1151 
1152 /*
1153  * A timer is active, when it is enqueued into the rbtree or the
1154  * callback function is running or it's in the state of being migrated
1155  * to another cpu.
1156  *
1157  * It is important for this function to not return a false negative.
1158  */
1159 bool hrtimer_active(const struct hrtimer *timer)
1160 {
1161 	struct hrtimer_cpu_base *cpu_base;
1162 	unsigned int seq;
1163 
1164 	do {
1165 		cpu_base = READ_ONCE(timer->base->cpu_base);
1166 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1167 
1168 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1169 		    cpu_base->running == timer)
1170 			return true;
1171 
1172 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1173 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1174 
1175 	return false;
1176 }
1177 EXPORT_SYMBOL_GPL(hrtimer_active);
1178 
1179 /*
1180  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1181  * distinct sections:
1182  *
1183  *  - queued:	the timer is queued
1184  *  - callback:	the timer is being ran
1185  *  - post:	the timer is inactive or (re)queued
1186  *
1187  * On the read side we ensure we observe timer->state and cpu_base->running
1188  * from the same section, if anything changed while we looked at it, we retry.
1189  * This includes timer->base changing because sequence numbers alone are
1190  * insufficient for that.
1191  *
1192  * The sequence numbers are required because otherwise we could still observe
1193  * a false negative if the read side got smeared over multiple consequtive
1194  * __run_hrtimer() invocations.
1195  */
1196 
1197 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1198 			  struct hrtimer_clock_base *base,
1199 			  struct hrtimer *timer, ktime_t *now)
1200 {
1201 	enum hrtimer_restart (*fn)(struct hrtimer *);
1202 	int restart;
1203 
1204 	lockdep_assert_held(&cpu_base->lock);
1205 
1206 	debug_deactivate(timer);
1207 	cpu_base->running = timer;
1208 
1209 	/*
1210 	 * Separate the ->running assignment from the ->state assignment.
1211 	 *
1212 	 * As with a regular write barrier, this ensures the read side in
1213 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1214 	 * timer->state == INACTIVE.
1215 	 */
1216 	raw_write_seqcount_barrier(&cpu_base->seq);
1217 
1218 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1219 	timer_stats_account_hrtimer(timer);
1220 	fn = timer->function;
1221 
1222 	/*
1223 	 * Because we run timers from hardirq context, there is no chance
1224 	 * they get migrated to another cpu, therefore its safe to unlock
1225 	 * the timer base.
1226 	 */
1227 	raw_spin_unlock(&cpu_base->lock);
1228 	trace_hrtimer_expire_entry(timer, now);
1229 	restart = fn(timer);
1230 	trace_hrtimer_expire_exit(timer);
1231 	raw_spin_lock(&cpu_base->lock);
1232 
1233 	/*
1234 	 * Note: We clear the running state after enqueue_hrtimer and
1235 	 * we do not reprogramm the event hardware. Happens either in
1236 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1237 	 *
1238 	 * Note: Because we dropped the cpu_base->lock above,
1239 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1240 	 * for us already.
1241 	 */
1242 	if (restart != HRTIMER_NORESTART &&
1243 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1244 		enqueue_hrtimer(timer, base);
1245 
1246 	/*
1247 	 * Separate the ->running assignment from the ->state assignment.
1248 	 *
1249 	 * As with a regular write barrier, this ensures the read side in
1250 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1251 	 * timer->state == INACTIVE.
1252 	 */
1253 	raw_write_seqcount_barrier(&cpu_base->seq);
1254 
1255 	WARN_ON_ONCE(cpu_base->running != timer);
1256 	cpu_base->running = NULL;
1257 }
1258 
1259 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1260 {
1261 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1262 	unsigned int active = cpu_base->active_bases;
1263 
1264 	for (; active; base++, active >>= 1) {
1265 		struct timerqueue_node *node;
1266 		ktime_t basenow;
1267 
1268 		if (!(active & 0x01))
1269 			continue;
1270 
1271 		basenow = ktime_add(now, base->offset);
1272 
1273 		while ((node = timerqueue_getnext(&base->active))) {
1274 			struct hrtimer *timer;
1275 
1276 			timer = container_of(node, struct hrtimer, node);
1277 
1278 			/*
1279 			 * The immediate goal for using the softexpires is
1280 			 * minimizing wakeups, not running timers at the
1281 			 * earliest interrupt after their soft expiration.
1282 			 * This allows us to avoid using a Priority Search
1283 			 * Tree, which can answer a stabbing querry for
1284 			 * overlapping intervals and instead use the simple
1285 			 * BST we already have.
1286 			 * We don't add extra wakeups by delaying timers that
1287 			 * are right-of a not yet expired timer, because that
1288 			 * timer will have to trigger a wakeup anyway.
1289 			 */
1290 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1291 				break;
1292 
1293 			__run_hrtimer(cpu_base, base, timer, &basenow);
1294 		}
1295 	}
1296 }
1297 
1298 #ifdef CONFIG_HIGH_RES_TIMERS
1299 
1300 /*
1301  * High resolution timer interrupt
1302  * Called with interrupts disabled
1303  */
1304 void hrtimer_interrupt(struct clock_event_device *dev)
1305 {
1306 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1307 	ktime_t expires_next, now, entry_time, delta;
1308 	int retries = 0;
1309 
1310 	BUG_ON(!cpu_base->hres_active);
1311 	cpu_base->nr_events++;
1312 	dev->next_event.tv64 = KTIME_MAX;
1313 
1314 	raw_spin_lock(&cpu_base->lock);
1315 	entry_time = now = hrtimer_update_base(cpu_base);
1316 retry:
1317 	cpu_base->in_hrtirq = 1;
1318 	/*
1319 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1320 	 * held to prevent that a timer is enqueued in our queue via
1321 	 * the migration code. This does not affect enqueueing of
1322 	 * timers which run their callback and need to be requeued on
1323 	 * this CPU.
1324 	 */
1325 	cpu_base->expires_next.tv64 = KTIME_MAX;
1326 
1327 	__hrtimer_run_queues(cpu_base, now);
1328 
1329 	/* Reevaluate the clock bases for the next expiry */
1330 	expires_next = __hrtimer_get_next_event(cpu_base);
1331 	/*
1332 	 * Store the new expiry value so the migration code can verify
1333 	 * against it.
1334 	 */
1335 	cpu_base->expires_next = expires_next;
1336 	cpu_base->in_hrtirq = 0;
1337 	raw_spin_unlock(&cpu_base->lock);
1338 
1339 	/* Reprogramming necessary ? */
1340 	if (!tick_program_event(expires_next, 0)) {
1341 		cpu_base->hang_detected = 0;
1342 		return;
1343 	}
1344 
1345 	/*
1346 	 * The next timer was already expired due to:
1347 	 * - tracing
1348 	 * - long lasting callbacks
1349 	 * - being scheduled away when running in a VM
1350 	 *
1351 	 * We need to prevent that we loop forever in the hrtimer
1352 	 * interrupt routine. We give it 3 attempts to avoid
1353 	 * overreacting on some spurious event.
1354 	 *
1355 	 * Acquire base lock for updating the offsets and retrieving
1356 	 * the current time.
1357 	 */
1358 	raw_spin_lock(&cpu_base->lock);
1359 	now = hrtimer_update_base(cpu_base);
1360 	cpu_base->nr_retries++;
1361 	if (++retries < 3)
1362 		goto retry;
1363 	/*
1364 	 * Give the system a chance to do something else than looping
1365 	 * here. We stored the entry time, so we know exactly how long
1366 	 * we spent here. We schedule the next event this amount of
1367 	 * time away.
1368 	 */
1369 	cpu_base->nr_hangs++;
1370 	cpu_base->hang_detected = 1;
1371 	raw_spin_unlock(&cpu_base->lock);
1372 	delta = ktime_sub(now, entry_time);
1373 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1374 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1375 	/*
1376 	 * Limit it to a sensible value as we enforce a longer
1377 	 * delay. Give the CPU at least 100ms to catch up.
1378 	 */
1379 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1380 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1381 	else
1382 		expires_next = ktime_add(now, delta);
1383 	tick_program_event(expires_next, 1);
1384 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1385 		    ktime_to_ns(delta));
1386 }
1387 
1388 /*
1389  * local version of hrtimer_peek_ahead_timers() called with interrupts
1390  * disabled.
1391  */
1392 static inline void __hrtimer_peek_ahead_timers(void)
1393 {
1394 	struct tick_device *td;
1395 
1396 	if (!hrtimer_hres_active())
1397 		return;
1398 
1399 	td = this_cpu_ptr(&tick_cpu_device);
1400 	if (td && td->evtdev)
1401 		hrtimer_interrupt(td->evtdev);
1402 }
1403 
1404 #else /* CONFIG_HIGH_RES_TIMERS */
1405 
1406 static inline void __hrtimer_peek_ahead_timers(void) { }
1407 
1408 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1409 
1410 /*
1411  * Called from run_local_timers in hardirq context every jiffy
1412  */
1413 void hrtimer_run_queues(void)
1414 {
1415 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1416 	ktime_t now;
1417 
1418 	if (__hrtimer_hres_active(cpu_base))
1419 		return;
1420 
1421 	/*
1422 	 * This _is_ ugly: We have to check periodically, whether we
1423 	 * can switch to highres and / or nohz mode. The clocksource
1424 	 * switch happens with xtime_lock held. Notification from
1425 	 * there only sets the check bit in the tick_oneshot code,
1426 	 * otherwise we might deadlock vs. xtime_lock.
1427 	 */
1428 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1429 		hrtimer_switch_to_hres();
1430 		return;
1431 	}
1432 
1433 	raw_spin_lock(&cpu_base->lock);
1434 	now = hrtimer_update_base(cpu_base);
1435 	__hrtimer_run_queues(cpu_base, now);
1436 	raw_spin_unlock(&cpu_base->lock);
1437 }
1438 
1439 /*
1440  * Sleep related functions:
1441  */
1442 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 {
1444 	struct hrtimer_sleeper *t =
1445 		container_of(timer, struct hrtimer_sleeper, timer);
1446 	struct task_struct *task = t->task;
1447 
1448 	t->task = NULL;
1449 	if (task)
1450 		wake_up_process(task);
1451 
1452 	return HRTIMER_NORESTART;
1453 }
1454 
1455 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 {
1457 	sl->timer.function = hrtimer_wakeup;
1458 	sl->task = task;
1459 }
1460 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1461 
1462 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1463 {
1464 	hrtimer_init_sleeper(t, current);
1465 
1466 	do {
1467 		set_current_state(TASK_INTERRUPTIBLE);
1468 		hrtimer_start_expires(&t->timer, mode);
1469 
1470 		if (likely(t->task))
1471 			freezable_schedule();
1472 
1473 		hrtimer_cancel(&t->timer);
1474 		mode = HRTIMER_MODE_ABS;
1475 
1476 	} while (t->task && !signal_pending(current));
1477 
1478 	__set_current_state(TASK_RUNNING);
1479 
1480 	return t->task == NULL;
1481 }
1482 
1483 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1484 {
1485 	struct timespec rmt;
1486 	ktime_t rem;
1487 
1488 	rem = hrtimer_expires_remaining(timer);
1489 	if (rem.tv64 <= 0)
1490 		return 0;
1491 	rmt = ktime_to_timespec(rem);
1492 
1493 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1494 		return -EFAULT;
1495 
1496 	return 1;
1497 }
1498 
1499 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1500 {
1501 	struct hrtimer_sleeper t;
1502 	struct timespec __user  *rmtp;
1503 	int ret = 0;
1504 
1505 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1506 				HRTIMER_MODE_ABS);
1507 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1508 
1509 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1510 		goto out;
1511 
1512 	rmtp = restart->nanosleep.rmtp;
1513 	if (rmtp) {
1514 		ret = update_rmtp(&t.timer, rmtp);
1515 		if (ret <= 0)
1516 			goto out;
1517 	}
1518 
1519 	/* The other values in restart are already filled in */
1520 	ret = -ERESTART_RESTARTBLOCK;
1521 out:
1522 	destroy_hrtimer_on_stack(&t.timer);
1523 	return ret;
1524 }
1525 
1526 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1527 		       const enum hrtimer_mode mode, const clockid_t clockid)
1528 {
1529 	struct restart_block *restart;
1530 	struct hrtimer_sleeper t;
1531 	int ret = 0;
1532 	unsigned long slack;
1533 
1534 	slack = current->timer_slack_ns;
1535 	if (dl_task(current) || rt_task(current))
1536 		slack = 0;
1537 
1538 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1539 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1540 	if (do_nanosleep(&t, mode))
1541 		goto out;
1542 
1543 	/* Absolute timers do not update the rmtp value and restart: */
1544 	if (mode == HRTIMER_MODE_ABS) {
1545 		ret = -ERESTARTNOHAND;
1546 		goto out;
1547 	}
1548 
1549 	if (rmtp) {
1550 		ret = update_rmtp(&t.timer, rmtp);
1551 		if (ret <= 0)
1552 			goto out;
1553 	}
1554 
1555 	restart = &current->restart_block;
1556 	restart->fn = hrtimer_nanosleep_restart;
1557 	restart->nanosleep.clockid = t.timer.base->clockid;
1558 	restart->nanosleep.rmtp = rmtp;
1559 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1560 
1561 	ret = -ERESTART_RESTARTBLOCK;
1562 out:
1563 	destroy_hrtimer_on_stack(&t.timer);
1564 	return ret;
1565 }
1566 
1567 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1568 		struct timespec __user *, rmtp)
1569 {
1570 	struct timespec tu;
1571 
1572 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1573 		return -EFAULT;
1574 
1575 	if (!timespec_valid(&tu))
1576 		return -EINVAL;
1577 
1578 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1579 }
1580 
1581 /*
1582  * Functions related to boot-time initialization:
1583  */
1584 static void init_hrtimers_cpu(int cpu)
1585 {
1586 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1587 	int i;
1588 
1589 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1590 		cpu_base->clock_base[i].cpu_base = cpu_base;
1591 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1592 	}
1593 
1594 	cpu_base->cpu = cpu;
1595 	hrtimer_init_hres(cpu_base);
1596 }
1597 
1598 #ifdef CONFIG_HOTPLUG_CPU
1599 
1600 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601 				struct hrtimer_clock_base *new_base)
1602 {
1603 	struct hrtimer *timer;
1604 	struct timerqueue_node *node;
1605 
1606 	while ((node = timerqueue_getnext(&old_base->active))) {
1607 		timer = container_of(node, struct hrtimer, node);
1608 		BUG_ON(hrtimer_callback_running(timer));
1609 		debug_deactivate(timer);
1610 
1611 		/*
1612 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1613 		 * timer could be seen as !active and just vanish away
1614 		 * under us on another CPU
1615 		 */
1616 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1617 		timer->base = new_base;
1618 		/*
1619 		 * Enqueue the timers on the new cpu. This does not
1620 		 * reprogram the event device in case the timer
1621 		 * expires before the earliest on this CPU, but we run
1622 		 * hrtimer_interrupt after we migrated everything to
1623 		 * sort out already expired timers and reprogram the
1624 		 * event device.
1625 		 */
1626 		enqueue_hrtimer(timer, new_base);
1627 	}
1628 }
1629 
1630 static void migrate_hrtimers(int scpu)
1631 {
1632 	struct hrtimer_cpu_base *old_base, *new_base;
1633 	int i;
1634 
1635 	BUG_ON(cpu_online(scpu));
1636 	tick_cancel_sched_timer(scpu);
1637 
1638 	local_irq_disable();
1639 	old_base = &per_cpu(hrtimer_bases, scpu);
1640 	new_base = this_cpu_ptr(&hrtimer_bases);
1641 	/*
1642 	 * The caller is globally serialized and nobody else
1643 	 * takes two locks at once, deadlock is not possible.
1644 	 */
1645 	raw_spin_lock(&new_base->lock);
1646 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1647 
1648 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1649 		migrate_hrtimer_list(&old_base->clock_base[i],
1650 				     &new_base->clock_base[i]);
1651 	}
1652 
1653 	raw_spin_unlock(&old_base->lock);
1654 	raw_spin_unlock(&new_base->lock);
1655 
1656 	/* Check, if we got expired work to do */
1657 	__hrtimer_peek_ahead_timers();
1658 	local_irq_enable();
1659 }
1660 
1661 #endif /* CONFIG_HOTPLUG_CPU */
1662 
1663 static int hrtimer_cpu_notify(struct notifier_block *self,
1664 					unsigned long action, void *hcpu)
1665 {
1666 	int scpu = (long)hcpu;
1667 
1668 	switch (action) {
1669 
1670 	case CPU_UP_PREPARE:
1671 	case CPU_UP_PREPARE_FROZEN:
1672 		init_hrtimers_cpu(scpu);
1673 		break;
1674 
1675 #ifdef CONFIG_HOTPLUG_CPU
1676 	case CPU_DEAD:
1677 	case CPU_DEAD_FROZEN:
1678 		migrate_hrtimers(scpu);
1679 		break;
1680 #endif
1681 
1682 	default:
1683 		break;
1684 	}
1685 
1686 	return NOTIFY_OK;
1687 }
1688 
1689 static struct notifier_block hrtimers_nb = {
1690 	.notifier_call = hrtimer_cpu_notify,
1691 };
1692 
1693 void __init hrtimers_init(void)
1694 {
1695 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1696 			  (void *)(long)smp_processor_id());
1697 	register_cpu_notifier(&hrtimers_nb);
1698 }
1699 
1700 /**
1701  * schedule_hrtimeout_range_clock - sleep until timeout
1702  * @expires:	timeout value (ktime_t)
1703  * @delta:	slack in expires timeout (ktime_t)
1704  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1705  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1706  */
1707 int __sched
1708 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1709 			       const enum hrtimer_mode mode, int clock)
1710 {
1711 	struct hrtimer_sleeper t;
1712 
1713 	/*
1714 	 * Optimize when a zero timeout value is given. It does not
1715 	 * matter whether this is an absolute or a relative time.
1716 	 */
1717 	if (expires && !expires->tv64) {
1718 		__set_current_state(TASK_RUNNING);
1719 		return 0;
1720 	}
1721 
1722 	/*
1723 	 * A NULL parameter means "infinite"
1724 	 */
1725 	if (!expires) {
1726 		schedule();
1727 		return -EINTR;
1728 	}
1729 
1730 	hrtimer_init_on_stack(&t.timer, clock, mode);
1731 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1732 
1733 	hrtimer_init_sleeper(&t, current);
1734 
1735 	hrtimer_start_expires(&t.timer, mode);
1736 
1737 	if (likely(t.task))
1738 		schedule();
1739 
1740 	hrtimer_cancel(&t.timer);
1741 	destroy_hrtimer_on_stack(&t.timer);
1742 
1743 	__set_current_state(TASK_RUNNING);
1744 
1745 	return !t.task ? 0 : -EINTR;
1746 }
1747 
1748 /**
1749  * schedule_hrtimeout_range - sleep until timeout
1750  * @expires:	timeout value (ktime_t)
1751  * @delta:	slack in expires timeout (ktime_t)
1752  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1753  *
1754  * Make the current task sleep until the given expiry time has
1755  * elapsed. The routine will return immediately unless
1756  * the current task state has been set (see set_current_state()).
1757  *
1758  * The @delta argument gives the kernel the freedom to schedule the
1759  * actual wakeup to a time that is both power and performance friendly.
1760  * The kernel give the normal best effort behavior for "@expires+@delta",
1761  * but may decide to fire the timer earlier, but no earlier than @expires.
1762  *
1763  * You can set the task state as follows -
1764  *
1765  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1766  * pass before the routine returns.
1767  *
1768  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1769  * delivered to the current task.
1770  *
1771  * The current task state is guaranteed to be TASK_RUNNING when this
1772  * routine returns.
1773  *
1774  * Returns 0 when the timer has expired otherwise -EINTR
1775  */
1776 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1777 				     const enum hrtimer_mode mode)
1778 {
1779 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1780 					      CLOCK_MONOTONIC);
1781 }
1782 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1783 
1784 /**
1785  * schedule_hrtimeout - sleep until timeout
1786  * @expires:	timeout value (ktime_t)
1787  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1788  *
1789  * Make the current task sleep until the given expiry time has
1790  * elapsed. The routine will return immediately unless
1791  * the current task state has been set (see set_current_state()).
1792  *
1793  * You can set the task state as follows -
1794  *
1795  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1796  * pass before the routine returns.
1797  *
1798  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1799  * delivered to the current task.
1800  *
1801  * The current task state is guaranteed to be TASK_RUNNING when this
1802  * routine returns.
1803  *
1804  * Returns 0 when the timer has expired otherwise -EINTR
1805  */
1806 int __sched schedule_hrtimeout(ktime_t *expires,
1807 			       const enum hrtimer_mode mode)
1808 {
1809 	return schedule_hrtimeout_range(expires, 0, mode);
1810 }
1811 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1812