xref: /openbmc/linux/kernel/time/hrtimer.c (revision 65417d9f)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/sched/nohz.h>
51 #include <linux/sched/debug.h>
52 #include <linux/timer.h>
53 #include <linux/freezer.h>
54 #include <linux/compat.h>
55 
56 #include <linux/uaccess.h>
57 
58 #include <trace/events/timer.h>
59 
60 #include "tick-internal.h"
61 
62 /*
63  * The timer bases:
64  *
65  * There are more clockids than hrtimer bases. Thus, we index
66  * into the timer bases by the hrtimer_base_type enum. When trying
67  * to reach a base using a clockid, hrtimer_clockid_to_base()
68  * is used to convert from clockid to the proper hrtimer_base_type.
69  */
70 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
71 {
72 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
73 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
74 	.clock_base =
75 	{
76 		{
77 			.index = HRTIMER_BASE_MONOTONIC,
78 			.clockid = CLOCK_MONOTONIC,
79 			.get_time = &ktime_get,
80 		},
81 		{
82 			.index = HRTIMER_BASE_REALTIME,
83 			.clockid = CLOCK_REALTIME,
84 			.get_time = &ktime_get_real,
85 		},
86 		{
87 			.index = HRTIMER_BASE_BOOTTIME,
88 			.clockid = CLOCK_BOOTTIME,
89 			.get_time = &ktime_get_boottime,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 		},
96 	}
97 };
98 
99 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
100 	/* Make sure we catch unsupported clockids */
101 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
102 
103 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
104 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
105 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
106 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
107 };
108 
109 /*
110  * Functions and macros which are different for UP/SMP systems are kept in a
111  * single place
112  */
113 #ifdef CONFIG_SMP
114 
115 /*
116  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
117  * such that hrtimer_callback_running() can unconditionally dereference
118  * timer->base->cpu_base
119  */
120 static struct hrtimer_cpu_base migration_cpu_base = {
121 	.seq = SEQCNT_ZERO(migration_cpu_base),
122 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
123 };
124 
125 #define migration_base	migration_cpu_base.clock_base[0]
126 
127 /*
128  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
129  * means that all timers which are tied to this base via timer->base are
130  * locked, and the base itself is locked too.
131  *
132  * So __run_timers/migrate_timers can safely modify all timers which could
133  * be found on the lists/queues.
134  *
135  * When the timer's base is locked, and the timer removed from list, it is
136  * possible to set timer->base = &migration_base and drop the lock: the timer
137  * remains locked.
138  */
139 static
140 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
141 					     unsigned long *flags)
142 {
143 	struct hrtimer_clock_base *base;
144 
145 	for (;;) {
146 		base = timer->base;
147 		if (likely(base != &migration_base)) {
148 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
149 			if (likely(base == timer->base))
150 				return base;
151 			/* The timer has migrated to another CPU: */
152 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
153 		}
154 		cpu_relax();
155 	}
156 }
157 
158 /*
159  * With HIGHRES=y we do not migrate the timer when it is expiring
160  * before the next event on the target cpu because we cannot reprogram
161  * the target cpu hardware and we would cause it to fire late.
162  *
163  * Called with cpu_base->lock of target cpu held.
164  */
165 static int
166 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
167 {
168 #ifdef CONFIG_HIGH_RES_TIMERS
169 	ktime_t expires;
170 
171 	if (!new_base->cpu_base->hres_active)
172 		return 0;
173 
174 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
175 	return expires <= new_base->cpu_base->expires_next;
176 #else
177 	return 0;
178 #endif
179 }
180 
181 #ifdef CONFIG_NO_HZ_COMMON
182 static inline
183 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
184 					 int pinned)
185 {
186 	if (pinned || !base->migration_enabled)
187 		return base;
188 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
189 }
190 #else
191 static inline
192 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
193 					 int pinned)
194 {
195 	return base;
196 }
197 #endif
198 
199 /*
200  * We switch the timer base to a power-optimized selected CPU target,
201  * if:
202  *	- NO_HZ_COMMON is enabled
203  *	- timer migration is enabled
204  *	- the timer callback is not running
205  *	- the timer is not the first expiring timer on the new target
206  *
207  * If one of the above requirements is not fulfilled we move the timer
208  * to the current CPU or leave it on the previously assigned CPU if
209  * the timer callback is currently running.
210  */
211 static inline struct hrtimer_clock_base *
212 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
213 		    int pinned)
214 {
215 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
216 	struct hrtimer_clock_base *new_base;
217 	int basenum = base->index;
218 
219 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
220 	new_cpu_base = get_target_base(this_cpu_base, pinned);
221 again:
222 	new_base = &new_cpu_base->clock_base[basenum];
223 
224 	if (base != new_base) {
225 		/*
226 		 * We are trying to move timer to new_base.
227 		 * However we can't change timer's base while it is running,
228 		 * so we keep it on the same CPU. No hassle vs. reprogramming
229 		 * the event source in the high resolution case. The softirq
230 		 * code will take care of this when the timer function has
231 		 * completed. There is no conflict as we hold the lock until
232 		 * the timer is enqueued.
233 		 */
234 		if (unlikely(hrtimer_callback_running(timer)))
235 			return base;
236 
237 		/* See the comment in lock_hrtimer_base() */
238 		timer->base = &migration_base;
239 		raw_spin_unlock(&base->cpu_base->lock);
240 		raw_spin_lock(&new_base->cpu_base->lock);
241 
242 		if (new_cpu_base != this_cpu_base &&
243 		    hrtimer_check_target(timer, new_base)) {
244 			raw_spin_unlock(&new_base->cpu_base->lock);
245 			raw_spin_lock(&base->cpu_base->lock);
246 			new_cpu_base = this_cpu_base;
247 			timer->base = base;
248 			goto again;
249 		}
250 		timer->base = new_base;
251 	} else {
252 		if (new_cpu_base != this_cpu_base &&
253 		    hrtimer_check_target(timer, new_base)) {
254 			new_cpu_base = this_cpu_base;
255 			goto again;
256 		}
257 	}
258 	return new_base;
259 }
260 
261 #else /* CONFIG_SMP */
262 
263 static inline struct hrtimer_clock_base *
264 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
265 {
266 	struct hrtimer_clock_base *base = timer->base;
267 
268 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
269 
270 	return base;
271 }
272 
273 # define switch_hrtimer_base(t, b, p)	(b)
274 
275 #endif	/* !CONFIG_SMP */
276 
277 /*
278  * Functions for the union type storage format of ktime_t which are
279  * too large for inlining:
280  */
281 #if BITS_PER_LONG < 64
282 /*
283  * Divide a ktime value by a nanosecond value
284  */
285 s64 __ktime_divns(const ktime_t kt, s64 div)
286 {
287 	int sft = 0;
288 	s64 dclc;
289 	u64 tmp;
290 
291 	dclc = ktime_to_ns(kt);
292 	tmp = dclc < 0 ? -dclc : dclc;
293 
294 	/* Make sure the divisor is less than 2^32: */
295 	while (div >> 32) {
296 		sft++;
297 		div >>= 1;
298 	}
299 	tmp >>= sft;
300 	do_div(tmp, (unsigned long) div);
301 	return dclc < 0 ? -tmp : tmp;
302 }
303 EXPORT_SYMBOL_GPL(__ktime_divns);
304 #endif /* BITS_PER_LONG >= 64 */
305 
306 /*
307  * Add two ktime values and do a safety check for overflow:
308  */
309 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
310 {
311 	ktime_t res = ktime_add_unsafe(lhs, rhs);
312 
313 	/*
314 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
315 	 * return to user space in a timespec:
316 	 */
317 	if (res < 0 || res < lhs || res < rhs)
318 		res = ktime_set(KTIME_SEC_MAX, 0);
319 
320 	return res;
321 }
322 
323 EXPORT_SYMBOL_GPL(ktime_add_safe);
324 
325 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
326 
327 static struct debug_obj_descr hrtimer_debug_descr;
328 
329 static void *hrtimer_debug_hint(void *addr)
330 {
331 	return ((struct hrtimer *) addr)->function;
332 }
333 
334 /*
335  * fixup_init is called when:
336  * - an active object is initialized
337  */
338 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
339 {
340 	struct hrtimer *timer = addr;
341 
342 	switch (state) {
343 	case ODEBUG_STATE_ACTIVE:
344 		hrtimer_cancel(timer);
345 		debug_object_init(timer, &hrtimer_debug_descr);
346 		return true;
347 	default:
348 		return false;
349 	}
350 }
351 
352 /*
353  * fixup_activate is called when:
354  * - an active object is activated
355  * - an unknown non-static object is activated
356  */
357 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
358 {
359 	switch (state) {
360 	case ODEBUG_STATE_ACTIVE:
361 		WARN_ON(1);
362 
363 	default:
364 		return false;
365 	}
366 }
367 
368 /*
369  * fixup_free is called when:
370  * - an active object is freed
371  */
372 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
373 {
374 	struct hrtimer *timer = addr;
375 
376 	switch (state) {
377 	case ODEBUG_STATE_ACTIVE:
378 		hrtimer_cancel(timer);
379 		debug_object_free(timer, &hrtimer_debug_descr);
380 		return true;
381 	default:
382 		return false;
383 	}
384 }
385 
386 static struct debug_obj_descr hrtimer_debug_descr = {
387 	.name		= "hrtimer",
388 	.debug_hint	= hrtimer_debug_hint,
389 	.fixup_init	= hrtimer_fixup_init,
390 	.fixup_activate	= hrtimer_fixup_activate,
391 	.fixup_free	= hrtimer_fixup_free,
392 };
393 
394 static inline void debug_hrtimer_init(struct hrtimer *timer)
395 {
396 	debug_object_init(timer, &hrtimer_debug_descr);
397 }
398 
399 static inline void debug_hrtimer_activate(struct hrtimer *timer)
400 {
401 	debug_object_activate(timer, &hrtimer_debug_descr);
402 }
403 
404 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
405 {
406 	debug_object_deactivate(timer, &hrtimer_debug_descr);
407 }
408 
409 static inline void debug_hrtimer_free(struct hrtimer *timer)
410 {
411 	debug_object_free(timer, &hrtimer_debug_descr);
412 }
413 
414 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
415 			   enum hrtimer_mode mode);
416 
417 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
418 			   enum hrtimer_mode mode)
419 {
420 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
421 	__hrtimer_init(timer, clock_id, mode);
422 }
423 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
424 
425 void destroy_hrtimer_on_stack(struct hrtimer *timer)
426 {
427 	debug_object_free(timer, &hrtimer_debug_descr);
428 }
429 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
430 
431 #else
432 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
433 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
434 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
435 #endif
436 
437 static inline void
438 debug_init(struct hrtimer *timer, clockid_t clockid,
439 	   enum hrtimer_mode mode)
440 {
441 	debug_hrtimer_init(timer);
442 	trace_hrtimer_init(timer, clockid, mode);
443 }
444 
445 static inline void debug_activate(struct hrtimer *timer)
446 {
447 	debug_hrtimer_activate(timer);
448 	trace_hrtimer_start(timer);
449 }
450 
451 static inline void debug_deactivate(struct hrtimer *timer)
452 {
453 	debug_hrtimer_deactivate(timer);
454 	trace_hrtimer_cancel(timer);
455 }
456 
457 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
458 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
459 					     struct hrtimer *timer)
460 {
461 #ifdef CONFIG_HIGH_RES_TIMERS
462 	cpu_base->next_timer = timer;
463 #endif
464 }
465 
466 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
467 {
468 	struct hrtimer_clock_base *base = cpu_base->clock_base;
469 	unsigned int active = cpu_base->active_bases;
470 	ktime_t expires, expires_next = KTIME_MAX;
471 
472 	hrtimer_update_next_timer(cpu_base, NULL);
473 	for (; active; base++, active >>= 1) {
474 		struct timerqueue_node *next;
475 		struct hrtimer *timer;
476 
477 		if (!(active & 0x01))
478 			continue;
479 
480 		next = timerqueue_getnext(&base->active);
481 		timer = container_of(next, struct hrtimer, node);
482 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
483 		if (expires < expires_next) {
484 			expires_next = expires;
485 			hrtimer_update_next_timer(cpu_base, timer);
486 		}
487 	}
488 	/*
489 	 * clock_was_set() might have changed base->offset of any of
490 	 * the clock bases so the result might be negative. Fix it up
491 	 * to prevent a false positive in clockevents_program_event().
492 	 */
493 	if (expires_next < 0)
494 		expires_next = 0;
495 	return expires_next;
496 }
497 #endif
498 
499 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
500 {
501 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
502 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
503 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
504 
505 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
506 					    offs_real, offs_boot, offs_tai);
507 }
508 
509 /* High resolution timer related functions */
510 #ifdef CONFIG_HIGH_RES_TIMERS
511 
512 /*
513  * High resolution timer enabled ?
514  */
515 static bool hrtimer_hres_enabled __read_mostly  = true;
516 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
517 EXPORT_SYMBOL_GPL(hrtimer_resolution);
518 
519 /*
520  * Enable / Disable high resolution mode
521  */
522 static int __init setup_hrtimer_hres(char *str)
523 {
524 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
525 }
526 
527 __setup("highres=", setup_hrtimer_hres);
528 
529 /*
530  * hrtimer_high_res_enabled - query, if the highres mode is enabled
531  */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 	return hrtimer_hres_enabled;
535 }
536 
537 /*
538  * Is the high resolution mode active ?
539  */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 	return cpu_base->hres_active;
543 }
544 
545 static inline int hrtimer_hres_active(void)
546 {
547 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549 
550 /*
551  * Reprogram the event source with checking both queues for the
552  * next event
553  * Called with interrupts disabled and base->lock held
554  */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 	ktime_t expires_next;
559 
560 	if (!cpu_base->hres_active)
561 		return;
562 
563 	expires_next = __hrtimer_get_next_event(cpu_base);
564 
565 	if (skip_equal && expires_next == cpu_base->expires_next)
566 		return;
567 
568 	cpu_base->expires_next = expires_next;
569 
570 	/*
571 	 * If a hang was detected in the last timer interrupt then we
572 	 * leave the hang delay active in the hardware. We want the
573 	 * system to make progress. That also prevents the following
574 	 * scenario:
575 	 * T1 expires 50ms from now
576 	 * T2 expires 5s from now
577 	 *
578 	 * T1 is removed, so this code is called and would reprogram
579 	 * the hardware to 5s from now. Any hrtimer_start after that
580 	 * will not reprogram the hardware due to hang_detected being
581 	 * set. So we'd effectivly block all timers until the T2 event
582 	 * fires.
583 	 */
584 	if (cpu_base->hang_detected)
585 		return;
586 
587 	tick_program_event(cpu_base->expires_next, 1);
588 }
589 
590 /*
591  * When a timer is enqueued and expires earlier than the already enqueued
592  * timers, we have to check, whether it expires earlier than the timer for
593  * which the clock event device was armed.
594  *
595  * Called with interrupts disabled and base->cpu_base.lock held
596  */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 			      struct hrtimer_clock_base *base)
599 {
600 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 
603 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604 
605 	/*
606 	 * If the timer is not on the current cpu, we cannot reprogram
607 	 * the other cpus clock event device.
608 	 */
609 	if (base->cpu_base != cpu_base)
610 		return;
611 
612 	/*
613 	 * If the hrtimer interrupt is running, then it will
614 	 * reevaluate the clock bases and reprogram the clock event
615 	 * device. The callbacks are always executed in hard interrupt
616 	 * context so we don't need an extra check for a running
617 	 * callback.
618 	 */
619 	if (cpu_base->in_hrtirq)
620 		return;
621 
622 	/*
623 	 * CLOCK_REALTIME timer might be requested with an absolute
624 	 * expiry time which is less than base->offset. Set it to 0.
625 	 */
626 	if (expires < 0)
627 		expires = 0;
628 
629 	if (expires >= cpu_base->expires_next)
630 		return;
631 
632 	/* Update the pointer to the next expiring timer */
633 	cpu_base->next_timer = timer;
634 
635 	/*
636 	 * If a hang was detected in the last timer interrupt then we
637 	 * do not schedule a timer which is earlier than the expiry
638 	 * which we enforced in the hang detection. We want the system
639 	 * to make progress.
640 	 */
641 	if (cpu_base->hang_detected)
642 		return;
643 
644 	/*
645 	 * Program the timer hardware. We enforce the expiry for
646 	 * events which are already in the past.
647 	 */
648 	cpu_base->expires_next = expires;
649 	tick_program_event(expires, 1);
650 }
651 
652 /*
653  * Initialize the high resolution related parts of cpu_base
654  */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 	base->expires_next = KTIME_MAX;
658 	base->hres_active = 0;
659 }
660 
661 /*
662  * Retrigger next event is called after clock was set
663  *
664  * Called with interrupts disabled via on_each_cpu()
665  */
666 static void retrigger_next_event(void *arg)
667 {
668 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669 
670 	if (!base->hres_active)
671 		return;
672 
673 	raw_spin_lock(&base->lock);
674 	hrtimer_update_base(base);
675 	hrtimer_force_reprogram(base, 0);
676 	raw_spin_unlock(&base->lock);
677 }
678 
679 /*
680  * Switch to high resolution mode
681  */
682 static void hrtimer_switch_to_hres(void)
683 {
684 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 
686 	if (tick_init_highres()) {
687 		printk(KERN_WARNING "Could not switch to high resolution "
688 				    "mode on CPU %d\n", base->cpu);
689 		return;
690 	}
691 	base->hres_active = 1;
692 	hrtimer_resolution = HIGH_RES_NSEC;
693 
694 	tick_setup_sched_timer();
695 	/* "Retrigger" the interrupt to get things going */
696 	retrigger_next_event(NULL);
697 }
698 
699 static void clock_was_set_work(struct work_struct *work)
700 {
701 	clock_was_set();
702 }
703 
704 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
705 
706 /*
707  * Called from timekeeping and resume code to reprogram the hrtimer
708  * interrupt device on all cpus.
709  */
710 void clock_was_set_delayed(void)
711 {
712 	schedule_work(&hrtimer_work);
713 }
714 
715 #else
716 
717 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
718 static inline int hrtimer_hres_active(void) { return 0; }
719 static inline int hrtimer_is_hres_enabled(void) { return 0; }
720 static inline void hrtimer_switch_to_hres(void) { }
721 static inline void
722 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
723 static inline int hrtimer_reprogram(struct hrtimer *timer,
724 				    struct hrtimer_clock_base *base)
725 {
726 	return 0;
727 }
728 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
729 static inline void retrigger_next_event(void *arg) { }
730 
731 #endif /* CONFIG_HIGH_RES_TIMERS */
732 
733 /*
734  * Clock realtime was set
735  *
736  * Change the offset of the realtime clock vs. the monotonic
737  * clock.
738  *
739  * We might have to reprogram the high resolution timer interrupt. On
740  * SMP we call the architecture specific code to retrigger _all_ high
741  * resolution timer interrupts. On UP we just disable interrupts and
742  * call the high resolution interrupt code.
743  */
744 void clock_was_set(void)
745 {
746 #ifdef CONFIG_HIGH_RES_TIMERS
747 	/* Retrigger the CPU local events everywhere */
748 	on_each_cpu(retrigger_next_event, NULL, 1);
749 #endif
750 	timerfd_clock_was_set();
751 }
752 
753 /*
754  * During resume we might have to reprogram the high resolution timer
755  * interrupt on all online CPUs.  However, all other CPUs will be
756  * stopped with IRQs interrupts disabled so the clock_was_set() call
757  * must be deferred.
758  */
759 void hrtimers_resume(void)
760 {
761 	lockdep_assert_irqs_disabled();
762 	/* Retrigger on the local CPU */
763 	retrigger_next_event(NULL);
764 	/* And schedule a retrigger for all others */
765 	clock_was_set_delayed();
766 }
767 
768 /*
769  * Counterpart to lock_hrtimer_base above:
770  */
771 static inline
772 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
773 {
774 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
775 }
776 
777 /**
778  * hrtimer_forward - forward the timer expiry
779  * @timer:	hrtimer to forward
780  * @now:	forward past this time
781  * @interval:	the interval to forward
782  *
783  * Forward the timer expiry so it will expire in the future.
784  * Returns the number of overruns.
785  *
786  * Can be safely called from the callback function of @timer. If
787  * called from other contexts @timer must neither be enqueued nor
788  * running the callback and the caller needs to take care of
789  * serialization.
790  *
791  * Note: This only updates the timer expiry value and does not requeue
792  * the timer.
793  */
794 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
795 {
796 	u64 orun = 1;
797 	ktime_t delta;
798 
799 	delta = ktime_sub(now, hrtimer_get_expires(timer));
800 
801 	if (delta < 0)
802 		return 0;
803 
804 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
805 		return 0;
806 
807 	if (interval < hrtimer_resolution)
808 		interval = hrtimer_resolution;
809 
810 	if (unlikely(delta >= interval)) {
811 		s64 incr = ktime_to_ns(interval);
812 
813 		orun = ktime_divns(delta, incr);
814 		hrtimer_add_expires_ns(timer, incr * orun);
815 		if (hrtimer_get_expires_tv64(timer) > now)
816 			return orun;
817 		/*
818 		 * This (and the ktime_add() below) is the
819 		 * correction for exact:
820 		 */
821 		orun++;
822 	}
823 	hrtimer_add_expires(timer, interval);
824 
825 	return orun;
826 }
827 EXPORT_SYMBOL_GPL(hrtimer_forward);
828 
829 /*
830  * enqueue_hrtimer - internal function to (re)start a timer
831  *
832  * The timer is inserted in expiry order. Insertion into the
833  * red black tree is O(log(n)). Must hold the base lock.
834  *
835  * Returns 1 when the new timer is the leftmost timer in the tree.
836  */
837 static int enqueue_hrtimer(struct hrtimer *timer,
838 			   struct hrtimer_clock_base *base)
839 {
840 	debug_activate(timer);
841 
842 	base->cpu_base->active_bases |= 1 << base->index;
843 
844 	timer->state = HRTIMER_STATE_ENQUEUED;
845 
846 	return timerqueue_add(&base->active, &timer->node);
847 }
848 
849 /*
850  * __remove_hrtimer - internal function to remove a timer
851  *
852  * Caller must hold the base lock.
853  *
854  * High resolution timer mode reprograms the clock event device when the
855  * timer is the one which expires next. The caller can disable this by setting
856  * reprogram to zero. This is useful, when the context does a reprogramming
857  * anyway (e.g. timer interrupt)
858  */
859 static void __remove_hrtimer(struct hrtimer *timer,
860 			     struct hrtimer_clock_base *base,
861 			     u8 newstate, int reprogram)
862 {
863 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
864 	u8 state = timer->state;
865 
866 	timer->state = newstate;
867 	if (!(state & HRTIMER_STATE_ENQUEUED))
868 		return;
869 
870 	if (!timerqueue_del(&base->active, &timer->node))
871 		cpu_base->active_bases &= ~(1 << base->index);
872 
873 #ifdef CONFIG_HIGH_RES_TIMERS
874 	/*
875 	 * Note: If reprogram is false we do not update
876 	 * cpu_base->next_timer. This happens when we remove the first
877 	 * timer on a remote cpu. No harm as we never dereference
878 	 * cpu_base->next_timer. So the worst thing what can happen is
879 	 * an superflous call to hrtimer_force_reprogram() on the
880 	 * remote cpu later on if the same timer gets enqueued again.
881 	 */
882 	if (reprogram && timer == cpu_base->next_timer)
883 		hrtimer_force_reprogram(cpu_base, 1);
884 #endif
885 }
886 
887 /*
888  * remove hrtimer, called with base lock held
889  */
890 static inline int
891 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
892 {
893 	if (hrtimer_is_queued(timer)) {
894 		u8 state = timer->state;
895 		int reprogram;
896 
897 		/*
898 		 * Remove the timer and force reprogramming when high
899 		 * resolution mode is active and the timer is on the current
900 		 * CPU. If we remove a timer on another CPU, reprogramming is
901 		 * skipped. The interrupt event on this CPU is fired and
902 		 * reprogramming happens in the interrupt handler. This is a
903 		 * rare case and less expensive than a smp call.
904 		 */
905 		debug_deactivate(timer);
906 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
907 
908 		if (!restart)
909 			state = HRTIMER_STATE_INACTIVE;
910 
911 		__remove_hrtimer(timer, base, state, reprogram);
912 		return 1;
913 	}
914 	return 0;
915 }
916 
917 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
918 					    const enum hrtimer_mode mode)
919 {
920 #ifdef CONFIG_TIME_LOW_RES
921 	/*
922 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
923 	 * granular time values. For relative timers we add hrtimer_resolution
924 	 * (i.e. one jiffie) to prevent short timeouts.
925 	 */
926 	timer->is_rel = mode & HRTIMER_MODE_REL;
927 	if (timer->is_rel)
928 		tim = ktime_add_safe(tim, hrtimer_resolution);
929 #endif
930 	return tim;
931 }
932 
933 /**
934  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
935  * @timer:	the timer to be added
936  * @tim:	expiry time
937  * @delta_ns:	"slack" range for the timer
938  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
939  *		relative (HRTIMER_MODE_REL)
940  */
941 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
942 			    u64 delta_ns, const enum hrtimer_mode mode)
943 {
944 	struct hrtimer_clock_base *base, *new_base;
945 	unsigned long flags;
946 	int leftmost;
947 
948 	base = lock_hrtimer_base(timer, &flags);
949 
950 	/* Remove an active timer from the queue: */
951 	remove_hrtimer(timer, base, true);
952 
953 	if (mode & HRTIMER_MODE_REL)
954 		tim = ktime_add_safe(tim, base->get_time());
955 
956 	tim = hrtimer_update_lowres(timer, tim, mode);
957 
958 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
959 
960 	/* Switch the timer base, if necessary: */
961 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
962 
963 	leftmost = enqueue_hrtimer(timer, new_base);
964 	if (!leftmost)
965 		goto unlock;
966 
967 	if (!hrtimer_is_hres_active(timer)) {
968 		/*
969 		 * Kick to reschedule the next tick to handle the new timer
970 		 * on dynticks target.
971 		 */
972 		if (new_base->cpu_base->nohz_active)
973 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
974 	} else {
975 		hrtimer_reprogram(timer, new_base);
976 	}
977 unlock:
978 	unlock_hrtimer_base(timer, &flags);
979 }
980 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
981 
982 /**
983  * hrtimer_try_to_cancel - try to deactivate a timer
984  * @timer:	hrtimer to stop
985  *
986  * Returns:
987  *  0 when the timer was not active
988  *  1 when the timer was active
989  * -1 when the timer is currently executing the callback function and
990  *    cannot be stopped
991  */
992 int hrtimer_try_to_cancel(struct hrtimer *timer)
993 {
994 	struct hrtimer_clock_base *base;
995 	unsigned long flags;
996 	int ret = -1;
997 
998 	/*
999 	 * Check lockless first. If the timer is not active (neither
1000 	 * enqueued nor running the callback, nothing to do here.  The
1001 	 * base lock does not serialize against a concurrent enqueue,
1002 	 * so we can avoid taking it.
1003 	 */
1004 	if (!hrtimer_active(timer))
1005 		return 0;
1006 
1007 	base = lock_hrtimer_base(timer, &flags);
1008 
1009 	if (!hrtimer_callback_running(timer))
1010 		ret = remove_hrtimer(timer, base, false);
1011 
1012 	unlock_hrtimer_base(timer, &flags);
1013 
1014 	return ret;
1015 
1016 }
1017 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1018 
1019 /**
1020  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1021  * @timer:	the timer to be cancelled
1022  *
1023  * Returns:
1024  *  0 when the timer was not active
1025  *  1 when the timer was active
1026  */
1027 int hrtimer_cancel(struct hrtimer *timer)
1028 {
1029 	for (;;) {
1030 		int ret = hrtimer_try_to_cancel(timer);
1031 
1032 		if (ret >= 0)
1033 			return ret;
1034 		cpu_relax();
1035 	}
1036 }
1037 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1038 
1039 /**
1040  * hrtimer_get_remaining - get remaining time for the timer
1041  * @timer:	the timer to read
1042  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1043  */
1044 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1045 {
1046 	unsigned long flags;
1047 	ktime_t rem;
1048 
1049 	lock_hrtimer_base(timer, &flags);
1050 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1051 		rem = hrtimer_expires_remaining_adjusted(timer);
1052 	else
1053 		rem = hrtimer_expires_remaining(timer);
1054 	unlock_hrtimer_base(timer, &flags);
1055 
1056 	return rem;
1057 }
1058 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1059 
1060 #ifdef CONFIG_NO_HZ_COMMON
1061 /**
1062  * hrtimer_get_next_event - get the time until next expiry event
1063  *
1064  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1065  */
1066 u64 hrtimer_get_next_event(void)
1067 {
1068 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1069 	u64 expires = KTIME_MAX;
1070 	unsigned long flags;
1071 
1072 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1073 
1074 	if (!__hrtimer_hres_active(cpu_base))
1075 		expires = __hrtimer_get_next_event(cpu_base);
1076 
1077 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1078 
1079 	return expires;
1080 }
1081 #endif
1082 
1083 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1084 {
1085 	if (likely(clock_id < MAX_CLOCKS)) {
1086 		int base = hrtimer_clock_to_base_table[clock_id];
1087 
1088 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1089 			return base;
1090 	}
1091 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1092 	return HRTIMER_BASE_MONOTONIC;
1093 }
1094 
1095 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1096 			   enum hrtimer_mode mode)
1097 {
1098 	struct hrtimer_cpu_base *cpu_base;
1099 	int base;
1100 
1101 	memset(timer, 0, sizeof(struct hrtimer));
1102 
1103 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1104 
1105 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1106 		clock_id = CLOCK_MONOTONIC;
1107 
1108 	base = hrtimer_clockid_to_base(clock_id);
1109 	timer->base = &cpu_base->clock_base[base];
1110 	timerqueue_init(&timer->node);
1111 }
1112 
1113 /**
1114  * hrtimer_init - initialize a timer to the given clock
1115  * @timer:	the timer to be initialized
1116  * @clock_id:	the clock to be used
1117  * @mode:	timer mode abs/rel
1118  */
1119 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120 		  enum hrtimer_mode mode)
1121 {
1122 	debug_init(timer, clock_id, mode);
1123 	__hrtimer_init(timer, clock_id, mode);
1124 }
1125 EXPORT_SYMBOL_GPL(hrtimer_init);
1126 
1127 /*
1128  * A timer is active, when it is enqueued into the rbtree or the
1129  * callback function is running or it's in the state of being migrated
1130  * to another cpu.
1131  *
1132  * It is important for this function to not return a false negative.
1133  */
1134 bool hrtimer_active(const struct hrtimer *timer)
1135 {
1136 	struct hrtimer_cpu_base *cpu_base;
1137 	unsigned int seq;
1138 
1139 	do {
1140 		cpu_base = READ_ONCE(timer->base->cpu_base);
1141 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1142 
1143 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1144 		    cpu_base->running == timer)
1145 			return true;
1146 
1147 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1148 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1149 
1150 	return false;
1151 }
1152 EXPORT_SYMBOL_GPL(hrtimer_active);
1153 
1154 /*
1155  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1156  * distinct sections:
1157  *
1158  *  - queued:	the timer is queued
1159  *  - callback:	the timer is being ran
1160  *  - post:	the timer is inactive or (re)queued
1161  *
1162  * On the read side we ensure we observe timer->state and cpu_base->running
1163  * from the same section, if anything changed while we looked at it, we retry.
1164  * This includes timer->base changing because sequence numbers alone are
1165  * insufficient for that.
1166  *
1167  * The sequence numbers are required because otherwise we could still observe
1168  * a false negative if the read side got smeared over multiple consequtive
1169  * __run_hrtimer() invocations.
1170  */
1171 
1172 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1173 			  struct hrtimer_clock_base *base,
1174 			  struct hrtimer *timer, ktime_t *now)
1175 {
1176 	enum hrtimer_restart (*fn)(struct hrtimer *);
1177 	int restart;
1178 
1179 	lockdep_assert_held(&cpu_base->lock);
1180 
1181 	debug_deactivate(timer);
1182 	cpu_base->running = timer;
1183 
1184 	/*
1185 	 * Separate the ->running assignment from the ->state assignment.
1186 	 *
1187 	 * As with a regular write barrier, this ensures the read side in
1188 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1189 	 * timer->state == INACTIVE.
1190 	 */
1191 	raw_write_seqcount_barrier(&cpu_base->seq);
1192 
1193 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1194 	fn = timer->function;
1195 
1196 	/*
1197 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1198 	 * timer is restarted with a period then it becomes an absolute
1199 	 * timer. If its not restarted it does not matter.
1200 	 */
1201 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1202 		timer->is_rel = false;
1203 
1204 	/*
1205 	 * Because we run timers from hardirq context, there is no chance
1206 	 * they get migrated to another cpu, therefore its safe to unlock
1207 	 * the timer base.
1208 	 */
1209 	raw_spin_unlock(&cpu_base->lock);
1210 	trace_hrtimer_expire_entry(timer, now);
1211 	restart = fn(timer);
1212 	trace_hrtimer_expire_exit(timer);
1213 	raw_spin_lock(&cpu_base->lock);
1214 
1215 	/*
1216 	 * Note: We clear the running state after enqueue_hrtimer and
1217 	 * we do not reprogram the event hardware. Happens either in
1218 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1219 	 *
1220 	 * Note: Because we dropped the cpu_base->lock above,
1221 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1222 	 * for us already.
1223 	 */
1224 	if (restart != HRTIMER_NORESTART &&
1225 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1226 		enqueue_hrtimer(timer, base);
1227 
1228 	/*
1229 	 * Separate the ->running assignment from the ->state assignment.
1230 	 *
1231 	 * As with a regular write barrier, this ensures the read side in
1232 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1233 	 * timer->state == INACTIVE.
1234 	 */
1235 	raw_write_seqcount_barrier(&cpu_base->seq);
1236 
1237 	WARN_ON_ONCE(cpu_base->running != timer);
1238 	cpu_base->running = NULL;
1239 }
1240 
1241 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1242 {
1243 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1244 	unsigned int active = cpu_base->active_bases;
1245 
1246 	for (; active; base++, active >>= 1) {
1247 		struct timerqueue_node *node;
1248 		ktime_t basenow;
1249 
1250 		if (!(active & 0x01))
1251 			continue;
1252 
1253 		basenow = ktime_add(now, base->offset);
1254 
1255 		while ((node = timerqueue_getnext(&base->active))) {
1256 			struct hrtimer *timer;
1257 
1258 			timer = container_of(node, struct hrtimer, node);
1259 
1260 			/*
1261 			 * The immediate goal for using the softexpires is
1262 			 * minimizing wakeups, not running timers at the
1263 			 * earliest interrupt after their soft expiration.
1264 			 * This allows us to avoid using a Priority Search
1265 			 * Tree, which can answer a stabbing querry for
1266 			 * overlapping intervals and instead use the simple
1267 			 * BST we already have.
1268 			 * We don't add extra wakeups by delaying timers that
1269 			 * are right-of a not yet expired timer, because that
1270 			 * timer will have to trigger a wakeup anyway.
1271 			 */
1272 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1273 				break;
1274 
1275 			__run_hrtimer(cpu_base, base, timer, &basenow);
1276 		}
1277 	}
1278 }
1279 
1280 #ifdef CONFIG_HIGH_RES_TIMERS
1281 
1282 /*
1283  * High resolution timer interrupt
1284  * Called with interrupts disabled
1285  */
1286 void hrtimer_interrupt(struct clock_event_device *dev)
1287 {
1288 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1289 	ktime_t expires_next, now, entry_time, delta;
1290 	int retries = 0;
1291 
1292 	BUG_ON(!cpu_base->hres_active);
1293 	cpu_base->nr_events++;
1294 	dev->next_event = KTIME_MAX;
1295 
1296 	raw_spin_lock(&cpu_base->lock);
1297 	entry_time = now = hrtimer_update_base(cpu_base);
1298 retry:
1299 	cpu_base->in_hrtirq = 1;
1300 	/*
1301 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1302 	 * held to prevent that a timer is enqueued in our queue via
1303 	 * the migration code. This does not affect enqueueing of
1304 	 * timers which run their callback and need to be requeued on
1305 	 * this CPU.
1306 	 */
1307 	cpu_base->expires_next = KTIME_MAX;
1308 
1309 	__hrtimer_run_queues(cpu_base, now);
1310 
1311 	/* Reevaluate the clock bases for the next expiry */
1312 	expires_next = __hrtimer_get_next_event(cpu_base);
1313 	/*
1314 	 * Store the new expiry value so the migration code can verify
1315 	 * against it.
1316 	 */
1317 	cpu_base->expires_next = expires_next;
1318 	cpu_base->in_hrtirq = 0;
1319 	raw_spin_unlock(&cpu_base->lock);
1320 
1321 	/* Reprogramming necessary ? */
1322 	if (!tick_program_event(expires_next, 0)) {
1323 		cpu_base->hang_detected = 0;
1324 		return;
1325 	}
1326 
1327 	/*
1328 	 * The next timer was already expired due to:
1329 	 * - tracing
1330 	 * - long lasting callbacks
1331 	 * - being scheduled away when running in a VM
1332 	 *
1333 	 * We need to prevent that we loop forever in the hrtimer
1334 	 * interrupt routine. We give it 3 attempts to avoid
1335 	 * overreacting on some spurious event.
1336 	 *
1337 	 * Acquire base lock for updating the offsets and retrieving
1338 	 * the current time.
1339 	 */
1340 	raw_spin_lock(&cpu_base->lock);
1341 	now = hrtimer_update_base(cpu_base);
1342 	cpu_base->nr_retries++;
1343 	if (++retries < 3)
1344 		goto retry;
1345 	/*
1346 	 * Give the system a chance to do something else than looping
1347 	 * here. We stored the entry time, so we know exactly how long
1348 	 * we spent here. We schedule the next event this amount of
1349 	 * time away.
1350 	 */
1351 	cpu_base->nr_hangs++;
1352 	cpu_base->hang_detected = 1;
1353 	raw_spin_unlock(&cpu_base->lock);
1354 	delta = ktime_sub(now, entry_time);
1355 	if ((unsigned int)delta > cpu_base->max_hang_time)
1356 		cpu_base->max_hang_time = (unsigned int) delta;
1357 	/*
1358 	 * Limit it to a sensible value as we enforce a longer
1359 	 * delay. Give the CPU at least 100ms to catch up.
1360 	 */
1361 	if (delta > 100 * NSEC_PER_MSEC)
1362 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1363 	else
1364 		expires_next = ktime_add(now, delta);
1365 	tick_program_event(expires_next, 1);
1366 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1367 		    ktime_to_ns(delta));
1368 }
1369 
1370 /* called with interrupts disabled */
1371 static inline void __hrtimer_peek_ahead_timers(void)
1372 {
1373 	struct tick_device *td;
1374 
1375 	if (!hrtimer_hres_active())
1376 		return;
1377 
1378 	td = this_cpu_ptr(&tick_cpu_device);
1379 	if (td && td->evtdev)
1380 		hrtimer_interrupt(td->evtdev);
1381 }
1382 
1383 #else /* CONFIG_HIGH_RES_TIMERS */
1384 
1385 static inline void __hrtimer_peek_ahead_timers(void) { }
1386 
1387 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1388 
1389 /*
1390  * Called from run_local_timers in hardirq context every jiffy
1391  */
1392 void hrtimer_run_queues(void)
1393 {
1394 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1395 	ktime_t now;
1396 
1397 	if (__hrtimer_hres_active(cpu_base))
1398 		return;
1399 
1400 	/*
1401 	 * This _is_ ugly: We have to check periodically, whether we
1402 	 * can switch to highres and / or nohz mode. The clocksource
1403 	 * switch happens with xtime_lock held. Notification from
1404 	 * there only sets the check bit in the tick_oneshot code,
1405 	 * otherwise we might deadlock vs. xtime_lock.
1406 	 */
1407 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1408 		hrtimer_switch_to_hres();
1409 		return;
1410 	}
1411 
1412 	raw_spin_lock(&cpu_base->lock);
1413 	now = hrtimer_update_base(cpu_base);
1414 	__hrtimer_run_queues(cpu_base, now);
1415 	raw_spin_unlock(&cpu_base->lock);
1416 }
1417 
1418 /*
1419  * Sleep related functions:
1420  */
1421 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1422 {
1423 	struct hrtimer_sleeper *t =
1424 		container_of(timer, struct hrtimer_sleeper, timer);
1425 	struct task_struct *task = t->task;
1426 
1427 	t->task = NULL;
1428 	if (task)
1429 		wake_up_process(task);
1430 
1431 	return HRTIMER_NORESTART;
1432 }
1433 
1434 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1435 {
1436 	sl->timer.function = hrtimer_wakeup;
1437 	sl->task = task;
1438 }
1439 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1440 
1441 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1442 {
1443 	switch(restart->nanosleep.type) {
1444 #ifdef CONFIG_COMPAT
1445 	case TT_COMPAT:
1446 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1447 			return -EFAULT;
1448 		break;
1449 #endif
1450 	case TT_NATIVE:
1451 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1452 			return -EFAULT;
1453 		break;
1454 	default:
1455 		BUG();
1456 	}
1457 	return -ERESTART_RESTARTBLOCK;
1458 }
1459 
1460 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1461 {
1462 	struct restart_block *restart;
1463 
1464 	hrtimer_init_sleeper(t, current);
1465 
1466 	do {
1467 		set_current_state(TASK_INTERRUPTIBLE);
1468 		hrtimer_start_expires(&t->timer, mode);
1469 
1470 		if (likely(t->task))
1471 			freezable_schedule();
1472 
1473 		hrtimer_cancel(&t->timer);
1474 		mode = HRTIMER_MODE_ABS;
1475 
1476 	} while (t->task && !signal_pending(current));
1477 
1478 	__set_current_state(TASK_RUNNING);
1479 
1480 	if (!t->task)
1481 		return 0;
1482 
1483 	restart = &current->restart_block;
1484 	if (restart->nanosleep.type != TT_NONE) {
1485 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1486 		struct timespec64 rmt;
1487 
1488 		if (rem <= 0)
1489 			return 0;
1490 		rmt = ktime_to_timespec64(rem);
1491 
1492 		return nanosleep_copyout(restart, &rmt);
1493 	}
1494 	return -ERESTART_RESTARTBLOCK;
1495 }
1496 
1497 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1498 {
1499 	struct hrtimer_sleeper t;
1500 	int ret;
1501 
1502 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1503 				HRTIMER_MODE_ABS);
1504 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1505 
1506 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1507 	destroy_hrtimer_on_stack(&t.timer);
1508 	return ret;
1509 }
1510 
1511 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1512 		       const enum hrtimer_mode mode, const clockid_t clockid)
1513 {
1514 	struct restart_block *restart;
1515 	struct hrtimer_sleeper t;
1516 	int ret = 0;
1517 	u64 slack;
1518 
1519 	slack = current->timer_slack_ns;
1520 	if (dl_task(current) || rt_task(current))
1521 		slack = 0;
1522 
1523 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1524 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1525 	ret = do_nanosleep(&t, mode);
1526 	if (ret != -ERESTART_RESTARTBLOCK)
1527 		goto out;
1528 
1529 	/* Absolute timers do not update the rmtp value and restart: */
1530 	if (mode == HRTIMER_MODE_ABS) {
1531 		ret = -ERESTARTNOHAND;
1532 		goto out;
1533 	}
1534 
1535 	restart = &current->restart_block;
1536 	restart->fn = hrtimer_nanosleep_restart;
1537 	restart->nanosleep.clockid = t.timer.base->clockid;
1538 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1539 out:
1540 	destroy_hrtimer_on_stack(&t.timer);
1541 	return ret;
1542 }
1543 
1544 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1545 		struct timespec __user *, rmtp)
1546 {
1547 	struct timespec64 tu;
1548 
1549 	if (get_timespec64(&tu, rqtp))
1550 		return -EFAULT;
1551 
1552 	if (!timespec64_valid(&tu))
1553 		return -EINVAL;
1554 
1555 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1556 	current->restart_block.nanosleep.rmtp = rmtp;
1557 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1558 }
1559 
1560 #ifdef CONFIG_COMPAT
1561 
1562 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1563 		       struct compat_timespec __user *, rmtp)
1564 {
1565 	struct timespec64 tu;
1566 
1567 	if (compat_get_timespec64(&tu, rqtp))
1568 		return -EFAULT;
1569 
1570 	if (!timespec64_valid(&tu))
1571 		return -EINVAL;
1572 
1573 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1574 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1575 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1576 }
1577 #endif
1578 
1579 /*
1580  * Functions related to boot-time initialization:
1581  */
1582 int hrtimers_prepare_cpu(unsigned int cpu)
1583 {
1584 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1585 	int i;
1586 
1587 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1588 		cpu_base->clock_base[i].cpu_base = cpu_base;
1589 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1590 	}
1591 
1592 	cpu_base->cpu = cpu;
1593 	hrtimer_init_hres(cpu_base);
1594 	return 0;
1595 }
1596 
1597 #ifdef CONFIG_HOTPLUG_CPU
1598 
1599 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1600 				struct hrtimer_clock_base *new_base)
1601 {
1602 	struct hrtimer *timer;
1603 	struct timerqueue_node *node;
1604 
1605 	while ((node = timerqueue_getnext(&old_base->active))) {
1606 		timer = container_of(node, struct hrtimer, node);
1607 		BUG_ON(hrtimer_callback_running(timer));
1608 		debug_deactivate(timer);
1609 
1610 		/*
1611 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1612 		 * timer could be seen as !active and just vanish away
1613 		 * under us on another CPU
1614 		 */
1615 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1616 		timer->base = new_base;
1617 		/*
1618 		 * Enqueue the timers on the new cpu. This does not
1619 		 * reprogram the event device in case the timer
1620 		 * expires before the earliest on this CPU, but we run
1621 		 * hrtimer_interrupt after we migrated everything to
1622 		 * sort out already expired timers and reprogram the
1623 		 * event device.
1624 		 */
1625 		enqueue_hrtimer(timer, new_base);
1626 	}
1627 }
1628 
1629 int hrtimers_dead_cpu(unsigned int scpu)
1630 {
1631 	struct hrtimer_cpu_base *old_base, *new_base;
1632 	int i;
1633 
1634 	BUG_ON(cpu_online(scpu));
1635 	tick_cancel_sched_timer(scpu);
1636 
1637 	local_irq_disable();
1638 	old_base = &per_cpu(hrtimer_bases, scpu);
1639 	new_base = this_cpu_ptr(&hrtimer_bases);
1640 	/*
1641 	 * The caller is globally serialized and nobody else
1642 	 * takes two locks at once, deadlock is not possible.
1643 	 */
1644 	raw_spin_lock(&new_base->lock);
1645 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1646 
1647 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1648 		migrate_hrtimer_list(&old_base->clock_base[i],
1649 				     &new_base->clock_base[i]);
1650 	}
1651 
1652 	raw_spin_unlock(&old_base->lock);
1653 	raw_spin_unlock(&new_base->lock);
1654 
1655 	/* Check, if we got expired work to do */
1656 	__hrtimer_peek_ahead_timers();
1657 	local_irq_enable();
1658 	return 0;
1659 }
1660 
1661 #endif /* CONFIG_HOTPLUG_CPU */
1662 
1663 void __init hrtimers_init(void)
1664 {
1665 	hrtimers_prepare_cpu(smp_processor_id());
1666 }
1667 
1668 /**
1669  * schedule_hrtimeout_range_clock - sleep until timeout
1670  * @expires:	timeout value (ktime_t)
1671  * @delta:	slack in expires timeout (ktime_t)
1672  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1673  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1674  */
1675 int __sched
1676 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1677 			       const enum hrtimer_mode mode, int clock)
1678 {
1679 	struct hrtimer_sleeper t;
1680 
1681 	/*
1682 	 * Optimize when a zero timeout value is given. It does not
1683 	 * matter whether this is an absolute or a relative time.
1684 	 */
1685 	if (expires && *expires == 0) {
1686 		__set_current_state(TASK_RUNNING);
1687 		return 0;
1688 	}
1689 
1690 	/*
1691 	 * A NULL parameter means "infinite"
1692 	 */
1693 	if (!expires) {
1694 		schedule();
1695 		return -EINTR;
1696 	}
1697 
1698 	hrtimer_init_on_stack(&t.timer, clock, mode);
1699 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1700 
1701 	hrtimer_init_sleeper(&t, current);
1702 
1703 	hrtimer_start_expires(&t.timer, mode);
1704 
1705 	if (likely(t.task))
1706 		schedule();
1707 
1708 	hrtimer_cancel(&t.timer);
1709 	destroy_hrtimer_on_stack(&t.timer);
1710 
1711 	__set_current_state(TASK_RUNNING);
1712 
1713 	return !t.task ? 0 : -EINTR;
1714 }
1715 
1716 /**
1717  * schedule_hrtimeout_range - sleep until timeout
1718  * @expires:	timeout value (ktime_t)
1719  * @delta:	slack in expires timeout (ktime_t)
1720  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1721  *
1722  * Make the current task sleep until the given expiry time has
1723  * elapsed. The routine will return immediately unless
1724  * the current task state has been set (see set_current_state()).
1725  *
1726  * The @delta argument gives the kernel the freedom to schedule the
1727  * actual wakeup to a time that is both power and performance friendly.
1728  * The kernel give the normal best effort behavior for "@expires+@delta",
1729  * but may decide to fire the timer earlier, but no earlier than @expires.
1730  *
1731  * You can set the task state as follows -
1732  *
1733  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1734  * pass before the routine returns unless the current task is explicitly
1735  * woken up, (e.g. by wake_up_process()).
1736  *
1737  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1738  * delivered to the current task or the current task is explicitly woken
1739  * up.
1740  *
1741  * The current task state is guaranteed to be TASK_RUNNING when this
1742  * routine returns.
1743  *
1744  * Returns 0 when the timer has expired. If the task was woken before the
1745  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1746  * by an explicit wakeup, it returns -EINTR.
1747  */
1748 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1749 				     const enum hrtimer_mode mode)
1750 {
1751 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1752 					      CLOCK_MONOTONIC);
1753 }
1754 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1755 
1756 /**
1757  * schedule_hrtimeout - sleep until timeout
1758  * @expires:	timeout value (ktime_t)
1759  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1760  *
1761  * Make the current task sleep until the given expiry time has
1762  * elapsed. The routine will return immediately unless
1763  * the current task state has been set (see set_current_state()).
1764  *
1765  * You can set the task state as follows -
1766  *
1767  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1768  * pass before the routine returns unless the current task is explicitly
1769  * woken up, (e.g. by wake_up_process()).
1770  *
1771  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1772  * delivered to the current task or the current task is explicitly woken
1773  * up.
1774  *
1775  * The current task state is guaranteed to be TASK_RUNNING when this
1776  * routine returns.
1777  *
1778  * Returns 0 when the timer has expired. If the task was woken before the
1779  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1780  * by an explicit wakeup, it returns -EINTR.
1781  */
1782 int __sched schedule_hrtimeout(ktime_t *expires,
1783 			       const enum hrtimer_mode mode)
1784 {
1785 	return schedule_hrtimeout_range(expires, 0, mode);
1786 }
1787 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1788