xref: /openbmc/linux/kernel/time/hrtimer.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/seq_file.h>
34 #include <linux/err.h>
35 #include <linux/debugobjects.h>
36 #include <linux/sched/signal.h>
37 #include <linux/sched/sysctl.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/deadline.h>
40 #include <linux/sched/nohz.h>
41 #include <linux/sched/debug.h>
42 #include <linux/timer.h>
43 #include <linux/freezer.h>
44 #include <linux/compat.h>
45 
46 #include <linux/uaccess.h>
47 
48 #include <trace/events/timer.h>
49 
50 #include "tick-internal.h"
51 
52 /*
53  * Masks for selecting the soft and hard context timers from
54  * cpu_base->active
55  */
56 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
57 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
58 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60 
61 /*
62  * The timer bases:
63  *
64  * There are more clockids than hrtimer bases. Thus, we index
65  * into the timer bases by the hrtimer_base_type enum. When trying
66  * to reach a base using a clockid, hrtimer_clockid_to_base()
67  * is used to convert from clockid to the proper hrtimer_base_type.
68  */
69 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
70 {
71 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
72 	.clock_base =
73 	{
74 		{
75 			.index = HRTIMER_BASE_MONOTONIC,
76 			.clockid = CLOCK_MONOTONIC,
77 			.get_time = &ktime_get,
78 		},
79 		{
80 			.index = HRTIMER_BASE_REALTIME,
81 			.clockid = CLOCK_REALTIME,
82 			.get_time = &ktime_get_real,
83 		},
84 		{
85 			.index = HRTIMER_BASE_BOOTTIME,
86 			.clockid = CLOCK_BOOTTIME,
87 			.get_time = &ktime_get_boottime,
88 		},
89 		{
90 			.index = HRTIMER_BASE_TAI,
91 			.clockid = CLOCK_TAI,
92 			.get_time = &ktime_get_clocktai,
93 		},
94 		{
95 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
96 			.clockid = CLOCK_MONOTONIC,
97 			.get_time = &ktime_get,
98 		},
99 		{
100 			.index = HRTIMER_BASE_REALTIME_SOFT,
101 			.clockid = CLOCK_REALTIME,
102 			.get_time = &ktime_get_real,
103 		},
104 		{
105 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
106 			.clockid = CLOCK_BOOTTIME,
107 			.get_time = &ktime_get_boottime,
108 		},
109 		{
110 			.index = HRTIMER_BASE_TAI_SOFT,
111 			.clockid = CLOCK_TAI,
112 			.get_time = &ktime_get_clocktai,
113 		},
114 	}
115 };
116 
117 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
118 	/* Make sure we catch unsupported clockids */
119 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
120 
121 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
122 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
123 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
124 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
125 };
126 
127 /*
128  * Functions and macros which are different for UP/SMP systems are kept in a
129  * single place
130  */
131 #ifdef CONFIG_SMP
132 
133 /*
134  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135  * such that hrtimer_callback_running() can unconditionally dereference
136  * timer->base->cpu_base
137  */
138 static struct hrtimer_cpu_base migration_cpu_base = {
139 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
140 };
141 
142 #define migration_base	migration_cpu_base.clock_base[0]
143 
144 /*
145  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
146  * means that all timers which are tied to this base via timer->base are
147  * locked, and the base itself is locked too.
148  *
149  * So __run_timers/migrate_timers can safely modify all timers which could
150  * be found on the lists/queues.
151  *
152  * When the timer's base is locked, and the timer removed from list, it is
153  * possible to set timer->base = &migration_base and drop the lock: the timer
154  * remains locked.
155  */
156 static
157 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
158 					     unsigned long *flags)
159 {
160 	struct hrtimer_clock_base *base;
161 
162 	for (;;) {
163 		base = timer->base;
164 		if (likely(base != &migration_base)) {
165 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
166 			if (likely(base == timer->base))
167 				return base;
168 			/* The timer has migrated to another CPU: */
169 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
170 		}
171 		cpu_relax();
172 	}
173 }
174 
175 /*
176  * We do not migrate the timer when it is expiring before the next
177  * event on the target cpu. When high resolution is enabled, we cannot
178  * reprogram the target cpu hardware and we would cause it to fire
179  * late. To keep it simple, we handle the high resolution enabled and
180  * disabled case similar.
181  *
182  * Called with cpu_base->lock of target cpu held.
183  */
184 static int
185 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
186 {
187 	ktime_t expires;
188 
189 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
190 	return expires < new_base->cpu_base->expires_next;
191 }
192 
193 static inline
194 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
195 					 int pinned)
196 {
197 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
198 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
199 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
200 #endif
201 	return base;
202 }
203 
204 /*
205  * We switch the timer base to a power-optimized selected CPU target,
206  * if:
207  *	- NO_HZ_COMMON is enabled
208  *	- timer migration is enabled
209  *	- the timer callback is not running
210  *	- the timer is not the first expiring timer on the new target
211  *
212  * If one of the above requirements is not fulfilled we move the timer
213  * to the current CPU or leave it on the previously assigned CPU if
214  * the timer callback is currently running.
215  */
216 static inline struct hrtimer_clock_base *
217 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
218 		    int pinned)
219 {
220 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
221 	struct hrtimer_clock_base *new_base;
222 	int basenum = base->index;
223 
224 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
225 	new_cpu_base = get_target_base(this_cpu_base, pinned);
226 again:
227 	new_base = &new_cpu_base->clock_base[basenum];
228 
229 	if (base != new_base) {
230 		/*
231 		 * We are trying to move timer to new_base.
232 		 * However we can't change timer's base while it is running,
233 		 * so we keep it on the same CPU. No hassle vs. reprogramming
234 		 * the event source in the high resolution case. The softirq
235 		 * code will take care of this when the timer function has
236 		 * completed. There is no conflict as we hold the lock until
237 		 * the timer is enqueued.
238 		 */
239 		if (unlikely(hrtimer_callback_running(timer)))
240 			return base;
241 
242 		/* See the comment in lock_hrtimer_base() */
243 		timer->base = &migration_base;
244 		raw_spin_unlock(&base->cpu_base->lock);
245 		raw_spin_lock(&new_base->cpu_base->lock);
246 
247 		if (new_cpu_base != this_cpu_base &&
248 		    hrtimer_check_target(timer, new_base)) {
249 			raw_spin_unlock(&new_base->cpu_base->lock);
250 			raw_spin_lock(&base->cpu_base->lock);
251 			new_cpu_base = this_cpu_base;
252 			timer->base = base;
253 			goto again;
254 		}
255 		timer->base = new_base;
256 	} else {
257 		if (new_cpu_base != this_cpu_base &&
258 		    hrtimer_check_target(timer, new_base)) {
259 			new_cpu_base = this_cpu_base;
260 			goto again;
261 		}
262 	}
263 	return new_base;
264 }
265 
266 #else /* CONFIG_SMP */
267 
268 static inline struct hrtimer_clock_base *
269 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
270 {
271 	struct hrtimer_clock_base *base = timer->base;
272 
273 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
274 
275 	return base;
276 }
277 
278 # define switch_hrtimer_base(t, b, p)	(b)
279 
280 #endif	/* !CONFIG_SMP */
281 
282 /*
283  * Functions for the union type storage format of ktime_t which are
284  * too large for inlining:
285  */
286 #if BITS_PER_LONG < 64
287 /*
288  * Divide a ktime value by a nanosecond value
289  */
290 s64 __ktime_divns(const ktime_t kt, s64 div)
291 {
292 	int sft = 0;
293 	s64 dclc;
294 	u64 tmp;
295 
296 	dclc = ktime_to_ns(kt);
297 	tmp = dclc < 0 ? -dclc : dclc;
298 
299 	/* Make sure the divisor is less than 2^32: */
300 	while (div >> 32) {
301 		sft++;
302 		div >>= 1;
303 	}
304 	tmp >>= sft;
305 	do_div(tmp, (unsigned long) div);
306 	return dclc < 0 ? -tmp : tmp;
307 }
308 EXPORT_SYMBOL_GPL(__ktime_divns);
309 #endif /* BITS_PER_LONG >= 64 */
310 
311 /*
312  * Add two ktime values and do a safety check for overflow:
313  */
314 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
315 {
316 	ktime_t res = ktime_add_unsafe(lhs, rhs);
317 
318 	/*
319 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
320 	 * return to user space in a timespec:
321 	 */
322 	if (res < 0 || res < lhs || res < rhs)
323 		res = ktime_set(KTIME_SEC_MAX, 0);
324 
325 	return res;
326 }
327 
328 EXPORT_SYMBOL_GPL(ktime_add_safe);
329 
330 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
331 
332 static struct debug_obj_descr hrtimer_debug_descr;
333 
334 static void *hrtimer_debug_hint(void *addr)
335 {
336 	return ((struct hrtimer *) addr)->function;
337 }
338 
339 /*
340  * fixup_init is called when:
341  * - an active object is initialized
342  */
343 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
344 {
345 	struct hrtimer *timer = addr;
346 
347 	switch (state) {
348 	case ODEBUG_STATE_ACTIVE:
349 		hrtimer_cancel(timer);
350 		debug_object_init(timer, &hrtimer_debug_descr);
351 		return true;
352 	default:
353 		return false;
354 	}
355 }
356 
357 /*
358  * fixup_activate is called when:
359  * - an active object is activated
360  * - an unknown non-static object is activated
361  */
362 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
363 {
364 	switch (state) {
365 	case ODEBUG_STATE_ACTIVE:
366 		WARN_ON(1);
367 
368 	default:
369 		return false;
370 	}
371 }
372 
373 /*
374  * fixup_free is called when:
375  * - an active object is freed
376  */
377 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
378 {
379 	struct hrtimer *timer = addr;
380 
381 	switch (state) {
382 	case ODEBUG_STATE_ACTIVE:
383 		hrtimer_cancel(timer);
384 		debug_object_free(timer, &hrtimer_debug_descr);
385 		return true;
386 	default:
387 		return false;
388 	}
389 }
390 
391 static struct debug_obj_descr hrtimer_debug_descr = {
392 	.name		= "hrtimer",
393 	.debug_hint	= hrtimer_debug_hint,
394 	.fixup_init	= hrtimer_fixup_init,
395 	.fixup_activate	= hrtimer_fixup_activate,
396 	.fixup_free	= hrtimer_fixup_free,
397 };
398 
399 static inline void debug_hrtimer_init(struct hrtimer *timer)
400 {
401 	debug_object_init(timer, &hrtimer_debug_descr);
402 }
403 
404 static inline void debug_hrtimer_activate(struct hrtimer *timer,
405 					  enum hrtimer_mode mode)
406 {
407 	debug_object_activate(timer, &hrtimer_debug_descr);
408 }
409 
410 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
411 {
412 	debug_object_deactivate(timer, &hrtimer_debug_descr);
413 }
414 
415 static inline void debug_hrtimer_free(struct hrtimer *timer)
416 {
417 	debug_object_free(timer, &hrtimer_debug_descr);
418 }
419 
420 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
421 			   enum hrtimer_mode mode);
422 
423 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
424 			   enum hrtimer_mode mode)
425 {
426 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
427 	__hrtimer_init(timer, clock_id, mode);
428 }
429 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
430 
431 void destroy_hrtimer_on_stack(struct hrtimer *timer)
432 {
433 	debug_object_free(timer, &hrtimer_debug_descr);
434 }
435 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
436 
437 #else
438 
439 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
440 static inline void debug_hrtimer_activate(struct hrtimer *timer,
441 					  enum hrtimer_mode mode) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443 #endif
444 
445 static inline void
446 debug_init(struct hrtimer *timer, clockid_t clockid,
447 	   enum hrtimer_mode mode)
448 {
449 	debug_hrtimer_init(timer);
450 	trace_hrtimer_init(timer, clockid, mode);
451 }
452 
453 static inline void debug_activate(struct hrtimer *timer,
454 				  enum hrtimer_mode mode)
455 {
456 	debug_hrtimer_activate(timer, mode);
457 	trace_hrtimer_start(timer, mode);
458 }
459 
460 static inline void debug_deactivate(struct hrtimer *timer)
461 {
462 	debug_hrtimer_deactivate(timer);
463 	trace_hrtimer_cancel(timer);
464 }
465 
466 static struct hrtimer_clock_base *
467 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
468 {
469 	unsigned int idx;
470 
471 	if (!*active)
472 		return NULL;
473 
474 	idx = __ffs(*active);
475 	*active &= ~(1U << idx);
476 
477 	return &cpu_base->clock_base[idx];
478 }
479 
480 #define for_each_active_base(base, cpu_base, active)	\
481 	while ((base = __next_base((cpu_base), &(active))))
482 
483 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
484 					 const struct hrtimer *exclude,
485 					 unsigned int active,
486 					 ktime_t expires_next)
487 {
488 	struct hrtimer_clock_base *base;
489 	ktime_t expires;
490 
491 	for_each_active_base(base, cpu_base, active) {
492 		struct timerqueue_node *next;
493 		struct hrtimer *timer;
494 
495 		next = timerqueue_getnext(&base->active);
496 		timer = container_of(next, struct hrtimer, node);
497 		if (timer == exclude) {
498 			/* Get to the next timer in the queue. */
499 			next = timerqueue_iterate_next(next);
500 			if (!next)
501 				continue;
502 
503 			timer = container_of(next, struct hrtimer, node);
504 		}
505 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
506 		if (expires < expires_next) {
507 			expires_next = expires;
508 
509 			/* Skip cpu_base update if a timer is being excluded. */
510 			if (exclude)
511 				continue;
512 
513 			if (timer->is_soft)
514 				cpu_base->softirq_next_timer = timer;
515 			else
516 				cpu_base->next_timer = timer;
517 		}
518 	}
519 	/*
520 	 * clock_was_set() might have changed base->offset of any of
521 	 * the clock bases so the result might be negative. Fix it up
522 	 * to prevent a false positive in clockevents_program_event().
523 	 */
524 	if (expires_next < 0)
525 		expires_next = 0;
526 	return expires_next;
527 }
528 
529 /*
530  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
531  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
532  *
533  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
534  * those timers will get run whenever the softirq gets handled, at the end of
535  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
536  *
537  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
538  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
539  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
540  *
541  * @active_mask must be one of:
542  *  - HRTIMER_ACTIVE_ALL,
543  *  - HRTIMER_ACTIVE_SOFT, or
544  *  - HRTIMER_ACTIVE_HARD.
545  */
546 static ktime_t
547 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
548 {
549 	unsigned int active;
550 	struct hrtimer *next_timer = NULL;
551 	ktime_t expires_next = KTIME_MAX;
552 
553 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
554 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
555 		cpu_base->softirq_next_timer = NULL;
556 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
557 							 active, KTIME_MAX);
558 
559 		next_timer = cpu_base->softirq_next_timer;
560 	}
561 
562 	if (active_mask & HRTIMER_ACTIVE_HARD) {
563 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
564 		cpu_base->next_timer = next_timer;
565 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
566 							 expires_next);
567 	}
568 
569 	return expires_next;
570 }
571 
572 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
573 {
574 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
575 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
576 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
577 
578 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
579 					    offs_real, offs_boot, offs_tai);
580 
581 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
582 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
583 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
584 
585 	return now;
586 }
587 
588 /*
589  * Is the high resolution mode active ?
590  */
591 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
592 {
593 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
594 		cpu_base->hres_active : 0;
595 }
596 
597 static inline int hrtimer_hres_active(void)
598 {
599 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
600 }
601 
602 /*
603  * Reprogram the event source with checking both queues for the
604  * next event
605  * Called with interrupts disabled and base->lock held
606  */
607 static void
608 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
609 {
610 	ktime_t expires_next;
611 
612 	/*
613 	 * Find the current next expiration time.
614 	 */
615 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
616 
617 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
618 		/*
619 		 * When the softirq is activated, hrtimer has to be
620 		 * programmed with the first hard hrtimer because soft
621 		 * timer interrupt could occur too late.
622 		 */
623 		if (cpu_base->softirq_activated)
624 			expires_next = __hrtimer_get_next_event(cpu_base,
625 								HRTIMER_ACTIVE_HARD);
626 		else
627 			cpu_base->softirq_expires_next = expires_next;
628 	}
629 
630 	if (skip_equal && expires_next == cpu_base->expires_next)
631 		return;
632 
633 	cpu_base->expires_next = expires_next;
634 
635 	/*
636 	 * If hres is not active, hardware does not have to be
637 	 * reprogrammed yet.
638 	 *
639 	 * If a hang was detected in the last timer interrupt then we
640 	 * leave the hang delay active in the hardware. We want the
641 	 * system to make progress. That also prevents the following
642 	 * scenario:
643 	 * T1 expires 50ms from now
644 	 * T2 expires 5s from now
645 	 *
646 	 * T1 is removed, so this code is called and would reprogram
647 	 * the hardware to 5s from now. Any hrtimer_start after that
648 	 * will not reprogram the hardware due to hang_detected being
649 	 * set. So we'd effectivly block all timers until the T2 event
650 	 * fires.
651 	 */
652 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
653 		return;
654 
655 	tick_program_event(cpu_base->expires_next, 1);
656 }
657 
658 /* High resolution timer related functions */
659 #ifdef CONFIG_HIGH_RES_TIMERS
660 
661 /*
662  * High resolution timer enabled ?
663  */
664 static bool hrtimer_hres_enabled __read_mostly  = true;
665 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
666 EXPORT_SYMBOL_GPL(hrtimer_resolution);
667 
668 /*
669  * Enable / Disable high resolution mode
670  */
671 static int __init setup_hrtimer_hres(char *str)
672 {
673 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
674 }
675 
676 __setup("highres=", setup_hrtimer_hres);
677 
678 /*
679  * hrtimer_high_res_enabled - query, if the highres mode is enabled
680  */
681 static inline int hrtimer_is_hres_enabled(void)
682 {
683 	return hrtimer_hres_enabled;
684 }
685 
686 /*
687  * Retrigger next event is called after clock was set
688  *
689  * Called with interrupts disabled via on_each_cpu()
690  */
691 static void retrigger_next_event(void *arg)
692 {
693 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
694 
695 	if (!__hrtimer_hres_active(base))
696 		return;
697 
698 	raw_spin_lock(&base->lock);
699 	hrtimer_update_base(base);
700 	hrtimer_force_reprogram(base, 0);
701 	raw_spin_unlock(&base->lock);
702 }
703 
704 /*
705  * Switch to high resolution mode
706  */
707 static void hrtimer_switch_to_hres(void)
708 {
709 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
710 
711 	if (tick_init_highres()) {
712 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
713 			base->cpu);
714 		return;
715 	}
716 	base->hres_active = 1;
717 	hrtimer_resolution = HIGH_RES_NSEC;
718 
719 	tick_setup_sched_timer();
720 	/* "Retrigger" the interrupt to get things going */
721 	retrigger_next_event(NULL);
722 }
723 
724 static void clock_was_set_work(struct work_struct *work)
725 {
726 	clock_was_set();
727 }
728 
729 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
730 
731 /*
732  * Called from timekeeping and resume code to reprogram the hrtimer
733  * interrupt device on all cpus.
734  */
735 void clock_was_set_delayed(void)
736 {
737 	schedule_work(&hrtimer_work);
738 }
739 
740 #else
741 
742 static inline int hrtimer_is_hres_enabled(void) { return 0; }
743 static inline void hrtimer_switch_to_hres(void) { }
744 static inline void retrigger_next_event(void *arg) { }
745 
746 #endif /* CONFIG_HIGH_RES_TIMERS */
747 
748 /*
749  * When a timer is enqueued and expires earlier than the already enqueued
750  * timers, we have to check, whether it expires earlier than the timer for
751  * which the clock event device was armed.
752  *
753  * Called with interrupts disabled and base->cpu_base.lock held
754  */
755 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
756 {
757 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
758 	struct hrtimer_clock_base *base = timer->base;
759 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
760 
761 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
762 
763 	/*
764 	 * CLOCK_REALTIME timer might be requested with an absolute
765 	 * expiry time which is less than base->offset. Set it to 0.
766 	 */
767 	if (expires < 0)
768 		expires = 0;
769 
770 	if (timer->is_soft) {
771 		/*
772 		 * soft hrtimer could be started on a remote CPU. In this
773 		 * case softirq_expires_next needs to be updated on the
774 		 * remote CPU. The soft hrtimer will not expire before the
775 		 * first hard hrtimer on the remote CPU -
776 		 * hrtimer_check_target() prevents this case.
777 		 */
778 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
779 
780 		if (timer_cpu_base->softirq_activated)
781 			return;
782 
783 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
784 			return;
785 
786 		timer_cpu_base->softirq_next_timer = timer;
787 		timer_cpu_base->softirq_expires_next = expires;
788 
789 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
790 		    !reprogram)
791 			return;
792 	}
793 
794 	/*
795 	 * If the timer is not on the current cpu, we cannot reprogram
796 	 * the other cpus clock event device.
797 	 */
798 	if (base->cpu_base != cpu_base)
799 		return;
800 
801 	/*
802 	 * If the hrtimer interrupt is running, then it will
803 	 * reevaluate the clock bases and reprogram the clock event
804 	 * device. The callbacks are always executed in hard interrupt
805 	 * context so we don't need an extra check for a running
806 	 * callback.
807 	 */
808 	if (cpu_base->in_hrtirq)
809 		return;
810 
811 	if (expires >= cpu_base->expires_next)
812 		return;
813 
814 	/* Update the pointer to the next expiring timer */
815 	cpu_base->next_timer = timer;
816 	cpu_base->expires_next = expires;
817 
818 	/*
819 	 * If hres is not active, hardware does not have to be
820 	 * programmed yet.
821 	 *
822 	 * If a hang was detected in the last timer interrupt then we
823 	 * do not schedule a timer which is earlier than the expiry
824 	 * which we enforced in the hang detection. We want the system
825 	 * to make progress.
826 	 */
827 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
828 		return;
829 
830 	/*
831 	 * Program the timer hardware. We enforce the expiry for
832 	 * events which are already in the past.
833 	 */
834 	tick_program_event(expires, 1);
835 }
836 
837 /*
838  * Clock realtime was set
839  *
840  * Change the offset of the realtime clock vs. the monotonic
841  * clock.
842  *
843  * We might have to reprogram the high resolution timer interrupt. On
844  * SMP we call the architecture specific code to retrigger _all_ high
845  * resolution timer interrupts. On UP we just disable interrupts and
846  * call the high resolution interrupt code.
847  */
848 void clock_was_set(void)
849 {
850 #ifdef CONFIG_HIGH_RES_TIMERS
851 	/* Retrigger the CPU local events everywhere */
852 	on_each_cpu(retrigger_next_event, NULL, 1);
853 #endif
854 	timerfd_clock_was_set();
855 }
856 
857 /*
858  * During resume we might have to reprogram the high resolution timer
859  * interrupt on all online CPUs.  However, all other CPUs will be
860  * stopped with IRQs interrupts disabled so the clock_was_set() call
861  * must be deferred.
862  */
863 void hrtimers_resume(void)
864 {
865 	lockdep_assert_irqs_disabled();
866 	/* Retrigger on the local CPU */
867 	retrigger_next_event(NULL);
868 	/* And schedule a retrigger for all others */
869 	clock_was_set_delayed();
870 }
871 
872 /*
873  * Counterpart to lock_hrtimer_base above:
874  */
875 static inline
876 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
877 {
878 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
879 }
880 
881 /**
882  * hrtimer_forward - forward the timer expiry
883  * @timer:	hrtimer to forward
884  * @now:	forward past this time
885  * @interval:	the interval to forward
886  *
887  * Forward the timer expiry so it will expire in the future.
888  * Returns the number of overruns.
889  *
890  * Can be safely called from the callback function of @timer. If
891  * called from other contexts @timer must neither be enqueued nor
892  * running the callback and the caller needs to take care of
893  * serialization.
894  *
895  * Note: This only updates the timer expiry value and does not requeue
896  * the timer.
897  */
898 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
899 {
900 	u64 orun = 1;
901 	ktime_t delta;
902 
903 	delta = ktime_sub(now, hrtimer_get_expires(timer));
904 
905 	if (delta < 0)
906 		return 0;
907 
908 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
909 		return 0;
910 
911 	if (interval < hrtimer_resolution)
912 		interval = hrtimer_resolution;
913 
914 	if (unlikely(delta >= interval)) {
915 		s64 incr = ktime_to_ns(interval);
916 
917 		orun = ktime_divns(delta, incr);
918 		hrtimer_add_expires_ns(timer, incr * orun);
919 		if (hrtimer_get_expires_tv64(timer) > now)
920 			return orun;
921 		/*
922 		 * This (and the ktime_add() below) is the
923 		 * correction for exact:
924 		 */
925 		orun++;
926 	}
927 	hrtimer_add_expires(timer, interval);
928 
929 	return orun;
930 }
931 EXPORT_SYMBOL_GPL(hrtimer_forward);
932 
933 /*
934  * enqueue_hrtimer - internal function to (re)start a timer
935  *
936  * The timer is inserted in expiry order. Insertion into the
937  * red black tree is O(log(n)). Must hold the base lock.
938  *
939  * Returns 1 when the new timer is the leftmost timer in the tree.
940  */
941 static int enqueue_hrtimer(struct hrtimer *timer,
942 			   struct hrtimer_clock_base *base,
943 			   enum hrtimer_mode mode)
944 {
945 	debug_activate(timer, mode);
946 
947 	base->cpu_base->active_bases |= 1 << base->index;
948 
949 	timer->state = HRTIMER_STATE_ENQUEUED;
950 
951 	return timerqueue_add(&base->active, &timer->node);
952 }
953 
954 /*
955  * __remove_hrtimer - internal function to remove a timer
956  *
957  * Caller must hold the base lock.
958  *
959  * High resolution timer mode reprograms the clock event device when the
960  * timer is the one which expires next. The caller can disable this by setting
961  * reprogram to zero. This is useful, when the context does a reprogramming
962  * anyway (e.g. timer interrupt)
963  */
964 static void __remove_hrtimer(struct hrtimer *timer,
965 			     struct hrtimer_clock_base *base,
966 			     u8 newstate, int reprogram)
967 {
968 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
969 	u8 state = timer->state;
970 
971 	timer->state = newstate;
972 	if (!(state & HRTIMER_STATE_ENQUEUED))
973 		return;
974 
975 	if (!timerqueue_del(&base->active, &timer->node))
976 		cpu_base->active_bases &= ~(1 << base->index);
977 
978 	/*
979 	 * Note: If reprogram is false we do not update
980 	 * cpu_base->next_timer. This happens when we remove the first
981 	 * timer on a remote cpu. No harm as we never dereference
982 	 * cpu_base->next_timer. So the worst thing what can happen is
983 	 * an superflous call to hrtimer_force_reprogram() on the
984 	 * remote cpu later on if the same timer gets enqueued again.
985 	 */
986 	if (reprogram && timer == cpu_base->next_timer)
987 		hrtimer_force_reprogram(cpu_base, 1);
988 }
989 
990 /*
991  * remove hrtimer, called with base lock held
992  */
993 static inline int
994 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
995 {
996 	if (hrtimer_is_queued(timer)) {
997 		u8 state = timer->state;
998 		int reprogram;
999 
1000 		/*
1001 		 * Remove the timer and force reprogramming when high
1002 		 * resolution mode is active and the timer is on the current
1003 		 * CPU. If we remove a timer on another CPU, reprogramming is
1004 		 * skipped. The interrupt event on this CPU is fired and
1005 		 * reprogramming happens in the interrupt handler. This is a
1006 		 * rare case and less expensive than a smp call.
1007 		 */
1008 		debug_deactivate(timer);
1009 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1010 
1011 		if (!restart)
1012 			state = HRTIMER_STATE_INACTIVE;
1013 
1014 		__remove_hrtimer(timer, base, state, reprogram);
1015 		return 1;
1016 	}
1017 	return 0;
1018 }
1019 
1020 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1021 					    const enum hrtimer_mode mode)
1022 {
1023 #ifdef CONFIG_TIME_LOW_RES
1024 	/*
1025 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1026 	 * granular time values. For relative timers we add hrtimer_resolution
1027 	 * (i.e. one jiffie) to prevent short timeouts.
1028 	 */
1029 	timer->is_rel = mode & HRTIMER_MODE_REL;
1030 	if (timer->is_rel)
1031 		tim = ktime_add_safe(tim, hrtimer_resolution);
1032 #endif
1033 	return tim;
1034 }
1035 
1036 static void
1037 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1038 {
1039 	ktime_t expires;
1040 
1041 	/*
1042 	 * Find the next SOFT expiration.
1043 	 */
1044 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1045 
1046 	/*
1047 	 * reprogramming needs to be triggered, even if the next soft
1048 	 * hrtimer expires at the same time than the next hard
1049 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1050 	 */
1051 	if (expires == KTIME_MAX)
1052 		return;
1053 
1054 	/*
1055 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1056 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1057 	 */
1058 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1059 }
1060 
1061 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1062 				    u64 delta_ns, const enum hrtimer_mode mode,
1063 				    struct hrtimer_clock_base *base)
1064 {
1065 	struct hrtimer_clock_base *new_base;
1066 
1067 	/* Remove an active timer from the queue: */
1068 	remove_hrtimer(timer, base, true);
1069 
1070 	if (mode & HRTIMER_MODE_REL)
1071 		tim = ktime_add_safe(tim, base->get_time());
1072 
1073 	tim = hrtimer_update_lowres(timer, tim, mode);
1074 
1075 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1076 
1077 	/* Switch the timer base, if necessary: */
1078 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1079 
1080 	return enqueue_hrtimer(timer, new_base, mode);
1081 }
1082 
1083 /**
1084  * hrtimer_start_range_ns - (re)start an hrtimer
1085  * @timer:	the timer to be added
1086  * @tim:	expiry time
1087  * @delta_ns:	"slack" range for the timer
1088  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1089  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1090  *		softirq based mode is considered for debug purpose only!
1091  */
1092 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1093 			    u64 delta_ns, const enum hrtimer_mode mode)
1094 {
1095 	struct hrtimer_clock_base *base;
1096 	unsigned long flags;
1097 
1098 	/*
1099 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1100 	 * match.
1101 	 */
1102 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1103 
1104 	base = lock_hrtimer_base(timer, &flags);
1105 
1106 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1107 		hrtimer_reprogram(timer, true);
1108 
1109 	unlock_hrtimer_base(timer, &flags);
1110 }
1111 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1112 
1113 /**
1114  * hrtimer_try_to_cancel - try to deactivate a timer
1115  * @timer:	hrtimer to stop
1116  *
1117  * Returns:
1118  *  0 when the timer was not active
1119  *  1 when the timer was active
1120  * -1 when the timer is currently executing the callback function and
1121  *    cannot be stopped
1122  */
1123 int hrtimer_try_to_cancel(struct hrtimer *timer)
1124 {
1125 	struct hrtimer_clock_base *base;
1126 	unsigned long flags;
1127 	int ret = -1;
1128 
1129 	/*
1130 	 * Check lockless first. If the timer is not active (neither
1131 	 * enqueued nor running the callback, nothing to do here.  The
1132 	 * base lock does not serialize against a concurrent enqueue,
1133 	 * so we can avoid taking it.
1134 	 */
1135 	if (!hrtimer_active(timer))
1136 		return 0;
1137 
1138 	base = lock_hrtimer_base(timer, &flags);
1139 
1140 	if (!hrtimer_callback_running(timer))
1141 		ret = remove_hrtimer(timer, base, false);
1142 
1143 	unlock_hrtimer_base(timer, &flags);
1144 
1145 	return ret;
1146 
1147 }
1148 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1149 
1150 /**
1151  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1152  * @timer:	the timer to be cancelled
1153  *
1154  * Returns:
1155  *  0 when the timer was not active
1156  *  1 when the timer was active
1157  */
1158 int hrtimer_cancel(struct hrtimer *timer)
1159 {
1160 	for (;;) {
1161 		int ret = hrtimer_try_to_cancel(timer);
1162 
1163 		if (ret >= 0)
1164 			return ret;
1165 		cpu_relax();
1166 	}
1167 }
1168 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1169 
1170 /**
1171  * hrtimer_get_remaining - get remaining time for the timer
1172  * @timer:	the timer to read
1173  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1174  */
1175 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1176 {
1177 	unsigned long flags;
1178 	ktime_t rem;
1179 
1180 	lock_hrtimer_base(timer, &flags);
1181 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1182 		rem = hrtimer_expires_remaining_adjusted(timer);
1183 	else
1184 		rem = hrtimer_expires_remaining(timer);
1185 	unlock_hrtimer_base(timer, &flags);
1186 
1187 	return rem;
1188 }
1189 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1190 
1191 #ifdef CONFIG_NO_HZ_COMMON
1192 /**
1193  * hrtimer_get_next_event - get the time until next expiry event
1194  *
1195  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1196  */
1197 u64 hrtimer_get_next_event(void)
1198 {
1199 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1200 	u64 expires = KTIME_MAX;
1201 	unsigned long flags;
1202 
1203 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1204 
1205 	if (!__hrtimer_hres_active(cpu_base))
1206 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1207 
1208 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1209 
1210 	return expires;
1211 }
1212 
1213 /**
1214  * hrtimer_next_event_without - time until next expiry event w/o one timer
1215  * @exclude:	timer to exclude
1216  *
1217  * Returns the next expiry time over all timers except for the @exclude one or
1218  * KTIME_MAX if none of them is pending.
1219  */
1220 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1221 {
1222 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1223 	u64 expires = KTIME_MAX;
1224 	unsigned long flags;
1225 
1226 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1227 
1228 	if (__hrtimer_hres_active(cpu_base)) {
1229 		unsigned int active;
1230 
1231 		if (!cpu_base->softirq_activated) {
1232 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1233 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1234 							    active, KTIME_MAX);
1235 		}
1236 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1237 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1238 						    expires);
1239 	}
1240 
1241 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1242 
1243 	return expires;
1244 }
1245 #endif
1246 
1247 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1248 {
1249 	if (likely(clock_id < MAX_CLOCKS)) {
1250 		int base = hrtimer_clock_to_base_table[clock_id];
1251 
1252 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1253 			return base;
1254 	}
1255 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1256 	return HRTIMER_BASE_MONOTONIC;
1257 }
1258 
1259 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1260 			   enum hrtimer_mode mode)
1261 {
1262 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1263 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1264 	struct hrtimer_cpu_base *cpu_base;
1265 
1266 	memset(timer, 0, sizeof(struct hrtimer));
1267 
1268 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1269 
1270 	/*
1271 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1272 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1273 	 * ensure POSIX compliance.
1274 	 */
1275 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1276 		clock_id = CLOCK_MONOTONIC;
1277 
1278 	base += hrtimer_clockid_to_base(clock_id);
1279 	timer->is_soft = softtimer;
1280 	timer->base = &cpu_base->clock_base[base];
1281 	timerqueue_init(&timer->node);
1282 }
1283 
1284 /**
1285  * hrtimer_init - initialize a timer to the given clock
1286  * @timer:	the timer to be initialized
1287  * @clock_id:	the clock to be used
1288  * @mode:       The modes which are relevant for intitialization:
1289  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1290  *              HRTIMER_MODE_REL_SOFT
1291  *
1292  *              The PINNED variants of the above can be handed in,
1293  *              but the PINNED bit is ignored as pinning happens
1294  *              when the hrtimer is started
1295  */
1296 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1297 		  enum hrtimer_mode mode)
1298 {
1299 	debug_init(timer, clock_id, mode);
1300 	__hrtimer_init(timer, clock_id, mode);
1301 }
1302 EXPORT_SYMBOL_GPL(hrtimer_init);
1303 
1304 /*
1305  * A timer is active, when it is enqueued into the rbtree or the
1306  * callback function is running or it's in the state of being migrated
1307  * to another cpu.
1308  *
1309  * It is important for this function to not return a false negative.
1310  */
1311 bool hrtimer_active(const struct hrtimer *timer)
1312 {
1313 	struct hrtimer_clock_base *base;
1314 	unsigned int seq;
1315 
1316 	do {
1317 		base = READ_ONCE(timer->base);
1318 		seq = raw_read_seqcount_begin(&base->seq);
1319 
1320 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1321 		    base->running == timer)
1322 			return true;
1323 
1324 	} while (read_seqcount_retry(&base->seq, seq) ||
1325 		 base != READ_ONCE(timer->base));
1326 
1327 	return false;
1328 }
1329 EXPORT_SYMBOL_GPL(hrtimer_active);
1330 
1331 /*
1332  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1333  * distinct sections:
1334  *
1335  *  - queued:	the timer is queued
1336  *  - callback:	the timer is being ran
1337  *  - post:	the timer is inactive or (re)queued
1338  *
1339  * On the read side we ensure we observe timer->state and cpu_base->running
1340  * from the same section, if anything changed while we looked at it, we retry.
1341  * This includes timer->base changing because sequence numbers alone are
1342  * insufficient for that.
1343  *
1344  * The sequence numbers are required because otherwise we could still observe
1345  * a false negative if the read side got smeared over multiple consequtive
1346  * __run_hrtimer() invocations.
1347  */
1348 
1349 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1350 			  struct hrtimer_clock_base *base,
1351 			  struct hrtimer *timer, ktime_t *now,
1352 			  unsigned long flags)
1353 {
1354 	enum hrtimer_restart (*fn)(struct hrtimer *);
1355 	int restart;
1356 
1357 	lockdep_assert_held(&cpu_base->lock);
1358 
1359 	debug_deactivate(timer);
1360 	base->running = timer;
1361 
1362 	/*
1363 	 * Separate the ->running assignment from the ->state assignment.
1364 	 *
1365 	 * As with a regular write barrier, this ensures the read side in
1366 	 * hrtimer_active() cannot observe base->running == NULL &&
1367 	 * timer->state == INACTIVE.
1368 	 */
1369 	raw_write_seqcount_barrier(&base->seq);
1370 
1371 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1372 	fn = timer->function;
1373 
1374 	/*
1375 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1376 	 * timer is restarted with a period then it becomes an absolute
1377 	 * timer. If its not restarted it does not matter.
1378 	 */
1379 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1380 		timer->is_rel = false;
1381 
1382 	/*
1383 	 * The timer is marked as running in the CPU base, so it is
1384 	 * protected against migration to a different CPU even if the lock
1385 	 * is dropped.
1386 	 */
1387 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1388 	trace_hrtimer_expire_entry(timer, now);
1389 	restart = fn(timer);
1390 	trace_hrtimer_expire_exit(timer);
1391 	raw_spin_lock_irq(&cpu_base->lock);
1392 
1393 	/*
1394 	 * Note: We clear the running state after enqueue_hrtimer and
1395 	 * we do not reprogram the event hardware. Happens either in
1396 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1397 	 *
1398 	 * Note: Because we dropped the cpu_base->lock above,
1399 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1400 	 * for us already.
1401 	 */
1402 	if (restart != HRTIMER_NORESTART &&
1403 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1404 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1405 
1406 	/*
1407 	 * Separate the ->running assignment from the ->state assignment.
1408 	 *
1409 	 * As with a regular write barrier, this ensures the read side in
1410 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1411 	 * timer->state == INACTIVE.
1412 	 */
1413 	raw_write_seqcount_barrier(&base->seq);
1414 
1415 	WARN_ON_ONCE(base->running != timer);
1416 	base->running = NULL;
1417 }
1418 
1419 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1420 				 unsigned long flags, unsigned int active_mask)
1421 {
1422 	struct hrtimer_clock_base *base;
1423 	unsigned int active = cpu_base->active_bases & active_mask;
1424 
1425 	for_each_active_base(base, cpu_base, active) {
1426 		struct timerqueue_node *node;
1427 		ktime_t basenow;
1428 
1429 		basenow = ktime_add(now, base->offset);
1430 
1431 		while ((node = timerqueue_getnext(&base->active))) {
1432 			struct hrtimer *timer;
1433 
1434 			timer = container_of(node, struct hrtimer, node);
1435 
1436 			/*
1437 			 * The immediate goal for using the softexpires is
1438 			 * minimizing wakeups, not running timers at the
1439 			 * earliest interrupt after their soft expiration.
1440 			 * This allows us to avoid using a Priority Search
1441 			 * Tree, which can answer a stabbing querry for
1442 			 * overlapping intervals and instead use the simple
1443 			 * BST we already have.
1444 			 * We don't add extra wakeups by delaying timers that
1445 			 * are right-of a not yet expired timer, because that
1446 			 * timer will have to trigger a wakeup anyway.
1447 			 */
1448 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1449 				break;
1450 
1451 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1452 		}
1453 	}
1454 }
1455 
1456 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1457 {
1458 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1459 	unsigned long flags;
1460 	ktime_t now;
1461 
1462 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1463 
1464 	now = hrtimer_update_base(cpu_base);
1465 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1466 
1467 	cpu_base->softirq_activated = 0;
1468 	hrtimer_update_softirq_timer(cpu_base, true);
1469 
1470 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1471 }
1472 
1473 #ifdef CONFIG_HIGH_RES_TIMERS
1474 
1475 /*
1476  * High resolution timer interrupt
1477  * Called with interrupts disabled
1478  */
1479 void hrtimer_interrupt(struct clock_event_device *dev)
1480 {
1481 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1482 	ktime_t expires_next, now, entry_time, delta;
1483 	unsigned long flags;
1484 	int retries = 0;
1485 
1486 	BUG_ON(!cpu_base->hres_active);
1487 	cpu_base->nr_events++;
1488 	dev->next_event = KTIME_MAX;
1489 
1490 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1491 	entry_time = now = hrtimer_update_base(cpu_base);
1492 retry:
1493 	cpu_base->in_hrtirq = 1;
1494 	/*
1495 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1496 	 * held to prevent that a timer is enqueued in our queue via
1497 	 * the migration code. This does not affect enqueueing of
1498 	 * timers which run their callback and need to be requeued on
1499 	 * this CPU.
1500 	 */
1501 	cpu_base->expires_next = KTIME_MAX;
1502 
1503 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1504 		cpu_base->softirq_expires_next = KTIME_MAX;
1505 		cpu_base->softirq_activated = 1;
1506 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1507 	}
1508 
1509 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1510 
1511 	/* Reevaluate the clock bases for the next expiry */
1512 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1513 	/*
1514 	 * Store the new expiry value so the migration code can verify
1515 	 * against it.
1516 	 */
1517 	cpu_base->expires_next = expires_next;
1518 	cpu_base->in_hrtirq = 0;
1519 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1520 
1521 	/* Reprogramming necessary ? */
1522 	if (!tick_program_event(expires_next, 0)) {
1523 		cpu_base->hang_detected = 0;
1524 		return;
1525 	}
1526 
1527 	/*
1528 	 * The next timer was already expired due to:
1529 	 * - tracing
1530 	 * - long lasting callbacks
1531 	 * - being scheduled away when running in a VM
1532 	 *
1533 	 * We need to prevent that we loop forever in the hrtimer
1534 	 * interrupt routine. We give it 3 attempts to avoid
1535 	 * overreacting on some spurious event.
1536 	 *
1537 	 * Acquire base lock for updating the offsets and retrieving
1538 	 * the current time.
1539 	 */
1540 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1541 	now = hrtimer_update_base(cpu_base);
1542 	cpu_base->nr_retries++;
1543 	if (++retries < 3)
1544 		goto retry;
1545 	/*
1546 	 * Give the system a chance to do something else than looping
1547 	 * here. We stored the entry time, so we know exactly how long
1548 	 * we spent here. We schedule the next event this amount of
1549 	 * time away.
1550 	 */
1551 	cpu_base->nr_hangs++;
1552 	cpu_base->hang_detected = 1;
1553 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1554 
1555 	delta = ktime_sub(now, entry_time);
1556 	if ((unsigned int)delta > cpu_base->max_hang_time)
1557 		cpu_base->max_hang_time = (unsigned int) delta;
1558 	/*
1559 	 * Limit it to a sensible value as we enforce a longer
1560 	 * delay. Give the CPU at least 100ms to catch up.
1561 	 */
1562 	if (delta > 100 * NSEC_PER_MSEC)
1563 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1564 	else
1565 		expires_next = ktime_add(now, delta);
1566 	tick_program_event(expires_next, 1);
1567 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1568 }
1569 
1570 /* called with interrupts disabled */
1571 static inline void __hrtimer_peek_ahead_timers(void)
1572 {
1573 	struct tick_device *td;
1574 
1575 	if (!hrtimer_hres_active())
1576 		return;
1577 
1578 	td = this_cpu_ptr(&tick_cpu_device);
1579 	if (td && td->evtdev)
1580 		hrtimer_interrupt(td->evtdev);
1581 }
1582 
1583 #else /* CONFIG_HIGH_RES_TIMERS */
1584 
1585 static inline void __hrtimer_peek_ahead_timers(void) { }
1586 
1587 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1588 
1589 /*
1590  * Called from run_local_timers in hardirq context every jiffy
1591  */
1592 void hrtimer_run_queues(void)
1593 {
1594 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1595 	unsigned long flags;
1596 	ktime_t now;
1597 
1598 	if (__hrtimer_hres_active(cpu_base))
1599 		return;
1600 
1601 	/*
1602 	 * This _is_ ugly: We have to check periodically, whether we
1603 	 * can switch to highres and / or nohz mode. The clocksource
1604 	 * switch happens with xtime_lock held. Notification from
1605 	 * there only sets the check bit in the tick_oneshot code,
1606 	 * otherwise we might deadlock vs. xtime_lock.
1607 	 */
1608 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1609 		hrtimer_switch_to_hres();
1610 		return;
1611 	}
1612 
1613 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1614 	now = hrtimer_update_base(cpu_base);
1615 
1616 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1617 		cpu_base->softirq_expires_next = KTIME_MAX;
1618 		cpu_base->softirq_activated = 1;
1619 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1620 	}
1621 
1622 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1623 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1624 }
1625 
1626 /*
1627  * Sleep related functions:
1628  */
1629 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1630 {
1631 	struct hrtimer_sleeper *t =
1632 		container_of(timer, struct hrtimer_sleeper, timer);
1633 	struct task_struct *task = t->task;
1634 
1635 	t->task = NULL;
1636 	if (task)
1637 		wake_up_process(task);
1638 
1639 	return HRTIMER_NORESTART;
1640 }
1641 
1642 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1643 {
1644 	sl->timer.function = hrtimer_wakeup;
1645 	sl->task = task;
1646 }
1647 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1648 
1649 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1650 {
1651 	switch(restart->nanosleep.type) {
1652 #ifdef CONFIG_COMPAT_32BIT_TIME
1653 	case TT_COMPAT:
1654 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1655 			return -EFAULT;
1656 		break;
1657 #endif
1658 	case TT_NATIVE:
1659 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1660 			return -EFAULT;
1661 		break;
1662 	default:
1663 		BUG();
1664 	}
1665 	return -ERESTART_RESTARTBLOCK;
1666 }
1667 
1668 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1669 {
1670 	struct restart_block *restart;
1671 
1672 	hrtimer_init_sleeper(t, current);
1673 
1674 	do {
1675 		set_current_state(TASK_INTERRUPTIBLE);
1676 		hrtimer_start_expires(&t->timer, mode);
1677 
1678 		if (likely(t->task))
1679 			freezable_schedule();
1680 
1681 		hrtimer_cancel(&t->timer);
1682 		mode = HRTIMER_MODE_ABS;
1683 
1684 	} while (t->task && !signal_pending(current));
1685 
1686 	__set_current_state(TASK_RUNNING);
1687 
1688 	if (!t->task)
1689 		return 0;
1690 
1691 	restart = &current->restart_block;
1692 	if (restart->nanosleep.type != TT_NONE) {
1693 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1694 		struct timespec64 rmt;
1695 
1696 		if (rem <= 0)
1697 			return 0;
1698 		rmt = ktime_to_timespec64(rem);
1699 
1700 		return nanosleep_copyout(restart, &rmt);
1701 	}
1702 	return -ERESTART_RESTARTBLOCK;
1703 }
1704 
1705 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1706 {
1707 	struct hrtimer_sleeper t;
1708 	int ret;
1709 
1710 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1711 				HRTIMER_MODE_ABS);
1712 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1713 
1714 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1715 	destroy_hrtimer_on_stack(&t.timer);
1716 	return ret;
1717 }
1718 
1719 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1720 		       const enum hrtimer_mode mode, const clockid_t clockid)
1721 {
1722 	struct restart_block *restart;
1723 	struct hrtimer_sleeper t;
1724 	int ret = 0;
1725 	u64 slack;
1726 
1727 	slack = current->timer_slack_ns;
1728 	if (dl_task(current) || rt_task(current))
1729 		slack = 0;
1730 
1731 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1732 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1733 	ret = do_nanosleep(&t, mode);
1734 	if (ret != -ERESTART_RESTARTBLOCK)
1735 		goto out;
1736 
1737 	/* Absolute timers do not update the rmtp value and restart: */
1738 	if (mode == HRTIMER_MODE_ABS) {
1739 		ret = -ERESTARTNOHAND;
1740 		goto out;
1741 	}
1742 
1743 	restart = &current->restart_block;
1744 	restart->fn = hrtimer_nanosleep_restart;
1745 	restart->nanosleep.clockid = t.timer.base->clockid;
1746 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1747 out:
1748 	destroy_hrtimer_on_stack(&t.timer);
1749 	return ret;
1750 }
1751 
1752 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1753 
1754 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1755 		struct __kernel_timespec __user *, rmtp)
1756 {
1757 	struct timespec64 tu;
1758 
1759 	if (get_timespec64(&tu, rqtp))
1760 		return -EFAULT;
1761 
1762 	if (!timespec64_valid(&tu))
1763 		return -EINVAL;
1764 
1765 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1766 	current->restart_block.nanosleep.rmtp = rmtp;
1767 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1768 }
1769 
1770 #endif
1771 
1772 #ifdef CONFIG_COMPAT_32BIT_TIME
1773 
1774 COMPAT_SYSCALL_DEFINE2(nanosleep, struct old_timespec32 __user *, rqtp,
1775 		       struct old_timespec32 __user *, rmtp)
1776 {
1777 	struct timespec64 tu;
1778 
1779 	if (get_old_timespec32(&tu, rqtp))
1780 		return -EFAULT;
1781 
1782 	if (!timespec64_valid(&tu))
1783 		return -EINVAL;
1784 
1785 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1786 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1787 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1788 }
1789 #endif
1790 
1791 /*
1792  * Functions related to boot-time initialization:
1793  */
1794 int hrtimers_prepare_cpu(unsigned int cpu)
1795 {
1796 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1797 	int i;
1798 
1799 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1800 		cpu_base->clock_base[i].cpu_base = cpu_base;
1801 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1802 	}
1803 
1804 	cpu_base->cpu = cpu;
1805 	cpu_base->active_bases = 0;
1806 	cpu_base->hres_active = 0;
1807 	cpu_base->hang_detected = 0;
1808 	cpu_base->next_timer = NULL;
1809 	cpu_base->softirq_next_timer = NULL;
1810 	cpu_base->expires_next = KTIME_MAX;
1811 	cpu_base->softirq_expires_next = KTIME_MAX;
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_HOTPLUG_CPU
1816 
1817 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1818 				struct hrtimer_clock_base *new_base)
1819 {
1820 	struct hrtimer *timer;
1821 	struct timerqueue_node *node;
1822 
1823 	while ((node = timerqueue_getnext(&old_base->active))) {
1824 		timer = container_of(node, struct hrtimer, node);
1825 		BUG_ON(hrtimer_callback_running(timer));
1826 		debug_deactivate(timer);
1827 
1828 		/*
1829 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1830 		 * timer could be seen as !active and just vanish away
1831 		 * under us on another CPU
1832 		 */
1833 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1834 		timer->base = new_base;
1835 		/*
1836 		 * Enqueue the timers on the new cpu. This does not
1837 		 * reprogram the event device in case the timer
1838 		 * expires before the earliest on this CPU, but we run
1839 		 * hrtimer_interrupt after we migrated everything to
1840 		 * sort out already expired timers and reprogram the
1841 		 * event device.
1842 		 */
1843 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1844 	}
1845 }
1846 
1847 int hrtimers_dead_cpu(unsigned int scpu)
1848 {
1849 	struct hrtimer_cpu_base *old_base, *new_base;
1850 	int i;
1851 
1852 	BUG_ON(cpu_online(scpu));
1853 	tick_cancel_sched_timer(scpu);
1854 
1855 	/*
1856 	 * this BH disable ensures that raise_softirq_irqoff() does
1857 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1858 	 * holding the cpu_base lock
1859 	 */
1860 	local_bh_disable();
1861 	local_irq_disable();
1862 	old_base = &per_cpu(hrtimer_bases, scpu);
1863 	new_base = this_cpu_ptr(&hrtimer_bases);
1864 	/*
1865 	 * The caller is globally serialized and nobody else
1866 	 * takes two locks at once, deadlock is not possible.
1867 	 */
1868 	raw_spin_lock(&new_base->lock);
1869 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1870 
1871 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1872 		migrate_hrtimer_list(&old_base->clock_base[i],
1873 				     &new_base->clock_base[i]);
1874 	}
1875 
1876 	/*
1877 	 * The migration might have changed the first expiring softirq
1878 	 * timer on this CPU. Update it.
1879 	 */
1880 	hrtimer_update_softirq_timer(new_base, false);
1881 
1882 	raw_spin_unlock(&old_base->lock);
1883 	raw_spin_unlock(&new_base->lock);
1884 
1885 	/* Check, if we got expired work to do */
1886 	__hrtimer_peek_ahead_timers();
1887 	local_irq_enable();
1888 	local_bh_enable();
1889 	return 0;
1890 }
1891 
1892 #endif /* CONFIG_HOTPLUG_CPU */
1893 
1894 void __init hrtimers_init(void)
1895 {
1896 	hrtimers_prepare_cpu(smp_processor_id());
1897 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1898 }
1899 
1900 /**
1901  * schedule_hrtimeout_range_clock - sleep until timeout
1902  * @expires:	timeout value (ktime_t)
1903  * @delta:	slack in expires timeout (ktime_t)
1904  * @mode:	timer mode
1905  * @clock_id:	timer clock to be used
1906  */
1907 int __sched
1908 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1909 			       const enum hrtimer_mode mode, clockid_t clock_id)
1910 {
1911 	struct hrtimer_sleeper t;
1912 
1913 	/*
1914 	 * Optimize when a zero timeout value is given. It does not
1915 	 * matter whether this is an absolute or a relative time.
1916 	 */
1917 	if (expires && *expires == 0) {
1918 		__set_current_state(TASK_RUNNING);
1919 		return 0;
1920 	}
1921 
1922 	/*
1923 	 * A NULL parameter means "infinite"
1924 	 */
1925 	if (!expires) {
1926 		schedule();
1927 		return -EINTR;
1928 	}
1929 
1930 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1931 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1932 
1933 	hrtimer_init_sleeper(&t, current);
1934 
1935 	hrtimer_start_expires(&t.timer, mode);
1936 
1937 	if (likely(t.task))
1938 		schedule();
1939 
1940 	hrtimer_cancel(&t.timer);
1941 	destroy_hrtimer_on_stack(&t.timer);
1942 
1943 	__set_current_state(TASK_RUNNING);
1944 
1945 	return !t.task ? 0 : -EINTR;
1946 }
1947 
1948 /**
1949  * schedule_hrtimeout_range - sleep until timeout
1950  * @expires:	timeout value (ktime_t)
1951  * @delta:	slack in expires timeout (ktime_t)
1952  * @mode:	timer mode
1953  *
1954  * Make the current task sleep until the given expiry time has
1955  * elapsed. The routine will return immediately unless
1956  * the current task state has been set (see set_current_state()).
1957  *
1958  * The @delta argument gives the kernel the freedom to schedule the
1959  * actual wakeup to a time that is both power and performance friendly.
1960  * The kernel give the normal best effort behavior for "@expires+@delta",
1961  * but may decide to fire the timer earlier, but no earlier than @expires.
1962  *
1963  * You can set the task state as follows -
1964  *
1965  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1966  * pass before the routine returns unless the current task is explicitly
1967  * woken up, (e.g. by wake_up_process()).
1968  *
1969  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1970  * delivered to the current task or the current task is explicitly woken
1971  * up.
1972  *
1973  * The current task state is guaranteed to be TASK_RUNNING when this
1974  * routine returns.
1975  *
1976  * Returns 0 when the timer has expired. If the task was woken before the
1977  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1978  * by an explicit wakeup, it returns -EINTR.
1979  */
1980 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1981 				     const enum hrtimer_mode mode)
1982 {
1983 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1984 					      CLOCK_MONOTONIC);
1985 }
1986 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1987 
1988 /**
1989  * schedule_hrtimeout - sleep until timeout
1990  * @expires:	timeout value (ktime_t)
1991  * @mode:	timer mode
1992  *
1993  * Make the current task sleep until the given expiry time has
1994  * elapsed. The routine will return immediately unless
1995  * the current task state has been set (see set_current_state()).
1996  *
1997  * You can set the task state as follows -
1998  *
1999  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2000  * pass before the routine returns unless the current task is explicitly
2001  * woken up, (e.g. by wake_up_process()).
2002  *
2003  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2004  * delivered to the current task or the current task is explicitly woken
2005  * up.
2006  *
2007  * The current task state is guaranteed to be TASK_RUNNING when this
2008  * routine returns.
2009  *
2010  * Returns 0 when the timer has expired. If the task was woken before the
2011  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2012  * by an explicit wakeup, it returns -EINTR.
2013  */
2014 int __sched schedule_hrtimeout(ktime_t *expires,
2015 			       const enum hrtimer_mode mode)
2016 {
2017 	return schedule_hrtimeout_range(expires, 0, mode);
2018 }
2019 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2020