1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 __acquires(&timer->base->lock) 168 { 169 struct hrtimer_clock_base *base; 170 171 for (;;) { 172 base = READ_ONCE(timer->base); 173 if (likely(base != &migration_base)) { 174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 175 if (likely(base == timer->base)) 176 return base; 177 /* The timer has migrated to another CPU: */ 178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 179 } 180 cpu_relax(); 181 } 182 } 183 184 /* 185 * We do not migrate the timer when it is expiring before the next 186 * event on the target cpu. When high resolution is enabled, we cannot 187 * reprogram the target cpu hardware and we would cause it to fire 188 * late. To keep it simple, we handle the high resolution enabled and 189 * disabled case similar. 190 * 191 * Called with cpu_base->lock of target cpu held. 192 */ 193 static int 194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 195 { 196 ktime_t expires; 197 198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 199 return expires < new_base->cpu_base->expires_next; 200 } 201 202 static inline 203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 204 int pinned) 205 { 206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 207 if (static_branch_likely(&timers_migration_enabled) && !pinned) 208 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 209 #endif 210 return base; 211 } 212 213 /* 214 * We switch the timer base to a power-optimized selected CPU target, 215 * if: 216 * - NO_HZ_COMMON is enabled 217 * - timer migration is enabled 218 * - the timer callback is not running 219 * - the timer is not the first expiring timer on the new target 220 * 221 * If one of the above requirements is not fulfilled we move the timer 222 * to the current CPU or leave it on the previously assigned CPU if 223 * the timer callback is currently running. 224 */ 225 static inline struct hrtimer_clock_base * 226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 227 int pinned) 228 { 229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 230 struct hrtimer_clock_base *new_base; 231 int basenum = base->index; 232 233 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 234 new_cpu_base = get_target_base(this_cpu_base, pinned); 235 again: 236 new_base = &new_cpu_base->clock_base[basenum]; 237 238 if (base != new_base) { 239 /* 240 * We are trying to move timer to new_base. 241 * However we can't change timer's base while it is running, 242 * so we keep it on the same CPU. No hassle vs. reprogramming 243 * the event source in the high resolution case. The softirq 244 * code will take care of this when the timer function has 245 * completed. There is no conflict as we hold the lock until 246 * the timer is enqueued. 247 */ 248 if (unlikely(hrtimer_callback_running(timer))) 249 return base; 250 251 /* See the comment in lock_hrtimer_base() */ 252 WRITE_ONCE(timer->base, &migration_base); 253 raw_spin_unlock(&base->cpu_base->lock); 254 raw_spin_lock(&new_base->cpu_base->lock); 255 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 raw_spin_unlock(&new_base->cpu_base->lock); 259 raw_spin_lock(&base->cpu_base->lock); 260 new_cpu_base = this_cpu_base; 261 WRITE_ONCE(timer->base, base); 262 goto again; 263 } 264 WRITE_ONCE(timer->base, new_base); 265 } else { 266 if (new_cpu_base != this_cpu_base && 267 hrtimer_check_target(timer, new_base)) { 268 new_cpu_base = this_cpu_base; 269 goto again; 270 } 271 } 272 return new_base; 273 } 274 275 #else /* CONFIG_SMP */ 276 277 static inline bool is_migration_base(struct hrtimer_clock_base *base) 278 { 279 return false; 280 } 281 282 static inline struct hrtimer_clock_base * 283 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 284 __acquires(&timer->base->cpu_base->lock) 285 { 286 struct hrtimer_clock_base *base = timer->base; 287 288 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 289 290 return base; 291 } 292 293 # define switch_hrtimer_base(t, b, p) (b) 294 295 #endif /* !CONFIG_SMP */ 296 297 /* 298 * Functions for the union type storage format of ktime_t which are 299 * too large for inlining: 300 */ 301 #if BITS_PER_LONG < 64 302 /* 303 * Divide a ktime value by a nanosecond value 304 */ 305 s64 __ktime_divns(const ktime_t kt, s64 div) 306 { 307 int sft = 0; 308 s64 dclc; 309 u64 tmp; 310 311 dclc = ktime_to_ns(kt); 312 tmp = dclc < 0 ? -dclc : dclc; 313 314 /* Make sure the divisor is less than 2^32: */ 315 while (div >> 32) { 316 sft++; 317 div >>= 1; 318 } 319 tmp >>= sft; 320 do_div(tmp, (u32) div); 321 return dclc < 0 ? -tmp : tmp; 322 } 323 EXPORT_SYMBOL_GPL(__ktime_divns); 324 #endif /* BITS_PER_LONG >= 64 */ 325 326 /* 327 * Add two ktime values and do a safety check for overflow: 328 */ 329 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 330 { 331 ktime_t res = ktime_add_unsafe(lhs, rhs); 332 333 /* 334 * We use KTIME_SEC_MAX here, the maximum timeout which we can 335 * return to user space in a timespec: 336 */ 337 if (res < 0 || res < lhs || res < rhs) 338 res = ktime_set(KTIME_SEC_MAX, 0); 339 340 return res; 341 } 342 343 EXPORT_SYMBOL_GPL(ktime_add_safe); 344 345 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 346 347 static const struct debug_obj_descr hrtimer_debug_descr; 348 349 static void *hrtimer_debug_hint(void *addr) 350 { 351 return ((struct hrtimer *) addr)->function; 352 } 353 354 /* 355 * fixup_init is called when: 356 * - an active object is initialized 357 */ 358 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 359 { 360 struct hrtimer *timer = addr; 361 362 switch (state) { 363 case ODEBUG_STATE_ACTIVE: 364 hrtimer_cancel(timer); 365 debug_object_init(timer, &hrtimer_debug_descr); 366 return true; 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_activate is called when: 374 * - an active object is activated 375 * - an unknown non-static object is activated 376 */ 377 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 378 { 379 switch (state) { 380 case ODEBUG_STATE_ACTIVE: 381 WARN_ON(1); 382 fallthrough; 383 default: 384 return false; 385 } 386 } 387 388 /* 389 * fixup_free is called when: 390 * - an active object is freed 391 */ 392 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 393 { 394 struct hrtimer *timer = addr; 395 396 switch (state) { 397 case ODEBUG_STATE_ACTIVE: 398 hrtimer_cancel(timer); 399 debug_object_free(timer, &hrtimer_debug_descr); 400 return true; 401 default: 402 return false; 403 } 404 } 405 406 static const struct debug_obj_descr hrtimer_debug_descr = { 407 .name = "hrtimer", 408 .debug_hint = hrtimer_debug_hint, 409 .fixup_init = hrtimer_fixup_init, 410 .fixup_activate = hrtimer_fixup_activate, 411 .fixup_free = hrtimer_fixup_free, 412 }; 413 414 static inline void debug_hrtimer_init(struct hrtimer *timer) 415 { 416 debug_object_init(timer, &hrtimer_debug_descr); 417 } 418 419 static inline void debug_hrtimer_activate(struct hrtimer *timer, 420 enum hrtimer_mode mode) 421 { 422 debug_object_activate(timer, &hrtimer_debug_descr); 423 } 424 425 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 426 { 427 debug_object_deactivate(timer, &hrtimer_debug_descr); 428 } 429 430 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 431 enum hrtimer_mode mode); 432 433 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 434 enum hrtimer_mode mode) 435 { 436 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 437 __hrtimer_init(timer, clock_id, mode); 438 } 439 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 440 441 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 442 clockid_t clock_id, enum hrtimer_mode mode); 443 444 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 445 clockid_t clock_id, enum hrtimer_mode mode) 446 { 447 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 448 __hrtimer_init_sleeper(sl, clock_id, mode); 449 } 450 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 451 452 void destroy_hrtimer_on_stack(struct hrtimer *timer) 453 { 454 debug_object_free(timer, &hrtimer_debug_descr); 455 } 456 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 457 458 #else 459 460 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 461 static inline void debug_hrtimer_activate(struct hrtimer *timer, 462 enum hrtimer_mode mode) { } 463 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 464 #endif 465 466 static inline void 467 debug_init(struct hrtimer *timer, clockid_t clockid, 468 enum hrtimer_mode mode) 469 { 470 debug_hrtimer_init(timer); 471 trace_hrtimer_init(timer, clockid, mode); 472 } 473 474 static inline void debug_activate(struct hrtimer *timer, 475 enum hrtimer_mode mode) 476 { 477 debug_hrtimer_activate(timer, mode); 478 trace_hrtimer_start(timer, mode); 479 } 480 481 static inline void debug_deactivate(struct hrtimer *timer) 482 { 483 debug_hrtimer_deactivate(timer); 484 trace_hrtimer_cancel(timer); 485 } 486 487 static struct hrtimer_clock_base * 488 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 489 { 490 unsigned int idx; 491 492 if (!*active) 493 return NULL; 494 495 idx = __ffs(*active); 496 *active &= ~(1U << idx); 497 498 return &cpu_base->clock_base[idx]; 499 } 500 501 #define for_each_active_base(base, cpu_base, active) \ 502 while ((base = __next_base((cpu_base), &(active)))) 503 504 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 505 const struct hrtimer *exclude, 506 unsigned int active, 507 ktime_t expires_next) 508 { 509 struct hrtimer_clock_base *base; 510 ktime_t expires; 511 512 for_each_active_base(base, cpu_base, active) { 513 struct timerqueue_node *next; 514 struct hrtimer *timer; 515 516 next = timerqueue_getnext(&base->active); 517 timer = container_of(next, struct hrtimer, node); 518 if (timer == exclude) { 519 /* Get to the next timer in the queue. */ 520 next = timerqueue_iterate_next(next); 521 if (!next) 522 continue; 523 524 timer = container_of(next, struct hrtimer, node); 525 } 526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 527 if (expires < expires_next) { 528 expires_next = expires; 529 530 /* Skip cpu_base update if a timer is being excluded. */ 531 if (exclude) 532 continue; 533 534 if (timer->is_soft) 535 cpu_base->softirq_next_timer = timer; 536 else 537 cpu_base->next_timer = timer; 538 } 539 } 540 /* 541 * clock_was_set() might have changed base->offset of any of 542 * the clock bases so the result might be negative. Fix it up 543 * to prevent a false positive in clockevents_program_event(). 544 */ 545 if (expires_next < 0) 546 expires_next = 0; 547 return expires_next; 548 } 549 550 /* 551 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 552 * but does not set cpu_base::*expires_next, that is done by 553 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 554 * cpu_base::*expires_next right away, reprogramming logic would no longer 555 * work. 556 * 557 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 558 * those timers will get run whenever the softirq gets handled, at the end of 559 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 560 * 561 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 562 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 563 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 564 * 565 * @active_mask must be one of: 566 * - HRTIMER_ACTIVE_ALL, 567 * - HRTIMER_ACTIVE_SOFT, or 568 * - HRTIMER_ACTIVE_HARD. 569 */ 570 static ktime_t 571 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 572 { 573 unsigned int active; 574 struct hrtimer *next_timer = NULL; 575 ktime_t expires_next = KTIME_MAX; 576 577 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 578 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 579 cpu_base->softirq_next_timer = NULL; 580 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 581 active, KTIME_MAX); 582 583 next_timer = cpu_base->softirq_next_timer; 584 } 585 586 if (active_mask & HRTIMER_ACTIVE_HARD) { 587 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 588 cpu_base->next_timer = next_timer; 589 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 590 expires_next); 591 } 592 593 return expires_next; 594 } 595 596 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 597 { 598 ktime_t expires_next, soft = KTIME_MAX; 599 600 /* 601 * If the soft interrupt has already been activated, ignore the 602 * soft bases. They will be handled in the already raised soft 603 * interrupt. 604 */ 605 if (!cpu_base->softirq_activated) { 606 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 607 /* 608 * Update the soft expiry time. clock_settime() might have 609 * affected it. 610 */ 611 cpu_base->softirq_expires_next = soft; 612 } 613 614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 615 /* 616 * If a softirq timer is expiring first, update cpu_base->next_timer 617 * and program the hardware with the soft expiry time. 618 */ 619 if (expires_next > soft) { 620 cpu_base->next_timer = cpu_base->softirq_next_timer; 621 expires_next = soft; 622 } 623 624 return expires_next; 625 } 626 627 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 628 { 629 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 630 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 631 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 632 633 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 634 offs_real, offs_boot, offs_tai); 635 636 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 637 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 638 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 639 640 return now; 641 } 642 643 /* 644 * Is the high resolution mode active ? 645 */ 646 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 647 { 648 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 649 cpu_base->hres_active : 0; 650 } 651 652 static inline int hrtimer_hres_active(void) 653 { 654 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 655 } 656 657 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 658 struct hrtimer *next_timer, 659 ktime_t expires_next) 660 { 661 cpu_base->expires_next = expires_next; 662 663 /* 664 * If hres is not active, hardware does not have to be 665 * reprogrammed yet. 666 * 667 * If a hang was detected in the last timer interrupt then we 668 * leave the hang delay active in the hardware. We want the 669 * system to make progress. That also prevents the following 670 * scenario: 671 * T1 expires 50ms from now 672 * T2 expires 5s from now 673 * 674 * T1 is removed, so this code is called and would reprogram 675 * the hardware to 5s from now. Any hrtimer_start after that 676 * will not reprogram the hardware due to hang_detected being 677 * set. So we'd effectively block all timers until the T2 event 678 * fires. 679 */ 680 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 681 return; 682 683 tick_program_event(expires_next, 1); 684 } 685 686 /* 687 * Reprogram the event source with checking both queues for the 688 * next event 689 * Called with interrupts disabled and base->lock held 690 */ 691 static void 692 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 693 { 694 ktime_t expires_next; 695 696 expires_next = hrtimer_update_next_event(cpu_base); 697 698 if (skip_equal && expires_next == cpu_base->expires_next) 699 return; 700 701 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 702 } 703 704 /* High resolution timer related functions */ 705 #ifdef CONFIG_HIGH_RES_TIMERS 706 707 /* 708 * High resolution timer enabled ? 709 */ 710 static bool hrtimer_hres_enabled __read_mostly = true; 711 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 712 EXPORT_SYMBOL_GPL(hrtimer_resolution); 713 714 /* 715 * Enable / Disable high resolution mode 716 */ 717 static int __init setup_hrtimer_hres(char *str) 718 { 719 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 720 } 721 722 __setup("highres=", setup_hrtimer_hres); 723 724 /* 725 * hrtimer_high_res_enabled - query, if the highres mode is enabled 726 */ 727 static inline int hrtimer_is_hres_enabled(void) 728 { 729 return hrtimer_hres_enabled; 730 } 731 732 static void retrigger_next_event(void *arg); 733 734 /* 735 * Switch to high resolution mode 736 */ 737 static void hrtimer_switch_to_hres(void) 738 { 739 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 740 741 if (tick_init_highres()) { 742 pr_warn("Could not switch to high resolution mode on CPU %u\n", 743 base->cpu); 744 return; 745 } 746 base->hres_active = 1; 747 hrtimer_resolution = HIGH_RES_NSEC; 748 749 tick_setup_sched_timer(); 750 /* "Retrigger" the interrupt to get things going */ 751 retrigger_next_event(NULL); 752 } 753 754 #else 755 756 static inline int hrtimer_is_hres_enabled(void) { return 0; } 757 static inline void hrtimer_switch_to_hres(void) { } 758 759 #endif /* CONFIG_HIGH_RES_TIMERS */ 760 /* 761 * Retrigger next event is called after clock was set with interrupts 762 * disabled through an SMP function call or directly from low level 763 * resume code. 764 * 765 * This is only invoked when: 766 * - CONFIG_HIGH_RES_TIMERS is enabled. 767 * - CONFIG_NOHZ_COMMON is enabled 768 * 769 * For the other cases this function is empty and because the call sites 770 * are optimized out it vanishes as well, i.e. no need for lots of 771 * #ifdeffery. 772 */ 773 static void retrigger_next_event(void *arg) 774 { 775 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 776 777 /* 778 * When high resolution mode or nohz is active, then the offsets of 779 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 780 * next tick will take care of that. 781 * 782 * If high resolution mode is active then the next expiring timer 783 * must be reevaluated and the clock event device reprogrammed if 784 * necessary. 785 * 786 * In the NOHZ case the update of the offset and the reevaluation 787 * of the next expiring timer is enough. The return from the SMP 788 * function call will take care of the reprogramming in case the 789 * CPU was in a NOHZ idle sleep. 790 */ 791 if (!__hrtimer_hres_active(base) && !tick_nohz_active) 792 return; 793 794 raw_spin_lock(&base->lock); 795 hrtimer_update_base(base); 796 if (__hrtimer_hres_active(base)) 797 hrtimer_force_reprogram(base, 0); 798 else 799 hrtimer_update_next_event(base); 800 raw_spin_unlock(&base->lock); 801 } 802 803 /* 804 * When a timer is enqueued and expires earlier than the already enqueued 805 * timers, we have to check, whether it expires earlier than the timer for 806 * which the clock event device was armed. 807 * 808 * Called with interrupts disabled and base->cpu_base.lock held 809 */ 810 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 811 { 812 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 813 struct hrtimer_clock_base *base = timer->base; 814 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 815 816 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 817 818 /* 819 * CLOCK_REALTIME timer might be requested with an absolute 820 * expiry time which is less than base->offset. Set it to 0. 821 */ 822 if (expires < 0) 823 expires = 0; 824 825 if (timer->is_soft) { 826 /* 827 * soft hrtimer could be started on a remote CPU. In this 828 * case softirq_expires_next needs to be updated on the 829 * remote CPU. The soft hrtimer will not expire before the 830 * first hard hrtimer on the remote CPU - 831 * hrtimer_check_target() prevents this case. 832 */ 833 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 834 835 if (timer_cpu_base->softirq_activated) 836 return; 837 838 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 839 return; 840 841 timer_cpu_base->softirq_next_timer = timer; 842 timer_cpu_base->softirq_expires_next = expires; 843 844 if (!ktime_before(expires, timer_cpu_base->expires_next) || 845 !reprogram) 846 return; 847 } 848 849 /* 850 * If the timer is not on the current cpu, we cannot reprogram 851 * the other cpus clock event device. 852 */ 853 if (base->cpu_base != cpu_base) 854 return; 855 856 if (expires >= cpu_base->expires_next) 857 return; 858 859 /* 860 * If the hrtimer interrupt is running, then it will reevaluate the 861 * clock bases and reprogram the clock event device. 862 */ 863 if (cpu_base->in_hrtirq) 864 return; 865 866 cpu_base->next_timer = timer; 867 868 __hrtimer_reprogram(cpu_base, timer, expires); 869 } 870 871 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 872 unsigned int active) 873 { 874 struct hrtimer_clock_base *base; 875 unsigned int seq; 876 ktime_t expires; 877 878 /* 879 * Update the base offsets unconditionally so the following 880 * checks whether the SMP function call is required works. 881 * 882 * The update is safe even when the remote CPU is in the hrtimer 883 * interrupt or the hrtimer soft interrupt and expiring affected 884 * bases. Either it will see the update before handling a base or 885 * it will see it when it finishes the processing and reevaluates 886 * the next expiring timer. 887 */ 888 seq = cpu_base->clock_was_set_seq; 889 hrtimer_update_base(cpu_base); 890 891 /* 892 * If the sequence did not change over the update then the 893 * remote CPU already handled it. 894 */ 895 if (seq == cpu_base->clock_was_set_seq) 896 return false; 897 898 /* 899 * If the remote CPU is currently handling an hrtimer interrupt, it 900 * will reevaluate the first expiring timer of all clock bases 901 * before reprogramming. Nothing to do here. 902 */ 903 if (cpu_base->in_hrtirq) 904 return false; 905 906 /* 907 * Walk the affected clock bases and check whether the first expiring 908 * timer in a clock base is moving ahead of the first expiring timer of 909 * @cpu_base. If so, the IPI must be invoked because per CPU clock 910 * event devices cannot be remotely reprogrammed. 911 */ 912 active &= cpu_base->active_bases; 913 914 for_each_active_base(base, cpu_base, active) { 915 struct timerqueue_node *next; 916 917 next = timerqueue_getnext(&base->active); 918 expires = ktime_sub(next->expires, base->offset); 919 if (expires < cpu_base->expires_next) 920 return true; 921 922 /* Extra check for softirq clock bases */ 923 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 924 continue; 925 if (cpu_base->softirq_activated) 926 continue; 927 if (expires < cpu_base->softirq_expires_next) 928 return true; 929 } 930 return false; 931 } 932 933 /* 934 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 935 * CLOCK_BOOTTIME (for late sleep time injection). 936 * 937 * This requires to update the offsets for these clocks 938 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 939 * also requires to eventually reprogram the per CPU clock event devices 940 * when the change moves an affected timer ahead of the first expiring 941 * timer on that CPU. Obviously remote per CPU clock event devices cannot 942 * be reprogrammed. The other reason why an IPI has to be sent is when the 943 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 944 * in the tick, which obviously might be stopped, so this has to bring out 945 * the remote CPU which might sleep in idle to get this sorted. 946 */ 947 void clock_was_set(unsigned int bases) 948 { 949 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 950 cpumask_var_t mask; 951 int cpu; 952 953 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) 954 goto out_timerfd; 955 956 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 957 on_each_cpu(retrigger_next_event, NULL, 1); 958 goto out_timerfd; 959 } 960 961 /* Avoid interrupting CPUs if possible */ 962 cpus_read_lock(); 963 for_each_online_cpu(cpu) { 964 unsigned long flags; 965 966 cpu_base = &per_cpu(hrtimer_bases, cpu); 967 raw_spin_lock_irqsave(&cpu_base->lock, flags); 968 969 if (update_needs_ipi(cpu_base, bases)) 970 cpumask_set_cpu(cpu, mask); 971 972 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 973 } 974 975 preempt_disable(); 976 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 977 preempt_enable(); 978 cpus_read_unlock(); 979 free_cpumask_var(mask); 980 981 out_timerfd: 982 timerfd_clock_was_set(); 983 } 984 985 static void clock_was_set_work(struct work_struct *work) 986 { 987 clock_was_set(CLOCK_SET_WALL); 988 } 989 990 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 991 992 /* 993 * Called from timekeeping code to reprogram the hrtimer interrupt device 994 * on all cpus and to notify timerfd. 995 */ 996 void clock_was_set_delayed(void) 997 { 998 schedule_work(&hrtimer_work); 999 } 1000 1001 /* 1002 * Called during resume either directly from via timekeeping_resume() 1003 * or in the case of s2idle from tick_unfreeze() to ensure that the 1004 * hrtimers are up to date. 1005 */ 1006 void hrtimers_resume_local(void) 1007 { 1008 lockdep_assert_irqs_disabled(); 1009 /* Retrigger on the local CPU */ 1010 retrigger_next_event(NULL); 1011 } 1012 1013 /* 1014 * Counterpart to lock_hrtimer_base above: 1015 */ 1016 static inline 1017 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1018 __releases(&timer->base->cpu_base->lock) 1019 { 1020 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1021 } 1022 1023 /** 1024 * hrtimer_forward - forward the timer expiry 1025 * @timer: hrtimer to forward 1026 * @now: forward past this time 1027 * @interval: the interval to forward 1028 * 1029 * Forward the timer expiry so it will expire in the future. 1030 * Returns the number of overruns. 1031 * 1032 * Can be safely called from the callback function of @timer. If 1033 * called from other contexts @timer must neither be enqueued nor 1034 * running the callback and the caller needs to take care of 1035 * serialization. 1036 * 1037 * Note: This only updates the timer expiry value and does not requeue 1038 * the timer. 1039 */ 1040 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1041 { 1042 u64 orun = 1; 1043 ktime_t delta; 1044 1045 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1046 1047 if (delta < 0) 1048 return 0; 1049 1050 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1051 return 0; 1052 1053 if (interval < hrtimer_resolution) 1054 interval = hrtimer_resolution; 1055 1056 if (unlikely(delta >= interval)) { 1057 s64 incr = ktime_to_ns(interval); 1058 1059 orun = ktime_divns(delta, incr); 1060 hrtimer_add_expires_ns(timer, incr * orun); 1061 if (hrtimer_get_expires_tv64(timer) > now) 1062 return orun; 1063 /* 1064 * This (and the ktime_add() below) is the 1065 * correction for exact: 1066 */ 1067 orun++; 1068 } 1069 hrtimer_add_expires(timer, interval); 1070 1071 return orun; 1072 } 1073 EXPORT_SYMBOL_GPL(hrtimer_forward); 1074 1075 /* 1076 * enqueue_hrtimer - internal function to (re)start a timer 1077 * 1078 * The timer is inserted in expiry order. Insertion into the 1079 * red black tree is O(log(n)). Must hold the base lock. 1080 * 1081 * Returns 1 when the new timer is the leftmost timer in the tree. 1082 */ 1083 static int enqueue_hrtimer(struct hrtimer *timer, 1084 struct hrtimer_clock_base *base, 1085 enum hrtimer_mode mode) 1086 { 1087 debug_activate(timer, mode); 1088 1089 base->cpu_base->active_bases |= 1 << base->index; 1090 1091 /* Pairs with the lockless read in hrtimer_is_queued() */ 1092 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1093 1094 return timerqueue_add(&base->active, &timer->node); 1095 } 1096 1097 /* 1098 * __remove_hrtimer - internal function to remove a timer 1099 * 1100 * Caller must hold the base lock. 1101 * 1102 * High resolution timer mode reprograms the clock event device when the 1103 * timer is the one which expires next. The caller can disable this by setting 1104 * reprogram to zero. This is useful, when the context does a reprogramming 1105 * anyway (e.g. timer interrupt) 1106 */ 1107 static void __remove_hrtimer(struct hrtimer *timer, 1108 struct hrtimer_clock_base *base, 1109 u8 newstate, int reprogram) 1110 { 1111 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1112 u8 state = timer->state; 1113 1114 /* Pairs with the lockless read in hrtimer_is_queued() */ 1115 WRITE_ONCE(timer->state, newstate); 1116 if (!(state & HRTIMER_STATE_ENQUEUED)) 1117 return; 1118 1119 if (!timerqueue_del(&base->active, &timer->node)) 1120 cpu_base->active_bases &= ~(1 << base->index); 1121 1122 /* 1123 * Note: If reprogram is false we do not update 1124 * cpu_base->next_timer. This happens when we remove the first 1125 * timer on a remote cpu. No harm as we never dereference 1126 * cpu_base->next_timer. So the worst thing what can happen is 1127 * an superfluous call to hrtimer_force_reprogram() on the 1128 * remote cpu later on if the same timer gets enqueued again. 1129 */ 1130 if (reprogram && timer == cpu_base->next_timer) 1131 hrtimer_force_reprogram(cpu_base, 1); 1132 } 1133 1134 /* 1135 * remove hrtimer, called with base lock held 1136 */ 1137 static inline int 1138 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1139 bool restart, bool keep_local) 1140 { 1141 u8 state = timer->state; 1142 1143 if (state & HRTIMER_STATE_ENQUEUED) { 1144 bool reprogram; 1145 1146 /* 1147 * Remove the timer and force reprogramming when high 1148 * resolution mode is active and the timer is on the current 1149 * CPU. If we remove a timer on another CPU, reprogramming is 1150 * skipped. The interrupt event on this CPU is fired and 1151 * reprogramming happens in the interrupt handler. This is a 1152 * rare case and less expensive than a smp call. 1153 */ 1154 debug_deactivate(timer); 1155 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1156 1157 /* 1158 * If the timer is not restarted then reprogramming is 1159 * required if the timer is local. If it is local and about 1160 * to be restarted, avoid programming it twice (on removal 1161 * and a moment later when it's requeued). 1162 */ 1163 if (!restart) 1164 state = HRTIMER_STATE_INACTIVE; 1165 else 1166 reprogram &= !keep_local; 1167 1168 __remove_hrtimer(timer, base, state, reprogram); 1169 return 1; 1170 } 1171 return 0; 1172 } 1173 1174 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1175 const enum hrtimer_mode mode) 1176 { 1177 #ifdef CONFIG_TIME_LOW_RES 1178 /* 1179 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1180 * granular time values. For relative timers we add hrtimer_resolution 1181 * (i.e. one jiffie) to prevent short timeouts. 1182 */ 1183 timer->is_rel = mode & HRTIMER_MODE_REL; 1184 if (timer->is_rel) 1185 tim = ktime_add_safe(tim, hrtimer_resolution); 1186 #endif 1187 return tim; 1188 } 1189 1190 static void 1191 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1192 { 1193 ktime_t expires; 1194 1195 /* 1196 * Find the next SOFT expiration. 1197 */ 1198 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1199 1200 /* 1201 * reprogramming needs to be triggered, even if the next soft 1202 * hrtimer expires at the same time than the next hard 1203 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1204 */ 1205 if (expires == KTIME_MAX) 1206 return; 1207 1208 /* 1209 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1210 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1211 */ 1212 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1213 } 1214 1215 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1216 u64 delta_ns, const enum hrtimer_mode mode, 1217 struct hrtimer_clock_base *base) 1218 { 1219 struct hrtimer_clock_base *new_base; 1220 bool force_local, first; 1221 1222 /* 1223 * If the timer is on the local cpu base and is the first expiring 1224 * timer then this might end up reprogramming the hardware twice 1225 * (on removal and on enqueue). To avoid that by prevent the 1226 * reprogram on removal, keep the timer local to the current CPU 1227 * and enforce reprogramming after it is queued no matter whether 1228 * it is the new first expiring timer again or not. 1229 */ 1230 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1231 force_local &= base->cpu_base->next_timer == timer; 1232 1233 /* 1234 * Remove an active timer from the queue. In case it is not queued 1235 * on the current CPU, make sure that remove_hrtimer() updates the 1236 * remote data correctly. 1237 * 1238 * If it's on the current CPU and the first expiring timer, then 1239 * skip reprogramming, keep the timer local and enforce 1240 * reprogramming later if it was the first expiring timer. This 1241 * avoids programming the underlying clock event twice (once at 1242 * removal and once after enqueue). 1243 */ 1244 remove_hrtimer(timer, base, true, force_local); 1245 1246 if (mode & HRTIMER_MODE_REL) 1247 tim = ktime_add_safe(tim, base->get_time()); 1248 1249 tim = hrtimer_update_lowres(timer, tim, mode); 1250 1251 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1252 1253 /* Switch the timer base, if necessary: */ 1254 if (!force_local) { 1255 new_base = switch_hrtimer_base(timer, base, 1256 mode & HRTIMER_MODE_PINNED); 1257 } else { 1258 new_base = base; 1259 } 1260 1261 first = enqueue_hrtimer(timer, new_base, mode); 1262 if (!force_local) 1263 return first; 1264 1265 /* 1266 * Timer was forced to stay on the current CPU to avoid 1267 * reprogramming on removal and enqueue. Force reprogram the 1268 * hardware by evaluating the new first expiring timer. 1269 */ 1270 hrtimer_force_reprogram(new_base->cpu_base, 1); 1271 return 0; 1272 } 1273 1274 /** 1275 * hrtimer_start_range_ns - (re)start an hrtimer 1276 * @timer: the timer to be added 1277 * @tim: expiry time 1278 * @delta_ns: "slack" range for the timer 1279 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1280 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1281 * softirq based mode is considered for debug purpose only! 1282 */ 1283 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1284 u64 delta_ns, const enum hrtimer_mode mode) 1285 { 1286 struct hrtimer_clock_base *base; 1287 unsigned long flags; 1288 1289 /* 1290 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1291 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1292 * expiry mode because unmarked timers are moved to softirq expiry. 1293 */ 1294 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1295 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1296 else 1297 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1298 1299 base = lock_hrtimer_base(timer, &flags); 1300 1301 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1302 hrtimer_reprogram(timer, true); 1303 1304 unlock_hrtimer_base(timer, &flags); 1305 } 1306 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1307 1308 /** 1309 * hrtimer_try_to_cancel - try to deactivate a timer 1310 * @timer: hrtimer to stop 1311 * 1312 * Returns: 1313 * 1314 * * 0 when the timer was not active 1315 * * 1 when the timer was active 1316 * * -1 when the timer is currently executing the callback function and 1317 * cannot be stopped 1318 */ 1319 int hrtimer_try_to_cancel(struct hrtimer *timer) 1320 { 1321 struct hrtimer_clock_base *base; 1322 unsigned long flags; 1323 int ret = -1; 1324 1325 /* 1326 * Check lockless first. If the timer is not active (neither 1327 * enqueued nor running the callback, nothing to do here. The 1328 * base lock does not serialize against a concurrent enqueue, 1329 * so we can avoid taking it. 1330 */ 1331 if (!hrtimer_active(timer)) 1332 return 0; 1333 1334 base = lock_hrtimer_base(timer, &flags); 1335 1336 if (!hrtimer_callback_running(timer)) 1337 ret = remove_hrtimer(timer, base, false, false); 1338 1339 unlock_hrtimer_base(timer, &flags); 1340 1341 return ret; 1342 1343 } 1344 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1345 1346 #ifdef CONFIG_PREEMPT_RT 1347 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1348 { 1349 spin_lock_init(&base->softirq_expiry_lock); 1350 } 1351 1352 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1353 { 1354 spin_lock(&base->softirq_expiry_lock); 1355 } 1356 1357 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1358 { 1359 spin_unlock(&base->softirq_expiry_lock); 1360 } 1361 1362 /* 1363 * The counterpart to hrtimer_cancel_wait_running(). 1364 * 1365 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1366 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1367 * allows the waiter to acquire the lock and make progress. 1368 */ 1369 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1370 unsigned long flags) 1371 { 1372 if (atomic_read(&cpu_base->timer_waiters)) { 1373 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1374 spin_unlock(&cpu_base->softirq_expiry_lock); 1375 spin_lock(&cpu_base->softirq_expiry_lock); 1376 raw_spin_lock_irq(&cpu_base->lock); 1377 } 1378 } 1379 1380 /* 1381 * This function is called on PREEMPT_RT kernels when the fast path 1382 * deletion of a timer failed because the timer callback function was 1383 * running. 1384 * 1385 * This prevents priority inversion: if the soft irq thread is preempted 1386 * in the middle of a timer callback, then calling del_timer_sync() can 1387 * lead to two issues: 1388 * 1389 * - If the caller is on a remote CPU then it has to spin wait for the timer 1390 * handler to complete. This can result in unbound priority inversion. 1391 * 1392 * - If the caller originates from the task which preempted the timer 1393 * handler on the same CPU, then spin waiting for the timer handler to 1394 * complete is never going to end. 1395 */ 1396 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1397 { 1398 /* Lockless read. Prevent the compiler from reloading it below */ 1399 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1400 1401 /* 1402 * Just relax if the timer expires in hard interrupt context or if 1403 * it is currently on the migration base. 1404 */ 1405 if (!timer->is_soft || is_migration_base(base)) { 1406 cpu_relax(); 1407 return; 1408 } 1409 1410 /* 1411 * Mark the base as contended and grab the expiry lock, which is 1412 * held by the softirq across the timer callback. Drop the lock 1413 * immediately so the softirq can expire the next timer. In theory 1414 * the timer could already be running again, but that's more than 1415 * unlikely and just causes another wait loop. 1416 */ 1417 atomic_inc(&base->cpu_base->timer_waiters); 1418 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1419 atomic_dec(&base->cpu_base->timer_waiters); 1420 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1421 } 1422 #else 1423 static inline void 1424 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1425 static inline void 1426 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1427 static inline void 1428 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1429 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1430 unsigned long flags) { } 1431 #endif 1432 1433 /** 1434 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1435 * @timer: the timer to be cancelled 1436 * 1437 * Returns: 1438 * 0 when the timer was not active 1439 * 1 when the timer was active 1440 */ 1441 int hrtimer_cancel(struct hrtimer *timer) 1442 { 1443 int ret; 1444 1445 do { 1446 ret = hrtimer_try_to_cancel(timer); 1447 1448 if (ret < 0) 1449 hrtimer_cancel_wait_running(timer); 1450 } while (ret < 0); 1451 return ret; 1452 } 1453 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1454 1455 /** 1456 * __hrtimer_get_remaining - get remaining time for the timer 1457 * @timer: the timer to read 1458 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1459 */ 1460 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1461 { 1462 unsigned long flags; 1463 ktime_t rem; 1464 1465 lock_hrtimer_base(timer, &flags); 1466 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1467 rem = hrtimer_expires_remaining_adjusted(timer); 1468 else 1469 rem = hrtimer_expires_remaining(timer); 1470 unlock_hrtimer_base(timer, &flags); 1471 1472 return rem; 1473 } 1474 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1475 1476 #ifdef CONFIG_NO_HZ_COMMON 1477 /** 1478 * hrtimer_get_next_event - get the time until next expiry event 1479 * 1480 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1481 */ 1482 u64 hrtimer_get_next_event(void) 1483 { 1484 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1485 u64 expires = KTIME_MAX; 1486 unsigned long flags; 1487 1488 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1489 1490 if (!__hrtimer_hres_active(cpu_base)) 1491 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1492 1493 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1494 1495 return expires; 1496 } 1497 1498 /** 1499 * hrtimer_next_event_without - time until next expiry event w/o one timer 1500 * @exclude: timer to exclude 1501 * 1502 * Returns the next expiry time over all timers except for the @exclude one or 1503 * KTIME_MAX if none of them is pending. 1504 */ 1505 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1506 { 1507 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1508 u64 expires = KTIME_MAX; 1509 unsigned long flags; 1510 1511 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1512 1513 if (__hrtimer_hres_active(cpu_base)) { 1514 unsigned int active; 1515 1516 if (!cpu_base->softirq_activated) { 1517 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1518 expires = __hrtimer_next_event_base(cpu_base, exclude, 1519 active, KTIME_MAX); 1520 } 1521 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1522 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1523 expires); 1524 } 1525 1526 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1527 1528 return expires; 1529 } 1530 #endif 1531 1532 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1533 { 1534 if (likely(clock_id < MAX_CLOCKS)) { 1535 int base = hrtimer_clock_to_base_table[clock_id]; 1536 1537 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1538 return base; 1539 } 1540 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1541 return HRTIMER_BASE_MONOTONIC; 1542 } 1543 1544 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1545 enum hrtimer_mode mode) 1546 { 1547 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1548 struct hrtimer_cpu_base *cpu_base; 1549 int base; 1550 1551 /* 1552 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1553 * marked for hard interrupt expiry mode are moved into soft 1554 * interrupt context for latency reasons and because the callbacks 1555 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1556 */ 1557 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1558 softtimer = true; 1559 1560 memset(timer, 0, sizeof(struct hrtimer)); 1561 1562 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1563 1564 /* 1565 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1566 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1567 * ensure POSIX compliance. 1568 */ 1569 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1570 clock_id = CLOCK_MONOTONIC; 1571 1572 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1573 base += hrtimer_clockid_to_base(clock_id); 1574 timer->is_soft = softtimer; 1575 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1576 timer->base = &cpu_base->clock_base[base]; 1577 timerqueue_init(&timer->node); 1578 } 1579 1580 /** 1581 * hrtimer_init - initialize a timer to the given clock 1582 * @timer: the timer to be initialized 1583 * @clock_id: the clock to be used 1584 * @mode: The modes which are relevant for initialization: 1585 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1586 * HRTIMER_MODE_REL_SOFT 1587 * 1588 * The PINNED variants of the above can be handed in, 1589 * but the PINNED bit is ignored as pinning happens 1590 * when the hrtimer is started 1591 */ 1592 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1593 enum hrtimer_mode mode) 1594 { 1595 debug_init(timer, clock_id, mode); 1596 __hrtimer_init(timer, clock_id, mode); 1597 } 1598 EXPORT_SYMBOL_GPL(hrtimer_init); 1599 1600 /* 1601 * A timer is active, when it is enqueued into the rbtree or the 1602 * callback function is running or it's in the state of being migrated 1603 * to another cpu. 1604 * 1605 * It is important for this function to not return a false negative. 1606 */ 1607 bool hrtimer_active(const struct hrtimer *timer) 1608 { 1609 struct hrtimer_clock_base *base; 1610 unsigned int seq; 1611 1612 do { 1613 base = READ_ONCE(timer->base); 1614 seq = raw_read_seqcount_begin(&base->seq); 1615 1616 if (timer->state != HRTIMER_STATE_INACTIVE || 1617 base->running == timer) 1618 return true; 1619 1620 } while (read_seqcount_retry(&base->seq, seq) || 1621 base != READ_ONCE(timer->base)); 1622 1623 return false; 1624 } 1625 EXPORT_SYMBOL_GPL(hrtimer_active); 1626 1627 /* 1628 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1629 * distinct sections: 1630 * 1631 * - queued: the timer is queued 1632 * - callback: the timer is being ran 1633 * - post: the timer is inactive or (re)queued 1634 * 1635 * On the read side we ensure we observe timer->state and cpu_base->running 1636 * from the same section, if anything changed while we looked at it, we retry. 1637 * This includes timer->base changing because sequence numbers alone are 1638 * insufficient for that. 1639 * 1640 * The sequence numbers are required because otherwise we could still observe 1641 * a false negative if the read side got smeared over multiple consecutive 1642 * __run_hrtimer() invocations. 1643 */ 1644 1645 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1646 struct hrtimer_clock_base *base, 1647 struct hrtimer *timer, ktime_t *now, 1648 unsigned long flags) __must_hold(&cpu_base->lock) 1649 { 1650 enum hrtimer_restart (*fn)(struct hrtimer *); 1651 bool expires_in_hardirq; 1652 int restart; 1653 1654 lockdep_assert_held(&cpu_base->lock); 1655 1656 debug_deactivate(timer); 1657 base->running = timer; 1658 1659 /* 1660 * Separate the ->running assignment from the ->state assignment. 1661 * 1662 * As with a regular write barrier, this ensures the read side in 1663 * hrtimer_active() cannot observe base->running == NULL && 1664 * timer->state == INACTIVE. 1665 */ 1666 raw_write_seqcount_barrier(&base->seq); 1667 1668 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1669 fn = timer->function; 1670 1671 /* 1672 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1673 * timer is restarted with a period then it becomes an absolute 1674 * timer. If its not restarted it does not matter. 1675 */ 1676 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1677 timer->is_rel = false; 1678 1679 /* 1680 * The timer is marked as running in the CPU base, so it is 1681 * protected against migration to a different CPU even if the lock 1682 * is dropped. 1683 */ 1684 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1685 trace_hrtimer_expire_entry(timer, now); 1686 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1687 1688 restart = fn(timer); 1689 1690 lockdep_hrtimer_exit(expires_in_hardirq); 1691 trace_hrtimer_expire_exit(timer); 1692 raw_spin_lock_irq(&cpu_base->lock); 1693 1694 /* 1695 * Note: We clear the running state after enqueue_hrtimer and 1696 * we do not reprogram the event hardware. Happens either in 1697 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1698 * 1699 * Note: Because we dropped the cpu_base->lock above, 1700 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1701 * for us already. 1702 */ 1703 if (restart != HRTIMER_NORESTART && 1704 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1705 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1706 1707 /* 1708 * Separate the ->running assignment from the ->state assignment. 1709 * 1710 * As with a regular write barrier, this ensures the read side in 1711 * hrtimer_active() cannot observe base->running.timer == NULL && 1712 * timer->state == INACTIVE. 1713 */ 1714 raw_write_seqcount_barrier(&base->seq); 1715 1716 WARN_ON_ONCE(base->running != timer); 1717 base->running = NULL; 1718 } 1719 1720 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1721 unsigned long flags, unsigned int active_mask) 1722 { 1723 struct hrtimer_clock_base *base; 1724 unsigned int active = cpu_base->active_bases & active_mask; 1725 1726 for_each_active_base(base, cpu_base, active) { 1727 struct timerqueue_node *node; 1728 ktime_t basenow; 1729 1730 basenow = ktime_add(now, base->offset); 1731 1732 while ((node = timerqueue_getnext(&base->active))) { 1733 struct hrtimer *timer; 1734 1735 timer = container_of(node, struct hrtimer, node); 1736 1737 /* 1738 * The immediate goal for using the softexpires is 1739 * minimizing wakeups, not running timers at the 1740 * earliest interrupt after their soft expiration. 1741 * This allows us to avoid using a Priority Search 1742 * Tree, which can answer a stabbing query for 1743 * overlapping intervals and instead use the simple 1744 * BST we already have. 1745 * We don't add extra wakeups by delaying timers that 1746 * are right-of a not yet expired timer, because that 1747 * timer will have to trigger a wakeup anyway. 1748 */ 1749 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1750 break; 1751 1752 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1753 if (active_mask == HRTIMER_ACTIVE_SOFT) 1754 hrtimer_sync_wait_running(cpu_base, flags); 1755 } 1756 } 1757 } 1758 1759 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1760 { 1761 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1762 unsigned long flags; 1763 ktime_t now; 1764 1765 hrtimer_cpu_base_lock_expiry(cpu_base); 1766 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1767 1768 now = hrtimer_update_base(cpu_base); 1769 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1770 1771 cpu_base->softirq_activated = 0; 1772 hrtimer_update_softirq_timer(cpu_base, true); 1773 1774 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1775 hrtimer_cpu_base_unlock_expiry(cpu_base); 1776 } 1777 1778 #ifdef CONFIG_HIGH_RES_TIMERS 1779 1780 /* 1781 * High resolution timer interrupt 1782 * Called with interrupts disabled 1783 */ 1784 void hrtimer_interrupt(struct clock_event_device *dev) 1785 { 1786 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1787 ktime_t expires_next, now, entry_time, delta; 1788 unsigned long flags; 1789 int retries = 0; 1790 1791 BUG_ON(!cpu_base->hres_active); 1792 cpu_base->nr_events++; 1793 dev->next_event = KTIME_MAX; 1794 1795 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1796 entry_time = now = hrtimer_update_base(cpu_base); 1797 retry: 1798 cpu_base->in_hrtirq = 1; 1799 /* 1800 * We set expires_next to KTIME_MAX here with cpu_base->lock 1801 * held to prevent that a timer is enqueued in our queue via 1802 * the migration code. This does not affect enqueueing of 1803 * timers which run their callback and need to be requeued on 1804 * this CPU. 1805 */ 1806 cpu_base->expires_next = KTIME_MAX; 1807 1808 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1809 cpu_base->softirq_expires_next = KTIME_MAX; 1810 cpu_base->softirq_activated = 1; 1811 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1812 } 1813 1814 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1815 1816 /* Reevaluate the clock bases for the [soft] next expiry */ 1817 expires_next = hrtimer_update_next_event(cpu_base); 1818 /* 1819 * Store the new expiry value so the migration code can verify 1820 * against it. 1821 */ 1822 cpu_base->expires_next = expires_next; 1823 cpu_base->in_hrtirq = 0; 1824 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1825 1826 /* Reprogramming necessary ? */ 1827 if (!tick_program_event(expires_next, 0)) { 1828 cpu_base->hang_detected = 0; 1829 return; 1830 } 1831 1832 /* 1833 * The next timer was already expired due to: 1834 * - tracing 1835 * - long lasting callbacks 1836 * - being scheduled away when running in a VM 1837 * 1838 * We need to prevent that we loop forever in the hrtimer 1839 * interrupt routine. We give it 3 attempts to avoid 1840 * overreacting on some spurious event. 1841 * 1842 * Acquire base lock for updating the offsets and retrieving 1843 * the current time. 1844 */ 1845 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1846 now = hrtimer_update_base(cpu_base); 1847 cpu_base->nr_retries++; 1848 if (++retries < 3) 1849 goto retry; 1850 /* 1851 * Give the system a chance to do something else than looping 1852 * here. We stored the entry time, so we know exactly how long 1853 * we spent here. We schedule the next event this amount of 1854 * time away. 1855 */ 1856 cpu_base->nr_hangs++; 1857 cpu_base->hang_detected = 1; 1858 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1859 1860 delta = ktime_sub(now, entry_time); 1861 if ((unsigned int)delta > cpu_base->max_hang_time) 1862 cpu_base->max_hang_time = (unsigned int) delta; 1863 /* 1864 * Limit it to a sensible value as we enforce a longer 1865 * delay. Give the CPU at least 100ms to catch up. 1866 */ 1867 if (delta > 100 * NSEC_PER_MSEC) 1868 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1869 else 1870 expires_next = ktime_add(now, delta); 1871 tick_program_event(expires_next, 1); 1872 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1873 } 1874 1875 /* called with interrupts disabled */ 1876 static inline void __hrtimer_peek_ahead_timers(void) 1877 { 1878 struct tick_device *td; 1879 1880 if (!hrtimer_hres_active()) 1881 return; 1882 1883 td = this_cpu_ptr(&tick_cpu_device); 1884 if (td && td->evtdev) 1885 hrtimer_interrupt(td->evtdev); 1886 } 1887 1888 #else /* CONFIG_HIGH_RES_TIMERS */ 1889 1890 static inline void __hrtimer_peek_ahead_timers(void) { } 1891 1892 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1893 1894 /* 1895 * Called from run_local_timers in hardirq context every jiffy 1896 */ 1897 void hrtimer_run_queues(void) 1898 { 1899 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1900 unsigned long flags; 1901 ktime_t now; 1902 1903 if (__hrtimer_hres_active(cpu_base)) 1904 return; 1905 1906 /* 1907 * This _is_ ugly: We have to check periodically, whether we 1908 * can switch to highres and / or nohz mode. The clocksource 1909 * switch happens with xtime_lock held. Notification from 1910 * there only sets the check bit in the tick_oneshot code, 1911 * otherwise we might deadlock vs. xtime_lock. 1912 */ 1913 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1914 hrtimer_switch_to_hres(); 1915 return; 1916 } 1917 1918 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1919 now = hrtimer_update_base(cpu_base); 1920 1921 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1922 cpu_base->softirq_expires_next = KTIME_MAX; 1923 cpu_base->softirq_activated = 1; 1924 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1925 } 1926 1927 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1928 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1929 } 1930 1931 /* 1932 * Sleep related functions: 1933 */ 1934 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1935 { 1936 struct hrtimer_sleeper *t = 1937 container_of(timer, struct hrtimer_sleeper, timer); 1938 struct task_struct *task = t->task; 1939 1940 t->task = NULL; 1941 if (task) 1942 wake_up_process(task); 1943 1944 return HRTIMER_NORESTART; 1945 } 1946 1947 /** 1948 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1949 * @sl: sleeper to be started 1950 * @mode: timer mode abs/rel 1951 * 1952 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1953 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1954 */ 1955 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1956 enum hrtimer_mode mode) 1957 { 1958 /* 1959 * Make the enqueue delivery mode check work on RT. If the sleeper 1960 * was initialized for hard interrupt delivery, force the mode bit. 1961 * This is a special case for hrtimer_sleepers because 1962 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1963 * fiddling with this decision is avoided at the call sites. 1964 */ 1965 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1966 mode |= HRTIMER_MODE_HARD; 1967 1968 hrtimer_start_expires(&sl->timer, mode); 1969 } 1970 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1971 1972 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1973 clockid_t clock_id, enum hrtimer_mode mode) 1974 { 1975 /* 1976 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1977 * marked for hard interrupt expiry mode are moved into soft 1978 * interrupt context either for latency reasons or because the 1979 * hrtimer callback takes regular spinlocks or invokes other 1980 * functions which are not suitable for hard interrupt context on 1981 * PREEMPT_RT. 1982 * 1983 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1984 * context, but there is a latency concern: Untrusted userspace can 1985 * spawn many threads which arm timers for the same expiry time on 1986 * the same CPU. That causes a latency spike due to the wakeup of 1987 * a gazillion threads. 1988 * 1989 * OTOH, privileged real-time user space applications rely on the 1990 * low latency of hard interrupt wakeups. If the current task is in 1991 * a real-time scheduling class, mark the mode for hard interrupt 1992 * expiry. 1993 */ 1994 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1995 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1996 mode |= HRTIMER_MODE_HARD; 1997 } 1998 1999 __hrtimer_init(&sl->timer, clock_id, mode); 2000 sl->timer.function = hrtimer_wakeup; 2001 sl->task = current; 2002 } 2003 2004 /** 2005 * hrtimer_init_sleeper - initialize sleeper to the given clock 2006 * @sl: sleeper to be initialized 2007 * @clock_id: the clock to be used 2008 * @mode: timer mode abs/rel 2009 */ 2010 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 2011 enum hrtimer_mode mode) 2012 { 2013 debug_init(&sl->timer, clock_id, mode); 2014 __hrtimer_init_sleeper(sl, clock_id, mode); 2015 2016 } 2017 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2018 2019 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2020 { 2021 switch(restart->nanosleep.type) { 2022 #ifdef CONFIG_COMPAT_32BIT_TIME 2023 case TT_COMPAT: 2024 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2025 return -EFAULT; 2026 break; 2027 #endif 2028 case TT_NATIVE: 2029 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2030 return -EFAULT; 2031 break; 2032 default: 2033 BUG(); 2034 } 2035 return -ERESTART_RESTARTBLOCK; 2036 } 2037 2038 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2039 { 2040 struct restart_block *restart; 2041 2042 do { 2043 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2044 hrtimer_sleeper_start_expires(t, mode); 2045 2046 if (likely(t->task)) 2047 schedule(); 2048 2049 hrtimer_cancel(&t->timer); 2050 mode = HRTIMER_MODE_ABS; 2051 2052 } while (t->task && !signal_pending(current)); 2053 2054 __set_current_state(TASK_RUNNING); 2055 2056 if (!t->task) 2057 return 0; 2058 2059 restart = ¤t->restart_block; 2060 if (restart->nanosleep.type != TT_NONE) { 2061 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2062 struct timespec64 rmt; 2063 2064 if (rem <= 0) 2065 return 0; 2066 rmt = ktime_to_timespec64(rem); 2067 2068 return nanosleep_copyout(restart, &rmt); 2069 } 2070 return -ERESTART_RESTARTBLOCK; 2071 } 2072 2073 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2074 { 2075 struct hrtimer_sleeper t; 2076 int ret; 2077 2078 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2079 HRTIMER_MODE_ABS); 2080 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2081 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2082 destroy_hrtimer_on_stack(&t.timer); 2083 return ret; 2084 } 2085 2086 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2087 const clockid_t clockid) 2088 { 2089 struct restart_block *restart; 2090 struct hrtimer_sleeper t; 2091 int ret = 0; 2092 u64 slack; 2093 2094 slack = current->timer_slack_ns; 2095 if (rt_task(current)) 2096 slack = 0; 2097 2098 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2099 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2100 ret = do_nanosleep(&t, mode); 2101 if (ret != -ERESTART_RESTARTBLOCK) 2102 goto out; 2103 2104 /* Absolute timers do not update the rmtp value and restart: */ 2105 if (mode == HRTIMER_MODE_ABS) { 2106 ret = -ERESTARTNOHAND; 2107 goto out; 2108 } 2109 2110 restart = ¤t->restart_block; 2111 restart->nanosleep.clockid = t.timer.base->clockid; 2112 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2113 set_restart_fn(restart, hrtimer_nanosleep_restart); 2114 out: 2115 destroy_hrtimer_on_stack(&t.timer); 2116 return ret; 2117 } 2118 2119 #ifdef CONFIG_64BIT 2120 2121 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2122 struct __kernel_timespec __user *, rmtp) 2123 { 2124 struct timespec64 tu; 2125 2126 if (get_timespec64(&tu, rqtp)) 2127 return -EFAULT; 2128 2129 if (!timespec64_valid(&tu)) 2130 return -EINVAL; 2131 2132 current->restart_block.fn = do_no_restart_syscall; 2133 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2134 current->restart_block.nanosleep.rmtp = rmtp; 2135 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2136 CLOCK_MONOTONIC); 2137 } 2138 2139 #endif 2140 2141 #ifdef CONFIG_COMPAT_32BIT_TIME 2142 2143 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2144 struct old_timespec32 __user *, rmtp) 2145 { 2146 struct timespec64 tu; 2147 2148 if (get_old_timespec32(&tu, rqtp)) 2149 return -EFAULT; 2150 2151 if (!timespec64_valid(&tu)) 2152 return -EINVAL; 2153 2154 current->restart_block.fn = do_no_restart_syscall; 2155 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2156 current->restart_block.nanosleep.compat_rmtp = rmtp; 2157 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2158 CLOCK_MONOTONIC); 2159 } 2160 #endif 2161 2162 /* 2163 * Functions related to boot-time initialization: 2164 */ 2165 int hrtimers_prepare_cpu(unsigned int cpu) 2166 { 2167 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2168 int i; 2169 2170 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2171 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2172 2173 clock_b->cpu_base = cpu_base; 2174 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2175 timerqueue_init_head(&clock_b->active); 2176 } 2177 2178 cpu_base->cpu = cpu; 2179 cpu_base->active_bases = 0; 2180 cpu_base->hres_active = 0; 2181 cpu_base->hang_detected = 0; 2182 cpu_base->next_timer = NULL; 2183 cpu_base->softirq_next_timer = NULL; 2184 cpu_base->expires_next = KTIME_MAX; 2185 cpu_base->softirq_expires_next = KTIME_MAX; 2186 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2187 return 0; 2188 } 2189 2190 #ifdef CONFIG_HOTPLUG_CPU 2191 2192 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2193 struct hrtimer_clock_base *new_base) 2194 { 2195 struct hrtimer *timer; 2196 struct timerqueue_node *node; 2197 2198 while ((node = timerqueue_getnext(&old_base->active))) { 2199 timer = container_of(node, struct hrtimer, node); 2200 BUG_ON(hrtimer_callback_running(timer)); 2201 debug_deactivate(timer); 2202 2203 /* 2204 * Mark it as ENQUEUED not INACTIVE otherwise the 2205 * timer could be seen as !active and just vanish away 2206 * under us on another CPU 2207 */ 2208 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2209 timer->base = new_base; 2210 /* 2211 * Enqueue the timers on the new cpu. This does not 2212 * reprogram the event device in case the timer 2213 * expires before the earliest on this CPU, but we run 2214 * hrtimer_interrupt after we migrated everything to 2215 * sort out already expired timers and reprogram the 2216 * event device. 2217 */ 2218 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2219 } 2220 } 2221 2222 int hrtimers_cpu_dying(unsigned int dying_cpu) 2223 { 2224 struct hrtimer_cpu_base *old_base, *new_base; 2225 int i, ncpu = cpumask_first(cpu_active_mask); 2226 2227 tick_cancel_sched_timer(dying_cpu); 2228 2229 old_base = this_cpu_ptr(&hrtimer_bases); 2230 new_base = &per_cpu(hrtimer_bases, ncpu); 2231 2232 /* 2233 * The caller is globally serialized and nobody else 2234 * takes two locks at once, deadlock is not possible. 2235 */ 2236 raw_spin_lock(&old_base->lock); 2237 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2238 2239 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2240 migrate_hrtimer_list(&old_base->clock_base[i], 2241 &new_base->clock_base[i]); 2242 } 2243 2244 /* 2245 * The migration might have changed the first expiring softirq 2246 * timer on this CPU. Update it. 2247 */ 2248 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2249 /* Tell the other CPU to retrigger the next event */ 2250 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2251 2252 raw_spin_unlock(&new_base->lock); 2253 raw_spin_unlock(&old_base->lock); 2254 2255 return 0; 2256 } 2257 2258 #endif /* CONFIG_HOTPLUG_CPU */ 2259 2260 void __init hrtimers_init(void) 2261 { 2262 hrtimers_prepare_cpu(smp_processor_id()); 2263 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2264 } 2265 2266 /** 2267 * schedule_hrtimeout_range_clock - sleep until timeout 2268 * @expires: timeout value (ktime_t) 2269 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2270 * @mode: timer mode 2271 * @clock_id: timer clock to be used 2272 */ 2273 int __sched 2274 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2275 const enum hrtimer_mode mode, clockid_t clock_id) 2276 { 2277 struct hrtimer_sleeper t; 2278 2279 /* 2280 * Optimize when a zero timeout value is given. It does not 2281 * matter whether this is an absolute or a relative time. 2282 */ 2283 if (expires && *expires == 0) { 2284 __set_current_state(TASK_RUNNING); 2285 return 0; 2286 } 2287 2288 /* 2289 * A NULL parameter means "infinite" 2290 */ 2291 if (!expires) { 2292 schedule(); 2293 return -EINTR; 2294 } 2295 2296 /* 2297 * Override any slack passed by the user if under 2298 * rt contraints. 2299 */ 2300 if (rt_task(current)) 2301 delta = 0; 2302 2303 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2304 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2305 hrtimer_sleeper_start_expires(&t, mode); 2306 2307 if (likely(t.task)) 2308 schedule(); 2309 2310 hrtimer_cancel(&t.timer); 2311 destroy_hrtimer_on_stack(&t.timer); 2312 2313 __set_current_state(TASK_RUNNING); 2314 2315 return !t.task ? 0 : -EINTR; 2316 } 2317 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); 2318 2319 /** 2320 * schedule_hrtimeout_range - sleep until timeout 2321 * @expires: timeout value (ktime_t) 2322 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2323 * @mode: timer mode 2324 * 2325 * Make the current task sleep until the given expiry time has 2326 * elapsed. The routine will return immediately unless 2327 * the current task state has been set (see set_current_state()). 2328 * 2329 * The @delta argument gives the kernel the freedom to schedule the 2330 * actual wakeup to a time that is both power and performance friendly 2331 * for regular (non RT/DL) tasks. 2332 * The kernel give the normal best effort behavior for "@expires+@delta", 2333 * but may decide to fire the timer earlier, but no earlier than @expires. 2334 * 2335 * You can set the task state as follows - 2336 * 2337 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2338 * pass before the routine returns unless the current task is explicitly 2339 * woken up, (e.g. by wake_up_process()). 2340 * 2341 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2342 * delivered to the current task or the current task is explicitly woken 2343 * up. 2344 * 2345 * The current task state is guaranteed to be TASK_RUNNING when this 2346 * routine returns. 2347 * 2348 * Returns 0 when the timer has expired. If the task was woken before the 2349 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2350 * by an explicit wakeup, it returns -EINTR. 2351 */ 2352 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2353 const enum hrtimer_mode mode) 2354 { 2355 return schedule_hrtimeout_range_clock(expires, delta, mode, 2356 CLOCK_MONOTONIC); 2357 } 2358 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2359 2360 /** 2361 * schedule_hrtimeout - sleep until timeout 2362 * @expires: timeout value (ktime_t) 2363 * @mode: timer mode 2364 * 2365 * Make the current task sleep until the given expiry time has 2366 * elapsed. The routine will return immediately unless 2367 * the current task state has been set (see set_current_state()). 2368 * 2369 * You can set the task state as follows - 2370 * 2371 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2372 * pass before the routine returns unless the current task is explicitly 2373 * woken up, (e.g. by wake_up_process()). 2374 * 2375 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2376 * delivered to the current task or the current task is explicitly woken 2377 * up. 2378 * 2379 * The current task state is guaranteed to be TASK_RUNNING when this 2380 * routine returns. 2381 * 2382 * Returns 0 when the timer has expired. If the task was woken before the 2383 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2384 * by an explicit wakeup, it returns -EINTR. 2385 */ 2386 int __sched schedule_hrtimeout(ktime_t *expires, 2387 const enum hrtimer_mode mode) 2388 { 2389 return schedule_hrtimeout_range(expires, 0, mode); 2390 } 2391 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2392