1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids than hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 } 94 }; 95 96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 100 [CLOCK_TAI] = HRTIMER_BASE_TAI, 101 }; 102 103 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 104 { 105 return hrtimer_clock_to_base_table[clock_id]; 106 } 107 108 /* 109 * Functions and macros which are different for UP/SMP systems are kept in a 110 * single place 111 */ 112 #ifdef CONFIG_SMP 113 114 /* 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 116 * such that hrtimer_callback_running() can unconditionally dereference 117 * timer->base->cpu_base 118 */ 119 static struct hrtimer_cpu_base migration_cpu_base = { 120 .seq = SEQCNT_ZERO(migration_cpu_base), 121 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 122 }; 123 124 #define migration_base migration_cpu_base.clock_base[0] 125 126 /* 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 128 * means that all timers which are tied to this base via timer->base are 129 * locked, and the base itself is locked too. 130 * 131 * So __run_timers/migrate_timers can safely modify all timers which could 132 * be found on the lists/queues. 133 * 134 * When the timer's base is locked, and the timer removed from list, it is 135 * possible to set timer->base = &migration_base and drop the lock: the timer 136 * remains locked. 137 */ 138 static 139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 140 unsigned long *flags) 141 { 142 struct hrtimer_clock_base *base; 143 144 for (;;) { 145 base = timer->base; 146 if (likely(base != &migration_base)) { 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 148 if (likely(base == timer->base)) 149 return base; 150 /* The timer has migrated to another CPU: */ 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 152 } 153 cpu_relax(); 154 } 155 } 156 157 /* 158 * With HIGHRES=y we do not migrate the timer when it is expiring 159 * before the next event on the target cpu because we cannot reprogram 160 * the target cpu hardware and we would cause it to fire late. 161 * 162 * Called with cpu_base->lock of target cpu held. 163 */ 164 static int 165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 166 { 167 #ifdef CONFIG_HIGH_RES_TIMERS 168 ktime_t expires; 169 170 if (!new_base->cpu_base->hres_active) 171 return 0; 172 173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 175 #else 176 return 0; 177 #endif 178 } 179 180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 181 static inline 182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 183 int pinned) 184 { 185 if (pinned || !base->migration_enabled) 186 return base; 187 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 188 } 189 #else 190 static inline 191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 192 int pinned) 193 { 194 return base; 195 } 196 #endif 197 198 /* 199 * We switch the timer base to a power-optimized selected CPU target, 200 * if: 201 * - NO_HZ_COMMON is enabled 202 * - timer migration is enabled 203 * - the timer callback is not running 204 * - the timer is not the first expiring timer on the new target 205 * 206 * If one of the above requirements is not fulfilled we move the timer 207 * to the current CPU or leave it on the previously assigned CPU if 208 * the timer callback is currently running. 209 */ 210 static inline struct hrtimer_clock_base * 211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 212 int pinned) 213 { 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 215 struct hrtimer_clock_base *new_base; 216 int basenum = base->index; 217 218 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 219 new_cpu_base = get_target_base(this_cpu_base, pinned); 220 again: 221 new_base = &new_cpu_base->clock_base[basenum]; 222 223 if (base != new_base) { 224 /* 225 * We are trying to move timer to new_base. 226 * However we can't change timer's base while it is running, 227 * so we keep it on the same CPU. No hassle vs. reprogramming 228 * the event source in the high resolution case. The softirq 229 * code will take care of this when the timer function has 230 * completed. There is no conflict as we hold the lock until 231 * the timer is enqueued. 232 */ 233 if (unlikely(hrtimer_callback_running(timer))) 234 return base; 235 236 /* See the comment in lock_hrtimer_base() */ 237 timer->base = &migration_base; 238 raw_spin_unlock(&base->cpu_base->lock); 239 raw_spin_lock(&new_base->cpu_base->lock); 240 241 if (new_cpu_base != this_cpu_base && 242 hrtimer_check_target(timer, new_base)) { 243 raw_spin_unlock(&new_base->cpu_base->lock); 244 raw_spin_lock(&base->cpu_base->lock); 245 new_cpu_base = this_cpu_base; 246 timer->base = base; 247 goto again; 248 } 249 timer->base = new_base; 250 } else { 251 if (new_cpu_base != this_cpu_base && 252 hrtimer_check_target(timer, new_base)) { 253 new_cpu_base = this_cpu_base; 254 goto again; 255 } 256 } 257 return new_base; 258 } 259 260 #else /* CONFIG_SMP */ 261 262 static inline struct hrtimer_clock_base * 263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 264 { 265 struct hrtimer_clock_base *base = timer->base; 266 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 268 269 return base; 270 } 271 272 # define switch_hrtimer_base(t, b, p) (b) 273 274 #endif /* !CONFIG_SMP */ 275 276 /* 277 * Functions for the union type storage format of ktime_t which are 278 * too large for inlining: 279 */ 280 #if BITS_PER_LONG < 64 281 /* 282 * Divide a ktime value by a nanosecond value 283 */ 284 s64 __ktime_divns(const ktime_t kt, s64 div) 285 { 286 int sft = 0; 287 s64 dclc; 288 u64 tmp; 289 290 dclc = ktime_to_ns(kt); 291 tmp = dclc < 0 ? -dclc : dclc; 292 293 /* Make sure the divisor is less than 2^32: */ 294 while (div >> 32) { 295 sft++; 296 div >>= 1; 297 } 298 tmp >>= sft; 299 do_div(tmp, (unsigned long) div); 300 return dclc < 0 ? -tmp : tmp; 301 } 302 EXPORT_SYMBOL_GPL(__ktime_divns); 303 #endif /* BITS_PER_LONG >= 64 */ 304 305 /* 306 * Add two ktime values and do a safety check for overflow: 307 */ 308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 309 { 310 ktime_t res = ktime_add(lhs, rhs); 311 312 /* 313 * We use KTIME_SEC_MAX here, the maximum timeout which we can 314 * return to user space in a timespec: 315 */ 316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 317 res = ktime_set(KTIME_SEC_MAX, 0); 318 319 return res; 320 } 321 322 EXPORT_SYMBOL_GPL(ktime_add_safe); 323 324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 325 326 static struct debug_obj_descr hrtimer_debug_descr; 327 328 static void *hrtimer_debug_hint(void *addr) 329 { 330 return ((struct hrtimer *) addr)->function; 331 } 332 333 /* 334 * fixup_init is called when: 335 * - an active object is initialized 336 */ 337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 338 { 339 struct hrtimer *timer = addr; 340 341 switch (state) { 342 case ODEBUG_STATE_ACTIVE: 343 hrtimer_cancel(timer); 344 debug_object_init(timer, &hrtimer_debug_descr); 345 return true; 346 default: 347 return false; 348 } 349 } 350 351 /* 352 * fixup_activate is called when: 353 * - an active object is activated 354 * - an unknown non-static object is activated 355 */ 356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 357 { 358 switch (state) { 359 case ODEBUG_STATE_ACTIVE: 360 WARN_ON(1); 361 362 default: 363 return false; 364 } 365 } 366 367 /* 368 * fixup_free is called when: 369 * - an active object is freed 370 */ 371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 372 { 373 struct hrtimer *timer = addr; 374 375 switch (state) { 376 case ODEBUG_STATE_ACTIVE: 377 hrtimer_cancel(timer); 378 debug_object_free(timer, &hrtimer_debug_descr); 379 return true; 380 default: 381 return false; 382 } 383 } 384 385 static struct debug_obj_descr hrtimer_debug_descr = { 386 .name = "hrtimer", 387 .debug_hint = hrtimer_debug_hint, 388 .fixup_init = hrtimer_fixup_init, 389 .fixup_activate = hrtimer_fixup_activate, 390 .fixup_free = hrtimer_fixup_free, 391 }; 392 393 static inline void debug_hrtimer_init(struct hrtimer *timer) 394 { 395 debug_object_init(timer, &hrtimer_debug_descr); 396 } 397 398 static inline void debug_hrtimer_activate(struct hrtimer *timer) 399 { 400 debug_object_activate(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 404 { 405 debug_object_deactivate(timer, &hrtimer_debug_descr); 406 } 407 408 static inline void debug_hrtimer_free(struct hrtimer *timer) 409 { 410 debug_object_free(timer, &hrtimer_debug_descr); 411 } 412 413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 414 enum hrtimer_mode mode); 415 416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 417 enum hrtimer_mode mode) 418 { 419 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 420 __hrtimer_init(timer, clock_id, mode); 421 } 422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 423 424 void destroy_hrtimer_on_stack(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 429 430 #else 431 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 432 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 433 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 434 #endif 435 436 static inline void 437 debug_init(struct hrtimer *timer, clockid_t clockid, 438 enum hrtimer_mode mode) 439 { 440 debug_hrtimer_init(timer); 441 trace_hrtimer_init(timer, clockid, mode); 442 } 443 444 static inline void debug_activate(struct hrtimer *timer) 445 { 446 debug_hrtimer_activate(timer); 447 trace_hrtimer_start(timer); 448 } 449 450 static inline void debug_deactivate(struct hrtimer *timer) 451 { 452 debug_hrtimer_deactivate(timer); 453 trace_hrtimer_cancel(timer); 454 } 455 456 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 457 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 458 struct hrtimer *timer) 459 { 460 #ifdef CONFIG_HIGH_RES_TIMERS 461 cpu_base->next_timer = timer; 462 #endif 463 } 464 465 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 466 { 467 struct hrtimer_clock_base *base = cpu_base->clock_base; 468 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 469 unsigned int active = cpu_base->active_bases; 470 471 hrtimer_update_next_timer(cpu_base, NULL); 472 for (; active; base++, active >>= 1) { 473 struct timerqueue_node *next; 474 struct hrtimer *timer; 475 476 if (!(active & 0x01)) 477 continue; 478 479 next = timerqueue_getnext(&base->active); 480 timer = container_of(next, struct hrtimer, node); 481 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 482 if (expires.tv64 < expires_next.tv64) { 483 expires_next = expires; 484 hrtimer_update_next_timer(cpu_base, timer); 485 } 486 } 487 /* 488 * clock_was_set() might have changed base->offset of any of 489 * the clock bases so the result might be negative. Fix it up 490 * to prevent a false positive in clockevents_program_event(). 491 */ 492 if (expires_next.tv64 < 0) 493 expires_next.tv64 = 0; 494 return expires_next; 495 } 496 #endif 497 498 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 499 { 500 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 501 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 502 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 503 504 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 505 offs_real, offs_boot, offs_tai); 506 } 507 508 /* High resolution timer related functions */ 509 #ifdef CONFIG_HIGH_RES_TIMERS 510 511 /* 512 * High resolution timer enabled ? 513 */ 514 static bool hrtimer_hres_enabled __read_mostly = true; 515 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 516 EXPORT_SYMBOL_GPL(hrtimer_resolution); 517 518 /* 519 * Enable / Disable high resolution mode 520 */ 521 static int __init setup_hrtimer_hres(char *str) 522 { 523 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 524 } 525 526 __setup("highres=", setup_hrtimer_hres); 527 528 /* 529 * hrtimer_high_res_enabled - query, if the highres mode is enabled 530 */ 531 static inline int hrtimer_is_hres_enabled(void) 532 { 533 return hrtimer_hres_enabled; 534 } 535 536 /* 537 * Is the high resolution mode active ? 538 */ 539 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 540 { 541 return cpu_base->hres_active; 542 } 543 544 static inline int hrtimer_hres_active(void) 545 { 546 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 547 } 548 549 /* 550 * Reprogram the event source with checking both queues for the 551 * next event 552 * Called with interrupts disabled and base->lock held 553 */ 554 static void 555 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 556 { 557 ktime_t expires_next; 558 559 if (!cpu_base->hres_active) 560 return; 561 562 expires_next = __hrtimer_get_next_event(cpu_base); 563 564 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 565 return; 566 567 cpu_base->expires_next.tv64 = expires_next.tv64; 568 569 /* 570 * If a hang was detected in the last timer interrupt then we 571 * leave the hang delay active in the hardware. We want the 572 * system to make progress. That also prevents the following 573 * scenario: 574 * T1 expires 50ms from now 575 * T2 expires 5s from now 576 * 577 * T1 is removed, so this code is called and would reprogram 578 * the hardware to 5s from now. Any hrtimer_start after that 579 * will not reprogram the hardware due to hang_detected being 580 * set. So we'd effectivly block all timers until the T2 event 581 * fires. 582 */ 583 if (cpu_base->hang_detected) 584 return; 585 586 tick_program_event(cpu_base->expires_next, 1); 587 } 588 589 /* 590 * When a timer is enqueued and expires earlier than the already enqueued 591 * timers, we have to check, whether it expires earlier than the timer for 592 * which the clock event device was armed. 593 * 594 * Called with interrupts disabled and base->cpu_base.lock held 595 */ 596 static void hrtimer_reprogram(struct hrtimer *timer, 597 struct hrtimer_clock_base *base) 598 { 599 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 600 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 601 602 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 603 604 /* 605 * If the timer is not on the current cpu, we cannot reprogram 606 * the other cpus clock event device. 607 */ 608 if (base->cpu_base != cpu_base) 609 return; 610 611 /* 612 * If the hrtimer interrupt is running, then it will 613 * reevaluate the clock bases and reprogram the clock event 614 * device. The callbacks are always executed in hard interrupt 615 * context so we don't need an extra check for a running 616 * callback. 617 */ 618 if (cpu_base->in_hrtirq) 619 return; 620 621 /* 622 * CLOCK_REALTIME timer might be requested with an absolute 623 * expiry time which is less than base->offset. Set it to 0. 624 */ 625 if (expires.tv64 < 0) 626 expires.tv64 = 0; 627 628 if (expires.tv64 >= cpu_base->expires_next.tv64) 629 return; 630 631 /* Update the pointer to the next expiring timer */ 632 cpu_base->next_timer = timer; 633 634 /* 635 * If a hang was detected in the last timer interrupt then we 636 * do not schedule a timer which is earlier than the expiry 637 * which we enforced in the hang detection. We want the system 638 * to make progress. 639 */ 640 if (cpu_base->hang_detected) 641 return; 642 643 /* 644 * Program the timer hardware. We enforce the expiry for 645 * events which are already in the past. 646 */ 647 cpu_base->expires_next = expires; 648 tick_program_event(expires, 1); 649 } 650 651 /* 652 * Initialize the high resolution related parts of cpu_base 653 */ 654 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 655 { 656 base->expires_next.tv64 = KTIME_MAX; 657 base->hres_active = 0; 658 } 659 660 /* 661 * Retrigger next event is called after clock was set 662 * 663 * Called with interrupts disabled via on_each_cpu() 664 */ 665 static void retrigger_next_event(void *arg) 666 { 667 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 668 669 if (!base->hres_active) 670 return; 671 672 raw_spin_lock(&base->lock); 673 hrtimer_update_base(base); 674 hrtimer_force_reprogram(base, 0); 675 raw_spin_unlock(&base->lock); 676 } 677 678 /* 679 * Switch to high resolution mode 680 */ 681 static void hrtimer_switch_to_hres(void) 682 { 683 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 684 685 if (tick_init_highres()) { 686 printk(KERN_WARNING "Could not switch to high resolution " 687 "mode on CPU %d\n", base->cpu); 688 return; 689 } 690 base->hres_active = 1; 691 hrtimer_resolution = HIGH_RES_NSEC; 692 693 tick_setup_sched_timer(); 694 /* "Retrigger" the interrupt to get things going */ 695 retrigger_next_event(NULL); 696 } 697 698 static void clock_was_set_work(struct work_struct *work) 699 { 700 clock_was_set(); 701 } 702 703 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 704 705 /* 706 * Called from timekeeping and resume code to reprogramm the hrtimer 707 * interrupt device on all cpus. 708 */ 709 void clock_was_set_delayed(void) 710 { 711 schedule_work(&hrtimer_work); 712 } 713 714 #else 715 716 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 717 static inline int hrtimer_hres_active(void) { return 0; } 718 static inline int hrtimer_is_hres_enabled(void) { return 0; } 719 static inline void hrtimer_switch_to_hres(void) { } 720 static inline void 721 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 722 static inline int hrtimer_reprogram(struct hrtimer *timer, 723 struct hrtimer_clock_base *base) 724 { 725 return 0; 726 } 727 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 728 static inline void retrigger_next_event(void *arg) { } 729 730 #endif /* CONFIG_HIGH_RES_TIMERS */ 731 732 /* 733 * Clock realtime was set 734 * 735 * Change the offset of the realtime clock vs. the monotonic 736 * clock. 737 * 738 * We might have to reprogram the high resolution timer interrupt. On 739 * SMP we call the architecture specific code to retrigger _all_ high 740 * resolution timer interrupts. On UP we just disable interrupts and 741 * call the high resolution interrupt code. 742 */ 743 void clock_was_set(void) 744 { 745 #ifdef CONFIG_HIGH_RES_TIMERS 746 /* Retrigger the CPU local events everywhere */ 747 on_each_cpu(retrigger_next_event, NULL, 1); 748 #endif 749 timerfd_clock_was_set(); 750 } 751 752 /* 753 * During resume we might have to reprogram the high resolution timer 754 * interrupt on all online CPUs. However, all other CPUs will be 755 * stopped with IRQs interrupts disabled so the clock_was_set() call 756 * must be deferred. 757 */ 758 void hrtimers_resume(void) 759 { 760 WARN_ONCE(!irqs_disabled(), 761 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 762 763 /* Retrigger on the local CPU */ 764 retrigger_next_event(NULL); 765 /* And schedule a retrigger for all others */ 766 clock_was_set_delayed(); 767 } 768 769 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 770 { 771 #ifdef CONFIG_TIMER_STATS 772 if (timer->start_site) 773 return; 774 timer->start_site = __builtin_return_address(0); 775 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 776 timer->start_pid = current->pid; 777 #endif 778 } 779 780 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 781 { 782 #ifdef CONFIG_TIMER_STATS 783 timer->start_site = NULL; 784 #endif 785 } 786 787 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 788 { 789 #ifdef CONFIG_TIMER_STATS 790 if (likely(!timer_stats_active)) 791 return; 792 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 793 timer->function, timer->start_comm, 0); 794 #endif 795 } 796 797 /* 798 * Counterpart to lock_hrtimer_base above: 799 */ 800 static inline 801 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 802 { 803 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 804 } 805 806 /** 807 * hrtimer_forward - forward the timer expiry 808 * @timer: hrtimer to forward 809 * @now: forward past this time 810 * @interval: the interval to forward 811 * 812 * Forward the timer expiry so it will expire in the future. 813 * Returns the number of overruns. 814 * 815 * Can be safely called from the callback function of @timer. If 816 * called from other contexts @timer must neither be enqueued nor 817 * running the callback and the caller needs to take care of 818 * serialization. 819 * 820 * Note: This only updates the timer expiry value and does not requeue 821 * the timer. 822 */ 823 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 824 { 825 u64 orun = 1; 826 ktime_t delta; 827 828 delta = ktime_sub(now, hrtimer_get_expires(timer)); 829 830 if (delta.tv64 < 0) 831 return 0; 832 833 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 834 return 0; 835 836 if (interval.tv64 < hrtimer_resolution) 837 interval.tv64 = hrtimer_resolution; 838 839 if (unlikely(delta.tv64 >= interval.tv64)) { 840 s64 incr = ktime_to_ns(interval); 841 842 orun = ktime_divns(delta, incr); 843 hrtimer_add_expires_ns(timer, incr * orun); 844 if (hrtimer_get_expires_tv64(timer) > now.tv64) 845 return orun; 846 /* 847 * This (and the ktime_add() below) is the 848 * correction for exact: 849 */ 850 orun++; 851 } 852 hrtimer_add_expires(timer, interval); 853 854 return orun; 855 } 856 EXPORT_SYMBOL_GPL(hrtimer_forward); 857 858 /* 859 * enqueue_hrtimer - internal function to (re)start a timer 860 * 861 * The timer is inserted in expiry order. Insertion into the 862 * red black tree is O(log(n)). Must hold the base lock. 863 * 864 * Returns 1 when the new timer is the leftmost timer in the tree. 865 */ 866 static int enqueue_hrtimer(struct hrtimer *timer, 867 struct hrtimer_clock_base *base) 868 { 869 debug_activate(timer); 870 871 base->cpu_base->active_bases |= 1 << base->index; 872 873 timer->state = HRTIMER_STATE_ENQUEUED; 874 875 return timerqueue_add(&base->active, &timer->node); 876 } 877 878 /* 879 * __remove_hrtimer - internal function to remove a timer 880 * 881 * Caller must hold the base lock. 882 * 883 * High resolution timer mode reprograms the clock event device when the 884 * timer is the one which expires next. The caller can disable this by setting 885 * reprogram to zero. This is useful, when the context does a reprogramming 886 * anyway (e.g. timer interrupt) 887 */ 888 static void __remove_hrtimer(struct hrtimer *timer, 889 struct hrtimer_clock_base *base, 890 u8 newstate, int reprogram) 891 { 892 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 893 u8 state = timer->state; 894 895 timer->state = newstate; 896 if (!(state & HRTIMER_STATE_ENQUEUED)) 897 return; 898 899 if (!timerqueue_del(&base->active, &timer->node)) 900 cpu_base->active_bases &= ~(1 << base->index); 901 902 #ifdef CONFIG_HIGH_RES_TIMERS 903 /* 904 * Note: If reprogram is false we do not update 905 * cpu_base->next_timer. This happens when we remove the first 906 * timer on a remote cpu. No harm as we never dereference 907 * cpu_base->next_timer. So the worst thing what can happen is 908 * an superflous call to hrtimer_force_reprogram() on the 909 * remote cpu later on if the same timer gets enqueued again. 910 */ 911 if (reprogram && timer == cpu_base->next_timer) 912 hrtimer_force_reprogram(cpu_base, 1); 913 #endif 914 } 915 916 /* 917 * remove hrtimer, called with base lock held 918 */ 919 static inline int 920 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 921 { 922 if (hrtimer_is_queued(timer)) { 923 u8 state = timer->state; 924 int reprogram; 925 926 /* 927 * Remove the timer and force reprogramming when high 928 * resolution mode is active and the timer is on the current 929 * CPU. If we remove a timer on another CPU, reprogramming is 930 * skipped. The interrupt event on this CPU is fired and 931 * reprogramming happens in the interrupt handler. This is a 932 * rare case and less expensive than a smp call. 933 */ 934 debug_deactivate(timer); 935 timer_stats_hrtimer_clear_start_info(timer); 936 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 937 938 if (!restart) 939 state = HRTIMER_STATE_INACTIVE; 940 941 __remove_hrtimer(timer, base, state, reprogram); 942 return 1; 943 } 944 return 0; 945 } 946 947 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 948 const enum hrtimer_mode mode) 949 { 950 #ifdef CONFIG_TIME_LOW_RES 951 /* 952 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 953 * granular time values. For relative timers we add hrtimer_resolution 954 * (i.e. one jiffie) to prevent short timeouts. 955 */ 956 timer->is_rel = mode & HRTIMER_MODE_REL; 957 if (timer->is_rel) 958 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution)); 959 #endif 960 return tim; 961 } 962 963 /** 964 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 965 * @timer: the timer to be added 966 * @tim: expiry time 967 * @delta_ns: "slack" range for the timer 968 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 969 * relative (HRTIMER_MODE_REL) 970 */ 971 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 972 u64 delta_ns, const enum hrtimer_mode mode) 973 { 974 struct hrtimer_clock_base *base, *new_base; 975 unsigned long flags; 976 int leftmost; 977 978 base = lock_hrtimer_base(timer, &flags); 979 980 /* Remove an active timer from the queue: */ 981 remove_hrtimer(timer, base, true); 982 983 if (mode & HRTIMER_MODE_REL) 984 tim = ktime_add_safe(tim, base->get_time()); 985 986 tim = hrtimer_update_lowres(timer, tim, mode); 987 988 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 989 990 /* Switch the timer base, if necessary: */ 991 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 992 993 timer_stats_hrtimer_set_start_info(timer); 994 995 leftmost = enqueue_hrtimer(timer, new_base); 996 if (!leftmost) 997 goto unlock; 998 999 if (!hrtimer_is_hres_active(timer)) { 1000 /* 1001 * Kick to reschedule the next tick to handle the new timer 1002 * on dynticks target. 1003 */ 1004 if (new_base->cpu_base->nohz_active) 1005 wake_up_nohz_cpu(new_base->cpu_base->cpu); 1006 } else { 1007 hrtimer_reprogram(timer, new_base); 1008 } 1009 unlock: 1010 unlock_hrtimer_base(timer, &flags); 1011 } 1012 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1013 1014 /** 1015 * hrtimer_try_to_cancel - try to deactivate a timer 1016 * @timer: hrtimer to stop 1017 * 1018 * Returns: 1019 * 0 when the timer was not active 1020 * 1 when the timer was active 1021 * -1 when the timer is currently excuting the callback function and 1022 * cannot be stopped 1023 */ 1024 int hrtimer_try_to_cancel(struct hrtimer *timer) 1025 { 1026 struct hrtimer_clock_base *base; 1027 unsigned long flags; 1028 int ret = -1; 1029 1030 /* 1031 * Check lockless first. If the timer is not active (neither 1032 * enqueued nor running the callback, nothing to do here. The 1033 * base lock does not serialize against a concurrent enqueue, 1034 * so we can avoid taking it. 1035 */ 1036 if (!hrtimer_active(timer)) 1037 return 0; 1038 1039 base = lock_hrtimer_base(timer, &flags); 1040 1041 if (!hrtimer_callback_running(timer)) 1042 ret = remove_hrtimer(timer, base, false); 1043 1044 unlock_hrtimer_base(timer, &flags); 1045 1046 return ret; 1047 1048 } 1049 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1050 1051 /** 1052 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1053 * @timer: the timer to be cancelled 1054 * 1055 * Returns: 1056 * 0 when the timer was not active 1057 * 1 when the timer was active 1058 */ 1059 int hrtimer_cancel(struct hrtimer *timer) 1060 { 1061 for (;;) { 1062 int ret = hrtimer_try_to_cancel(timer); 1063 1064 if (ret >= 0) 1065 return ret; 1066 cpu_relax(); 1067 } 1068 } 1069 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1070 1071 /** 1072 * hrtimer_get_remaining - get remaining time for the timer 1073 * @timer: the timer to read 1074 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1075 */ 1076 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1077 { 1078 unsigned long flags; 1079 ktime_t rem; 1080 1081 lock_hrtimer_base(timer, &flags); 1082 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1083 rem = hrtimer_expires_remaining_adjusted(timer); 1084 else 1085 rem = hrtimer_expires_remaining(timer); 1086 unlock_hrtimer_base(timer, &flags); 1087 1088 return rem; 1089 } 1090 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1091 1092 #ifdef CONFIG_NO_HZ_COMMON 1093 /** 1094 * hrtimer_get_next_event - get the time until next expiry event 1095 * 1096 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1097 */ 1098 u64 hrtimer_get_next_event(void) 1099 { 1100 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1101 u64 expires = KTIME_MAX; 1102 unsigned long flags; 1103 1104 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1105 1106 if (!__hrtimer_hres_active(cpu_base)) 1107 expires = __hrtimer_get_next_event(cpu_base).tv64; 1108 1109 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1110 1111 return expires; 1112 } 1113 #endif 1114 1115 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1116 enum hrtimer_mode mode) 1117 { 1118 struct hrtimer_cpu_base *cpu_base; 1119 int base; 1120 1121 memset(timer, 0, sizeof(struct hrtimer)); 1122 1123 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1124 1125 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1126 clock_id = CLOCK_MONOTONIC; 1127 1128 base = hrtimer_clockid_to_base(clock_id); 1129 timer->base = &cpu_base->clock_base[base]; 1130 timerqueue_init(&timer->node); 1131 1132 #ifdef CONFIG_TIMER_STATS 1133 timer->start_site = NULL; 1134 timer->start_pid = -1; 1135 memset(timer->start_comm, 0, TASK_COMM_LEN); 1136 #endif 1137 } 1138 1139 /** 1140 * hrtimer_init - initialize a timer to the given clock 1141 * @timer: the timer to be initialized 1142 * @clock_id: the clock to be used 1143 * @mode: timer mode abs/rel 1144 */ 1145 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1146 enum hrtimer_mode mode) 1147 { 1148 debug_init(timer, clock_id, mode); 1149 __hrtimer_init(timer, clock_id, mode); 1150 } 1151 EXPORT_SYMBOL_GPL(hrtimer_init); 1152 1153 /* 1154 * A timer is active, when it is enqueued into the rbtree or the 1155 * callback function is running or it's in the state of being migrated 1156 * to another cpu. 1157 * 1158 * It is important for this function to not return a false negative. 1159 */ 1160 bool hrtimer_active(const struct hrtimer *timer) 1161 { 1162 struct hrtimer_cpu_base *cpu_base; 1163 unsigned int seq; 1164 1165 do { 1166 cpu_base = READ_ONCE(timer->base->cpu_base); 1167 seq = raw_read_seqcount_begin(&cpu_base->seq); 1168 1169 if (timer->state != HRTIMER_STATE_INACTIVE || 1170 cpu_base->running == timer) 1171 return true; 1172 1173 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1174 cpu_base != READ_ONCE(timer->base->cpu_base)); 1175 1176 return false; 1177 } 1178 EXPORT_SYMBOL_GPL(hrtimer_active); 1179 1180 /* 1181 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1182 * distinct sections: 1183 * 1184 * - queued: the timer is queued 1185 * - callback: the timer is being ran 1186 * - post: the timer is inactive or (re)queued 1187 * 1188 * On the read side we ensure we observe timer->state and cpu_base->running 1189 * from the same section, if anything changed while we looked at it, we retry. 1190 * This includes timer->base changing because sequence numbers alone are 1191 * insufficient for that. 1192 * 1193 * The sequence numbers are required because otherwise we could still observe 1194 * a false negative if the read side got smeared over multiple consequtive 1195 * __run_hrtimer() invocations. 1196 */ 1197 1198 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1199 struct hrtimer_clock_base *base, 1200 struct hrtimer *timer, ktime_t *now) 1201 { 1202 enum hrtimer_restart (*fn)(struct hrtimer *); 1203 int restart; 1204 1205 lockdep_assert_held(&cpu_base->lock); 1206 1207 debug_deactivate(timer); 1208 cpu_base->running = timer; 1209 1210 /* 1211 * Separate the ->running assignment from the ->state assignment. 1212 * 1213 * As with a regular write barrier, this ensures the read side in 1214 * hrtimer_active() cannot observe cpu_base->running == NULL && 1215 * timer->state == INACTIVE. 1216 */ 1217 raw_write_seqcount_barrier(&cpu_base->seq); 1218 1219 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1220 timer_stats_account_hrtimer(timer); 1221 fn = timer->function; 1222 1223 /* 1224 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1225 * timer is restarted with a period then it becomes an absolute 1226 * timer. If its not restarted it does not matter. 1227 */ 1228 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1229 timer->is_rel = false; 1230 1231 /* 1232 * Because we run timers from hardirq context, there is no chance 1233 * they get migrated to another cpu, therefore its safe to unlock 1234 * the timer base. 1235 */ 1236 raw_spin_unlock(&cpu_base->lock); 1237 trace_hrtimer_expire_entry(timer, now); 1238 restart = fn(timer); 1239 trace_hrtimer_expire_exit(timer); 1240 raw_spin_lock(&cpu_base->lock); 1241 1242 /* 1243 * Note: We clear the running state after enqueue_hrtimer and 1244 * we do not reprogramm the event hardware. Happens either in 1245 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1246 * 1247 * Note: Because we dropped the cpu_base->lock above, 1248 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1249 * for us already. 1250 */ 1251 if (restart != HRTIMER_NORESTART && 1252 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1253 enqueue_hrtimer(timer, base); 1254 1255 /* 1256 * Separate the ->running assignment from the ->state assignment. 1257 * 1258 * As with a regular write barrier, this ensures the read side in 1259 * hrtimer_active() cannot observe cpu_base->running == NULL && 1260 * timer->state == INACTIVE. 1261 */ 1262 raw_write_seqcount_barrier(&cpu_base->seq); 1263 1264 WARN_ON_ONCE(cpu_base->running != timer); 1265 cpu_base->running = NULL; 1266 } 1267 1268 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1269 { 1270 struct hrtimer_clock_base *base = cpu_base->clock_base; 1271 unsigned int active = cpu_base->active_bases; 1272 1273 for (; active; base++, active >>= 1) { 1274 struct timerqueue_node *node; 1275 ktime_t basenow; 1276 1277 if (!(active & 0x01)) 1278 continue; 1279 1280 basenow = ktime_add(now, base->offset); 1281 1282 while ((node = timerqueue_getnext(&base->active))) { 1283 struct hrtimer *timer; 1284 1285 timer = container_of(node, struct hrtimer, node); 1286 1287 /* 1288 * The immediate goal for using the softexpires is 1289 * minimizing wakeups, not running timers at the 1290 * earliest interrupt after their soft expiration. 1291 * This allows us to avoid using a Priority Search 1292 * Tree, which can answer a stabbing querry for 1293 * overlapping intervals and instead use the simple 1294 * BST we already have. 1295 * We don't add extra wakeups by delaying timers that 1296 * are right-of a not yet expired timer, because that 1297 * timer will have to trigger a wakeup anyway. 1298 */ 1299 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1300 break; 1301 1302 __run_hrtimer(cpu_base, base, timer, &basenow); 1303 } 1304 } 1305 } 1306 1307 #ifdef CONFIG_HIGH_RES_TIMERS 1308 1309 /* 1310 * High resolution timer interrupt 1311 * Called with interrupts disabled 1312 */ 1313 void hrtimer_interrupt(struct clock_event_device *dev) 1314 { 1315 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1316 ktime_t expires_next, now, entry_time, delta; 1317 int retries = 0; 1318 1319 BUG_ON(!cpu_base->hres_active); 1320 cpu_base->nr_events++; 1321 dev->next_event.tv64 = KTIME_MAX; 1322 1323 raw_spin_lock(&cpu_base->lock); 1324 entry_time = now = hrtimer_update_base(cpu_base); 1325 retry: 1326 cpu_base->in_hrtirq = 1; 1327 /* 1328 * We set expires_next to KTIME_MAX here with cpu_base->lock 1329 * held to prevent that a timer is enqueued in our queue via 1330 * the migration code. This does not affect enqueueing of 1331 * timers which run their callback and need to be requeued on 1332 * this CPU. 1333 */ 1334 cpu_base->expires_next.tv64 = KTIME_MAX; 1335 1336 __hrtimer_run_queues(cpu_base, now); 1337 1338 /* Reevaluate the clock bases for the next expiry */ 1339 expires_next = __hrtimer_get_next_event(cpu_base); 1340 /* 1341 * Store the new expiry value so the migration code can verify 1342 * against it. 1343 */ 1344 cpu_base->expires_next = expires_next; 1345 cpu_base->in_hrtirq = 0; 1346 raw_spin_unlock(&cpu_base->lock); 1347 1348 /* Reprogramming necessary ? */ 1349 if (!tick_program_event(expires_next, 0)) { 1350 cpu_base->hang_detected = 0; 1351 return; 1352 } 1353 1354 /* 1355 * The next timer was already expired due to: 1356 * - tracing 1357 * - long lasting callbacks 1358 * - being scheduled away when running in a VM 1359 * 1360 * We need to prevent that we loop forever in the hrtimer 1361 * interrupt routine. We give it 3 attempts to avoid 1362 * overreacting on some spurious event. 1363 * 1364 * Acquire base lock for updating the offsets and retrieving 1365 * the current time. 1366 */ 1367 raw_spin_lock(&cpu_base->lock); 1368 now = hrtimer_update_base(cpu_base); 1369 cpu_base->nr_retries++; 1370 if (++retries < 3) 1371 goto retry; 1372 /* 1373 * Give the system a chance to do something else than looping 1374 * here. We stored the entry time, so we know exactly how long 1375 * we spent here. We schedule the next event this amount of 1376 * time away. 1377 */ 1378 cpu_base->nr_hangs++; 1379 cpu_base->hang_detected = 1; 1380 raw_spin_unlock(&cpu_base->lock); 1381 delta = ktime_sub(now, entry_time); 1382 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) 1383 cpu_base->max_hang_time = (unsigned int) delta.tv64; 1384 /* 1385 * Limit it to a sensible value as we enforce a longer 1386 * delay. Give the CPU at least 100ms to catch up. 1387 */ 1388 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1389 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1390 else 1391 expires_next = ktime_add(now, delta); 1392 tick_program_event(expires_next, 1); 1393 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1394 ktime_to_ns(delta)); 1395 } 1396 1397 /* 1398 * local version of hrtimer_peek_ahead_timers() called with interrupts 1399 * disabled. 1400 */ 1401 static inline void __hrtimer_peek_ahead_timers(void) 1402 { 1403 struct tick_device *td; 1404 1405 if (!hrtimer_hres_active()) 1406 return; 1407 1408 td = this_cpu_ptr(&tick_cpu_device); 1409 if (td && td->evtdev) 1410 hrtimer_interrupt(td->evtdev); 1411 } 1412 1413 #else /* CONFIG_HIGH_RES_TIMERS */ 1414 1415 static inline void __hrtimer_peek_ahead_timers(void) { } 1416 1417 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1418 1419 /* 1420 * Called from run_local_timers in hardirq context every jiffy 1421 */ 1422 void hrtimer_run_queues(void) 1423 { 1424 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1425 ktime_t now; 1426 1427 if (__hrtimer_hres_active(cpu_base)) 1428 return; 1429 1430 /* 1431 * This _is_ ugly: We have to check periodically, whether we 1432 * can switch to highres and / or nohz mode. The clocksource 1433 * switch happens with xtime_lock held. Notification from 1434 * there only sets the check bit in the tick_oneshot code, 1435 * otherwise we might deadlock vs. xtime_lock. 1436 */ 1437 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1438 hrtimer_switch_to_hres(); 1439 return; 1440 } 1441 1442 raw_spin_lock(&cpu_base->lock); 1443 now = hrtimer_update_base(cpu_base); 1444 __hrtimer_run_queues(cpu_base, now); 1445 raw_spin_unlock(&cpu_base->lock); 1446 } 1447 1448 /* 1449 * Sleep related functions: 1450 */ 1451 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1452 { 1453 struct hrtimer_sleeper *t = 1454 container_of(timer, struct hrtimer_sleeper, timer); 1455 struct task_struct *task = t->task; 1456 1457 t->task = NULL; 1458 if (task) 1459 wake_up_process(task); 1460 1461 return HRTIMER_NORESTART; 1462 } 1463 1464 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1465 { 1466 sl->timer.function = hrtimer_wakeup; 1467 sl->task = task; 1468 } 1469 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1470 1471 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1472 { 1473 hrtimer_init_sleeper(t, current); 1474 1475 do { 1476 set_current_state(TASK_INTERRUPTIBLE); 1477 hrtimer_start_expires(&t->timer, mode); 1478 1479 if (likely(t->task)) 1480 freezable_schedule(); 1481 1482 hrtimer_cancel(&t->timer); 1483 mode = HRTIMER_MODE_ABS; 1484 1485 } while (t->task && !signal_pending(current)); 1486 1487 __set_current_state(TASK_RUNNING); 1488 1489 return t->task == NULL; 1490 } 1491 1492 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1493 { 1494 struct timespec rmt; 1495 ktime_t rem; 1496 1497 rem = hrtimer_expires_remaining(timer); 1498 if (rem.tv64 <= 0) 1499 return 0; 1500 rmt = ktime_to_timespec(rem); 1501 1502 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1503 return -EFAULT; 1504 1505 return 1; 1506 } 1507 1508 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1509 { 1510 struct hrtimer_sleeper t; 1511 struct timespec __user *rmtp; 1512 int ret = 0; 1513 1514 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1515 HRTIMER_MODE_ABS); 1516 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1517 1518 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1519 goto out; 1520 1521 rmtp = restart->nanosleep.rmtp; 1522 if (rmtp) { 1523 ret = update_rmtp(&t.timer, rmtp); 1524 if (ret <= 0) 1525 goto out; 1526 } 1527 1528 /* The other values in restart are already filled in */ 1529 ret = -ERESTART_RESTARTBLOCK; 1530 out: 1531 destroy_hrtimer_on_stack(&t.timer); 1532 return ret; 1533 } 1534 1535 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1536 const enum hrtimer_mode mode, const clockid_t clockid) 1537 { 1538 struct restart_block *restart; 1539 struct hrtimer_sleeper t; 1540 int ret = 0; 1541 u64 slack; 1542 1543 slack = current->timer_slack_ns; 1544 if (dl_task(current) || rt_task(current)) 1545 slack = 0; 1546 1547 hrtimer_init_on_stack(&t.timer, clockid, mode); 1548 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1549 if (do_nanosleep(&t, mode)) 1550 goto out; 1551 1552 /* Absolute timers do not update the rmtp value and restart: */ 1553 if (mode == HRTIMER_MODE_ABS) { 1554 ret = -ERESTARTNOHAND; 1555 goto out; 1556 } 1557 1558 if (rmtp) { 1559 ret = update_rmtp(&t.timer, rmtp); 1560 if (ret <= 0) 1561 goto out; 1562 } 1563 1564 restart = ¤t->restart_block; 1565 restart->fn = hrtimer_nanosleep_restart; 1566 restart->nanosleep.clockid = t.timer.base->clockid; 1567 restart->nanosleep.rmtp = rmtp; 1568 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1569 1570 ret = -ERESTART_RESTARTBLOCK; 1571 out: 1572 destroy_hrtimer_on_stack(&t.timer); 1573 return ret; 1574 } 1575 1576 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1577 struct timespec __user *, rmtp) 1578 { 1579 struct timespec tu; 1580 1581 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1582 return -EFAULT; 1583 1584 if (!timespec_valid(&tu)) 1585 return -EINVAL; 1586 1587 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1588 } 1589 1590 /* 1591 * Functions related to boot-time initialization: 1592 */ 1593 static void init_hrtimers_cpu(int cpu) 1594 { 1595 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1596 int i; 1597 1598 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1599 cpu_base->clock_base[i].cpu_base = cpu_base; 1600 timerqueue_init_head(&cpu_base->clock_base[i].active); 1601 } 1602 1603 cpu_base->cpu = cpu; 1604 hrtimer_init_hres(cpu_base); 1605 } 1606 1607 #ifdef CONFIG_HOTPLUG_CPU 1608 1609 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1610 struct hrtimer_clock_base *new_base) 1611 { 1612 struct hrtimer *timer; 1613 struct timerqueue_node *node; 1614 1615 while ((node = timerqueue_getnext(&old_base->active))) { 1616 timer = container_of(node, struct hrtimer, node); 1617 BUG_ON(hrtimer_callback_running(timer)); 1618 debug_deactivate(timer); 1619 1620 /* 1621 * Mark it as ENQUEUED not INACTIVE otherwise the 1622 * timer could be seen as !active and just vanish away 1623 * under us on another CPU 1624 */ 1625 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1626 timer->base = new_base; 1627 /* 1628 * Enqueue the timers on the new cpu. This does not 1629 * reprogram the event device in case the timer 1630 * expires before the earliest on this CPU, but we run 1631 * hrtimer_interrupt after we migrated everything to 1632 * sort out already expired timers and reprogram the 1633 * event device. 1634 */ 1635 enqueue_hrtimer(timer, new_base); 1636 } 1637 } 1638 1639 static void migrate_hrtimers(int scpu) 1640 { 1641 struct hrtimer_cpu_base *old_base, *new_base; 1642 int i; 1643 1644 BUG_ON(cpu_online(scpu)); 1645 tick_cancel_sched_timer(scpu); 1646 1647 local_irq_disable(); 1648 old_base = &per_cpu(hrtimer_bases, scpu); 1649 new_base = this_cpu_ptr(&hrtimer_bases); 1650 /* 1651 * The caller is globally serialized and nobody else 1652 * takes two locks at once, deadlock is not possible. 1653 */ 1654 raw_spin_lock(&new_base->lock); 1655 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1656 1657 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1658 migrate_hrtimer_list(&old_base->clock_base[i], 1659 &new_base->clock_base[i]); 1660 } 1661 1662 raw_spin_unlock(&old_base->lock); 1663 raw_spin_unlock(&new_base->lock); 1664 1665 /* Check, if we got expired work to do */ 1666 __hrtimer_peek_ahead_timers(); 1667 local_irq_enable(); 1668 } 1669 1670 #endif /* CONFIG_HOTPLUG_CPU */ 1671 1672 static int hrtimer_cpu_notify(struct notifier_block *self, 1673 unsigned long action, void *hcpu) 1674 { 1675 int scpu = (long)hcpu; 1676 1677 switch (action) { 1678 1679 case CPU_UP_PREPARE: 1680 case CPU_UP_PREPARE_FROZEN: 1681 init_hrtimers_cpu(scpu); 1682 break; 1683 1684 #ifdef CONFIG_HOTPLUG_CPU 1685 case CPU_DEAD: 1686 case CPU_DEAD_FROZEN: 1687 migrate_hrtimers(scpu); 1688 break; 1689 #endif 1690 1691 default: 1692 break; 1693 } 1694 1695 return NOTIFY_OK; 1696 } 1697 1698 static struct notifier_block hrtimers_nb = { 1699 .notifier_call = hrtimer_cpu_notify, 1700 }; 1701 1702 void __init hrtimers_init(void) 1703 { 1704 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1705 (void *)(long)smp_processor_id()); 1706 register_cpu_notifier(&hrtimers_nb); 1707 } 1708 1709 /** 1710 * schedule_hrtimeout_range_clock - sleep until timeout 1711 * @expires: timeout value (ktime_t) 1712 * @delta: slack in expires timeout (ktime_t) 1713 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1714 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1715 */ 1716 int __sched 1717 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1718 const enum hrtimer_mode mode, int clock) 1719 { 1720 struct hrtimer_sleeper t; 1721 1722 /* 1723 * Optimize when a zero timeout value is given. It does not 1724 * matter whether this is an absolute or a relative time. 1725 */ 1726 if (expires && !expires->tv64) { 1727 __set_current_state(TASK_RUNNING); 1728 return 0; 1729 } 1730 1731 /* 1732 * A NULL parameter means "infinite" 1733 */ 1734 if (!expires) { 1735 schedule(); 1736 return -EINTR; 1737 } 1738 1739 hrtimer_init_on_stack(&t.timer, clock, mode); 1740 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1741 1742 hrtimer_init_sleeper(&t, current); 1743 1744 hrtimer_start_expires(&t.timer, mode); 1745 1746 if (likely(t.task)) 1747 schedule(); 1748 1749 hrtimer_cancel(&t.timer); 1750 destroy_hrtimer_on_stack(&t.timer); 1751 1752 __set_current_state(TASK_RUNNING); 1753 1754 return !t.task ? 0 : -EINTR; 1755 } 1756 1757 /** 1758 * schedule_hrtimeout_range - sleep until timeout 1759 * @expires: timeout value (ktime_t) 1760 * @delta: slack in expires timeout (ktime_t) 1761 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1762 * 1763 * Make the current task sleep until the given expiry time has 1764 * elapsed. The routine will return immediately unless 1765 * the current task state has been set (see set_current_state()). 1766 * 1767 * The @delta argument gives the kernel the freedom to schedule the 1768 * actual wakeup to a time that is both power and performance friendly. 1769 * The kernel give the normal best effort behavior for "@expires+@delta", 1770 * but may decide to fire the timer earlier, but no earlier than @expires. 1771 * 1772 * You can set the task state as follows - 1773 * 1774 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1775 * pass before the routine returns. 1776 * 1777 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1778 * delivered to the current task. 1779 * 1780 * The current task state is guaranteed to be TASK_RUNNING when this 1781 * routine returns. 1782 * 1783 * Returns 0 when the timer has expired otherwise -EINTR 1784 */ 1785 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1786 const enum hrtimer_mode mode) 1787 { 1788 return schedule_hrtimeout_range_clock(expires, delta, mode, 1789 CLOCK_MONOTONIC); 1790 } 1791 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1792 1793 /** 1794 * schedule_hrtimeout - sleep until timeout 1795 * @expires: timeout value (ktime_t) 1796 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1797 * 1798 * Make the current task sleep until the given expiry time has 1799 * elapsed. The routine will return immediately unless 1800 * the current task state has been set (see set_current_state()). 1801 * 1802 * You can set the task state as follows - 1803 * 1804 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1805 * pass before the routine returns. 1806 * 1807 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1808 * delivered to the current task. 1809 * 1810 * The current task state is guaranteed to be TASK_RUNNING when this 1811 * routine returns. 1812 * 1813 * Returns 0 when the timer has expired otherwise -EINTR 1814 */ 1815 int __sched schedule_hrtimeout(ktime_t *expires, 1816 const enum hrtimer_mode mode) 1817 { 1818 return schedule_hrtimeout_range(expires, 0, mode); 1819 } 1820 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1821