xref: /openbmc/linux/kernel/time/hrtimer.c (revision 78bb17f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 static inline bool is_migration_base(struct hrtimer_clock_base *base)
144 {
145 	return base == &migration_base;
146 }
147 
148 /*
149  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150  * means that all timers which are tied to this base via timer->base are
151  * locked, and the base itself is locked too.
152  *
153  * So __run_timers/migrate_timers can safely modify all timers which could
154  * be found on the lists/queues.
155  *
156  * When the timer's base is locked, and the timer removed from list, it is
157  * possible to set timer->base = &migration_base and drop the lock: the timer
158  * remains locked.
159  */
160 static
161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 					     unsigned long *flags)
163 {
164 	struct hrtimer_clock_base *base;
165 
166 	for (;;) {
167 		base = READ_ONCE(timer->base);
168 		if (likely(base != &migration_base)) {
169 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 			if (likely(base == timer->base))
171 				return base;
172 			/* The timer has migrated to another CPU: */
173 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
174 		}
175 		cpu_relax();
176 	}
177 }
178 
179 /*
180  * We do not migrate the timer when it is expiring before the next
181  * event on the target cpu. When high resolution is enabled, we cannot
182  * reprogram the target cpu hardware and we would cause it to fire
183  * late. To keep it simple, we handle the high resolution enabled and
184  * disabled case similar.
185  *
186  * Called with cpu_base->lock of target cpu held.
187  */
188 static int
189 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190 {
191 	ktime_t expires;
192 
193 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 	return expires < new_base->cpu_base->expires_next;
195 }
196 
197 static inline
198 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 					 int pinned)
200 {
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204 #endif
205 	return base;
206 }
207 
208 /*
209  * We switch the timer base to a power-optimized selected CPU target,
210  * if:
211  *	- NO_HZ_COMMON is enabled
212  *	- timer migration is enabled
213  *	- the timer callback is not running
214  *	- the timer is not the first expiring timer on the new target
215  *
216  * If one of the above requirements is not fulfilled we move the timer
217  * to the current CPU or leave it on the previously assigned CPU if
218  * the timer callback is currently running.
219  */
220 static inline struct hrtimer_clock_base *
221 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 		    int pinned)
223 {
224 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 	struct hrtimer_clock_base *new_base;
226 	int basenum = base->index;
227 
228 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 	new_cpu_base = get_target_base(this_cpu_base, pinned);
230 again:
231 	new_base = &new_cpu_base->clock_base[basenum];
232 
233 	if (base != new_base) {
234 		/*
235 		 * We are trying to move timer to new_base.
236 		 * However we can't change timer's base while it is running,
237 		 * so we keep it on the same CPU. No hassle vs. reprogramming
238 		 * the event source in the high resolution case. The softirq
239 		 * code will take care of this when the timer function has
240 		 * completed. There is no conflict as we hold the lock until
241 		 * the timer is enqueued.
242 		 */
243 		if (unlikely(hrtimer_callback_running(timer)))
244 			return base;
245 
246 		/* See the comment in lock_hrtimer_base() */
247 		WRITE_ONCE(timer->base, &migration_base);
248 		raw_spin_unlock(&base->cpu_base->lock);
249 		raw_spin_lock(&new_base->cpu_base->lock);
250 
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			raw_spin_unlock(&new_base->cpu_base->lock);
254 			raw_spin_lock(&base->cpu_base->lock);
255 			new_cpu_base = this_cpu_base;
256 			WRITE_ONCE(timer->base, base);
257 			goto again;
258 		}
259 		WRITE_ONCE(timer->base, new_base);
260 	} else {
261 		if (new_cpu_base != this_cpu_base &&
262 		    hrtimer_check_target(timer, new_base)) {
263 			new_cpu_base = this_cpu_base;
264 			goto again;
265 		}
266 	}
267 	return new_base;
268 }
269 
270 #else /* CONFIG_SMP */
271 
272 static inline bool is_migration_base(struct hrtimer_clock_base *base)
273 {
274 	return false;
275 }
276 
277 static inline struct hrtimer_clock_base *
278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279 {
280 	struct hrtimer_clock_base *base = timer->base;
281 
282 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 
284 	return base;
285 }
286 
287 # define switch_hrtimer_base(t, b, p)	(b)
288 
289 #endif	/* !CONFIG_SMP */
290 
291 /*
292  * Functions for the union type storage format of ktime_t which are
293  * too large for inlining:
294  */
295 #if BITS_PER_LONG < 64
296 /*
297  * Divide a ktime value by a nanosecond value
298  */
299 s64 __ktime_divns(const ktime_t kt, s64 div)
300 {
301 	int sft = 0;
302 	s64 dclc;
303 	u64 tmp;
304 
305 	dclc = ktime_to_ns(kt);
306 	tmp = dclc < 0 ? -dclc : dclc;
307 
308 	/* Make sure the divisor is less than 2^32: */
309 	while (div >> 32) {
310 		sft++;
311 		div >>= 1;
312 	}
313 	tmp >>= sft;
314 	do_div(tmp, (u32) div);
315 	return dclc < 0 ? -tmp : tmp;
316 }
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
319 
320 /*
321  * Add two ktime values and do a safety check for overflow:
322  */
323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324 {
325 	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 
327 	/*
328 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 	 * return to user space in a timespec:
330 	 */
331 	if (res < 0 || res < lhs || res < rhs)
332 		res = ktime_set(KTIME_SEC_MAX, 0);
333 
334 	return res;
335 }
336 
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
338 
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340 
341 static struct debug_obj_descr hrtimer_debug_descr;
342 
343 static void *hrtimer_debug_hint(void *addr)
344 {
345 	return ((struct hrtimer *) addr)->function;
346 }
347 
348 /*
349  * fixup_init is called when:
350  * - an active object is initialized
351  */
352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 {
354 	struct hrtimer *timer = addr;
355 
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		hrtimer_cancel(timer);
359 		debug_object_init(timer, &hrtimer_debug_descr);
360 		return true;
361 	default:
362 		return false;
363 	}
364 }
365 
366 /*
367  * fixup_activate is called when:
368  * - an active object is activated
369  * - an unknown non-static object is activated
370  */
371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 {
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		WARN_ON(1);
376 		/* fall through */
377 	default:
378 		return false;
379 	}
380 }
381 
382 /*
383  * fixup_free is called when:
384  * - an active object is freed
385  */
386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 {
388 	struct hrtimer *timer = addr;
389 
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		hrtimer_cancel(timer);
393 		debug_object_free(timer, &hrtimer_debug_descr);
394 		return true;
395 	default:
396 		return false;
397 	}
398 }
399 
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 	.name		= "hrtimer",
402 	.debug_hint	= hrtimer_debug_hint,
403 	.fixup_init	= hrtimer_fixup_init,
404 	.fixup_activate	= hrtimer_fixup_activate,
405 	.fixup_free	= hrtimer_fixup_free,
406 };
407 
408 static inline void debug_hrtimer_init(struct hrtimer *timer)
409 {
410 	debug_object_init(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 					  enum hrtimer_mode mode)
415 {
416 	debug_object_activate(timer, &hrtimer_debug_descr);
417 }
418 
419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420 {
421 	debug_object_deactivate(timer, &hrtimer_debug_descr);
422 }
423 
424 static inline void debug_hrtimer_free(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 			   enum hrtimer_mode mode);
431 
432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 			   enum hrtimer_mode mode)
434 {
435 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 	__hrtimer_init(timer, clock_id, mode);
437 }
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 
440 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 				   clockid_t clock_id, enum hrtimer_mode mode);
442 
443 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 				   clockid_t clock_id, enum hrtimer_mode mode)
445 {
446 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 	__hrtimer_init_sleeper(sl, clock_id, mode);
448 }
449 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450 
451 void destroy_hrtimer_on_stack(struct hrtimer *timer)
452 {
453 	debug_object_free(timer, &hrtimer_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
456 
457 #else
458 
459 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
460 static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 					  enum hrtimer_mode mode) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464 
465 static inline void
466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 	   enum hrtimer_mode mode)
468 {
469 	debug_hrtimer_init(timer);
470 	trace_hrtimer_init(timer, clockid, mode);
471 }
472 
473 static inline void debug_activate(struct hrtimer *timer,
474 				  enum hrtimer_mode mode)
475 {
476 	debug_hrtimer_activate(timer, mode);
477 	trace_hrtimer_start(timer, mode);
478 }
479 
480 static inline void debug_deactivate(struct hrtimer *timer)
481 {
482 	debug_hrtimer_deactivate(timer);
483 	trace_hrtimer_cancel(timer);
484 }
485 
486 static struct hrtimer_clock_base *
487 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488 {
489 	unsigned int idx;
490 
491 	if (!*active)
492 		return NULL;
493 
494 	idx = __ffs(*active);
495 	*active &= ~(1U << idx);
496 
497 	return &cpu_base->clock_base[idx];
498 }
499 
500 #define for_each_active_base(base, cpu_base, active)	\
501 	while ((base = __next_base((cpu_base), &(active))))
502 
503 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 					 const struct hrtimer *exclude,
505 					 unsigned int active,
506 					 ktime_t expires_next)
507 {
508 	struct hrtimer_clock_base *base;
509 	ktime_t expires;
510 
511 	for_each_active_base(base, cpu_base, active) {
512 		struct timerqueue_node *next;
513 		struct hrtimer *timer;
514 
515 		next = timerqueue_getnext(&base->active);
516 		timer = container_of(next, struct hrtimer, node);
517 		if (timer == exclude) {
518 			/* Get to the next timer in the queue. */
519 			next = timerqueue_iterate_next(next);
520 			if (!next)
521 				continue;
522 
523 			timer = container_of(next, struct hrtimer, node);
524 		}
525 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 		if (expires < expires_next) {
527 			expires_next = expires;
528 
529 			/* Skip cpu_base update if a timer is being excluded. */
530 			if (exclude)
531 				continue;
532 
533 			if (timer->is_soft)
534 				cpu_base->softirq_next_timer = timer;
535 			else
536 				cpu_base->next_timer = timer;
537 		}
538 	}
539 	/*
540 	 * clock_was_set() might have changed base->offset of any of
541 	 * the clock bases so the result might be negative. Fix it up
542 	 * to prevent a false positive in clockevents_program_event().
543 	 */
544 	if (expires_next < 0)
545 		expires_next = 0;
546 	return expires_next;
547 }
548 
549 /*
550  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552  *
553  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554  * those timers will get run whenever the softirq gets handled, at the end of
555  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556  *
557  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560  *
561  * @active_mask must be one of:
562  *  - HRTIMER_ACTIVE_ALL,
563  *  - HRTIMER_ACTIVE_SOFT, or
564  *  - HRTIMER_ACTIVE_HARD.
565  */
566 static ktime_t
567 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
568 {
569 	unsigned int active;
570 	struct hrtimer *next_timer = NULL;
571 	ktime_t expires_next = KTIME_MAX;
572 
573 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 		cpu_base->softirq_next_timer = NULL;
576 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 							 active, KTIME_MAX);
578 
579 		next_timer = cpu_base->softirq_next_timer;
580 	}
581 
582 	if (active_mask & HRTIMER_ACTIVE_HARD) {
583 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 		cpu_base->next_timer = next_timer;
585 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 							 expires_next);
587 	}
588 
589 	return expires_next;
590 }
591 
592 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
593 {
594 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
595 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
596 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
597 
598 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
599 					    offs_real, offs_boot, offs_tai);
600 
601 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
602 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
603 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
604 
605 	return now;
606 }
607 
608 /*
609  * Is the high resolution mode active ?
610  */
611 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
612 {
613 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 		cpu_base->hres_active : 0;
615 }
616 
617 static inline int hrtimer_hres_active(void)
618 {
619 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
620 }
621 
622 /*
623  * Reprogram the event source with checking both queues for the
624  * next event
625  * Called with interrupts disabled and base->lock held
626  */
627 static void
628 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
629 {
630 	ktime_t expires_next;
631 
632 	/*
633 	 * Find the current next expiration time.
634 	 */
635 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
636 
637 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
638 		/*
639 		 * When the softirq is activated, hrtimer has to be
640 		 * programmed with the first hard hrtimer because soft
641 		 * timer interrupt could occur too late.
642 		 */
643 		if (cpu_base->softirq_activated)
644 			expires_next = __hrtimer_get_next_event(cpu_base,
645 								HRTIMER_ACTIVE_HARD);
646 		else
647 			cpu_base->softirq_expires_next = expires_next;
648 	}
649 
650 	if (skip_equal && expires_next == cpu_base->expires_next)
651 		return;
652 
653 	cpu_base->expires_next = expires_next;
654 
655 	/*
656 	 * If hres is not active, hardware does not have to be
657 	 * reprogrammed yet.
658 	 *
659 	 * If a hang was detected in the last timer interrupt then we
660 	 * leave the hang delay active in the hardware. We want the
661 	 * system to make progress. That also prevents the following
662 	 * scenario:
663 	 * T1 expires 50ms from now
664 	 * T2 expires 5s from now
665 	 *
666 	 * T1 is removed, so this code is called and would reprogram
667 	 * the hardware to 5s from now. Any hrtimer_start after that
668 	 * will not reprogram the hardware due to hang_detected being
669 	 * set. So we'd effectivly block all timers until the T2 event
670 	 * fires.
671 	 */
672 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
673 		return;
674 
675 	tick_program_event(cpu_base->expires_next, 1);
676 }
677 
678 /* High resolution timer related functions */
679 #ifdef CONFIG_HIGH_RES_TIMERS
680 
681 /*
682  * High resolution timer enabled ?
683  */
684 static bool hrtimer_hres_enabled __read_mostly  = true;
685 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686 EXPORT_SYMBOL_GPL(hrtimer_resolution);
687 
688 /*
689  * Enable / Disable high resolution mode
690  */
691 static int __init setup_hrtimer_hres(char *str)
692 {
693 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
694 }
695 
696 __setup("highres=", setup_hrtimer_hres);
697 
698 /*
699  * hrtimer_high_res_enabled - query, if the highres mode is enabled
700  */
701 static inline int hrtimer_is_hres_enabled(void)
702 {
703 	return hrtimer_hres_enabled;
704 }
705 
706 /*
707  * Retrigger next event is called after clock was set
708  *
709  * Called with interrupts disabled via on_each_cpu()
710  */
711 static void retrigger_next_event(void *arg)
712 {
713 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
714 
715 	if (!__hrtimer_hres_active(base))
716 		return;
717 
718 	raw_spin_lock(&base->lock);
719 	hrtimer_update_base(base);
720 	hrtimer_force_reprogram(base, 0);
721 	raw_spin_unlock(&base->lock);
722 }
723 
724 /*
725  * Switch to high resolution mode
726  */
727 static void hrtimer_switch_to_hres(void)
728 {
729 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
730 
731 	if (tick_init_highres()) {
732 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 			base->cpu);
734 		return;
735 	}
736 	base->hres_active = 1;
737 	hrtimer_resolution = HIGH_RES_NSEC;
738 
739 	tick_setup_sched_timer();
740 	/* "Retrigger" the interrupt to get things going */
741 	retrigger_next_event(NULL);
742 }
743 
744 static void clock_was_set_work(struct work_struct *work)
745 {
746 	clock_was_set();
747 }
748 
749 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
750 
751 /*
752  * Called from timekeeping and resume code to reprogram the hrtimer
753  * interrupt device on all cpus.
754  */
755 void clock_was_set_delayed(void)
756 {
757 	schedule_work(&hrtimer_work);
758 }
759 
760 #else
761 
762 static inline int hrtimer_is_hres_enabled(void) { return 0; }
763 static inline void hrtimer_switch_to_hres(void) { }
764 static inline void retrigger_next_event(void *arg) { }
765 
766 #endif /* CONFIG_HIGH_RES_TIMERS */
767 
768 /*
769  * When a timer is enqueued and expires earlier than the already enqueued
770  * timers, we have to check, whether it expires earlier than the timer for
771  * which the clock event device was armed.
772  *
773  * Called with interrupts disabled and base->cpu_base.lock held
774  */
775 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
776 {
777 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
778 	struct hrtimer_clock_base *base = timer->base;
779 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
780 
781 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
782 
783 	/*
784 	 * CLOCK_REALTIME timer might be requested with an absolute
785 	 * expiry time which is less than base->offset. Set it to 0.
786 	 */
787 	if (expires < 0)
788 		expires = 0;
789 
790 	if (timer->is_soft) {
791 		/*
792 		 * soft hrtimer could be started on a remote CPU. In this
793 		 * case softirq_expires_next needs to be updated on the
794 		 * remote CPU. The soft hrtimer will not expire before the
795 		 * first hard hrtimer on the remote CPU -
796 		 * hrtimer_check_target() prevents this case.
797 		 */
798 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
799 
800 		if (timer_cpu_base->softirq_activated)
801 			return;
802 
803 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 			return;
805 
806 		timer_cpu_base->softirq_next_timer = timer;
807 		timer_cpu_base->softirq_expires_next = expires;
808 
809 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 		    !reprogram)
811 			return;
812 	}
813 
814 	/*
815 	 * If the timer is not on the current cpu, we cannot reprogram
816 	 * the other cpus clock event device.
817 	 */
818 	if (base->cpu_base != cpu_base)
819 		return;
820 
821 	/*
822 	 * If the hrtimer interrupt is running, then it will
823 	 * reevaluate the clock bases and reprogram the clock event
824 	 * device. The callbacks are always executed in hard interrupt
825 	 * context so we don't need an extra check for a running
826 	 * callback.
827 	 */
828 	if (cpu_base->in_hrtirq)
829 		return;
830 
831 	if (expires >= cpu_base->expires_next)
832 		return;
833 
834 	/* Update the pointer to the next expiring timer */
835 	cpu_base->next_timer = timer;
836 	cpu_base->expires_next = expires;
837 
838 	/*
839 	 * If hres is not active, hardware does not have to be
840 	 * programmed yet.
841 	 *
842 	 * If a hang was detected in the last timer interrupt then we
843 	 * do not schedule a timer which is earlier than the expiry
844 	 * which we enforced in the hang detection. We want the system
845 	 * to make progress.
846 	 */
847 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
848 		return;
849 
850 	/*
851 	 * Program the timer hardware. We enforce the expiry for
852 	 * events which are already in the past.
853 	 */
854 	tick_program_event(expires, 1);
855 }
856 
857 /*
858  * Clock realtime was set
859  *
860  * Change the offset of the realtime clock vs. the monotonic
861  * clock.
862  *
863  * We might have to reprogram the high resolution timer interrupt. On
864  * SMP we call the architecture specific code to retrigger _all_ high
865  * resolution timer interrupts. On UP we just disable interrupts and
866  * call the high resolution interrupt code.
867  */
868 void clock_was_set(void)
869 {
870 #ifdef CONFIG_HIGH_RES_TIMERS
871 	/* Retrigger the CPU local events everywhere */
872 	on_each_cpu(retrigger_next_event, NULL, 1);
873 #endif
874 	timerfd_clock_was_set();
875 }
876 
877 /*
878  * During resume we might have to reprogram the high resolution timer
879  * interrupt on all online CPUs.  However, all other CPUs will be
880  * stopped with IRQs interrupts disabled so the clock_was_set() call
881  * must be deferred.
882  */
883 void hrtimers_resume(void)
884 {
885 	lockdep_assert_irqs_disabled();
886 	/* Retrigger on the local CPU */
887 	retrigger_next_event(NULL);
888 	/* And schedule a retrigger for all others */
889 	clock_was_set_delayed();
890 }
891 
892 /*
893  * Counterpart to lock_hrtimer_base above:
894  */
895 static inline
896 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
897 {
898 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
899 }
900 
901 /**
902  * hrtimer_forward - forward the timer expiry
903  * @timer:	hrtimer to forward
904  * @now:	forward past this time
905  * @interval:	the interval to forward
906  *
907  * Forward the timer expiry so it will expire in the future.
908  * Returns the number of overruns.
909  *
910  * Can be safely called from the callback function of @timer. If
911  * called from other contexts @timer must neither be enqueued nor
912  * running the callback and the caller needs to take care of
913  * serialization.
914  *
915  * Note: This only updates the timer expiry value and does not requeue
916  * the timer.
917  */
918 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
919 {
920 	u64 orun = 1;
921 	ktime_t delta;
922 
923 	delta = ktime_sub(now, hrtimer_get_expires(timer));
924 
925 	if (delta < 0)
926 		return 0;
927 
928 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 		return 0;
930 
931 	if (interval < hrtimer_resolution)
932 		interval = hrtimer_resolution;
933 
934 	if (unlikely(delta >= interval)) {
935 		s64 incr = ktime_to_ns(interval);
936 
937 		orun = ktime_divns(delta, incr);
938 		hrtimer_add_expires_ns(timer, incr * orun);
939 		if (hrtimer_get_expires_tv64(timer) > now)
940 			return orun;
941 		/*
942 		 * This (and the ktime_add() below) is the
943 		 * correction for exact:
944 		 */
945 		orun++;
946 	}
947 	hrtimer_add_expires(timer, interval);
948 
949 	return orun;
950 }
951 EXPORT_SYMBOL_GPL(hrtimer_forward);
952 
953 /*
954  * enqueue_hrtimer - internal function to (re)start a timer
955  *
956  * The timer is inserted in expiry order. Insertion into the
957  * red black tree is O(log(n)). Must hold the base lock.
958  *
959  * Returns 1 when the new timer is the leftmost timer in the tree.
960  */
961 static int enqueue_hrtimer(struct hrtimer *timer,
962 			   struct hrtimer_clock_base *base,
963 			   enum hrtimer_mode mode)
964 {
965 	debug_activate(timer, mode);
966 
967 	base->cpu_base->active_bases |= 1 << base->index;
968 
969 	/* Pairs with the lockless read in hrtimer_is_queued() */
970 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
971 
972 	return timerqueue_add(&base->active, &timer->node);
973 }
974 
975 /*
976  * __remove_hrtimer - internal function to remove a timer
977  *
978  * Caller must hold the base lock.
979  *
980  * High resolution timer mode reprograms the clock event device when the
981  * timer is the one which expires next. The caller can disable this by setting
982  * reprogram to zero. This is useful, when the context does a reprogramming
983  * anyway (e.g. timer interrupt)
984  */
985 static void __remove_hrtimer(struct hrtimer *timer,
986 			     struct hrtimer_clock_base *base,
987 			     u8 newstate, int reprogram)
988 {
989 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
990 	u8 state = timer->state;
991 
992 	/* Pairs with the lockless read in hrtimer_is_queued() */
993 	WRITE_ONCE(timer->state, newstate);
994 	if (!(state & HRTIMER_STATE_ENQUEUED))
995 		return;
996 
997 	if (!timerqueue_del(&base->active, &timer->node))
998 		cpu_base->active_bases &= ~(1 << base->index);
999 
1000 	/*
1001 	 * Note: If reprogram is false we do not update
1002 	 * cpu_base->next_timer. This happens when we remove the first
1003 	 * timer on a remote cpu. No harm as we never dereference
1004 	 * cpu_base->next_timer. So the worst thing what can happen is
1005 	 * an superflous call to hrtimer_force_reprogram() on the
1006 	 * remote cpu later on if the same timer gets enqueued again.
1007 	 */
1008 	if (reprogram && timer == cpu_base->next_timer)
1009 		hrtimer_force_reprogram(cpu_base, 1);
1010 }
1011 
1012 /*
1013  * remove hrtimer, called with base lock held
1014  */
1015 static inline int
1016 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1017 {
1018 	u8 state = timer->state;
1019 
1020 	if (state & HRTIMER_STATE_ENQUEUED) {
1021 		int reprogram;
1022 
1023 		/*
1024 		 * Remove the timer and force reprogramming when high
1025 		 * resolution mode is active and the timer is on the current
1026 		 * CPU. If we remove a timer on another CPU, reprogramming is
1027 		 * skipped. The interrupt event on this CPU is fired and
1028 		 * reprogramming happens in the interrupt handler. This is a
1029 		 * rare case and less expensive than a smp call.
1030 		 */
1031 		debug_deactivate(timer);
1032 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1033 
1034 		if (!restart)
1035 			state = HRTIMER_STATE_INACTIVE;
1036 
1037 		__remove_hrtimer(timer, base, state, reprogram);
1038 		return 1;
1039 	}
1040 	return 0;
1041 }
1042 
1043 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1044 					    const enum hrtimer_mode mode)
1045 {
1046 #ifdef CONFIG_TIME_LOW_RES
1047 	/*
1048 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1049 	 * granular time values. For relative timers we add hrtimer_resolution
1050 	 * (i.e. one jiffie) to prevent short timeouts.
1051 	 */
1052 	timer->is_rel = mode & HRTIMER_MODE_REL;
1053 	if (timer->is_rel)
1054 		tim = ktime_add_safe(tim, hrtimer_resolution);
1055 #endif
1056 	return tim;
1057 }
1058 
1059 static void
1060 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1061 {
1062 	ktime_t expires;
1063 
1064 	/*
1065 	 * Find the next SOFT expiration.
1066 	 */
1067 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1068 
1069 	/*
1070 	 * reprogramming needs to be triggered, even if the next soft
1071 	 * hrtimer expires at the same time than the next hard
1072 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1073 	 */
1074 	if (expires == KTIME_MAX)
1075 		return;
1076 
1077 	/*
1078 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1079 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1080 	 */
1081 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1082 }
1083 
1084 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1085 				    u64 delta_ns, const enum hrtimer_mode mode,
1086 				    struct hrtimer_clock_base *base)
1087 {
1088 	struct hrtimer_clock_base *new_base;
1089 
1090 	/* Remove an active timer from the queue: */
1091 	remove_hrtimer(timer, base, true);
1092 
1093 	if (mode & HRTIMER_MODE_REL)
1094 		tim = ktime_add_safe(tim, base->get_time());
1095 
1096 	tim = hrtimer_update_lowres(timer, tim, mode);
1097 
1098 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1099 
1100 	/* Switch the timer base, if necessary: */
1101 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1102 
1103 	return enqueue_hrtimer(timer, new_base, mode);
1104 }
1105 
1106 /**
1107  * hrtimer_start_range_ns - (re)start an hrtimer
1108  * @timer:	the timer to be added
1109  * @tim:	expiry time
1110  * @delta_ns:	"slack" range for the timer
1111  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1112  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1113  *		softirq based mode is considered for debug purpose only!
1114  */
1115 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1116 			    u64 delta_ns, const enum hrtimer_mode mode)
1117 {
1118 	struct hrtimer_clock_base *base;
1119 	unsigned long flags;
1120 
1121 	/*
1122 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1123 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1124 	 * expiry mode because unmarked timers are moved to softirq expiry.
1125 	 */
1126 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1127 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1128 	else
1129 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1130 
1131 	base = lock_hrtimer_base(timer, &flags);
1132 
1133 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1134 		hrtimer_reprogram(timer, true);
1135 
1136 	unlock_hrtimer_base(timer, &flags);
1137 }
1138 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1139 
1140 /**
1141  * hrtimer_try_to_cancel - try to deactivate a timer
1142  * @timer:	hrtimer to stop
1143  *
1144  * Returns:
1145  *
1146  *  *  0 when the timer was not active
1147  *  *  1 when the timer was active
1148  *  * -1 when the timer is currently executing the callback function and
1149  *    cannot be stopped
1150  */
1151 int hrtimer_try_to_cancel(struct hrtimer *timer)
1152 {
1153 	struct hrtimer_clock_base *base;
1154 	unsigned long flags;
1155 	int ret = -1;
1156 
1157 	/*
1158 	 * Check lockless first. If the timer is not active (neither
1159 	 * enqueued nor running the callback, nothing to do here.  The
1160 	 * base lock does not serialize against a concurrent enqueue,
1161 	 * so we can avoid taking it.
1162 	 */
1163 	if (!hrtimer_active(timer))
1164 		return 0;
1165 
1166 	base = lock_hrtimer_base(timer, &flags);
1167 
1168 	if (!hrtimer_callback_running(timer))
1169 		ret = remove_hrtimer(timer, base, false);
1170 
1171 	unlock_hrtimer_base(timer, &flags);
1172 
1173 	return ret;
1174 
1175 }
1176 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1177 
1178 #ifdef CONFIG_PREEMPT_RT
1179 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1180 {
1181 	spin_lock_init(&base->softirq_expiry_lock);
1182 }
1183 
1184 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1185 {
1186 	spin_lock(&base->softirq_expiry_lock);
1187 }
1188 
1189 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1190 {
1191 	spin_unlock(&base->softirq_expiry_lock);
1192 }
1193 
1194 /*
1195  * The counterpart to hrtimer_cancel_wait_running().
1196  *
1197  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1198  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1199  * allows the waiter to acquire the lock and make progress.
1200  */
1201 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1202 				      unsigned long flags)
1203 {
1204 	if (atomic_read(&cpu_base->timer_waiters)) {
1205 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1206 		spin_unlock(&cpu_base->softirq_expiry_lock);
1207 		spin_lock(&cpu_base->softirq_expiry_lock);
1208 		raw_spin_lock_irq(&cpu_base->lock);
1209 	}
1210 }
1211 
1212 /*
1213  * This function is called on PREEMPT_RT kernels when the fast path
1214  * deletion of a timer failed because the timer callback function was
1215  * running.
1216  *
1217  * This prevents priority inversion: if the soft irq thread is preempted
1218  * in the middle of a timer callback, then calling del_timer_sync() can
1219  * lead to two issues:
1220  *
1221  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1222  *    handler to complete. This can result in unbound priority inversion.
1223  *
1224  *  - If the caller originates from the task which preempted the timer
1225  *    handler on the same CPU, then spin waiting for the timer handler to
1226  *    complete is never going to end.
1227  */
1228 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1229 {
1230 	/* Lockless read. Prevent the compiler from reloading it below */
1231 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1232 
1233 	/*
1234 	 * Just relax if the timer expires in hard interrupt context or if
1235 	 * it is currently on the migration base.
1236 	 */
1237 	if (!timer->is_soft || is_migration_base(base)) {
1238 		cpu_relax();
1239 		return;
1240 	}
1241 
1242 	/*
1243 	 * Mark the base as contended and grab the expiry lock, which is
1244 	 * held by the softirq across the timer callback. Drop the lock
1245 	 * immediately so the softirq can expire the next timer. In theory
1246 	 * the timer could already be running again, but that's more than
1247 	 * unlikely and just causes another wait loop.
1248 	 */
1249 	atomic_inc(&base->cpu_base->timer_waiters);
1250 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1251 	atomic_dec(&base->cpu_base->timer_waiters);
1252 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1253 }
1254 #else
1255 static inline void
1256 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1257 static inline void
1258 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1259 static inline void
1260 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1261 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1262 					     unsigned long flags) { }
1263 #endif
1264 
1265 /**
1266  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1267  * @timer:	the timer to be cancelled
1268  *
1269  * Returns:
1270  *  0 when the timer was not active
1271  *  1 when the timer was active
1272  */
1273 int hrtimer_cancel(struct hrtimer *timer)
1274 {
1275 	int ret;
1276 
1277 	do {
1278 		ret = hrtimer_try_to_cancel(timer);
1279 
1280 		if (ret < 0)
1281 			hrtimer_cancel_wait_running(timer);
1282 	} while (ret < 0);
1283 	return ret;
1284 }
1285 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1286 
1287 /**
1288  * hrtimer_get_remaining - get remaining time for the timer
1289  * @timer:	the timer to read
1290  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1291  */
1292 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1293 {
1294 	unsigned long flags;
1295 	ktime_t rem;
1296 
1297 	lock_hrtimer_base(timer, &flags);
1298 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1299 		rem = hrtimer_expires_remaining_adjusted(timer);
1300 	else
1301 		rem = hrtimer_expires_remaining(timer);
1302 	unlock_hrtimer_base(timer, &flags);
1303 
1304 	return rem;
1305 }
1306 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1307 
1308 #ifdef CONFIG_NO_HZ_COMMON
1309 /**
1310  * hrtimer_get_next_event - get the time until next expiry event
1311  *
1312  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1313  */
1314 u64 hrtimer_get_next_event(void)
1315 {
1316 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1317 	u64 expires = KTIME_MAX;
1318 	unsigned long flags;
1319 
1320 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1321 
1322 	if (!__hrtimer_hres_active(cpu_base))
1323 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1324 
1325 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1326 
1327 	return expires;
1328 }
1329 
1330 /**
1331  * hrtimer_next_event_without - time until next expiry event w/o one timer
1332  * @exclude:	timer to exclude
1333  *
1334  * Returns the next expiry time over all timers except for the @exclude one or
1335  * KTIME_MAX if none of them is pending.
1336  */
1337 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1338 {
1339 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1340 	u64 expires = KTIME_MAX;
1341 	unsigned long flags;
1342 
1343 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1344 
1345 	if (__hrtimer_hres_active(cpu_base)) {
1346 		unsigned int active;
1347 
1348 		if (!cpu_base->softirq_activated) {
1349 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1350 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1351 							    active, KTIME_MAX);
1352 		}
1353 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1354 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1355 						    expires);
1356 	}
1357 
1358 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1359 
1360 	return expires;
1361 }
1362 #endif
1363 
1364 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1365 {
1366 	if (likely(clock_id < MAX_CLOCKS)) {
1367 		int base = hrtimer_clock_to_base_table[clock_id];
1368 
1369 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1370 			return base;
1371 	}
1372 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1373 	return HRTIMER_BASE_MONOTONIC;
1374 }
1375 
1376 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1377 			   enum hrtimer_mode mode)
1378 {
1379 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1380 	struct hrtimer_cpu_base *cpu_base;
1381 	int base;
1382 
1383 	/*
1384 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1385 	 * marked for hard interrupt expiry mode are moved into soft
1386 	 * interrupt context for latency reasons and because the callbacks
1387 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1388 	 */
1389 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1390 		softtimer = true;
1391 
1392 	memset(timer, 0, sizeof(struct hrtimer));
1393 
1394 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1395 
1396 	/*
1397 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1398 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1399 	 * ensure POSIX compliance.
1400 	 */
1401 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1402 		clock_id = CLOCK_MONOTONIC;
1403 
1404 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1405 	base += hrtimer_clockid_to_base(clock_id);
1406 	timer->is_soft = softtimer;
1407 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1408 	timer->base = &cpu_base->clock_base[base];
1409 	timerqueue_init(&timer->node);
1410 }
1411 
1412 /**
1413  * hrtimer_init - initialize a timer to the given clock
1414  * @timer:	the timer to be initialized
1415  * @clock_id:	the clock to be used
1416  * @mode:       The modes which are relevant for intitialization:
1417  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1418  *              HRTIMER_MODE_REL_SOFT
1419  *
1420  *              The PINNED variants of the above can be handed in,
1421  *              but the PINNED bit is ignored as pinning happens
1422  *              when the hrtimer is started
1423  */
1424 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1425 		  enum hrtimer_mode mode)
1426 {
1427 	debug_init(timer, clock_id, mode);
1428 	__hrtimer_init(timer, clock_id, mode);
1429 }
1430 EXPORT_SYMBOL_GPL(hrtimer_init);
1431 
1432 /*
1433  * A timer is active, when it is enqueued into the rbtree or the
1434  * callback function is running or it's in the state of being migrated
1435  * to another cpu.
1436  *
1437  * It is important for this function to not return a false negative.
1438  */
1439 bool hrtimer_active(const struct hrtimer *timer)
1440 {
1441 	struct hrtimer_clock_base *base;
1442 	unsigned int seq;
1443 
1444 	do {
1445 		base = READ_ONCE(timer->base);
1446 		seq = raw_read_seqcount_begin(&base->seq);
1447 
1448 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1449 		    base->running == timer)
1450 			return true;
1451 
1452 	} while (read_seqcount_retry(&base->seq, seq) ||
1453 		 base != READ_ONCE(timer->base));
1454 
1455 	return false;
1456 }
1457 EXPORT_SYMBOL_GPL(hrtimer_active);
1458 
1459 /*
1460  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1461  * distinct sections:
1462  *
1463  *  - queued:	the timer is queued
1464  *  - callback:	the timer is being ran
1465  *  - post:	the timer is inactive or (re)queued
1466  *
1467  * On the read side we ensure we observe timer->state and cpu_base->running
1468  * from the same section, if anything changed while we looked at it, we retry.
1469  * This includes timer->base changing because sequence numbers alone are
1470  * insufficient for that.
1471  *
1472  * The sequence numbers are required because otherwise we could still observe
1473  * a false negative if the read side got smeared over multiple consequtive
1474  * __run_hrtimer() invocations.
1475  */
1476 
1477 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1478 			  struct hrtimer_clock_base *base,
1479 			  struct hrtimer *timer, ktime_t *now,
1480 			  unsigned long flags) __must_hold(&cpu_base->lock)
1481 {
1482 	enum hrtimer_restart (*fn)(struct hrtimer *);
1483 	bool expires_in_hardirq;
1484 	int restart;
1485 
1486 	lockdep_assert_held(&cpu_base->lock);
1487 
1488 	debug_deactivate(timer);
1489 	base->running = timer;
1490 
1491 	/*
1492 	 * Separate the ->running assignment from the ->state assignment.
1493 	 *
1494 	 * As with a regular write barrier, this ensures the read side in
1495 	 * hrtimer_active() cannot observe base->running == NULL &&
1496 	 * timer->state == INACTIVE.
1497 	 */
1498 	raw_write_seqcount_barrier(&base->seq);
1499 
1500 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1501 	fn = timer->function;
1502 
1503 	/*
1504 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1505 	 * timer is restarted with a period then it becomes an absolute
1506 	 * timer. If its not restarted it does not matter.
1507 	 */
1508 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1509 		timer->is_rel = false;
1510 
1511 	/*
1512 	 * The timer is marked as running in the CPU base, so it is
1513 	 * protected against migration to a different CPU even if the lock
1514 	 * is dropped.
1515 	 */
1516 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1517 	trace_hrtimer_expire_entry(timer, now);
1518 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1519 
1520 	restart = fn(timer);
1521 
1522 	lockdep_hrtimer_exit(expires_in_hardirq);
1523 	trace_hrtimer_expire_exit(timer);
1524 	raw_spin_lock_irq(&cpu_base->lock);
1525 
1526 	/*
1527 	 * Note: We clear the running state after enqueue_hrtimer and
1528 	 * we do not reprogram the event hardware. Happens either in
1529 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1530 	 *
1531 	 * Note: Because we dropped the cpu_base->lock above,
1532 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1533 	 * for us already.
1534 	 */
1535 	if (restart != HRTIMER_NORESTART &&
1536 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1537 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1538 
1539 	/*
1540 	 * Separate the ->running assignment from the ->state assignment.
1541 	 *
1542 	 * As with a regular write barrier, this ensures the read side in
1543 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1544 	 * timer->state == INACTIVE.
1545 	 */
1546 	raw_write_seqcount_barrier(&base->seq);
1547 
1548 	WARN_ON_ONCE(base->running != timer);
1549 	base->running = NULL;
1550 }
1551 
1552 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1553 				 unsigned long flags, unsigned int active_mask)
1554 {
1555 	struct hrtimer_clock_base *base;
1556 	unsigned int active = cpu_base->active_bases & active_mask;
1557 
1558 	for_each_active_base(base, cpu_base, active) {
1559 		struct timerqueue_node *node;
1560 		ktime_t basenow;
1561 
1562 		basenow = ktime_add(now, base->offset);
1563 
1564 		while ((node = timerqueue_getnext(&base->active))) {
1565 			struct hrtimer *timer;
1566 
1567 			timer = container_of(node, struct hrtimer, node);
1568 
1569 			/*
1570 			 * The immediate goal for using the softexpires is
1571 			 * minimizing wakeups, not running timers at the
1572 			 * earliest interrupt after their soft expiration.
1573 			 * This allows us to avoid using a Priority Search
1574 			 * Tree, which can answer a stabbing querry for
1575 			 * overlapping intervals and instead use the simple
1576 			 * BST we already have.
1577 			 * We don't add extra wakeups by delaying timers that
1578 			 * are right-of a not yet expired timer, because that
1579 			 * timer will have to trigger a wakeup anyway.
1580 			 */
1581 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1582 				break;
1583 
1584 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1585 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1586 				hrtimer_sync_wait_running(cpu_base, flags);
1587 		}
1588 	}
1589 }
1590 
1591 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1592 {
1593 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1594 	unsigned long flags;
1595 	ktime_t now;
1596 
1597 	hrtimer_cpu_base_lock_expiry(cpu_base);
1598 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1599 
1600 	now = hrtimer_update_base(cpu_base);
1601 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1602 
1603 	cpu_base->softirq_activated = 0;
1604 	hrtimer_update_softirq_timer(cpu_base, true);
1605 
1606 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1607 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1608 }
1609 
1610 #ifdef CONFIG_HIGH_RES_TIMERS
1611 
1612 /*
1613  * High resolution timer interrupt
1614  * Called with interrupts disabled
1615  */
1616 void hrtimer_interrupt(struct clock_event_device *dev)
1617 {
1618 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1619 	ktime_t expires_next, now, entry_time, delta;
1620 	unsigned long flags;
1621 	int retries = 0;
1622 
1623 	BUG_ON(!cpu_base->hres_active);
1624 	cpu_base->nr_events++;
1625 	dev->next_event = KTIME_MAX;
1626 
1627 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1628 	entry_time = now = hrtimer_update_base(cpu_base);
1629 retry:
1630 	cpu_base->in_hrtirq = 1;
1631 	/*
1632 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1633 	 * held to prevent that a timer is enqueued in our queue via
1634 	 * the migration code. This does not affect enqueueing of
1635 	 * timers which run their callback and need to be requeued on
1636 	 * this CPU.
1637 	 */
1638 	cpu_base->expires_next = KTIME_MAX;
1639 
1640 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1641 		cpu_base->softirq_expires_next = KTIME_MAX;
1642 		cpu_base->softirq_activated = 1;
1643 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1644 	}
1645 
1646 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1647 
1648 	/* Reevaluate the clock bases for the next expiry */
1649 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1650 	/*
1651 	 * Store the new expiry value so the migration code can verify
1652 	 * against it.
1653 	 */
1654 	cpu_base->expires_next = expires_next;
1655 	cpu_base->in_hrtirq = 0;
1656 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1657 
1658 	/* Reprogramming necessary ? */
1659 	if (!tick_program_event(expires_next, 0)) {
1660 		cpu_base->hang_detected = 0;
1661 		return;
1662 	}
1663 
1664 	/*
1665 	 * The next timer was already expired due to:
1666 	 * - tracing
1667 	 * - long lasting callbacks
1668 	 * - being scheduled away when running in a VM
1669 	 *
1670 	 * We need to prevent that we loop forever in the hrtimer
1671 	 * interrupt routine. We give it 3 attempts to avoid
1672 	 * overreacting on some spurious event.
1673 	 *
1674 	 * Acquire base lock for updating the offsets and retrieving
1675 	 * the current time.
1676 	 */
1677 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1678 	now = hrtimer_update_base(cpu_base);
1679 	cpu_base->nr_retries++;
1680 	if (++retries < 3)
1681 		goto retry;
1682 	/*
1683 	 * Give the system a chance to do something else than looping
1684 	 * here. We stored the entry time, so we know exactly how long
1685 	 * we spent here. We schedule the next event this amount of
1686 	 * time away.
1687 	 */
1688 	cpu_base->nr_hangs++;
1689 	cpu_base->hang_detected = 1;
1690 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1691 
1692 	delta = ktime_sub(now, entry_time);
1693 	if ((unsigned int)delta > cpu_base->max_hang_time)
1694 		cpu_base->max_hang_time = (unsigned int) delta;
1695 	/*
1696 	 * Limit it to a sensible value as we enforce a longer
1697 	 * delay. Give the CPU at least 100ms to catch up.
1698 	 */
1699 	if (delta > 100 * NSEC_PER_MSEC)
1700 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1701 	else
1702 		expires_next = ktime_add(now, delta);
1703 	tick_program_event(expires_next, 1);
1704 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1705 }
1706 
1707 /* called with interrupts disabled */
1708 static inline void __hrtimer_peek_ahead_timers(void)
1709 {
1710 	struct tick_device *td;
1711 
1712 	if (!hrtimer_hres_active())
1713 		return;
1714 
1715 	td = this_cpu_ptr(&tick_cpu_device);
1716 	if (td && td->evtdev)
1717 		hrtimer_interrupt(td->evtdev);
1718 }
1719 
1720 #else /* CONFIG_HIGH_RES_TIMERS */
1721 
1722 static inline void __hrtimer_peek_ahead_timers(void) { }
1723 
1724 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1725 
1726 /*
1727  * Called from run_local_timers in hardirq context every jiffy
1728  */
1729 void hrtimer_run_queues(void)
1730 {
1731 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1732 	unsigned long flags;
1733 	ktime_t now;
1734 
1735 	if (__hrtimer_hres_active(cpu_base))
1736 		return;
1737 
1738 	/*
1739 	 * This _is_ ugly: We have to check periodically, whether we
1740 	 * can switch to highres and / or nohz mode. The clocksource
1741 	 * switch happens with xtime_lock held. Notification from
1742 	 * there only sets the check bit in the tick_oneshot code,
1743 	 * otherwise we might deadlock vs. xtime_lock.
1744 	 */
1745 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1746 		hrtimer_switch_to_hres();
1747 		return;
1748 	}
1749 
1750 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1751 	now = hrtimer_update_base(cpu_base);
1752 
1753 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1754 		cpu_base->softirq_expires_next = KTIME_MAX;
1755 		cpu_base->softirq_activated = 1;
1756 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1757 	}
1758 
1759 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1760 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1761 }
1762 
1763 /*
1764  * Sleep related functions:
1765  */
1766 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1767 {
1768 	struct hrtimer_sleeper *t =
1769 		container_of(timer, struct hrtimer_sleeper, timer);
1770 	struct task_struct *task = t->task;
1771 
1772 	t->task = NULL;
1773 	if (task)
1774 		wake_up_process(task);
1775 
1776 	return HRTIMER_NORESTART;
1777 }
1778 
1779 /**
1780  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1781  * @sl:		sleeper to be started
1782  * @mode:	timer mode abs/rel
1783  *
1784  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1785  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1786  */
1787 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1788 				   enum hrtimer_mode mode)
1789 {
1790 	/*
1791 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1792 	 * was initialized for hard interrupt delivery, force the mode bit.
1793 	 * This is a special case for hrtimer_sleepers because
1794 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1795 	 * fiddling with this decision is avoided at the call sites.
1796 	 */
1797 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1798 		mode |= HRTIMER_MODE_HARD;
1799 
1800 	hrtimer_start_expires(&sl->timer, mode);
1801 }
1802 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1803 
1804 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1805 				   clockid_t clock_id, enum hrtimer_mode mode)
1806 {
1807 	/*
1808 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1809 	 * marked for hard interrupt expiry mode are moved into soft
1810 	 * interrupt context either for latency reasons or because the
1811 	 * hrtimer callback takes regular spinlocks or invokes other
1812 	 * functions which are not suitable for hard interrupt context on
1813 	 * PREEMPT_RT.
1814 	 *
1815 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1816 	 * context, but there is a latency concern: Untrusted userspace can
1817 	 * spawn many threads which arm timers for the same expiry time on
1818 	 * the same CPU. That causes a latency spike due to the wakeup of
1819 	 * a gazillion threads.
1820 	 *
1821 	 * OTOH, priviledged real-time user space applications rely on the
1822 	 * low latency of hard interrupt wakeups. If the current task is in
1823 	 * a real-time scheduling class, mark the mode for hard interrupt
1824 	 * expiry.
1825 	 */
1826 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1827 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1828 			mode |= HRTIMER_MODE_HARD;
1829 	}
1830 
1831 	__hrtimer_init(&sl->timer, clock_id, mode);
1832 	sl->timer.function = hrtimer_wakeup;
1833 	sl->task = current;
1834 }
1835 
1836 /**
1837  * hrtimer_init_sleeper - initialize sleeper to the given clock
1838  * @sl:		sleeper to be initialized
1839  * @clock_id:	the clock to be used
1840  * @mode:	timer mode abs/rel
1841  */
1842 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1843 			  enum hrtimer_mode mode)
1844 {
1845 	debug_init(&sl->timer, clock_id, mode);
1846 	__hrtimer_init_sleeper(sl, clock_id, mode);
1847 
1848 }
1849 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1850 
1851 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1852 {
1853 	switch(restart->nanosleep.type) {
1854 #ifdef CONFIG_COMPAT_32BIT_TIME
1855 	case TT_COMPAT:
1856 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1857 			return -EFAULT;
1858 		break;
1859 #endif
1860 	case TT_NATIVE:
1861 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1862 			return -EFAULT;
1863 		break;
1864 	default:
1865 		BUG();
1866 	}
1867 	return -ERESTART_RESTARTBLOCK;
1868 }
1869 
1870 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1871 {
1872 	struct restart_block *restart;
1873 
1874 	do {
1875 		set_current_state(TASK_INTERRUPTIBLE);
1876 		hrtimer_sleeper_start_expires(t, mode);
1877 
1878 		if (likely(t->task))
1879 			freezable_schedule();
1880 
1881 		hrtimer_cancel(&t->timer);
1882 		mode = HRTIMER_MODE_ABS;
1883 
1884 	} while (t->task && !signal_pending(current));
1885 
1886 	__set_current_state(TASK_RUNNING);
1887 
1888 	if (!t->task)
1889 		return 0;
1890 
1891 	restart = &current->restart_block;
1892 	if (restart->nanosleep.type != TT_NONE) {
1893 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1894 		struct timespec64 rmt;
1895 
1896 		if (rem <= 0)
1897 			return 0;
1898 		rmt = ktime_to_timespec64(rem);
1899 
1900 		return nanosleep_copyout(restart, &rmt);
1901 	}
1902 	return -ERESTART_RESTARTBLOCK;
1903 }
1904 
1905 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1906 {
1907 	struct hrtimer_sleeper t;
1908 	int ret;
1909 
1910 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1911 				      HRTIMER_MODE_ABS);
1912 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1913 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1914 	destroy_hrtimer_on_stack(&t.timer);
1915 	return ret;
1916 }
1917 
1918 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1919 		       const clockid_t clockid)
1920 {
1921 	struct restart_block *restart;
1922 	struct hrtimer_sleeper t;
1923 	int ret = 0;
1924 	u64 slack;
1925 
1926 	slack = current->timer_slack_ns;
1927 	if (dl_task(current) || rt_task(current))
1928 		slack = 0;
1929 
1930 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1931 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1932 	ret = do_nanosleep(&t, mode);
1933 	if (ret != -ERESTART_RESTARTBLOCK)
1934 		goto out;
1935 
1936 	/* Absolute timers do not update the rmtp value and restart: */
1937 	if (mode == HRTIMER_MODE_ABS) {
1938 		ret = -ERESTARTNOHAND;
1939 		goto out;
1940 	}
1941 
1942 	restart = &current->restart_block;
1943 	restart->fn = hrtimer_nanosleep_restart;
1944 	restart->nanosleep.clockid = t.timer.base->clockid;
1945 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1946 out:
1947 	destroy_hrtimer_on_stack(&t.timer);
1948 	return ret;
1949 }
1950 
1951 #ifdef CONFIG_64BIT
1952 
1953 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1954 		struct __kernel_timespec __user *, rmtp)
1955 {
1956 	struct timespec64 tu;
1957 
1958 	if (get_timespec64(&tu, rqtp))
1959 		return -EFAULT;
1960 
1961 	if (!timespec64_valid(&tu))
1962 		return -EINVAL;
1963 
1964 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1965 	current->restart_block.nanosleep.rmtp = rmtp;
1966 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1967 				 CLOCK_MONOTONIC);
1968 }
1969 
1970 #endif
1971 
1972 #ifdef CONFIG_COMPAT_32BIT_TIME
1973 
1974 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1975 		       struct old_timespec32 __user *, rmtp)
1976 {
1977 	struct timespec64 tu;
1978 
1979 	if (get_old_timespec32(&tu, rqtp))
1980 		return -EFAULT;
1981 
1982 	if (!timespec64_valid(&tu))
1983 		return -EINVAL;
1984 
1985 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1986 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1987 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1988 				 CLOCK_MONOTONIC);
1989 }
1990 #endif
1991 
1992 /*
1993  * Functions related to boot-time initialization:
1994  */
1995 int hrtimers_prepare_cpu(unsigned int cpu)
1996 {
1997 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1998 	int i;
1999 
2000 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2001 		cpu_base->clock_base[i].cpu_base = cpu_base;
2002 		timerqueue_init_head(&cpu_base->clock_base[i].active);
2003 	}
2004 
2005 	cpu_base->cpu = cpu;
2006 	cpu_base->active_bases = 0;
2007 	cpu_base->hres_active = 0;
2008 	cpu_base->hang_detected = 0;
2009 	cpu_base->next_timer = NULL;
2010 	cpu_base->softirq_next_timer = NULL;
2011 	cpu_base->expires_next = KTIME_MAX;
2012 	cpu_base->softirq_expires_next = KTIME_MAX;
2013 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2014 	return 0;
2015 }
2016 
2017 #ifdef CONFIG_HOTPLUG_CPU
2018 
2019 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2020 				struct hrtimer_clock_base *new_base)
2021 {
2022 	struct hrtimer *timer;
2023 	struct timerqueue_node *node;
2024 
2025 	while ((node = timerqueue_getnext(&old_base->active))) {
2026 		timer = container_of(node, struct hrtimer, node);
2027 		BUG_ON(hrtimer_callback_running(timer));
2028 		debug_deactivate(timer);
2029 
2030 		/*
2031 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2032 		 * timer could be seen as !active and just vanish away
2033 		 * under us on another CPU
2034 		 */
2035 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2036 		timer->base = new_base;
2037 		/*
2038 		 * Enqueue the timers on the new cpu. This does not
2039 		 * reprogram the event device in case the timer
2040 		 * expires before the earliest on this CPU, but we run
2041 		 * hrtimer_interrupt after we migrated everything to
2042 		 * sort out already expired timers and reprogram the
2043 		 * event device.
2044 		 */
2045 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2046 	}
2047 }
2048 
2049 int hrtimers_dead_cpu(unsigned int scpu)
2050 {
2051 	struct hrtimer_cpu_base *old_base, *new_base;
2052 	int i;
2053 
2054 	BUG_ON(cpu_online(scpu));
2055 	tick_cancel_sched_timer(scpu);
2056 
2057 	/*
2058 	 * this BH disable ensures that raise_softirq_irqoff() does
2059 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2060 	 * holding the cpu_base lock
2061 	 */
2062 	local_bh_disable();
2063 	local_irq_disable();
2064 	old_base = &per_cpu(hrtimer_bases, scpu);
2065 	new_base = this_cpu_ptr(&hrtimer_bases);
2066 	/*
2067 	 * The caller is globally serialized and nobody else
2068 	 * takes two locks at once, deadlock is not possible.
2069 	 */
2070 	raw_spin_lock(&new_base->lock);
2071 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2072 
2073 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2074 		migrate_hrtimer_list(&old_base->clock_base[i],
2075 				     &new_base->clock_base[i]);
2076 	}
2077 
2078 	/*
2079 	 * The migration might have changed the first expiring softirq
2080 	 * timer on this CPU. Update it.
2081 	 */
2082 	hrtimer_update_softirq_timer(new_base, false);
2083 
2084 	raw_spin_unlock(&old_base->lock);
2085 	raw_spin_unlock(&new_base->lock);
2086 
2087 	/* Check, if we got expired work to do */
2088 	__hrtimer_peek_ahead_timers();
2089 	local_irq_enable();
2090 	local_bh_enable();
2091 	return 0;
2092 }
2093 
2094 #endif /* CONFIG_HOTPLUG_CPU */
2095 
2096 void __init hrtimers_init(void)
2097 {
2098 	hrtimers_prepare_cpu(smp_processor_id());
2099 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2100 }
2101 
2102 /**
2103  * schedule_hrtimeout_range_clock - sleep until timeout
2104  * @expires:	timeout value (ktime_t)
2105  * @delta:	slack in expires timeout (ktime_t)
2106  * @mode:	timer mode
2107  * @clock_id:	timer clock to be used
2108  */
2109 int __sched
2110 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2111 			       const enum hrtimer_mode mode, clockid_t clock_id)
2112 {
2113 	struct hrtimer_sleeper t;
2114 
2115 	/*
2116 	 * Optimize when a zero timeout value is given. It does not
2117 	 * matter whether this is an absolute or a relative time.
2118 	 */
2119 	if (expires && *expires == 0) {
2120 		__set_current_state(TASK_RUNNING);
2121 		return 0;
2122 	}
2123 
2124 	/*
2125 	 * A NULL parameter means "infinite"
2126 	 */
2127 	if (!expires) {
2128 		schedule();
2129 		return -EINTR;
2130 	}
2131 
2132 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2133 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2134 	hrtimer_sleeper_start_expires(&t, mode);
2135 
2136 	if (likely(t.task))
2137 		schedule();
2138 
2139 	hrtimer_cancel(&t.timer);
2140 	destroy_hrtimer_on_stack(&t.timer);
2141 
2142 	__set_current_state(TASK_RUNNING);
2143 
2144 	return !t.task ? 0 : -EINTR;
2145 }
2146 
2147 /**
2148  * schedule_hrtimeout_range - sleep until timeout
2149  * @expires:	timeout value (ktime_t)
2150  * @delta:	slack in expires timeout (ktime_t)
2151  * @mode:	timer mode
2152  *
2153  * Make the current task sleep until the given expiry time has
2154  * elapsed. The routine will return immediately unless
2155  * the current task state has been set (see set_current_state()).
2156  *
2157  * The @delta argument gives the kernel the freedom to schedule the
2158  * actual wakeup to a time that is both power and performance friendly.
2159  * The kernel give the normal best effort behavior for "@expires+@delta",
2160  * but may decide to fire the timer earlier, but no earlier than @expires.
2161  *
2162  * You can set the task state as follows -
2163  *
2164  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2165  * pass before the routine returns unless the current task is explicitly
2166  * woken up, (e.g. by wake_up_process()).
2167  *
2168  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2169  * delivered to the current task or the current task is explicitly woken
2170  * up.
2171  *
2172  * The current task state is guaranteed to be TASK_RUNNING when this
2173  * routine returns.
2174  *
2175  * Returns 0 when the timer has expired. If the task was woken before the
2176  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2177  * by an explicit wakeup, it returns -EINTR.
2178  */
2179 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2180 				     const enum hrtimer_mode mode)
2181 {
2182 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2183 					      CLOCK_MONOTONIC);
2184 }
2185 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2186 
2187 /**
2188  * schedule_hrtimeout - sleep until timeout
2189  * @expires:	timeout value (ktime_t)
2190  * @mode:	timer mode
2191  *
2192  * Make the current task sleep until the given expiry time has
2193  * elapsed. The routine will return immediately unless
2194  * the current task state has been set (see set_current_state()).
2195  *
2196  * You can set the task state as follows -
2197  *
2198  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2199  * pass before the routine returns unless the current task is explicitly
2200  * woken up, (e.g. by wake_up_process()).
2201  *
2202  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2203  * delivered to the current task or the current task is explicitly woken
2204  * up.
2205  *
2206  * The current task state is guaranteed to be TASK_RUNNING when this
2207  * routine returns.
2208  *
2209  * Returns 0 when the timer has expired. If the task was woken before the
2210  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2211  * by an explicit wakeup, it returns -EINTR.
2212  */
2213 int __sched schedule_hrtimeout(ktime_t *expires,
2214 			       const enum hrtimer_mode mode)
2215 {
2216 	return schedule_hrtimeout_range(expires, 0, mode);
2217 }
2218 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2219