xref: /openbmc/linux/kernel/time/hrtimer.c (revision 9aab6601)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static struct debug_obj_descr hrtimer_debug_descr;
346 
347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static inline void debug_hrtimer_free(struct hrtimer *timer)
429 {
430 	debug_object_free(timer, &hrtimer_debug_descr);
431 }
432 
433 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
434 			   enum hrtimer_mode mode);
435 
436 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
437 			   enum hrtimer_mode mode)
438 {
439 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
440 	__hrtimer_init(timer, clock_id, mode);
441 }
442 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
443 
444 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
445 				   clockid_t clock_id, enum hrtimer_mode mode);
446 
447 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
448 				   clockid_t clock_id, enum hrtimer_mode mode)
449 {
450 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
451 	__hrtimer_init_sleeper(sl, clock_id, mode);
452 }
453 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
454 
455 void destroy_hrtimer_on_stack(struct hrtimer *timer)
456 {
457 	debug_object_free(timer, &hrtimer_debug_descr);
458 }
459 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
460 
461 #else
462 
463 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
464 static inline void debug_hrtimer_activate(struct hrtimer *timer,
465 					  enum hrtimer_mode mode) { }
466 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
467 #endif
468 
469 static inline void
470 debug_init(struct hrtimer *timer, clockid_t clockid,
471 	   enum hrtimer_mode mode)
472 {
473 	debug_hrtimer_init(timer);
474 	trace_hrtimer_init(timer, clockid, mode);
475 }
476 
477 static inline void debug_activate(struct hrtimer *timer,
478 				  enum hrtimer_mode mode)
479 {
480 	debug_hrtimer_activate(timer, mode);
481 	trace_hrtimer_start(timer, mode);
482 }
483 
484 static inline void debug_deactivate(struct hrtimer *timer)
485 {
486 	debug_hrtimer_deactivate(timer);
487 	trace_hrtimer_cancel(timer);
488 }
489 
490 static struct hrtimer_clock_base *
491 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
492 {
493 	unsigned int idx;
494 
495 	if (!*active)
496 		return NULL;
497 
498 	idx = __ffs(*active);
499 	*active &= ~(1U << idx);
500 
501 	return &cpu_base->clock_base[idx];
502 }
503 
504 #define for_each_active_base(base, cpu_base, active)	\
505 	while ((base = __next_base((cpu_base), &(active))))
506 
507 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
508 					 const struct hrtimer *exclude,
509 					 unsigned int active,
510 					 ktime_t expires_next)
511 {
512 	struct hrtimer_clock_base *base;
513 	ktime_t expires;
514 
515 	for_each_active_base(base, cpu_base, active) {
516 		struct timerqueue_node *next;
517 		struct hrtimer *timer;
518 
519 		next = timerqueue_getnext(&base->active);
520 		timer = container_of(next, struct hrtimer, node);
521 		if (timer == exclude) {
522 			/* Get to the next timer in the queue. */
523 			next = timerqueue_iterate_next(next);
524 			if (!next)
525 				continue;
526 
527 			timer = container_of(next, struct hrtimer, node);
528 		}
529 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
530 		if (expires < expires_next) {
531 			expires_next = expires;
532 
533 			/* Skip cpu_base update if a timer is being excluded. */
534 			if (exclude)
535 				continue;
536 
537 			if (timer->is_soft)
538 				cpu_base->softirq_next_timer = timer;
539 			else
540 				cpu_base->next_timer = timer;
541 		}
542 	}
543 	/*
544 	 * clock_was_set() might have changed base->offset of any of
545 	 * the clock bases so the result might be negative. Fix it up
546 	 * to prevent a false positive in clockevents_program_event().
547 	 */
548 	if (expires_next < 0)
549 		expires_next = 0;
550 	return expires_next;
551 }
552 
553 /*
554  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
555  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
556  *
557  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
558  * those timers will get run whenever the softirq gets handled, at the end of
559  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
560  *
561  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
562  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
563  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
564  *
565  * @active_mask must be one of:
566  *  - HRTIMER_ACTIVE_ALL,
567  *  - HRTIMER_ACTIVE_SOFT, or
568  *  - HRTIMER_ACTIVE_HARD.
569  */
570 static ktime_t
571 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
572 {
573 	unsigned int active;
574 	struct hrtimer *next_timer = NULL;
575 	ktime_t expires_next = KTIME_MAX;
576 
577 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
578 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
579 		cpu_base->softirq_next_timer = NULL;
580 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
581 							 active, KTIME_MAX);
582 
583 		next_timer = cpu_base->softirq_next_timer;
584 	}
585 
586 	if (active_mask & HRTIMER_ACTIVE_HARD) {
587 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
588 		cpu_base->next_timer = next_timer;
589 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
590 							 expires_next);
591 	}
592 
593 	return expires_next;
594 }
595 
596 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
597 {
598 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
599 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
600 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
601 
602 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
603 					    offs_real, offs_boot, offs_tai);
604 
605 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
606 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
607 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
608 
609 	return now;
610 }
611 
612 /*
613  * Is the high resolution mode active ?
614  */
615 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
616 {
617 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
618 		cpu_base->hres_active : 0;
619 }
620 
621 static inline int hrtimer_hres_active(void)
622 {
623 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
624 }
625 
626 /*
627  * Reprogram the event source with checking both queues for the
628  * next event
629  * Called with interrupts disabled and base->lock held
630  */
631 static void
632 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
633 {
634 	ktime_t expires_next;
635 
636 	/*
637 	 * Find the current next expiration time.
638 	 */
639 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
640 
641 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
642 		/*
643 		 * When the softirq is activated, hrtimer has to be
644 		 * programmed with the first hard hrtimer because soft
645 		 * timer interrupt could occur too late.
646 		 */
647 		if (cpu_base->softirq_activated)
648 			expires_next = __hrtimer_get_next_event(cpu_base,
649 								HRTIMER_ACTIVE_HARD);
650 		else
651 			cpu_base->softirq_expires_next = expires_next;
652 	}
653 
654 	if (skip_equal && expires_next == cpu_base->expires_next)
655 		return;
656 
657 	cpu_base->expires_next = expires_next;
658 
659 	/*
660 	 * If hres is not active, hardware does not have to be
661 	 * reprogrammed yet.
662 	 *
663 	 * If a hang was detected in the last timer interrupt then we
664 	 * leave the hang delay active in the hardware. We want the
665 	 * system to make progress. That also prevents the following
666 	 * scenario:
667 	 * T1 expires 50ms from now
668 	 * T2 expires 5s from now
669 	 *
670 	 * T1 is removed, so this code is called and would reprogram
671 	 * the hardware to 5s from now. Any hrtimer_start after that
672 	 * will not reprogram the hardware due to hang_detected being
673 	 * set. So we'd effectivly block all timers until the T2 event
674 	 * fires.
675 	 */
676 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
677 		return;
678 
679 	tick_program_event(cpu_base->expires_next, 1);
680 }
681 
682 /* High resolution timer related functions */
683 #ifdef CONFIG_HIGH_RES_TIMERS
684 
685 /*
686  * High resolution timer enabled ?
687  */
688 static bool hrtimer_hres_enabled __read_mostly  = true;
689 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
690 EXPORT_SYMBOL_GPL(hrtimer_resolution);
691 
692 /*
693  * Enable / Disable high resolution mode
694  */
695 static int __init setup_hrtimer_hres(char *str)
696 {
697 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
698 }
699 
700 __setup("highres=", setup_hrtimer_hres);
701 
702 /*
703  * hrtimer_high_res_enabled - query, if the highres mode is enabled
704  */
705 static inline int hrtimer_is_hres_enabled(void)
706 {
707 	return hrtimer_hres_enabled;
708 }
709 
710 /*
711  * Retrigger next event is called after clock was set
712  *
713  * Called with interrupts disabled via on_each_cpu()
714  */
715 static void retrigger_next_event(void *arg)
716 {
717 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
718 
719 	if (!__hrtimer_hres_active(base))
720 		return;
721 
722 	raw_spin_lock(&base->lock);
723 	hrtimer_update_base(base);
724 	hrtimer_force_reprogram(base, 0);
725 	raw_spin_unlock(&base->lock);
726 }
727 
728 /*
729  * Switch to high resolution mode
730  */
731 static void hrtimer_switch_to_hres(void)
732 {
733 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
734 
735 	if (tick_init_highres()) {
736 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
737 			base->cpu);
738 		return;
739 	}
740 	base->hres_active = 1;
741 	hrtimer_resolution = HIGH_RES_NSEC;
742 
743 	tick_setup_sched_timer();
744 	/* "Retrigger" the interrupt to get things going */
745 	retrigger_next_event(NULL);
746 }
747 
748 static void clock_was_set_work(struct work_struct *work)
749 {
750 	clock_was_set();
751 }
752 
753 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
754 
755 /*
756  * Called from timekeeping and resume code to reprogram the hrtimer
757  * interrupt device on all cpus.
758  */
759 void clock_was_set_delayed(void)
760 {
761 	schedule_work(&hrtimer_work);
762 }
763 
764 #else
765 
766 static inline int hrtimer_is_hres_enabled(void) { return 0; }
767 static inline void hrtimer_switch_to_hres(void) { }
768 static inline void retrigger_next_event(void *arg) { }
769 
770 #endif /* CONFIG_HIGH_RES_TIMERS */
771 
772 /*
773  * When a timer is enqueued and expires earlier than the already enqueued
774  * timers, we have to check, whether it expires earlier than the timer for
775  * which the clock event device was armed.
776  *
777  * Called with interrupts disabled and base->cpu_base.lock held
778  */
779 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
780 {
781 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
782 	struct hrtimer_clock_base *base = timer->base;
783 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
784 
785 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
786 
787 	/*
788 	 * CLOCK_REALTIME timer might be requested with an absolute
789 	 * expiry time which is less than base->offset. Set it to 0.
790 	 */
791 	if (expires < 0)
792 		expires = 0;
793 
794 	if (timer->is_soft) {
795 		/*
796 		 * soft hrtimer could be started on a remote CPU. In this
797 		 * case softirq_expires_next needs to be updated on the
798 		 * remote CPU. The soft hrtimer will not expire before the
799 		 * first hard hrtimer on the remote CPU -
800 		 * hrtimer_check_target() prevents this case.
801 		 */
802 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
803 
804 		if (timer_cpu_base->softirq_activated)
805 			return;
806 
807 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
808 			return;
809 
810 		timer_cpu_base->softirq_next_timer = timer;
811 		timer_cpu_base->softirq_expires_next = expires;
812 
813 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
814 		    !reprogram)
815 			return;
816 	}
817 
818 	/*
819 	 * If the timer is not on the current cpu, we cannot reprogram
820 	 * the other cpus clock event device.
821 	 */
822 	if (base->cpu_base != cpu_base)
823 		return;
824 
825 	/*
826 	 * If the hrtimer interrupt is running, then it will
827 	 * reevaluate the clock bases and reprogram the clock event
828 	 * device. The callbacks are always executed in hard interrupt
829 	 * context so we don't need an extra check for a running
830 	 * callback.
831 	 */
832 	if (cpu_base->in_hrtirq)
833 		return;
834 
835 	if (expires >= cpu_base->expires_next)
836 		return;
837 
838 	/* Update the pointer to the next expiring timer */
839 	cpu_base->next_timer = timer;
840 	cpu_base->expires_next = expires;
841 
842 	/*
843 	 * If hres is not active, hardware does not have to be
844 	 * programmed yet.
845 	 *
846 	 * If a hang was detected in the last timer interrupt then we
847 	 * do not schedule a timer which is earlier than the expiry
848 	 * which we enforced in the hang detection. We want the system
849 	 * to make progress.
850 	 */
851 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
852 		return;
853 
854 	/*
855 	 * Program the timer hardware. We enforce the expiry for
856 	 * events which are already in the past.
857 	 */
858 	tick_program_event(expires, 1);
859 }
860 
861 /*
862  * Clock realtime was set
863  *
864  * Change the offset of the realtime clock vs. the monotonic
865  * clock.
866  *
867  * We might have to reprogram the high resolution timer interrupt. On
868  * SMP we call the architecture specific code to retrigger _all_ high
869  * resolution timer interrupts. On UP we just disable interrupts and
870  * call the high resolution interrupt code.
871  */
872 void clock_was_set(void)
873 {
874 #ifdef CONFIG_HIGH_RES_TIMERS
875 	/* Retrigger the CPU local events everywhere */
876 	on_each_cpu(retrigger_next_event, NULL, 1);
877 #endif
878 	timerfd_clock_was_set();
879 }
880 
881 /*
882  * During resume we might have to reprogram the high resolution timer
883  * interrupt on all online CPUs.  However, all other CPUs will be
884  * stopped with IRQs interrupts disabled so the clock_was_set() call
885  * must be deferred.
886  */
887 void hrtimers_resume(void)
888 {
889 	lockdep_assert_irqs_disabled();
890 	/* Retrigger on the local CPU */
891 	retrigger_next_event(NULL);
892 	/* And schedule a retrigger for all others */
893 	clock_was_set_delayed();
894 }
895 
896 /*
897  * Counterpart to lock_hrtimer_base above:
898  */
899 static inline
900 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
901 {
902 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
903 }
904 
905 /**
906  * hrtimer_forward - forward the timer expiry
907  * @timer:	hrtimer to forward
908  * @now:	forward past this time
909  * @interval:	the interval to forward
910  *
911  * Forward the timer expiry so it will expire in the future.
912  * Returns the number of overruns.
913  *
914  * Can be safely called from the callback function of @timer. If
915  * called from other contexts @timer must neither be enqueued nor
916  * running the callback and the caller needs to take care of
917  * serialization.
918  *
919  * Note: This only updates the timer expiry value and does not requeue
920  * the timer.
921  */
922 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
923 {
924 	u64 orun = 1;
925 	ktime_t delta;
926 
927 	delta = ktime_sub(now, hrtimer_get_expires(timer));
928 
929 	if (delta < 0)
930 		return 0;
931 
932 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
933 		return 0;
934 
935 	if (interval < hrtimer_resolution)
936 		interval = hrtimer_resolution;
937 
938 	if (unlikely(delta >= interval)) {
939 		s64 incr = ktime_to_ns(interval);
940 
941 		orun = ktime_divns(delta, incr);
942 		hrtimer_add_expires_ns(timer, incr * orun);
943 		if (hrtimer_get_expires_tv64(timer) > now)
944 			return orun;
945 		/*
946 		 * This (and the ktime_add() below) is the
947 		 * correction for exact:
948 		 */
949 		orun++;
950 	}
951 	hrtimer_add_expires(timer, interval);
952 
953 	return orun;
954 }
955 EXPORT_SYMBOL_GPL(hrtimer_forward);
956 
957 /*
958  * enqueue_hrtimer - internal function to (re)start a timer
959  *
960  * The timer is inserted in expiry order. Insertion into the
961  * red black tree is O(log(n)). Must hold the base lock.
962  *
963  * Returns 1 when the new timer is the leftmost timer in the tree.
964  */
965 static int enqueue_hrtimer(struct hrtimer *timer,
966 			   struct hrtimer_clock_base *base,
967 			   enum hrtimer_mode mode)
968 {
969 	debug_activate(timer, mode);
970 
971 	base->cpu_base->active_bases |= 1 << base->index;
972 
973 	/* Pairs with the lockless read in hrtimer_is_queued() */
974 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
975 
976 	return timerqueue_add(&base->active, &timer->node);
977 }
978 
979 /*
980  * __remove_hrtimer - internal function to remove a timer
981  *
982  * Caller must hold the base lock.
983  *
984  * High resolution timer mode reprograms the clock event device when the
985  * timer is the one which expires next. The caller can disable this by setting
986  * reprogram to zero. This is useful, when the context does a reprogramming
987  * anyway (e.g. timer interrupt)
988  */
989 static void __remove_hrtimer(struct hrtimer *timer,
990 			     struct hrtimer_clock_base *base,
991 			     u8 newstate, int reprogram)
992 {
993 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
994 	u8 state = timer->state;
995 
996 	/* Pairs with the lockless read in hrtimer_is_queued() */
997 	WRITE_ONCE(timer->state, newstate);
998 	if (!(state & HRTIMER_STATE_ENQUEUED))
999 		return;
1000 
1001 	if (!timerqueue_del(&base->active, &timer->node))
1002 		cpu_base->active_bases &= ~(1 << base->index);
1003 
1004 	/*
1005 	 * Note: If reprogram is false we do not update
1006 	 * cpu_base->next_timer. This happens when we remove the first
1007 	 * timer on a remote cpu. No harm as we never dereference
1008 	 * cpu_base->next_timer. So the worst thing what can happen is
1009 	 * an superflous call to hrtimer_force_reprogram() on the
1010 	 * remote cpu later on if the same timer gets enqueued again.
1011 	 */
1012 	if (reprogram && timer == cpu_base->next_timer)
1013 		hrtimer_force_reprogram(cpu_base, 1);
1014 }
1015 
1016 /*
1017  * remove hrtimer, called with base lock held
1018  */
1019 static inline int
1020 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1021 {
1022 	u8 state = timer->state;
1023 
1024 	if (state & HRTIMER_STATE_ENQUEUED) {
1025 		int reprogram;
1026 
1027 		/*
1028 		 * Remove the timer and force reprogramming when high
1029 		 * resolution mode is active and the timer is on the current
1030 		 * CPU. If we remove a timer on another CPU, reprogramming is
1031 		 * skipped. The interrupt event on this CPU is fired and
1032 		 * reprogramming happens in the interrupt handler. This is a
1033 		 * rare case and less expensive than a smp call.
1034 		 */
1035 		debug_deactivate(timer);
1036 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1037 
1038 		if (!restart)
1039 			state = HRTIMER_STATE_INACTIVE;
1040 
1041 		__remove_hrtimer(timer, base, state, reprogram);
1042 		return 1;
1043 	}
1044 	return 0;
1045 }
1046 
1047 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1048 					    const enum hrtimer_mode mode)
1049 {
1050 #ifdef CONFIG_TIME_LOW_RES
1051 	/*
1052 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1053 	 * granular time values. For relative timers we add hrtimer_resolution
1054 	 * (i.e. one jiffie) to prevent short timeouts.
1055 	 */
1056 	timer->is_rel = mode & HRTIMER_MODE_REL;
1057 	if (timer->is_rel)
1058 		tim = ktime_add_safe(tim, hrtimer_resolution);
1059 #endif
1060 	return tim;
1061 }
1062 
1063 static void
1064 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1065 {
1066 	ktime_t expires;
1067 
1068 	/*
1069 	 * Find the next SOFT expiration.
1070 	 */
1071 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1072 
1073 	/*
1074 	 * reprogramming needs to be triggered, even if the next soft
1075 	 * hrtimer expires at the same time than the next hard
1076 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1077 	 */
1078 	if (expires == KTIME_MAX)
1079 		return;
1080 
1081 	/*
1082 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1083 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1084 	 */
1085 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1086 }
1087 
1088 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1089 				    u64 delta_ns, const enum hrtimer_mode mode,
1090 				    struct hrtimer_clock_base *base)
1091 {
1092 	struct hrtimer_clock_base *new_base;
1093 
1094 	/* Remove an active timer from the queue: */
1095 	remove_hrtimer(timer, base, true);
1096 
1097 	if (mode & HRTIMER_MODE_REL)
1098 		tim = ktime_add_safe(tim, base->get_time());
1099 
1100 	tim = hrtimer_update_lowres(timer, tim, mode);
1101 
1102 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1103 
1104 	/* Switch the timer base, if necessary: */
1105 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1106 
1107 	return enqueue_hrtimer(timer, new_base, mode);
1108 }
1109 
1110 /**
1111  * hrtimer_start_range_ns - (re)start an hrtimer
1112  * @timer:	the timer to be added
1113  * @tim:	expiry time
1114  * @delta_ns:	"slack" range for the timer
1115  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1116  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1117  *		softirq based mode is considered for debug purpose only!
1118  */
1119 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1120 			    u64 delta_ns, const enum hrtimer_mode mode)
1121 {
1122 	struct hrtimer_clock_base *base;
1123 	unsigned long flags;
1124 
1125 	/*
1126 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1127 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1128 	 * expiry mode because unmarked timers are moved to softirq expiry.
1129 	 */
1130 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1131 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1132 	else
1133 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1134 
1135 	base = lock_hrtimer_base(timer, &flags);
1136 
1137 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1138 		hrtimer_reprogram(timer, true);
1139 
1140 	unlock_hrtimer_base(timer, &flags);
1141 }
1142 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1143 
1144 /**
1145  * hrtimer_try_to_cancel - try to deactivate a timer
1146  * @timer:	hrtimer to stop
1147  *
1148  * Returns:
1149  *
1150  *  *  0 when the timer was not active
1151  *  *  1 when the timer was active
1152  *  * -1 when the timer is currently executing the callback function and
1153  *    cannot be stopped
1154  */
1155 int hrtimer_try_to_cancel(struct hrtimer *timer)
1156 {
1157 	struct hrtimer_clock_base *base;
1158 	unsigned long flags;
1159 	int ret = -1;
1160 
1161 	/*
1162 	 * Check lockless first. If the timer is not active (neither
1163 	 * enqueued nor running the callback, nothing to do here.  The
1164 	 * base lock does not serialize against a concurrent enqueue,
1165 	 * so we can avoid taking it.
1166 	 */
1167 	if (!hrtimer_active(timer))
1168 		return 0;
1169 
1170 	base = lock_hrtimer_base(timer, &flags);
1171 
1172 	if (!hrtimer_callback_running(timer))
1173 		ret = remove_hrtimer(timer, base, false);
1174 
1175 	unlock_hrtimer_base(timer, &flags);
1176 
1177 	return ret;
1178 
1179 }
1180 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1181 
1182 #ifdef CONFIG_PREEMPT_RT
1183 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1184 {
1185 	spin_lock_init(&base->softirq_expiry_lock);
1186 }
1187 
1188 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1189 {
1190 	spin_lock(&base->softirq_expiry_lock);
1191 }
1192 
1193 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1194 {
1195 	spin_unlock(&base->softirq_expiry_lock);
1196 }
1197 
1198 /*
1199  * The counterpart to hrtimer_cancel_wait_running().
1200  *
1201  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1202  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1203  * allows the waiter to acquire the lock and make progress.
1204  */
1205 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1206 				      unsigned long flags)
1207 {
1208 	if (atomic_read(&cpu_base->timer_waiters)) {
1209 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1210 		spin_unlock(&cpu_base->softirq_expiry_lock);
1211 		spin_lock(&cpu_base->softirq_expiry_lock);
1212 		raw_spin_lock_irq(&cpu_base->lock);
1213 	}
1214 }
1215 
1216 /*
1217  * This function is called on PREEMPT_RT kernels when the fast path
1218  * deletion of a timer failed because the timer callback function was
1219  * running.
1220  *
1221  * This prevents priority inversion: if the soft irq thread is preempted
1222  * in the middle of a timer callback, then calling del_timer_sync() can
1223  * lead to two issues:
1224  *
1225  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1226  *    handler to complete. This can result in unbound priority inversion.
1227  *
1228  *  - If the caller originates from the task which preempted the timer
1229  *    handler on the same CPU, then spin waiting for the timer handler to
1230  *    complete is never going to end.
1231  */
1232 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1233 {
1234 	/* Lockless read. Prevent the compiler from reloading it below */
1235 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1236 
1237 	/*
1238 	 * Just relax if the timer expires in hard interrupt context or if
1239 	 * it is currently on the migration base.
1240 	 */
1241 	if (!timer->is_soft || is_migration_base(base)) {
1242 		cpu_relax();
1243 		return;
1244 	}
1245 
1246 	/*
1247 	 * Mark the base as contended and grab the expiry lock, which is
1248 	 * held by the softirq across the timer callback. Drop the lock
1249 	 * immediately so the softirq can expire the next timer. In theory
1250 	 * the timer could already be running again, but that's more than
1251 	 * unlikely and just causes another wait loop.
1252 	 */
1253 	atomic_inc(&base->cpu_base->timer_waiters);
1254 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1255 	atomic_dec(&base->cpu_base->timer_waiters);
1256 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1257 }
1258 #else
1259 static inline void
1260 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1261 static inline void
1262 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1263 static inline void
1264 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1265 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1266 					     unsigned long flags) { }
1267 #endif
1268 
1269 /**
1270  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1271  * @timer:	the timer to be cancelled
1272  *
1273  * Returns:
1274  *  0 when the timer was not active
1275  *  1 when the timer was active
1276  */
1277 int hrtimer_cancel(struct hrtimer *timer)
1278 {
1279 	int ret;
1280 
1281 	do {
1282 		ret = hrtimer_try_to_cancel(timer);
1283 
1284 		if (ret < 0)
1285 			hrtimer_cancel_wait_running(timer);
1286 	} while (ret < 0);
1287 	return ret;
1288 }
1289 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1290 
1291 /**
1292  * hrtimer_get_remaining - get remaining time for the timer
1293  * @timer:	the timer to read
1294  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1295  */
1296 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1297 {
1298 	unsigned long flags;
1299 	ktime_t rem;
1300 
1301 	lock_hrtimer_base(timer, &flags);
1302 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1303 		rem = hrtimer_expires_remaining_adjusted(timer);
1304 	else
1305 		rem = hrtimer_expires_remaining(timer);
1306 	unlock_hrtimer_base(timer, &flags);
1307 
1308 	return rem;
1309 }
1310 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1311 
1312 #ifdef CONFIG_NO_HZ_COMMON
1313 /**
1314  * hrtimer_get_next_event - get the time until next expiry event
1315  *
1316  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1317  */
1318 u64 hrtimer_get_next_event(void)
1319 {
1320 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1321 	u64 expires = KTIME_MAX;
1322 	unsigned long flags;
1323 
1324 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1325 
1326 	if (!__hrtimer_hres_active(cpu_base))
1327 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1328 
1329 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1330 
1331 	return expires;
1332 }
1333 
1334 /**
1335  * hrtimer_next_event_without - time until next expiry event w/o one timer
1336  * @exclude:	timer to exclude
1337  *
1338  * Returns the next expiry time over all timers except for the @exclude one or
1339  * KTIME_MAX if none of them is pending.
1340  */
1341 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1342 {
1343 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1344 	u64 expires = KTIME_MAX;
1345 	unsigned long flags;
1346 
1347 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1348 
1349 	if (__hrtimer_hres_active(cpu_base)) {
1350 		unsigned int active;
1351 
1352 		if (!cpu_base->softirq_activated) {
1353 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1354 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1355 							    active, KTIME_MAX);
1356 		}
1357 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1358 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1359 						    expires);
1360 	}
1361 
1362 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1363 
1364 	return expires;
1365 }
1366 #endif
1367 
1368 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1369 {
1370 	if (likely(clock_id < MAX_CLOCKS)) {
1371 		int base = hrtimer_clock_to_base_table[clock_id];
1372 
1373 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1374 			return base;
1375 	}
1376 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1377 	return HRTIMER_BASE_MONOTONIC;
1378 }
1379 
1380 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1381 			   enum hrtimer_mode mode)
1382 {
1383 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1384 	struct hrtimer_cpu_base *cpu_base;
1385 	int base;
1386 
1387 	/*
1388 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1389 	 * marked for hard interrupt expiry mode are moved into soft
1390 	 * interrupt context for latency reasons and because the callbacks
1391 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1392 	 */
1393 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1394 		softtimer = true;
1395 
1396 	memset(timer, 0, sizeof(struct hrtimer));
1397 
1398 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1399 
1400 	/*
1401 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1402 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1403 	 * ensure POSIX compliance.
1404 	 */
1405 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1406 		clock_id = CLOCK_MONOTONIC;
1407 
1408 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1409 	base += hrtimer_clockid_to_base(clock_id);
1410 	timer->is_soft = softtimer;
1411 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1412 	timer->base = &cpu_base->clock_base[base];
1413 	timerqueue_init(&timer->node);
1414 }
1415 
1416 /**
1417  * hrtimer_init - initialize a timer to the given clock
1418  * @timer:	the timer to be initialized
1419  * @clock_id:	the clock to be used
1420  * @mode:       The modes which are relevant for intitialization:
1421  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1422  *              HRTIMER_MODE_REL_SOFT
1423  *
1424  *              The PINNED variants of the above can be handed in,
1425  *              but the PINNED bit is ignored as pinning happens
1426  *              when the hrtimer is started
1427  */
1428 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1429 		  enum hrtimer_mode mode)
1430 {
1431 	debug_init(timer, clock_id, mode);
1432 	__hrtimer_init(timer, clock_id, mode);
1433 }
1434 EXPORT_SYMBOL_GPL(hrtimer_init);
1435 
1436 /*
1437  * A timer is active, when it is enqueued into the rbtree or the
1438  * callback function is running or it's in the state of being migrated
1439  * to another cpu.
1440  *
1441  * It is important for this function to not return a false negative.
1442  */
1443 bool hrtimer_active(const struct hrtimer *timer)
1444 {
1445 	struct hrtimer_clock_base *base;
1446 	unsigned int seq;
1447 
1448 	do {
1449 		base = READ_ONCE(timer->base);
1450 		seq = raw_read_seqcount_begin(&base->seq);
1451 
1452 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1453 		    base->running == timer)
1454 			return true;
1455 
1456 	} while (read_seqcount_retry(&base->seq, seq) ||
1457 		 base != READ_ONCE(timer->base));
1458 
1459 	return false;
1460 }
1461 EXPORT_SYMBOL_GPL(hrtimer_active);
1462 
1463 /*
1464  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1465  * distinct sections:
1466  *
1467  *  - queued:	the timer is queued
1468  *  - callback:	the timer is being ran
1469  *  - post:	the timer is inactive or (re)queued
1470  *
1471  * On the read side we ensure we observe timer->state and cpu_base->running
1472  * from the same section, if anything changed while we looked at it, we retry.
1473  * This includes timer->base changing because sequence numbers alone are
1474  * insufficient for that.
1475  *
1476  * The sequence numbers are required because otherwise we could still observe
1477  * a false negative if the read side got smeared over multiple consequtive
1478  * __run_hrtimer() invocations.
1479  */
1480 
1481 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1482 			  struct hrtimer_clock_base *base,
1483 			  struct hrtimer *timer, ktime_t *now,
1484 			  unsigned long flags) __must_hold(&cpu_base->lock)
1485 {
1486 	enum hrtimer_restart (*fn)(struct hrtimer *);
1487 	bool expires_in_hardirq;
1488 	int restart;
1489 
1490 	lockdep_assert_held(&cpu_base->lock);
1491 
1492 	debug_deactivate(timer);
1493 	base->running = timer;
1494 
1495 	/*
1496 	 * Separate the ->running assignment from the ->state assignment.
1497 	 *
1498 	 * As with a regular write barrier, this ensures the read side in
1499 	 * hrtimer_active() cannot observe base->running == NULL &&
1500 	 * timer->state == INACTIVE.
1501 	 */
1502 	raw_write_seqcount_barrier(&base->seq);
1503 
1504 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1505 	fn = timer->function;
1506 
1507 	/*
1508 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1509 	 * timer is restarted with a period then it becomes an absolute
1510 	 * timer. If its not restarted it does not matter.
1511 	 */
1512 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1513 		timer->is_rel = false;
1514 
1515 	/*
1516 	 * The timer is marked as running in the CPU base, so it is
1517 	 * protected against migration to a different CPU even if the lock
1518 	 * is dropped.
1519 	 */
1520 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1521 	trace_hrtimer_expire_entry(timer, now);
1522 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1523 
1524 	restart = fn(timer);
1525 
1526 	lockdep_hrtimer_exit(expires_in_hardirq);
1527 	trace_hrtimer_expire_exit(timer);
1528 	raw_spin_lock_irq(&cpu_base->lock);
1529 
1530 	/*
1531 	 * Note: We clear the running state after enqueue_hrtimer and
1532 	 * we do not reprogram the event hardware. Happens either in
1533 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1534 	 *
1535 	 * Note: Because we dropped the cpu_base->lock above,
1536 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1537 	 * for us already.
1538 	 */
1539 	if (restart != HRTIMER_NORESTART &&
1540 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1541 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1542 
1543 	/*
1544 	 * Separate the ->running assignment from the ->state assignment.
1545 	 *
1546 	 * As with a regular write barrier, this ensures the read side in
1547 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1548 	 * timer->state == INACTIVE.
1549 	 */
1550 	raw_write_seqcount_barrier(&base->seq);
1551 
1552 	WARN_ON_ONCE(base->running != timer);
1553 	base->running = NULL;
1554 }
1555 
1556 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1557 				 unsigned long flags, unsigned int active_mask)
1558 {
1559 	struct hrtimer_clock_base *base;
1560 	unsigned int active = cpu_base->active_bases & active_mask;
1561 
1562 	for_each_active_base(base, cpu_base, active) {
1563 		struct timerqueue_node *node;
1564 		ktime_t basenow;
1565 
1566 		basenow = ktime_add(now, base->offset);
1567 
1568 		while ((node = timerqueue_getnext(&base->active))) {
1569 			struct hrtimer *timer;
1570 
1571 			timer = container_of(node, struct hrtimer, node);
1572 
1573 			/*
1574 			 * The immediate goal for using the softexpires is
1575 			 * minimizing wakeups, not running timers at the
1576 			 * earliest interrupt after their soft expiration.
1577 			 * This allows us to avoid using a Priority Search
1578 			 * Tree, which can answer a stabbing querry for
1579 			 * overlapping intervals and instead use the simple
1580 			 * BST we already have.
1581 			 * We don't add extra wakeups by delaying timers that
1582 			 * are right-of a not yet expired timer, because that
1583 			 * timer will have to trigger a wakeup anyway.
1584 			 */
1585 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1586 				break;
1587 
1588 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1589 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1590 				hrtimer_sync_wait_running(cpu_base, flags);
1591 		}
1592 	}
1593 }
1594 
1595 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1596 {
1597 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1598 	unsigned long flags;
1599 	ktime_t now;
1600 
1601 	hrtimer_cpu_base_lock_expiry(cpu_base);
1602 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1603 
1604 	now = hrtimer_update_base(cpu_base);
1605 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1606 
1607 	cpu_base->softirq_activated = 0;
1608 	hrtimer_update_softirq_timer(cpu_base, true);
1609 
1610 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1611 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1612 }
1613 
1614 #ifdef CONFIG_HIGH_RES_TIMERS
1615 
1616 /*
1617  * High resolution timer interrupt
1618  * Called with interrupts disabled
1619  */
1620 void hrtimer_interrupt(struct clock_event_device *dev)
1621 {
1622 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1623 	ktime_t expires_next, now, entry_time, delta;
1624 	unsigned long flags;
1625 	int retries = 0;
1626 
1627 	BUG_ON(!cpu_base->hres_active);
1628 	cpu_base->nr_events++;
1629 	dev->next_event = KTIME_MAX;
1630 
1631 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1632 	entry_time = now = hrtimer_update_base(cpu_base);
1633 retry:
1634 	cpu_base->in_hrtirq = 1;
1635 	/*
1636 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1637 	 * held to prevent that a timer is enqueued in our queue via
1638 	 * the migration code. This does not affect enqueueing of
1639 	 * timers which run their callback and need to be requeued on
1640 	 * this CPU.
1641 	 */
1642 	cpu_base->expires_next = KTIME_MAX;
1643 
1644 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1645 		cpu_base->softirq_expires_next = KTIME_MAX;
1646 		cpu_base->softirq_activated = 1;
1647 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1648 	}
1649 
1650 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1651 
1652 	/* Reevaluate the clock bases for the next expiry */
1653 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1654 	/*
1655 	 * Store the new expiry value so the migration code can verify
1656 	 * against it.
1657 	 */
1658 	cpu_base->expires_next = expires_next;
1659 	cpu_base->in_hrtirq = 0;
1660 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1661 
1662 	/* Reprogramming necessary ? */
1663 	if (!tick_program_event(expires_next, 0)) {
1664 		cpu_base->hang_detected = 0;
1665 		return;
1666 	}
1667 
1668 	/*
1669 	 * The next timer was already expired due to:
1670 	 * - tracing
1671 	 * - long lasting callbacks
1672 	 * - being scheduled away when running in a VM
1673 	 *
1674 	 * We need to prevent that we loop forever in the hrtimer
1675 	 * interrupt routine. We give it 3 attempts to avoid
1676 	 * overreacting on some spurious event.
1677 	 *
1678 	 * Acquire base lock for updating the offsets and retrieving
1679 	 * the current time.
1680 	 */
1681 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1682 	now = hrtimer_update_base(cpu_base);
1683 	cpu_base->nr_retries++;
1684 	if (++retries < 3)
1685 		goto retry;
1686 	/*
1687 	 * Give the system a chance to do something else than looping
1688 	 * here. We stored the entry time, so we know exactly how long
1689 	 * we spent here. We schedule the next event this amount of
1690 	 * time away.
1691 	 */
1692 	cpu_base->nr_hangs++;
1693 	cpu_base->hang_detected = 1;
1694 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1695 
1696 	delta = ktime_sub(now, entry_time);
1697 	if ((unsigned int)delta > cpu_base->max_hang_time)
1698 		cpu_base->max_hang_time = (unsigned int) delta;
1699 	/*
1700 	 * Limit it to a sensible value as we enforce a longer
1701 	 * delay. Give the CPU at least 100ms to catch up.
1702 	 */
1703 	if (delta > 100 * NSEC_PER_MSEC)
1704 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1705 	else
1706 		expires_next = ktime_add(now, delta);
1707 	tick_program_event(expires_next, 1);
1708 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1709 }
1710 
1711 /* called with interrupts disabled */
1712 static inline void __hrtimer_peek_ahead_timers(void)
1713 {
1714 	struct tick_device *td;
1715 
1716 	if (!hrtimer_hres_active())
1717 		return;
1718 
1719 	td = this_cpu_ptr(&tick_cpu_device);
1720 	if (td && td->evtdev)
1721 		hrtimer_interrupt(td->evtdev);
1722 }
1723 
1724 #else /* CONFIG_HIGH_RES_TIMERS */
1725 
1726 static inline void __hrtimer_peek_ahead_timers(void) { }
1727 
1728 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1729 
1730 /*
1731  * Called from run_local_timers in hardirq context every jiffy
1732  */
1733 void hrtimer_run_queues(void)
1734 {
1735 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1736 	unsigned long flags;
1737 	ktime_t now;
1738 
1739 	if (__hrtimer_hres_active(cpu_base))
1740 		return;
1741 
1742 	/*
1743 	 * This _is_ ugly: We have to check periodically, whether we
1744 	 * can switch to highres and / or nohz mode. The clocksource
1745 	 * switch happens with xtime_lock held. Notification from
1746 	 * there only sets the check bit in the tick_oneshot code,
1747 	 * otherwise we might deadlock vs. xtime_lock.
1748 	 */
1749 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1750 		hrtimer_switch_to_hres();
1751 		return;
1752 	}
1753 
1754 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1755 	now = hrtimer_update_base(cpu_base);
1756 
1757 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1758 		cpu_base->softirq_expires_next = KTIME_MAX;
1759 		cpu_base->softirq_activated = 1;
1760 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1761 	}
1762 
1763 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1764 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1765 }
1766 
1767 /*
1768  * Sleep related functions:
1769  */
1770 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1771 {
1772 	struct hrtimer_sleeper *t =
1773 		container_of(timer, struct hrtimer_sleeper, timer);
1774 	struct task_struct *task = t->task;
1775 
1776 	t->task = NULL;
1777 	if (task)
1778 		wake_up_process(task);
1779 
1780 	return HRTIMER_NORESTART;
1781 }
1782 
1783 /**
1784  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1785  * @sl:		sleeper to be started
1786  * @mode:	timer mode abs/rel
1787  *
1788  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1789  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1790  */
1791 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1792 				   enum hrtimer_mode mode)
1793 {
1794 	/*
1795 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1796 	 * was initialized for hard interrupt delivery, force the mode bit.
1797 	 * This is a special case for hrtimer_sleepers because
1798 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1799 	 * fiddling with this decision is avoided at the call sites.
1800 	 */
1801 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1802 		mode |= HRTIMER_MODE_HARD;
1803 
1804 	hrtimer_start_expires(&sl->timer, mode);
1805 }
1806 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1807 
1808 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1809 				   clockid_t clock_id, enum hrtimer_mode mode)
1810 {
1811 	/*
1812 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1813 	 * marked for hard interrupt expiry mode are moved into soft
1814 	 * interrupt context either for latency reasons or because the
1815 	 * hrtimer callback takes regular spinlocks or invokes other
1816 	 * functions which are not suitable for hard interrupt context on
1817 	 * PREEMPT_RT.
1818 	 *
1819 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1820 	 * context, but there is a latency concern: Untrusted userspace can
1821 	 * spawn many threads which arm timers for the same expiry time on
1822 	 * the same CPU. That causes a latency spike due to the wakeup of
1823 	 * a gazillion threads.
1824 	 *
1825 	 * OTOH, priviledged real-time user space applications rely on the
1826 	 * low latency of hard interrupt wakeups. If the current task is in
1827 	 * a real-time scheduling class, mark the mode for hard interrupt
1828 	 * expiry.
1829 	 */
1830 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1831 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1832 			mode |= HRTIMER_MODE_HARD;
1833 	}
1834 
1835 	__hrtimer_init(&sl->timer, clock_id, mode);
1836 	sl->timer.function = hrtimer_wakeup;
1837 	sl->task = current;
1838 }
1839 
1840 /**
1841  * hrtimer_init_sleeper - initialize sleeper to the given clock
1842  * @sl:		sleeper to be initialized
1843  * @clock_id:	the clock to be used
1844  * @mode:	timer mode abs/rel
1845  */
1846 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1847 			  enum hrtimer_mode mode)
1848 {
1849 	debug_init(&sl->timer, clock_id, mode);
1850 	__hrtimer_init_sleeper(sl, clock_id, mode);
1851 
1852 }
1853 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1854 
1855 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1856 {
1857 	switch(restart->nanosleep.type) {
1858 #ifdef CONFIG_COMPAT_32BIT_TIME
1859 	case TT_COMPAT:
1860 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1861 			return -EFAULT;
1862 		break;
1863 #endif
1864 	case TT_NATIVE:
1865 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1866 			return -EFAULT;
1867 		break;
1868 	default:
1869 		BUG();
1870 	}
1871 	return -ERESTART_RESTARTBLOCK;
1872 }
1873 
1874 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1875 {
1876 	struct restart_block *restart;
1877 
1878 	do {
1879 		set_current_state(TASK_INTERRUPTIBLE);
1880 		hrtimer_sleeper_start_expires(t, mode);
1881 
1882 		if (likely(t->task))
1883 			freezable_schedule();
1884 
1885 		hrtimer_cancel(&t->timer);
1886 		mode = HRTIMER_MODE_ABS;
1887 
1888 	} while (t->task && !signal_pending(current));
1889 
1890 	__set_current_state(TASK_RUNNING);
1891 
1892 	if (!t->task)
1893 		return 0;
1894 
1895 	restart = &current->restart_block;
1896 	if (restart->nanosleep.type != TT_NONE) {
1897 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1898 		struct timespec64 rmt;
1899 
1900 		if (rem <= 0)
1901 			return 0;
1902 		rmt = ktime_to_timespec64(rem);
1903 
1904 		return nanosleep_copyout(restart, &rmt);
1905 	}
1906 	return -ERESTART_RESTARTBLOCK;
1907 }
1908 
1909 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1910 {
1911 	struct hrtimer_sleeper t;
1912 	int ret;
1913 
1914 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1915 				      HRTIMER_MODE_ABS);
1916 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1917 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1918 	destroy_hrtimer_on_stack(&t.timer);
1919 	return ret;
1920 }
1921 
1922 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1923 		       const clockid_t clockid)
1924 {
1925 	struct restart_block *restart;
1926 	struct hrtimer_sleeper t;
1927 	int ret = 0;
1928 	u64 slack;
1929 
1930 	slack = current->timer_slack_ns;
1931 	if (dl_task(current) || rt_task(current))
1932 		slack = 0;
1933 
1934 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1935 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1936 	ret = do_nanosleep(&t, mode);
1937 	if (ret != -ERESTART_RESTARTBLOCK)
1938 		goto out;
1939 
1940 	/* Absolute timers do not update the rmtp value and restart: */
1941 	if (mode == HRTIMER_MODE_ABS) {
1942 		ret = -ERESTARTNOHAND;
1943 		goto out;
1944 	}
1945 
1946 	restart = &current->restart_block;
1947 	restart->fn = hrtimer_nanosleep_restart;
1948 	restart->nanosleep.clockid = t.timer.base->clockid;
1949 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1950 out:
1951 	destroy_hrtimer_on_stack(&t.timer);
1952 	return ret;
1953 }
1954 
1955 #ifdef CONFIG_64BIT
1956 
1957 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1958 		struct __kernel_timespec __user *, rmtp)
1959 {
1960 	struct timespec64 tu;
1961 
1962 	if (get_timespec64(&tu, rqtp))
1963 		return -EFAULT;
1964 
1965 	if (!timespec64_valid(&tu))
1966 		return -EINVAL;
1967 
1968 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1969 	current->restart_block.nanosleep.rmtp = rmtp;
1970 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1971 				 CLOCK_MONOTONIC);
1972 }
1973 
1974 #endif
1975 
1976 #ifdef CONFIG_COMPAT_32BIT_TIME
1977 
1978 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1979 		       struct old_timespec32 __user *, rmtp)
1980 {
1981 	struct timespec64 tu;
1982 
1983 	if (get_old_timespec32(&tu, rqtp))
1984 		return -EFAULT;
1985 
1986 	if (!timespec64_valid(&tu))
1987 		return -EINVAL;
1988 
1989 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1990 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1991 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1992 				 CLOCK_MONOTONIC);
1993 }
1994 #endif
1995 
1996 /*
1997  * Functions related to boot-time initialization:
1998  */
1999 int hrtimers_prepare_cpu(unsigned int cpu)
2000 {
2001 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
2002 	int i;
2003 
2004 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2005 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2006 
2007 		clock_b->cpu_base = cpu_base;
2008 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2009 		timerqueue_init_head(&clock_b->active);
2010 	}
2011 
2012 	cpu_base->cpu = cpu;
2013 	cpu_base->active_bases = 0;
2014 	cpu_base->hres_active = 0;
2015 	cpu_base->hang_detected = 0;
2016 	cpu_base->next_timer = NULL;
2017 	cpu_base->softirq_next_timer = NULL;
2018 	cpu_base->expires_next = KTIME_MAX;
2019 	cpu_base->softirq_expires_next = KTIME_MAX;
2020 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2021 	return 0;
2022 }
2023 
2024 #ifdef CONFIG_HOTPLUG_CPU
2025 
2026 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2027 				struct hrtimer_clock_base *new_base)
2028 {
2029 	struct hrtimer *timer;
2030 	struct timerqueue_node *node;
2031 
2032 	while ((node = timerqueue_getnext(&old_base->active))) {
2033 		timer = container_of(node, struct hrtimer, node);
2034 		BUG_ON(hrtimer_callback_running(timer));
2035 		debug_deactivate(timer);
2036 
2037 		/*
2038 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2039 		 * timer could be seen as !active and just vanish away
2040 		 * under us on another CPU
2041 		 */
2042 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2043 		timer->base = new_base;
2044 		/*
2045 		 * Enqueue the timers on the new cpu. This does not
2046 		 * reprogram the event device in case the timer
2047 		 * expires before the earliest on this CPU, but we run
2048 		 * hrtimer_interrupt after we migrated everything to
2049 		 * sort out already expired timers and reprogram the
2050 		 * event device.
2051 		 */
2052 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2053 	}
2054 }
2055 
2056 int hrtimers_dead_cpu(unsigned int scpu)
2057 {
2058 	struct hrtimer_cpu_base *old_base, *new_base;
2059 	int i;
2060 
2061 	BUG_ON(cpu_online(scpu));
2062 	tick_cancel_sched_timer(scpu);
2063 
2064 	/*
2065 	 * this BH disable ensures that raise_softirq_irqoff() does
2066 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2067 	 * holding the cpu_base lock
2068 	 */
2069 	local_bh_disable();
2070 	local_irq_disable();
2071 	old_base = &per_cpu(hrtimer_bases, scpu);
2072 	new_base = this_cpu_ptr(&hrtimer_bases);
2073 	/*
2074 	 * The caller is globally serialized and nobody else
2075 	 * takes two locks at once, deadlock is not possible.
2076 	 */
2077 	raw_spin_lock(&new_base->lock);
2078 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2079 
2080 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2081 		migrate_hrtimer_list(&old_base->clock_base[i],
2082 				     &new_base->clock_base[i]);
2083 	}
2084 
2085 	/*
2086 	 * The migration might have changed the first expiring softirq
2087 	 * timer on this CPU. Update it.
2088 	 */
2089 	hrtimer_update_softirq_timer(new_base, false);
2090 
2091 	raw_spin_unlock(&old_base->lock);
2092 	raw_spin_unlock(&new_base->lock);
2093 
2094 	/* Check, if we got expired work to do */
2095 	__hrtimer_peek_ahead_timers();
2096 	local_irq_enable();
2097 	local_bh_enable();
2098 	return 0;
2099 }
2100 
2101 #endif /* CONFIG_HOTPLUG_CPU */
2102 
2103 void __init hrtimers_init(void)
2104 {
2105 	hrtimers_prepare_cpu(smp_processor_id());
2106 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2107 }
2108 
2109 /**
2110  * schedule_hrtimeout_range_clock - sleep until timeout
2111  * @expires:	timeout value (ktime_t)
2112  * @delta:	slack in expires timeout (ktime_t)
2113  * @mode:	timer mode
2114  * @clock_id:	timer clock to be used
2115  */
2116 int __sched
2117 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2118 			       const enum hrtimer_mode mode, clockid_t clock_id)
2119 {
2120 	struct hrtimer_sleeper t;
2121 
2122 	/*
2123 	 * Optimize when a zero timeout value is given. It does not
2124 	 * matter whether this is an absolute or a relative time.
2125 	 */
2126 	if (expires && *expires == 0) {
2127 		__set_current_state(TASK_RUNNING);
2128 		return 0;
2129 	}
2130 
2131 	/*
2132 	 * A NULL parameter means "infinite"
2133 	 */
2134 	if (!expires) {
2135 		schedule();
2136 		return -EINTR;
2137 	}
2138 
2139 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2140 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2141 	hrtimer_sleeper_start_expires(&t, mode);
2142 
2143 	if (likely(t.task))
2144 		schedule();
2145 
2146 	hrtimer_cancel(&t.timer);
2147 	destroy_hrtimer_on_stack(&t.timer);
2148 
2149 	__set_current_state(TASK_RUNNING);
2150 
2151 	return !t.task ? 0 : -EINTR;
2152 }
2153 
2154 /**
2155  * schedule_hrtimeout_range - sleep until timeout
2156  * @expires:	timeout value (ktime_t)
2157  * @delta:	slack in expires timeout (ktime_t)
2158  * @mode:	timer mode
2159  *
2160  * Make the current task sleep until the given expiry time has
2161  * elapsed. The routine will return immediately unless
2162  * the current task state has been set (see set_current_state()).
2163  *
2164  * The @delta argument gives the kernel the freedom to schedule the
2165  * actual wakeup to a time that is both power and performance friendly.
2166  * The kernel give the normal best effort behavior for "@expires+@delta",
2167  * but may decide to fire the timer earlier, but no earlier than @expires.
2168  *
2169  * You can set the task state as follows -
2170  *
2171  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2172  * pass before the routine returns unless the current task is explicitly
2173  * woken up, (e.g. by wake_up_process()).
2174  *
2175  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2176  * delivered to the current task or the current task is explicitly woken
2177  * up.
2178  *
2179  * The current task state is guaranteed to be TASK_RUNNING when this
2180  * routine returns.
2181  *
2182  * Returns 0 when the timer has expired. If the task was woken before the
2183  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2184  * by an explicit wakeup, it returns -EINTR.
2185  */
2186 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2187 				     const enum hrtimer_mode mode)
2188 {
2189 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2190 					      CLOCK_MONOTONIC);
2191 }
2192 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2193 
2194 /**
2195  * schedule_hrtimeout - sleep until timeout
2196  * @expires:	timeout value (ktime_t)
2197  * @mode:	timer mode
2198  *
2199  * Make the current task sleep until the given expiry time has
2200  * elapsed. The routine will return immediately unless
2201  * the current task state has been set (see set_current_state()).
2202  *
2203  * You can set the task state as follows -
2204  *
2205  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2206  * pass before the routine returns unless the current task is explicitly
2207  * woken up, (e.g. by wake_up_process()).
2208  *
2209  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2210  * delivered to the current task or the current task is explicitly woken
2211  * up.
2212  *
2213  * The current task state is guaranteed to be TASK_RUNNING when this
2214  * routine returns.
2215  *
2216  * Returns 0 when the timer has expired. If the task was woken before the
2217  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2218  * by an explicit wakeup, it returns -EINTR.
2219  */
2220 int __sched schedule_hrtimeout(ktime_t *expires,
2221 			       const enum hrtimer_mode mode)
2222 {
2223 	return schedule_hrtimeout_range(expires, 0, mode);
2224 }
2225 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2226