1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 139 }; 140 141 #define migration_base migration_cpu_base.clock_base[0] 142 143 static inline bool is_migration_base(struct hrtimer_clock_base *base) 144 { 145 return base == &migration_base; 146 } 147 148 /* 149 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 150 * means that all timers which are tied to this base via timer->base are 151 * locked, and the base itself is locked too. 152 * 153 * So __run_timers/migrate_timers can safely modify all timers which could 154 * be found on the lists/queues. 155 * 156 * When the timer's base is locked, and the timer removed from list, it is 157 * possible to set timer->base = &migration_base and drop the lock: the timer 158 * remains locked. 159 */ 160 static 161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 162 unsigned long *flags) 163 { 164 struct hrtimer_clock_base *base; 165 166 for (;;) { 167 base = READ_ONCE(timer->base); 168 if (likely(base != &migration_base)) { 169 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 170 if (likely(base == timer->base)) 171 return base; 172 /* The timer has migrated to another CPU: */ 173 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 174 } 175 cpu_relax(); 176 } 177 } 178 179 /* 180 * We do not migrate the timer when it is expiring before the next 181 * event on the target cpu. When high resolution is enabled, we cannot 182 * reprogram the target cpu hardware and we would cause it to fire 183 * late. To keep it simple, we handle the high resolution enabled and 184 * disabled case similar. 185 * 186 * Called with cpu_base->lock of target cpu held. 187 */ 188 static int 189 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 190 { 191 ktime_t expires; 192 193 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 194 return expires < new_base->cpu_base->expires_next; 195 } 196 197 static inline 198 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 199 int pinned) 200 { 201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 202 if (static_branch_likely(&timers_migration_enabled) && !pinned) 203 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 204 #endif 205 return base; 206 } 207 208 /* 209 * We switch the timer base to a power-optimized selected CPU target, 210 * if: 211 * - NO_HZ_COMMON is enabled 212 * - timer migration is enabled 213 * - the timer callback is not running 214 * - the timer is not the first expiring timer on the new target 215 * 216 * If one of the above requirements is not fulfilled we move the timer 217 * to the current CPU or leave it on the previously assigned CPU if 218 * the timer callback is currently running. 219 */ 220 static inline struct hrtimer_clock_base * 221 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 222 int pinned) 223 { 224 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 225 struct hrtimer_clock_base *new_base; 226 int basenum = base->index; 227 228 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 229 new_cpu_base = get_target_base(this_cpu_base, pinned); 230 again: 231 new_base = &new_cpu_base->clock_base[basenum]; 232 233 if (base != new_base) { 234 /* 235 * We are trying to move timer to new_base. 236 * However we can't change timer's base while it is running, 237 * so we keep it on the same CPU. No hassle vs. reprogramming 238 * the event source in the high resolution case. The softirq 239 * code will take care of this when the timer function has 240 * completed. There is no conflict as we hold the lock until 241 * the timer is enqueued. 242 */ 243 if (unlikely(hrtimer_callback_running(timer))) 244 return base; 245 246 /* See the comment in lock_hrtimer_base() */ 247 WRITE_ONCE(timer->base, &migration_base); 248 raw_spin_unlock(&base->cpu_base->lock); 249 raw_spin_lock(&new_base->cpu_base->lock); 250 251 if (new_cpu_base != this_cpu_base && 252 hrtimer_check_target(timer, new_base)) { 253 raw_spin_unlock(&new_base->cpu_base->lock); 254 raw_spin_lock(&base->cpu_base->lock); 255 new_cpu_base = this_cpu_base; 256 WRITE_ONCE(timer->base, base); 257 goto again; 258 } 259 WRITE_ONCE(timer->base, new_base); 260 } else { 261 if (new_cpu_base != this_cpu_base && 262 hrtimer_check_target(timer, new_base)) { 263 new_cpu_base = this_cpu_base; 264 goto again; 265 } 266 } 267 return new_base; 268 } 269 270 #else /* CONFIG_SMP */ 271 272 static inline bool is_migration_base(struct hrtimer_clock_base *base) 273 { 274 return false; 275 } 276 277 static inline struct hrtimer_clock_base * 278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 279 { 280 struct hrtimer_clock_base *base = timer->base; 281 282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 283 284 return base; 285 } 286 287 # define switch_hrtimer_base(t, b, p) (b) 288 289 #endif /* !CONFIG_SMP */ 290 291 /* 292 * Functions for the union type storage format of ktime_t which are 293 * too large for inlining: 294 */ 295 #if BITS_PER_LONG < 64 296 /* 297 * Divide a ktime value by a nanosecond value 298 */ 299 s64 __ktime_divns(const ktime_t kt, s64 div) 300 { 301 int sft = 0; 302 s64 dclc; 303 u64 tmp; 304 305 dclc = ktime_to_ns(kt); 306 tmp = dclc < 0 ? -dclc : dclc; 307 308 /* Make sure the divisor is less than 2^32: */ 309 while (div >> 32) { 310 sft++; 311 div >>= 1; 312 } 313 tmp >>= sft; 314 do_div(tmp, (u32) div); 315 return dclc < 0 ? -tmp : tmp; 316 } 317 EXPORT_SYMBOL_GPL(__ktime_divns); 318 #endif /* BITS_PER_LONG >= 64 */ 319 320 /* 321 * Add two ktime values and do a safety check for overflow: 322 */ 323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 324 { 325 ktime_t res = ktime_add_unsafe(lhs, rhs); 326 327 /* 328 * We use KTIME_SEC_MAX here, the maximum timeout which we can 329 * return to user space in a timespec: 330 */ 331 if (res < 0 || res < lhs || res < rhs) 332 res = ktime_set(KTIME_SEC_MAX, 0); 333 334 return res; 335 } 336 337 EXPORT_SYMBOL_GPL(ktime_add_safe); 338 339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 340 341 static struct debug_obj_descr hrtimer_debug_descr; 342 343 static void *hrtimer_debug_hint(void *addr) 344 { 345 return ((struct hrtimer *) addr)->function; 346 } 347 348 /* 349 * fixup_init is called when: 350 * - an active object is initialized 351 */ 352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 353 { 354 struct hrtimer *timer = addr; 355 356 switch (state) { 357 case ODEBUG_STATE_ACTIVE: 358 hrtimer_cancel(timer); 359 debug_object_init(timer, &hrtimer_debug_descr); 360 return true; 361 default: 362 return false; 363 } 364 } 365 366 /* 367 * fixup_activate is called when: 368 * - an active object is activated 369 * - an unknown non-static object is activated 370 */ 371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 372 { 373 switch (state) { 374 case ODEBUG_STATE_ACTIVE: 375 WARN_ON(1); 376 /* fall through */ 377 default: 378 return false; 379 } 380 } 381 382 /* 383 * fixup_free is called when: 384 * - an active object is freed 385 */ 386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 387 { 388 struct hrtimer *timer = addr; 389 390 switch (state) { 391 case ODEBUG_STATE_ACTIVE: 392 hrtimer_cancel(timer); 393 debug_object_free(timer, &hrtimer_debug_descr); 394 return true; 395 default: 396 return false; 397 } 398 } 399 400 static struct debug_obj_descr hrtimer_debug_descr = { 401 .name = "hrtimer", 402 .debug_hint = hrtimer_debug_hint, 403 .fixup_init = hrtimer_fixup_init, 404 .fixup_activate = hrtimer_fixup_activate, 405 .fixup_free = hrtimer_fixup_free, 406 }; 407 408 static inline void debug_hrtimer_init(struct hrtimer *timer) 409 { 410 debug_object_init(timer, &hrtimer_debug_descr); 411 } 412 413 static inline void debug_hrtimer_activate(struct hrtimer *timer, 414 enum hrtimer_mode mode) 415 { 416 debug_object_activate(timer, &hrtimer_debug_descr); 417 } 418 419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 420 { 421 debug_object_deactivate(timer, &hrtimer_debug_descr); 422 } 423 424 static inline void debug_hrtimer_free(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 430 enum hrtimer_mode mode); 431 432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 433 enum hrtimer_mode mode) 434 { 435 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 436 __hrtimer_init(timer, clock_id, mode); 437 } 438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 439 440 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 441 clockid_t clock_id, enum hrtimer_mode mode); 442 443 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 444 clockid_t clock_id, enum hrtimer_mode mode) 445 { 446 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 447 __hrtimer_init_sleeper(sl, clock_id, mode); 448 } 449 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 450 451 void destroy_hrtimer_on_stack(struct hrtimer *timer) 452 { 453 debug_object_free(timer, &hrtimer_debug_descr); 454 } 455 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 456 457 #else 458 459 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 460 static inline void debug_hrtimer_activate(struct hrtimer *timer, 461 enum hrtimer_mode mode) { } 462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 463 #endif 464 465 static inline void 466 debug_init(struct hrtimer *timer, clockid_t clockid, 467 enum hrtimer_mode mode) 468 { 469 debug_hrtimer_init(timer); 470 trace_hrtimer_init(timer, clockid, mode); 471 } 472 473 static inline void debug_activate(struct hrtimer *timer, 474 enum hrtimer_mode mode) 475 { 476 debug_hrtimer_activate(timer, mode); 477 trace_hrtimer_start(timer, mode); 478 } 479 480 static inline void debug_deactivate(struct hrtimer *timer) 481 { 482 debug_hrtimer_deactivate(timer); 483 trace_hrtimer_cancel(timer); 484 } 485 486 static struct hrtimer_clock_base * 487 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 488 { 489 unsigned int idx; 490 491 if (!*active) 492 return NULL; 493 494 idx = __ffs(*active); 495 *active &= ~(1U << idx); 496 497 return &cpu_base->clock_base[idx]; 498 } 499 500 #define for_each_active_base(base, cpu_base, active) \ 501 while ((base = __next_base((cpu_base), &(active)))) 502 503 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 504 const struct hrtimer *exclude, 505 unsigned int active, 506 ktime_t expires_next) 507 { 508 struct hrtimer_clock_base *base; 509 ktime_t expires; 510 511 for_each_active_base(base, cpu_base, active) { 512 struct timerqueue_node *next; 513 struct hrtimer *timer; 514 515 next = timerqueue_getnext(&base->active); 516 timer = container_of(next, struct hrtimer, node); 517 if (timer == exclude) { 518 /* Get to the next timer in the queue. */ 519 next = timerqueue_iterate_next(next); 520 if (!next) 521 continue; 522 523 timer = container_of(next, struct hrtimer, node); 524 } 525 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 526 if (expires < expires_next) { 527 expires_next = expires; 528 529 /* Skip cpu_base update if a timer is being excluded. */ 530 if (exclude) 531 continue; 532 533 if (timer->is_soft) 534 cpu_base->softirq_next_timer = timer; 535 else 536 cpu_base->next_timer = timer; 537 } 538 } 539 /* 540 * clock_was_set() might have changed base->offset of any of 541 * the clock bases so the result might be negative. Fix it up 542 * to prevent a false positive in clockevents_program_event(). 543 */ 544 if (expires_next < 0) 545 expires_next = 0; 546 return expires_next; 547 } 548 549 /* 550 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 551 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 552 * 553 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 554 * those timers will get run whenever the softirq gets handled, at the end of 555 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 556 * 557 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 558 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 559 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 560 * 561 * @active_mask must be one of: 562 * - HRTIMER_ACTIVE_ALL, 563 * - HRTIMER_ACTIVE_SOFT, or 564 * - HRTIMER_ACTIVE_HARD. 565 */ 566 static ktime_t 567 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 568 { 569 unsigned int active; 570 struct hrtimer *next_timer = NULL; 571 ktime_t expires_next = KTIME_MAX; 572 573 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 574 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 575 cpu_base->softirq_next_timer = NULL; 576 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 577 active, KTIME_MAX); 578 579 next_timer = cpu_base->softirq_next_timer; 580 } 581 582 if (active_mask & HRTIMER_ACTIVE_HARD) { 583 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 584 cpu_base->next_timer = next_timer; 585 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 586 expires_next); 587 } 588 589 return expires_next; 590 } 591 592 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 593 { 594 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 595 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 596 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 597 598 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 599 offs_real, offs_boot, offs_tai); 600 601 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 602 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 603 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 604 605 return now; 606 } 607 608 /* 609 * Is the high resolution mode active ? 610 */ 611 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 612 { 613 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 614 cpu_base->hres_active : 0; 615 } 616 617 static inline int hrtimer_hres_active(void) 618 { 619 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 620 } 621 622 /* 623 * Reprogram the event source with checking both queues for the 624 * next event 625 * Called with interrupts disabled and base->lock held 626 */ 627 static void 628 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 629 { 630 ktime_t expires_next; 631 632 /* 633 * Find the current next expiration time. 634 */ 635 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 636 637 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 638 /* 639 * When the softirq is activated, hrtimer has to be 640 * programmed with the first hard hrtimer because soft 641 * timer interrupt could occur too late. 642 */ 643 if (cpu_base->softirq_activated) 644 expires_next = __hrtimer_get_next_event(cpu_base, 645 HRTIMER_ACTIVE_HARD); 646 else 647 cpu_base->softirq_expires_next = expires_next; 648 } 649 650 if (skip_equal && expires_next == cpu_base->expires_next) 651 return; 652 653 cpu_base->expires_next = expires_next; 654 655 /* 656 * If hres is not active, hardware does not have to be 657 * reprogrammed yet. 658 * 659 * If a hang was detected in the last timer interrupt then we 660 * leave the hang delay active in the hardware. We want the 661 * system to make progress. That also prevents the following 662 * scenario: 663 * T1 expires 50ms from now 664 * T2 expires 5s from now 665 * 666 * T1 is removed, so this code is called and would reprogram 667 * the hardware to 5s from now. Any hrtimer_start after that 668 * will not reprogram the hardware due to hang_detected being 669 * set. So we'd effectivly block all timers until the T2 event 670 * fires. 671 */ 672 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 673 return; 674 675 tick_program_event(cpu_base->expires_next, 1); 676 } 677 678 /* High resolution timer related functions */ 679 #ifdef CONFIG_HIGH_RES_TIMERS 680 681 /* 682 * High resolution timer enabled ? 683 */ 684 static bool hrtimer_hres_enabled __read_mostly = true; 685 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 686 EXPORT_SYMBOL_GPL(hrtimer_resolution); 687 688 /* 689 * Enable / Disable high resolution mode 690 */ 691 static int __init setup_hrtimer_hres(char *str) 692 { 693 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 694 } 695 696 __setup("highres=", setup_hrtimer_hres); 697 698 /* 699 * hrtimer_high_res_enabled - query, if the highres mode is enabled 700 */ 701 static inline int hrtimer_is_hres_enabled(void) 702 { 703 return hrtimer_hres_enabled; 704 } 705 706 /* 707 * Retrigger next event is called after clock was set 708 * 709 * Called with interrupts disabled via on_each_cpu() 710 */ 711 static void retrigger_next_event(void *arg) 712 { 713 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 714 715 if (!__hrtimer_hres_active(base)) 716 return; 717 718 raw_spin_lock(&base->lock); 719 hrtimer_update_base(base); 720 hrtimer_force_reprogram(base, 0); 721 raw_spin_unlock(&base->lock); 722 } 723 724 /* 725 * Switch to high resolution mode 726 */ 727 static void hrtimer_switch_to_hres(void) 728 { 729 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 730 731 if (tick_init_highres()) { 732 pr_warn("Could not switch to high resolution mode on CPU %u\n", 733 base->cpu); 734 return; 735 } 736 base->hres_active = 1; 737 hrtimer_resolution = HIGH_RES_NSEC; 738 739 tick_setup_sched_timer(); 740 /* "Retrigger" the interrupt to get things going */ 741 retrigger_next_event(NULL); 742 } 743 744 static void clock_was_set_work(struct work_struct *work) 745 { 746 clock_was_set(); 747 } 748 749 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 750 751 /* 752 * Called from timekeeping and resume code to reprogram the hrtimer 753 * interrupt device on all cpus. 754 */ 755 void clock_was_set_delayed(void) 756 { 757 schedule_work(&hrtimer_work); 758 } 759 760 #else 761 762 static inline int hrtimer_is_hres_enabled(void) { return 0; } 763 static inline void hrtimer_switch_to_hres(void) { } 764 static inline void retrigger_next_event(void *arg) { } 765 766 #endif /* CONFIG_HIGH_RES_TIMERS */ 767 768 /* 769 * When a timer is enqueued and expires earlier than the already enqueued 770 * timers, we have to check, whether it expires earlier than the timer for 771 * which the clock event device was armed. 772 * 773 * Called with interrupts disabled and base->cpu_base.lock held 774 */ 775 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 776 { 777 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 778 struct hrtimer_clock_base *base = timer->base; 779 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 780 781 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 782 783 /* 784 * CLOCK_REALTIME timer might be requested with an absolute 785 * expiry time which is less than base->offset. Set it to 0. 786 */ 787 if (expires < 0) 788 expires = 0; 789 790 if (timer->is_soft) { 791 /* 792 * soft hrtimer could be started on a remote CPU. In this 793 * case softirq_expires_next needs to be updated on the 794 * remote CPU. The soft hrtimer will not expire before the 795 * first hard hrtimer on the remote CPU - 796 * hrtimer_check_target() prevents this case. 797 */ 798 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 799 800 if (timer_cpu_base->softirq_activated) 801 return; 802 803 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 804 return; 805 806 timer_cpu_base->softirq_next_timer = timer; 807 timer_cpu_base->softirq_expires_next = expires; 808 809 if (!ktime_before(expires, timer_cpu_base->expires_next) || 810 !reprogram) 811 return; 812 } 813 814 /* 815 * If the timer is not on the current cpu, we cannot reprogram 816 * the other cpus clock event device. 817 */ 818 if (base->cpu_base != cpu_base) 819 return; 820 821 /* 822 * If the hrtimer interrupt is running, then it will 823 * reevaluate the clock bases and reprogram the clock event 824 * device. The callbacks are always executed in hard interrupt 825 * context so we don't need an extra check for a running 826 * callback. 827 */ 828 if (cpu_base->in_hrtirq) 829 return; 830 831 if (expires >= cpu_base->expires_next) 832 return; 833 834 /* Update the pointer to the next expiring timer */ 835 cpu_base->next_timer = timer; 836 cpu_base->expires_next = expires; 837 838 /* 839 * If hres is not active, hardware does not have to be 840 * programmed yet. 841 * 842 * If a hang was detected in the last timer interrupt then we 843 * do not schedule a timer which is earlier than the expiry 844 * which we enforced in the hang detection. We want the system 845 * to make progress. 846 */ 847 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 848 return; 849 850 /* 851 * Program the timer hardware. We enforce the expiry for 852 * events which are already in the past. 853 */ 854 tick_program_event(expires, 1); 855 } 856 857 /* 858 * Clock realtime was set 859 * 860 * Change the offset of the realtime clock vs. the monotonic 861 * clock. 862 * 863 * We might have to reprogram the high resolution timer interrupt. On 864 * SMP we call the architecture specific code to retrigger _all_ high 865 * resolution timer interrupts. On UP we just disable interrupts and 866 * call the high resolution interrupt code. 867 */ 868 void clock_was_set(void) 869 { 870 #ifdef CONFIG_HIGH_RES_TIMERS 871 /* Retrigger the CPU local events everywhere */ 872 on_each_cpu(retrigger_next_event, NULL, 1); 873 #endif 874 timerfd_clock_was_set(); 875 } 876 877 /* 878 * During resume we might have to reprogram the high resolution timer 879 * interrupt on all online CPUs. However, all other CPUs will be 880 * stopped with IRQs interrupts disabled so the clock_was_set() call 881 * must be deferred. 882 */ 883 void hrtimers_resume(void) 884 { 885 lockdep_assert_irqs_disabled(); 886 /* Retrigger on the local CPU */ 887 retrigger_next_event(NULL); 888 /* And schedule a retrigger for all others */ 889 clock_was_set_delayed(); 890 } 891 892 /* 893 * Counterpart to lock_hrtimer_base above: 894 */ 895 static inline 896 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 897 { 898 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 899 } 900 901 /** 902 * hrtimer_forward - forward the timer expiry 903 * @timer: hrtimer to forward 904 * @now: forward past this time 905 * @interval: the interval to forward 906 * 907 * Forward the timer expiry so it will expire in the future. 908 * Returns the number of overruns. 909 * 910 * Can be safely called from the callback function of @timer. If 911 * called from other contexts @timer must neither be enqueued nor 912 * running the callback and the caller needs to take care of 913 * serialization. 914 * 915 * Note: This only updates the timer expiry value and does not requeue 916 * the timer. 917 */ 918 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 919 { 920 u64 orun = 1; 921 ktime_t delta; 922 923 delta = ktime_sub(now, hrtimer_get_expires(timer)); 924 925 if (delta < 0) 926 return 0; 927 928 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 929 return 0; 930 931 if (interval < hrtimer_resolution) 932 interval = hrtimer_resolution; 933 934 if (unlikely(delta >= interval)) { 935 s64 incr = ktime_to_ns(interval); 936 937 orun = ktime_divns(delta, incr); 938 hrtimer_add_expires_ns(timer, incr * orun); 939 if (hrtimer_get_expires_tv64(timer) > now) 940 return orun; 941 /* 942 * This (and the ktime_add() below) is the 943 * correction for exact: 944 */ 945 orun++; 946 } 947 hrtimer_add_expires(timer, interval); 948 949 return orun; 950 } 951 EXPORT_SYMBOL_GPL(hrtimer_forward); 952 953 /* 954 * enqueue_hrtimer - internal function to (re)start a timer 955 * 956 * The timer is inserted in expiry order. Insertion into the 957 * red black tree is O(log(n)). Must hold the base lock. 958 * 959 * Returns 1 when the new timer is the leftmost timer in the tree. 960 */ 961 static int enqueue_hrtimer(struct hrtimer *timer, 962 struct hrtimer_clock_base *base, 963 enum hrtimer_mode mode) 964 { 965 debug_activate(timer, mode); 966 967 base->cpu_base->active_bases |= 1 << base->index; 968 969 /* Pairs with the lockless read in hrtimer_is_queued() */ 970 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 971 972 return timerqueue_add(&base->active, &timer->node); 973 } 974 975 /* 976 * __remove_hrtimer - internal function to remove a timer 977 * 978 * Caller must hold the base lock. 979 * 980 * High resolution timer mode reprograms the clock event device when the 981 * timer is the one which expires next. The caller can disable this by setting 982 * reprogram to zero. This is useful, when the context does a reprogramming 983 * anyway (e.g. timer interrupt) 984 */ 985 static void __remove_hrtimer(struct hrtimer *timer, 986 struct hrtimer_clock_base *base, 987 u8 newstate, int reprogram) 988 { 989 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 990 u8 state = timer->state; 991 992 /* Pairs with the lockless read in hrtimer_is_queued() */ 993 WRITE_ONCE(timer->state, newstate); 994 if (!(state & HRTIMER_STATE_ENQUEUED)) 995 return; 996 997 if (!timerqueue_del(&base->active, &timer->node)) 998 cpu_base->active_bases &= ~(1 << base->index); 999 1000 /* 1001 * Note: If reprogram is false we do not update 1002 * cpu_base->next_timer. This happens when we remove the first 1003 * timer on a remote cpu. No harm as we never dereference 1004 * cpu_base->next_timer. So the worst thing what can happen is 1005 * an superflous call to hrtimer_force_reprogram() on the 1006 * remote cpu later on if the same timer gets enqueued again. 1007 */ 1008 if (reprogram && timer == cpu_base->next_timer) 1009 hrtimer_force_reprogram(cpu_base, 1); 1010 } 1011 1012 /* 1013 * remove hrtimer, called with base lock held 1014 */ 1015 static inline int 1016 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1017 { 1018 u8 state = timer->state; 1019 1020 if (state & HRTIMER_STATE_ENQUEUED) { 1021 int reprogram; 1022 1023 /* 1024 * Remove the timer and force reprogramming when high 1025 * resolution mode is active and the timer is on the current 1026 * CPU. If we remove a timer on another CPU, reprogramming is 1027 * skipped. The interrupt event on this CPU is fired and 1028 * reprogramming happens in the interrupt handler. This is a 1029 * rare case and less expensive than a smp call. 1030 */ 1031 debug_deactivate(timer); 1032 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1033 1034 if (!restart) 1035 state = HRTIMER_STATE_INACTIVE; 1036 1037 __remove_hrtimer(timer, base, state, reprogram); 1038 return 1; 1039 } 1040 return 0; 1041 } 1042 1043 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1044 const enum hrtimer_mode mode) 1045 { 1046 #ifdef CONFIG_TIME_LOW_RES 1047 /* 1048 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1049 * granular time values. For relative timers we add hrtimer_resolution 1050 * (i.e. one jiffie) to prevent short timeouts. 1051 */ 1052 timer->is_rel = mode & HRTIMER_MODE_REL; 1053 if (timer->is_rel) 1054 tim = ktime_add_safe(tim, hrtimer_resolution); 1055 #endif 1056 return tim; 1057 } 1058 1059 static void 1060 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1061 { 1062 ktime_t expires; 1063 1064 /* 1065 * Find the next SOFT expiration. 1066 */ 1067 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1068 1069 /* 1070 * reprogramming needs to be triggered, even if the next soft 1071 * hrtimer expires at the same time than the next hard 1072 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1073 */ 1074 if (expires == KTIME_MAX) 1075 return; 1076 1077 /* 1078 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1079 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1080 */ 1081 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1082 } 1083 1084 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1085 u64 delta_ns, const enum hrtimer_mode mode, 1086 struct hrtimer_clock_base *base) 1087 { 1088 struct hrtimer_clock_base *new_base; 1089 1090 /* Remove an active timer from the queue: */ 1091 remove_hrtimer(timer, base, true); 1092 1093 if (mode & HRTIMER_MODE_REL) 1094 tim = ktime_add_safe(tim, base->get_time()); 1095 1096 tim = hrtimer_update_lowres(timer, tim, mode); 1097 1098 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1099 1100 /* Switch the timer base, if necessary: */ 1101 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1102 1103 return enqueue_hrtimer(timer, new_base, mode); 1104 } 1105 1106 /** 1107 * hrtimer_start_range_ns - (re)start an hrtimer 1108 * @timer: the timer to be added 1109 * @tim: expiry time 1110 * @delta_ns: "slack" range for the timer 1111 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1112 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1113 * softirq based mode is considered for debug purpose only! 1114 */ 1115 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1116 u64 delta_ns, const enum hrtimer_mode mode) 1117 { 1118 struct hrtimer_clock_base *base; 1119 unsigned long flags; 1120 1121 /* 1122 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1123 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1124 * expiry mode because unmarked timers are moved to softirq expiry. 1125 */ 1126 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1127 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1128 else 1129 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1130 1131 base = lock_hrtimer_base(timer, &flags); 1132 1133 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1134 hrtimer_reprogram(timer, true); 1135 1136 unlock_hrtimer_base(timer, &flags); 1137 } 1138 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1139 1140 /** 1141 * hrtimer_try_to_cancel - try to deactivate a timer 1142 * @timer: hrtimer to stop 1143 * 1144 * Returns: 1145 * 1146 * * 0 when the timer was not active 1147 * * 1 when the timer was active 1148 * * -1 when the timer is currently executing the callback function and 1149 * cannot be stopped 1150 */ 1151 int hrtimer_try_to_cancel(struct hrtimer *timer) 1152 { 1153 struct hrtimer_clock_base *base; 1154 unsigned long flags; 1155 int ret = -1; 1156 1157 /* 1158 * Check lockless first. If the timer is not active (neither 1159 * enqueued nor running the callback, nothing to do here. The 1160 * base lock does not serialize against a concurrent enqueue, 1161 * so we can avoid taking it. 1162 */ 1163 if (!hrtimer_active(timer)) 1164 return 0; 1165 1166 base = lock_hrtimer_base(timer, &flags); 1167 1168 if (!hrtimer_callback_running(timer)) 1169 ret = remove_hrtimer(timer, base, false); 1170 1171 unlock_hrtimer_base(timer, &flags); 1172 1173 return ret; 1174 1175 } 1176 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1177 1178 #ifdef CONFIG_PREEMPT_RT 1179 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1180 { 1181 spin_lock_init(&base->softirq_expiry_lock); 1182 } 1183 1184 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1185 { 1186 spin_lock(&base->softirq_expiry_lock); 1187 } 1188 1189 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1190 { 1191 spin_unlock(&base->softirq_expiry_lock); 1192 } 1193 1194 /* 1195 * The counterpart to hrtimer_cancel_wait_running(). 1196 * 1197 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1198 * the timer callback to finish. Drop expiry_lock and reaquire it. That 1199 * allows the waiter to acquire the lock and make progress. 1200 */ 1201 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1202 unsigned long flags) 1203 { 1204 if (atomic_read(&cpu_base->timer_waiters)) { 1205 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1206 spin_unlock(&cpu_base->softirq_expiry_lock); 1207 spin_lock(&cpu_base->softirq_expiry_lock); 1208 raw_spin_lock_irq(&cpu_base->lock); 1209 } 1210 } 1211 1212 /* 1213 * This function is called on PREEMPT_RT kernels when the fast path 1214 * deletion of a timer failed because the timer callback function was 1215 * running. 1216 * 1217 * This prevents priority inversion: if the soft irq thread is preempted 1218 * in the middle of a timer callback, then calling del_timer_sync() can 1219 * lead to two issues: 1220 * 1221 * - If the caller is on a remote CPU then it has to spin wait for the timer 1222 * handler to complete. This can result in unbound priority inversion. 1223 * 1224 * - If the caller originates from the task which preempted the timer 1225 * handler on the same CPU, then spin waiting for the timer handler to 1226 * complete is never going to end. 1227 */ 1228 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1229 { 1230 /* Lockless read. Prevent the compiler from reloading it below */ 1231 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1232 1233 /* 1234 * Just relax if the timer expires in hard interrupt context or if 1235 * it is currently on the migration base. 1236 */ 1237 if (!timer->is_soft || is_migration_base(base)) { 1238 cpu_relax(); 1239 return; 1240 } 1241 1242 /* 1243 * Mark the base as contended and grab the expiry lock, which is 1244 * held by the softirq across the timer callback. Drop the lock 1245 * immediately so the softirq can expire the next timer. In theory 1246 * the timer could already be running again, but that's more than 1247 * unlikely and just causes another wait loop. 1248 */ 1249 atomic_inc(&base->cpu_base->timer_waiters); 1250 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1251 atomic_dec(&base->cpu_base->timer_waiters); 1252 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1253 } 1254 #else 1255 static inline void 1256 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1257 static inline void 1258 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1259 static inline void 1260 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1261 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1262 unsigned long flags) { } 1263 #endif 1264 1265 /** 1266 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1267 * @timer: the timer to be cancelled 1268 * 1269 * Returns: 1270 * 0 when the timer was not active 1271 * 1 when the timer was active 1272 */ 1273 int hrtimer_cancel(struct hrtimer *timer) 1274 { 1275 int ret; 1276 1277 do { 1278 ret = hrtimer_try_to_cancel(timer); 1279 1280 if (ret < 0) 1281 hrtimer_cancel_wait_running(timer); 1282 } while (ret < 0); 1283 return ret; 1284 } 1285 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1286 1287 /** 1288 * hrtimer_get_remaining - get remaining time for the timer 1289 * @timer: the timer to read 1290 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1291 */ 1292 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1293 { 1294 unsigned long flags; 1295 ktime_t rem; 1296 1297 lock_hrtimer_base(timer, &flags); 1298 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1299 rem = hrtimer_expires_remaining_adjusted(timer); 1300 else 1301 rem = hrtimer_expires_remaining(timer); 1302 unlock_hrtimer_base(timer, &flags); 1303 1304 return rem; 1305 } 1306 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1307 1308 #ifdef CONFIG_NO_HZ_COMMON 1309 /** 1310 * hrtimer_get_next_event - get the time until next expiry event 1311 * 1312 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1313 */ 1314 u64 hrtimer_get_next_event(void) 1315 { 1316 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1317 u64 expires = KTIME_MAX; 1318 unsigned long flags; 1319 1320 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1321 1322 if (!__hrtimer_hres_active(cpu_base)) 1323 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1324 1325 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1326 1327 return expires; 1328 } 1329 1330 /** 1331 * hrtimer_next_event_without - time until next expiry event w/o one timer 1332 * @exclude: timer to exclude 1333 * 1334 * Returns the next expiry time over all timers except for the @exclude one or 1335 * KTIME_MAX if none of them is pending. 1336 */ 1337 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1338 { 1339 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1340 u64 expires = KTIME_MAX; 1341 unsigned long flags; 1342 1343 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1344 1345 if (__hrtimer_hres_active(cpu_base)) { 1346 unsigned int active; 1347 1348 if (!cpu_base->softirq_activated) { 1349 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1350 expires = __hrtimer_next_event_base(cpu_base, exclude, 1351 active, KTIME_MAX); 1352 } 1353 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1354 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1355 expires); 1356 } 1357 1358 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1359 1360 return expires; 1361 } 1362 #endif 1363 1364 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1365 { 1366 if (likely(clock_id < MAX_CLOCKS)) { 1367 int base = hrtimer_clock_to_base_table[clock_id]; 1368 1369 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1370 return base; 1371 } 1372 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1373 return HRTIMER_BASE_MONOTONIC; 1374 } 1375 1376 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1377 enum hrtimer_mode mode) 1378 { 1379 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1380 struct hrtimer_cpu_base *cpu_base; 1381 int base; 1382 1383 /* 1384 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1385 * marked for hard interrupt expiry mode are moved into soft 1386 * interrupt context for latency reasons and because the callbacks 1387 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1388 */ 1389 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1390 softtimer = true; 1391 1392 memset(timer, 0, sizeof(struct hrtimer)); 1393 1394 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1395 1396 /* 1397 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1398 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1399 * ensure POSIX compliance. 1400 */ 1401 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1402 clock_id = CLOCK_MONOTONIC; 1403 1404 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1405 base += hrtimer_clockid_to_base(clock_id); 1406 timer->is_soft = softtimer; 1407 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1408 timer->base = &cpu_base->clock_base[base]; 1409 timerqueue_init(&timer->node); 1410 } 1411 1412 /** 1413 * hrtimer_init - initialize a timer to the given clock 1414 * @timer: the timer to be initialized 1415 * @clock_id: the clock to be used 1416 * @mode: The modes which are relevant for intitialization: 1417 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1418 * HRTIMER_MODE_REL_SOFT 1419 * 1420 * The PINNED variants of the above can be handed in, 1421 * but the PINNED bit is ignored as pinning happens 1422 * when the hrtimer is started 1423 */ 1424 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1425 enum hrtimer_mode mode) 1426 { 1427 debug_init(timer, clock_id, mode); 1428 __hrtimer_init(timer, clock_id, mode); 1429 } 1430 EXPORT_SYMBOL_GPL(hrtimer_init); 1431 1432 /* 1433 * A timer is active, when it is enqueued into the rbtree or the 1434 * callback function is running or it's in the state of being migrated 1435 * to another cpu. 1436 * 1437 * It is important for this function to not return a false negative. 1438 */ 1439 bool hrtimer_active(const struct hrtimer *timer) 1440 { 1441 struct hrtimer_clock_base *base; 1442 unsigned int seq; 1443 1444 do { 1445 base = READ_ONCE(timer->base); 1446 seq = raw_read_seqcount_begin(&base->seq); 1447 1448 if (timer->state != HRTIMER_STATE_INACTIVE || 1449 base->running == timer) 1450 return true; 1451 1452 } while (read_seqcount_retry(&base->seq, seq) || 1453 base != READ_ONCE(timer->base)); 1454 1455 return false; 1456 } 1457 EXPORT_SYMBOL_GPL(hrtimer_active); 1458 1459 /* 1460 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1461 * distinct sections: 1462 * 1463 * - queued: the timer is queued 1464 * - callback: the timer is being ran 1465 * - post: the timer is inactive or (re)queued 1466 * 1467 * On the read side we ensure we observe timer->state and cpu_base->running 1468 * from the same section, if anything changed while we looked at it, we retry. 1469 * This includes timer->base changing because sequence numbers alone are 1470 * insufficient for that. 1471 * 1472 * The sequence numbers are required because otherwise we could still observe 1473 * a false negative if the read side got smeared over multiple consequtive 1474 * __run_hrtimer() invocations. 1475 */ 1476 1477 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1478 struct hrtimer_clock_base *base, 1479 struct hrtimer *timer, ktime_t *now, 1480 unsigned long flags) __must_hold(&cpu_base->lock) 1481 { 1482 enum hrtimer_restart (*fn)(struct hrtimer *); 1483 bool expires_in_hardirq; 1484 int restart; 1485 1486 lockdep_assert_held(&cpu_base->lock); 1487 1488 debug_deactivate(timer); 1489 base->running = timer; 1490 1491 /* 1492 * Separate the ->running assignment from the ->state assignment. 1493 * 1494 * As with a regular write barrier, this ensures the read side in 1495 * hrtimer_active() cannot observe base->running == NULL && 1496 * timer->state == INACTIVE. 1497 */ 1498 raw_write_seqcount_barrier(&base->seq); 1499 1500 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1501 fn = timer->function; 1502 1503 /* 1504 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1505 * timer is restarted with a period then it becomes an absolute 1506 * timer. If its not restarted it does not matter. 1507 */ 1508 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1509 timer->is_rel = false; 1510 1511 /* 1512 * The timer is marked as running in the CPU base, so it is 1513 * protected against migration to a different CPU even if the lock 1514 * is dropped. 1515 */ 1516 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1517 trace_hrtimer_expire_entry(timer, now); 1518 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1519 1520 restart = fn(timer); 1521 1522 lockdep_hrtimer_exit(expires_in_hardirq); 1523 trace_hrtimer_expire_exit(timer); 1524 raw_spin_lock_irq(&cpu_base->lock); 1525 1526 /* 1527 * Note: We clear the running state after enqueue_hrtimer and 1528 * we do not reprogram the event hardware. Happens either in 1529 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1530 * 1531 * Note: Because we dropped the cpu_base->lock above, 1532 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1533 * for us already. 1534 */ 1535 if (restart != HRTIMER_NORESTART && 1536 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1537 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1538 1539 /* 1540 * Separate the ->running assignment from the ->state assignment. 1541 * 1542 * As with a regular write barrier, this ensures the read side in 1543 * hrtimer_active() cannot observe base->running.timer == NULL && 1544 * timer->state == INACTIVE. 1545 */ 1546 raw_write_seqcount_barrier(&base->seq); 1547 1548 WARN_ON_ONCE(base->running != timer); 1549 base->running = NULL; 1550 } 1551 1552 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1553 unsigned long flags, unsigned int active_mask) 1554 { 1555 struct hrtimer_clock_base *base; 1556 unsigned int active = cpu_base->active_bases & active_mask; 1557 1558 for_each_active_base(base, cpu_base, active) { 1559 struct timerqueue_node *node; 1560 ktime_t basenow; 1561 1562 basenow = ktime_add(now, base->offset); 1563 1564 while ((node = timerqueue_getnext(&base->active))) { 1565 struct hrtimer *timer; 1566 1567 timer = container_of(node, struct hrtimer, node); 1568 1569 /* 1570 * The immediate goal for using the softexpires is 1571 * minimizing wakeups, not running timers at the 1572 * earliest interrupt after their soft expiration. 1573 * This allows us to avoid using a Priority Search 1574 * Tree, which can answer a stabbing querry for 1575 * overlapping intervals and instead use the simple 1576 * BST we already have. 1577 * We don't add extra wakeups by delaying timers that 1578 * are right-of a not yet expired timer, because that 1579 * timer will have to trigger a wakeup anyway. 1580 */ 1581 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1582 break; 1583 1584 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1585 if (active_mask == HRTIMER_ACTIVE_SOFT) 1586 hrtimer_sync_wait_running(cpu_base, flags); 1587 } 1588 } 1589 } 1590 1591 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1592 { 1593 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1594 unsigned long flags; 1595 ktime_t now; 1596 1597 hrtimer_cpu_base_lock_expiry(cpu_base); 1598 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1599 1600 now = hrtimer_update_base(cpu_base); 1601 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1602 1603 cpu_base->softirq_activated = 0; 1604 hrtimer_update_softirq_timer(cpu_base, true); 1605 1606 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1607 hrtimer_cpu_base_unlock_expiry(cpu_base); 1608 } 1609 1610 #ifdef CONFIG_HIGH_RES_TIMERS 1611 1612 /* 1613 * High resolution timer interrupt 1614 * Called with interrupts disabled 1615 */ 1616 void hrtimer_interrupt(struct clock_event_device *dev) 1617 { 1618 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1619 ktime_t expires_next, now, entry_time, delta; 1620 unsigned long flags; 1621 int retries = 0; 1622 1623 BUG_ON(!cpu_base->hres_active); 1624 cpu_base->nr_events++; 1625 dev->next_event = KTIME_MAX; 1626 1627 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1628 entry_time = now = hrtimer_update_base(cpu_base); 1629 retry: 1630 cpu_base->in_hrtirq = 1; 1631 /* 1632 * We set expires_next to KTIME_MAX here with cpu_base->lock 1633 * held to prevent that a timer is enqueued in our queue via 1634 * the migration code. This does not affect enqueueing of 1635 * timers which run their callback and need to be requeued on 1636 * this CPU. 1637 */ 1638 cpu_base->expires_next = KTIME_MAX; 1639 1640 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1641 cpu_base->softirq_expires_next = KTIME_MAX; 1642 cpu_base->softirq_activated = 1; 1643 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1644 } 1645 1646 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1647 1648 /* Reevaluate the clock bases for the next expiry */ 1649 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1650 /* 1651 * Store the new expiry value so the migration code can verify 1652 * against it. 1653 */ 1654 cpu_base->expires_next = expires_next; 1655 cpu_base->in_hrtirq = 0; 1656 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1657 1658 /* Reprogramming necessary ? */ 1659 if (!tick_program_event(expires_next, 0)) { 1660 cpu_base->hang_detected = 0; 1661 return; 1662 } 1663 1664 /* 1665 * The next timer was already expired due to: 1666 * - tracing 1667 * - long lasting callbacks 1668 * - being scheduled away when running in a VM 1669 * 1670 * We need to prevent that we loop forever in the hrtimer 1671 * interrupt routine. We give it 3 attempts to avoid 1672 * overreacting on some spurious event. 1673 * 1674 * Acquire base lock for updating the offsets and retrieving 1675 * the current time. 1676 */ 1677 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1678 now = hrtimer_update_base(cpu_base); 1679 cpu_base->nr_retries++; 1680 if (++retries < 3) 1681 goto retry; 1682 /* 1683 * Give the system a chance to do something else than looping 1684 * here. We stored the entry time, so we know exactly how long 1685 * we spent here. We schedule the next event this amount of 1686 * time away. 1687 */ 1688 cpu_base->nr_hangs++; 1689 cpu_base->hang_detected = 1; 1690 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1691 1692 delta = ktime_sub(now, entry_time); 1693 if ((unsigned int)delta > cpu_base->max_hang_time) 1694 cpu_base->max_hang_time = (unsigned int) delta; 1695 /* 1696 * Limit it to a sensible value as we enforce a longer 1697 * delay. Give the CPU at least 100ms to catch up. 1698 */ 1699 if (delta > 100 * NSEC_PER_MSEC) 1700 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1701 else 1702 expires_next = ktime_add(now, delta); 1703 tick_program_event(expires_next, 1); 1704 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1705 } 1706 1707 /* called with interrupts disabled */ 1708 static inline void __hrtimer_peek_ahead_timers(void) 1709 { 1710 struct tick_device *td; 1711 1712 if (!hrtimer_hres_active()) 1713 return; 1714 1715 td = this_cpu_ptr(&tick_cpu_device); 1716 if (td && td->evtdev) 1717 hrtimer_interrupt(td->evtdev); 1718 } 1719 1720 #else /* CONFIG_HIGH_RES_TIMERS */ 1721 1722 static inline void __hrtimer_peek_ahead_timers(void) { } 1723 1724 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1725 1726 /* 1727 * Called from run_local_timers in hardirq context every jiffy 1728 */ 1729 void hrtimer_run_queues(void) 1730 { 1731 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1732 unsigned long flags; 1733 ktime_t now; 1734 1735 if (__hrtimer_hres_active(cpu_base)) 1736 return; 1737 1738 /* 1739 * This _is_ ugly: We have to check periodically, whether we 1740 * can switch to highres and / or nohz mode. The clocksource 1741 * switch happens with xtime_lock held. Notification from 1742 * there only sets the check bit in the tick_oneshot code, 1743 * otherwise we might deadlock vs. xtime_lock. 1744 */ 1745 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1746 hrtimer_switch_to_hres(); 1747 return; 1748 } 1749 1750 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1751 now = hrtimer_update_base(cpu_base); 1752 1753 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1754 cpu_base->softirq_expires_next = KTIME_MAX; 1755 cpu_base->softirq_activated = 1; 1756 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1757 } 1758 1759 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1760 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1761 } 1762 1763 /* 1764 * Sleep related functions: 1765 */ 1766 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1767 { 1768 struct hrtimer_sleeper *t = 1769 container_of(timer, struct hrtimer_sleeper, timer); 1770 struct task_struct *task = t->task; 1771 1772 t->task = NULL; 1773 if (task) 1774 wake_up_process(task); 1775 1776 return HRTIMER_NORESTART; 1777 } 1778 1779 /** 1780 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1781 * @sl: sleeper to be started 1782 * @mode: timer mode abs/rel 1783 * 1784 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1785 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1786 */ 1787 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1788 enum hrtimer_mode mode) 1789 { 1790 /* 1791 * Make the enqueue delivery mode check work on RT. If the sleeper 1792 * was initialized for hard interrupt delivery, force the mode bit. 1793 * This is a special case for hrtimer_sleepers because 1794 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1795 * fiddling with this decision is avoided at the call sites. 1796 */ 1797 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1798 mode |= HRTIMER_MODE_HARD; 1799 1800 hrtimer_start_expires(&sl->timer, mode); 1801 } 1802 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1803 1804 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1805 clockid_t clock_id, enum hrtimer_mode mode) 1806 { 1807 /* 1808 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1809 * marked for hard interrupt expiry mode are moved into soft 1810 * interrupt context either for latency reasons or because the 1811 * hrtimer callback takes regular spinlocks or invokes other 1812 * functions which are not suitable for hard interrupt context on 1813 * PREEMPT_RT. 1814 * 1815 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1816 * context, but there is a latency concern: Untrusted userspace can 1817 * spawn many threads which arm timers for the same expiry time on 1818 * the same CPU. That causes a latency spike due to the wakeup of 1819 * a gazillion threads. 1820 * 1821 * OTOH, priviledged real-time user space applications rely on the 1822 * low latency of hard interrupt wakeups. If the current task is in 1823 * a real-time scheduling class, mark the mode for hard interrupt 1824 * expiry. 1825 */ 1826 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1827 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1828 mode |= HRTIMER_MODE_HARD; 1829 } 1830 1831 __hrtimer_init(&sl->timer, clock_id, mode); 1832 sl->timer.function = hrtimer_wakeup; 1833 sl->task = current; 1834 } 1835 1836 /** 1837 * hrtimer_init_sleeper - initialize sleeper to the given clock 1838 * @sl: sleeper to be initialized 1839 * @clock_id: the clock to be used 1840 * @mode: timer mode abs/rel 1841 */ 1842 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1843 enum hrtimer_mode mode) 1844 { 1845 debug_init(&sl->timer, clock_id, mode); 1846 __hrtimer_init_sleeper(sl, clock_id, mode); 1847 1848 } 1849 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1850 1851 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1852 { 1853 switch(restart->nanosleep.type) { 1854 #ifdef CONFIG_COMPAT_32BIT_TIME 1855 case TT_COMPAT: 1856 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1857 return -EFAULT; 1858 break; 1859 #endif 1860 case TT_NATIVE: 1861 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1862 return -EFAULT; 1863 break; 1864 default: 1865 BUG(); 1866 } 1867 return -ERESTART_RESTARTBLOCK; 1868 } 1869 1870 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1871 { 1872 struct restart_block *restart; 1873 1874 do { 1875 set_current_state(TASK_INTERRUPTIBLE); 1876 hrtimer_sleeper_start_expires(t, mode); 1877 1878 if (likely(t->task)) 1879 freezable_schedule(); 1880 1881 hrtimer_cancel(&t->timer); 1882 mode = HRTIMER_MODE_ABS; 1883 1884 } while (t->task && !signal_pending(current)); 1885 1886 __set_current_state(TASK_RUNNING); 1887 1888 if (!t->task) 1889 return 0; 1890 1891 restart = ¤t->restart_block; 1892 if (restart->nanosleep.type != TT_NONE) { 1893 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1894 struct timespec64 rmt; 1895 1896 if (rem <= 0) 1897 return 0; 1898 rmt = ktime_to_timespec64(rem); 1899 1900 return nanosleep_copyout(restart, &rmt); 1901 } 1902 return -ERESTART_RESTARTBLOCK; 1903 } 1904 1905 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1906 { 1907 struct hrtimer_sleeper t; 1908 int ret; 1909 1910 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 1911 HRTIMER_MODE_ABS); 1912 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1913 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1914 destroy_hrtimer_on_stack(&t.timer); 1915 return ret; 1916 } 1917 1918 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 1919 const clockid_t clockid) 1920 { 1921 struct restart_block *restart; 1922 struct hrtimer_sleeper t; 1923 int ret = 0; 1924 u64 slack; 1925 1926 slack = current->timer_slack_ns; 1927 if (dl_task(current) || rt_task(current)) 1928 slack = 0; 1929 1930 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 1931 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 1932 ret = do_nanosleep(&t, mode); 1933 if (ret != -ERESTART_RESTARTBLOCK) 1934 goto out; 1935 1936 /* Absolute timers do not update the rmtp value and restart: */ 1937 if (mode == HRTIMER_MODE_ABS) { 1938 ret = -ERESTARTNOHAND; 1939 goto out; 1940 } 1941 1942 restart = ¤t->restart_block; 1943 restart->fn = hrtimer_nanosleep_restart; 1944 restart->nanosleep.clockid = t.timer.base->clockid; 1945 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1946 out: 1947 destroy_hrtimer_on_stack(&t.timer); 1948 return ret; 1949 } 1950 1951 #ifdef CONFIG_64BIT 1952 1953 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1954 struct __kernel_timespec __user *, rmtp) 1955 { 1956 struct timespec64 tu; 1957 1958 if (get_timespec64(&tu, rqtp)) 1959 return -EFAULT; 1960 1961 if (!timespec64_valid(&tu)) 1962 return -EINVAL; 1963 1964 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1965 current->restart_block.nanosleep.rmtp = rmtp; 1966 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1967 CLOCK_MONOTONIC); 1968 } 1969 1970 #endif 1971 1972 #ifdef CONFIG_COMPAT_32BIT_TIME 1973 1974 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1975 struct old_timespec32 __user *, rmtp) 1976 { 1977 struct timespec64 tu; 1978 1979 if (get_old_timespec32(&tu, rqtp)) 1980 return -EFAULT; 1981 1982 if (!timespec64_valid(&tu)) 1983 return -EINVAL; 1984 1985 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1986 current->restart_block.nanosleep.compat_rmtp = rmtp; 1987 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1988 CLOCK_MONOTONIC); 1989 } 1990 #endif 1991 1992 /* 1993 * Functions related to boot-time initialization: 1994 */ 1995 int hrtimers_prepare_cpu(unsigned int cpu) 1996 { 1997 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1998 int i; 1999 2000 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2001 cpu_base->clock_base[i].cpu_base = cpu_base; 2002 timerqueue_init_head(&cpu_base->clock_base[i].active); 2003 } 2004 2005 cpu_base->cpu = cpu; 2006 cpu_base->active_bases = 0; 2007 cpu_base->hres_active = 0; 2008 cpu_base->hang_detected = 0; 2009 cpu_base->next_timer = NULL; 2010 cpu_base->softirq_next_timer = NULL; 2011 cpu_base->expires_next = KTIME_MAX; 2012 cpu_base->softirq_expires_next = KTIME_MAX; 2013 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2014 return 0; 2015 } 2016 2017 #ifdef CONFIG_HOTPLUG_CPU 2018 2019 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2020 struct hrtimer_clock_base *new_base) 2021 { 2022 struct hrtimer *timer; 2023 struct timerqueue_node *node; 2024 2025 while ((node = timerqueue_getnext(&old_base->active))) { 2026 timer = container_of(node, struct hrtimer, node); 2027 BUG_ON(hrtimer_callback_running(timer)); 2028 debug_deactivate(timer); 2029 2030 /* 2031 * Mark it as ENQUEUED not INACTIVE otherwise the 2032 * timer could be seen as !active and just vanish away 2033 * under us on another CPU 2034 */ 2035 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2036 timer->base = new_base; 2037 /* 2038 * Enqueue the timers on the new cpu. This does not 2039 * reprogram the event device in case the timer 2040 * expires before the earliest on this CPU, but we run 2041 * hrtimer_interrupt after we migrated everything to 2042 * sort out already expired timers and reprogram the 2043 * event device. 2044 */ 2045 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2046 } 2047 } 2048 2049 int hrtimers_dead_cpu(unsigned int scpu) 2050 { 2051 struct hrtimer_cpu_base *old_base, *new_base; 2052 int i; 2053 2054 BUG_ON(cpu_online(scpu)); 2055 tick_cancel_sched_timer(scpu); 2056 2057 /* 2058 * this BH disable ensures that raise_softirq_irqoff() does 2059 * not wakeup ksoftirqd (and acquire the pi-lock) while 2060 * holding the cpu_base lock 2061 */ 2062 local_bh_disable(); 2063 local_irq_disable(); 2064 old_base = &per_cpu(hrtimer_bases, scpu); 2065 new_base = this_cpu_ptr(&hrtimer_bases); 2066 /* 2067 * The caller is globally serialized and nobody else 2068 * takes two locks at once, deadlock is not possible. 2069 */ 2070 raw_spin_lock(&new_base->lock); 2071 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2072 2073 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2074 migrate_hrtimer_list(&old_base->clock_base[i], 2075 &new_base->clock_base[i]); 2076 } 2077 2078 /* 2079 * The migration might have changed the first expiring softirq 2080 * timer on this CPU. Update it. 2081 */ 2082 hrtimer_update_softirq_timer(new_base, false); 2083 2084 raw_spin_unlock(&old_base->lock); 2085 raw_spin_unlock(&new_base->lock); 2086 2087 /* Check, if we got expired work to do */ 2088 __hrtimer_peek_ahead_timers(); 2089 local_irq_enable(); 2090 local_bh_enable(); 2091 return 0; 2092 } 2093 2094 #endif /* CONFIG_HOTPLUG_CPU */ 2095 2096 void __init hrtimers_init(void) 2097 { 2098 hrtimers_prepare_cpu(smp_processor_id()); 2099 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2100 } 2101 2102 /** 2103 * schedule_hrtimeout_range_clock - sleep until timeout 2104 * @expires: timeout value (ktime_t) 2105 * @delta: slack in expires timeout (ktime_t) 2106 * @mode: timer mode 2107 * @clock_id: timer clock to be used 2108 */ 2109 int __sched 2110 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2111 const enum hrtimer_mode mode, clockid_t clock_id) 2112 { 2113 struct hrtimer_sleeper t; 2114 2115 /* 2116 * Optimize when a zero timeout value is given. It does not 2117 * matter whether this is an absolute or a relative time. 2118 */ 2119 if (expires && *expires == 0) { 2120 __set_current_state(TASK_RUNNING); 2121 return 0; 2122 } 2123 2124 /* 2125 * A NULL parameter means "infinite" 2126 */ 2127 if (!expires) { 2128 schedule(); 2129 return -EINTR; 2130 } 2131 2132 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2133 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2134 hrtimer_sleeper_start_expires(&t, mode); 2135 2136 if (likely(t.task)) 2137 schedule(); 2138 2139 hrtimer_cancel(&t.timer); 2140 destroy_hrtimer_on_stack(&t.timer); 2141 2142 __set_current_state(TASK_RUNNING); 2143 2144 return !t.task ? 0 : -EINTR; 2145 } 2146 2147 /** 2148 * schedule_hrtimeout_range - sleep until timeout 2149 * @expires: timeout value (ktime_t) 2150 * @delta: slack in expires timeout (ktime_t) 2151 * @mode: timer mode 2152 * 2153 * Make the current task sleep until the given expiry time has 2154 * elapsed. The routine will return immediately unless 2155 * the current task state has been set (see set_current_state()). 2156 * 2157 * The @delta argument gives the kernel the freedom to schedule the 2158 * actual wakeup to a time that is both power and performance friendly. 2159 * The kernel give the normal best effort behavior for "@expires+@delta", 2160 * but may decide to fire the timer earlier, but no earlier than @expires. 2161 * 2162 * You can set the task state as follows - 2163 * 2164 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2165 * pass before the routine returns unless the current task is explicitly 2166 * woken up, (e.g. by wake_up_process()). 2167 * 2168 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2169 * delivered to the current task or the current task is explicitly woken 2170 * up. 2171 * 2172 * The current task state is guaranteed to be TASK_RUNNING when this 2173 * routine returns. 2174 * 2175 * Returns 0 when the timer has expired. If the task was woken before the 2176 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2177 * by an explicit wakeup, it returns -EINTR. 2178 */ 2179 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2180 const enum hrtimer_mode mode) 2181 { 2182 return schedule_hrtimeout_range_clock(expires, delta, mode, 2183 CLOCK_MONOTONIC); 2184 } 2185 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2186 2187 /** 2188 * schedule_hrtimeout - sleep until timeout 2189 * @expires: timeout value (ktime_t) 2190 * @mode: timer mode 2191 * 2192 * Make the current task sleep until the given expiry time has 2193 * elapsed. The routine will return immediately unless 2194 * the current task state has been set (see set_current_state()). 2195 * 2196 * You can set the task state as follows - 2197 * 2198 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2199 * pass before the routine returns unless the current task is explicitly 2200 * woken up, (e.g. by wake_up_process()). 2201 * 2202 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2203 * delivered to the current task or the current task is explicitly woken 2204 * up. 2205 * 2206 * The current task state is guaranteed to be TASK_RUNNING when this 2207 * routine returns. 2208 * 2209 * Returns 0 when the timer has expired. If the task was woken before the 2210 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2211 * by an explicit wakeup, it returns -EINTR. 2212 */ 2213 int __sched schedule_hrtimeout(ktime_t *expires, 2214 const enum hrtimer_mode mode) 2215 { 2216 return schedule_hrtimeout_range(expires, 0, mode); 2217 } 2218 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2219