1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 { 168 struct hrtimer_clock_base *base; 169 170 for (;;) { 171 base = READ_ONCE(timer->base); 172 if (likely(base != &migration_base)) { 173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 174 if (likely(base == timer->base)) 175 return base; 176 /* The timer has migrated to another CPU: */ 177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 178 } 179 cpu_relax(); 180 } 181 } 182 183 /* 184 * We do not migrate the timer when it is expiring before the next 185 * event on the target cpu. When high resolution is enabled, we cannot 186 * reprogram the target cpu hardware and we would cause it to fire 187 * late. To keep it simple, we handle the high resolution enabled and 188 * disabled case similar. 189 * 190 * Called with cpu_base->lock of target cpu held. 191 */ 192 static int 193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 194 { 195 ktime_t expires; 196 197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 198 return expires < new_base->cpu_base->expires_next; 199 } 200 201 static inline 202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 203 int pinned) 204 { 205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 206 if (static_branch_likely(&timers_migration_enabled) && !pinned) 207 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 208 #endif 209 return base; 210 } 211 212 /* 213 * We switch the timer base to a power-optimized selected CPU target, 214 * if: 215 * - NO_HZ_COMMON is enabled 216 * - timer migration is enabled 217 * - the timer callback is not running 218 * - the timer is not the first expiring timer on the new target 219 * 220 * If one of the above requirements is not fulfilled we move the timer 221 * to the current CPU or leave it on the previously assigned CPU if 222 * the timer callback is currently running. 223 */ 224 static inline struct hrtimer_clock_base * 225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 226 int pinned) 227 { 228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 229 struct hrtimer_clock_base *new_base; 230 int basenum = base->index; 231 232 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 233 new_cpu_base = get_target_base(this_cpu_base, pinned); 234 again: 235 new_base = &new_cpu_base->clock_base[basenum]; 236 237 if (base != new_base) { 238 /* 239 * We are trying to move timer to new_base. 240 * However we can't change timer's base while it is running, 241 * so we keep it on the same CPU. No hassle vs. reprogramming 242 * the event source in the high resolution case. The softirq 243 * code will take care of this when the timer function has 244 * completed. There is no conflict as we hold the lock until 245 * the timer is enqueued. 246 */ 247 if (unlikely(hrtimer_callback_running(timer))) 248 return base; 249 250 /* See the comment in lock_hrtimer_base() */ 251 WRITE_ONCE(timer->base, &migration_base); 252 raw_spin_unlock(&base->cpu_base->lock); 253 raw_spin_lock(&new_base->cpu_base->lock); 254 255 if (new_cpu_base != this_cpu_base && 256 hrtimer_check_target(timer, new_base)) { 257 raw_spin_unlock(&new_base->cpu_base->lock); 258 raw_spin_lock(&base->cpu_base->lock); 259 new_cpu_base = this_cpu_base; 260 WRITE_ONCE(timer->base, base); 261 goto again; 262 } 263 WRITE_ONCE(timer->base, new_base); 264 } else { 265 if (new_cpu_base != this_cpu_base && 266 hrtimer_check_target(timer, new_base)) { 267 new_cpu_base = this_cpu_base; 268 goto again; 269 } 270 } 271 return new_base; 272 } 273 274 #else /* CONFIG_SMP */ 275 276 static inline bool is_migration_base(struct hrtimer_clock_base *base) 277 { 278 return false; 279 } 280 281 static inline struct hrtimer_clock_base * 282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 283 { 284 struct hrtimer_clock_base *base = timer->base; 285 286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 287 288 return base; 289 } 290 291 # define switch_hrtimer_base(t, b, p) (b) 292 293 #endif /* !CONFIG_SMP */ 294 295 /* 296 * Functions for the union type storage format of ktime_t which are 297 * too large for inlining: 298 */ 299 #if BITS_PER_LONG < 64 300 /* 301 * Divide a ktime value by a nanosecond value 302 */ 303 s64 __ktime_divns(const ktime_t kt, s64 div) 304 { 305 int sft = 0; 306 s64 dclc; 307 u64 tmp; 308 309 dclc = ktime_to_ns(kt); 310 tmp = dclc < 0 ? -dclc : dclc; 311 312 /* Make sure the divisor is less than 2^32: */ 313 while (div >> 32) { 314 sft++; 315 div >>= 1; 316 } 317 tmp >>= sft; 318 do_div(tmp, (u32) div); 319 return dclc < 0 ? -tmp : tmp; 320 } 321 EXPORT_SYMBOL_GPL(__ktime_divns); 322 #endif /* BITS_PER_LONG >= 64 */ 323 324 /* 325 * Add two ktime values and do a safety check for overflow: 326 */ 327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 328 { 329 ktime_t res = ktime_add_unsafe(lhs, rhs); 330 331 /* 332 * We use KTIME_SEC_MAX here, the maximum timeout which we can 333 * return to user space in a timespec: 334 */ 335 if (res < 0 || res < lhs || res < rhs) 336 res = ktime_set(KTIME_SEC_MAX, 0); 337 338 return res; 339 } 340 341 EXPORT_SYMBOL_GPL(ktime_add_safe); 342 343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 344 345 static const struct debug_obj_descr hrtimer_debug_descr; 346 347 static void *hrtimer_debug_hint(void *addr) 348 { 349 return ((struct hrtimer *) addr)->function; 350 } 351 352 /* 353 * fixup_init is called when: 354 * - an active object is initialized 355 */ 356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 357 { 358 struct hrtimer *timer = addr; 359 360 switch (state) { 361 case ODEBUG_STATE_ACTIVE: 362 hrtimer_cancel(timer); 363 debug_object_init(timer, &hrtimer_debug_descr); 364 return true; 365 default: 366 return false; 367 } 368 } 369 370 /* 371 * fixup_activate is called when: 372 * - an active object is activated 373 * - an unknown non-static object is activated 374 */ 375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 376 { 377 switch (state) { 378 case ODEBUG_STATE_ACTIVE: 379 WARN_ON(1); 380 fallthrough; 381 default: 382 return false; 383 } 384 } 385 386 /* 387 * fixup_free is called when: 388 * - an active object is freed 389 */ 390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 391 { 392 struct hrtimer *timer = addr; 393 394 switch (state) { 395 case ODEBUG_STATE_ACTIVE: 396 hrtimer_cancel(timer); 397 debug_object_free(timer, &hrtimer_debug_descr); 398 return true; 399 default: 400 return false; 401 } 402 } 403 404 static const struct debug_obj_descr hrtimer_debug_descr = { 405 .name = "hrtimer", 406 .debug_hint = hrtimer_debug_hint, 407 .fixup_init = hrtimer_fixup_init, 408 .fixup_activate = hrtimer_fixup_activate, 409 .fixup_free = hrtimer_fixup_free, 410 }; 411 412 static inline void debug_hrtimer_init(struct hrtimer *timer) 413 { 414 debug_object_init(timer, &hrtimer_debug_descr); 415 } 416 417 static inline void debug_hrtimer_activate(struct hrtimer *timer, 418 enum hrtimer_mode mode) 419 { 420 debug_object_activate(timer, &hrtimer_debug_descr); 421 } 422 423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 424 { 425 debug_object_deactivate(timer, &hrtimer_debug_descr); 426 } 427 428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 429 enum hrtimer_mode mode); 430 431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 432 enum hrtimer_mode mode) 433 { 434 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 435 __hrtimer_init(timer, clock_id, mode); 436 } 437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 438 439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 440 clockid_t clock_id, enum hrtimer_mode mode); 441 442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 443 clockid_t clock_id, enum hrtimer_mode mode) 444 { 445 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 446 __hrtimer_init_sleeper(sl, clock_id, mode); 447 } 448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 449 450 void destroy_hrtimer_on_stack(struct hrtimer *timer) 451 { 452 debug_object_free(timer, &hrtimer_debug_descr); 453 } 454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 455 456 #else 457 458 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 459 static inline void debug_hrtimer_activate(struct hrtimer *timer, 460 enum hrtimer_mode mode) { } 461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 462 #endif 463 464 static inline void 465 debug_init(struct hrtimer *timer, clockid_t clockid, 466 enum hrtimer_mode mode) 467 { 468 debug_hrtimer_init(timer); 469 trace_hrtimer_init(timer, clockid, mode); 470 } 471 472 static inline void debug_activate(struct hrtimer *timer, 473 enum hrtimer_mode mode) 474 { 475 debug_hrtimer_activate(timer, mode); 476 trace_hrtimer_start(timer, mode); 477 } 478 479 static inline void debug_deactivate(struct hrtimer *timer) 480 { 481 debug_hrtimer_deactivate(timer); 482 trace_hrtimer_cancel(timer); 483 } 484 485 static struct hrtimer_clock_base * 486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 487 { 488 unsigned int idx; 489 490 if (!*active) 491 return NULL; 492 493 idx = __ffs(*active); 494 *active &= ~(1U << idx); 495 496 return &cpu_base->clock_base[idx]; 497 } 498 499 #define for_each_active_base(base, cpu_base, active) \ 500 while ((base = __next_base((cpu_base), &(active)))) 501 502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 503 const struct hrtimer *exclude, 504 unsigned int active, 505 ktime_t expires_next) 506 { 507 struct hrtimer_clock_base *base; 508 ktime_t expires; 509 510 for_each_active_base(base, cpu_base, active) { 511 struct timerqueue_node *next; 512 struct hrtimer *timer; 513 514 next = timerqueue_getnext(&base->active); 515 timer = container_of(next, struct hrtimer, node); 516 if (timer == exclude) { 517 /* Get to the next timer in the queue. */ 518 next = timerqueue_iterate_next(next); 519 if (!next) 520 continue; 521 522 timer = container_of(next, struct hrtimer, node); 523 } 524 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 525 if (expires < expires_next) { 526 expires_next = expires; 527 528 /* Skip cpu_base update if a timer is being excluded. */ 529 if (exclude) 530 continue; 531 532 if (timer->is_soft) 533 cpu_base->softirq_next_timer = timer; 534 else 535 cpu_base->next_timer = timer; 536 } 537 } 538 /* 539 * clock_was_set() might have changed base->offset of any of 540 * the clock bases so the result might be negative. Fix it up 541 * to prevent a false positive in clockevents_program_event(). 542 */ 543 if (expires_next < 0) 544 expires_next = 0; 545 return expires_next; 546 } 547 548 /* 549 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 550 * but does not set cpu_base::*expires_next, that is done by 551 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 552 * cpu_base::*expires_next right away, reprogramming logic would no longer 553 * work. 554 * 555 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 556 * those timers will get run whenever the softirq gets handled, at the end of 557 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 558 * 559 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 560 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 561 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 562 * 563 * @active_mask must be one of: 564 * - HRTIMER_ACTIVE_ALL, 565 * - HRTIMER_ACTIVE_SOFT, or 566 * - HRTIMER_ACTIVE_HARD. 567 */ 568 static ktime_t 569 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 570 { 571 unsigned int active; 572 struct hrtimer *next_timer = NULL; 573 ktime_t expires_next = KTIME_MAX; 574 575 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 576 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 577 cpu_base->softirq_next_timer = NULL; 578 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 579 active, KTIME_MAX); 580 581 next_timer = cpu_base->softirq_next_timer; 582 } 583 584 if (active_mask & HRTIMER_ACTIVE_HARD) { 585 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 586 cpu_base->next_timer = next_timer; 587 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 588 expires_next); 589 } 590 591 return expires_next; 592 } 593 594 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 595 { 596 ktime_t expires_next, soft = KTIME_MAX; 597 598 /* 599 * If the soft interrupt has already been activated, ignore the 600 * soft bases. They will be handled in the already raised soft 601 * interrupt. 602 */ 603 if (!cpu_base->softirq_activated) { 604 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 605 /* 606 * Update the soft expiry time. clock_settime() might have 607 * affected it. 608 */ 609 cpu_base->softirq_expires_next = soft; 610 } 611 612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 613 /* 614 * If a softirq timer is expiring first, update cpu_base->next_timer 615 * and program the hardware with the soft expiry time. 616 */ 617 if (expires_next > soft) { 618 cpu_base->next_timer = cpu_base->softirq_next_timer; 619 expires_next = soft; 620 } 621 622 return expires_next; 623 } 624 625 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 626 { 627 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 628 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 629 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 630 631 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 632 offs_real, offs_boot, offs_tai); 633 634 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 635 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 636 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 637 638 return now; 639 } 640 641 /* 642 * Is the high resolution mode active ? 643 */ 644 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 645 { 646 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 647 cpu_base->hres_active : 0; 648 } 649 650 static inline int hrtimer_hres_active(void) 651 { 652 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 653 } 654 655 /* 656 * Reprogram the event source with checking both queues for the 657 * next event 658 * Called with interrupts disabled and base->lock held 659 */ 660 static void 661 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 662 { 663 ktime_t expires_next; 664 665 expires_next = hrtimer_update_next_event(cpu_base); 666 667 if (skip_equal && expires_next == cpu_base->expires_next) 668 return; 669 670 cpu_base->expires_next = expires_next; 671 672 /* 673 * If hres is not active, hardware does not have to be 674 * reprogrammed yet. 675 * 676 * If a hang was detected in the last timer interrupt then we 677 * leave the hang delay active in the hardware. We want the 678 * system to make progress. That also prevents the following 679 * scenario: 680 * T1 expires 50ms from now 681 * T2 expires 5s from now 682 * 683 * T1 is removed, so this code is called and would reprogram 684 * the hardware to 5s from now. Any hrtimer_start after that 685 * will not reprogram the hardware due to hang_detected being 686 * set. So we'd effectivly block all timers until the T2 event 687 * fires. 688 */ 689 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 690 return; 691 692 tick_program_event(cpu_base->expires_next, 1); 693 } 694 695 /* High resolution timer related functions */ 696 #ifdef CONFIG_HIGH_RES_TIMERS 697 698 /* 699 * High resolution timer enabled ? 700 */ 701 static bool hrtimer_hres_enabled __read_mostly = true; 702 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 703 EXPORT_SYMBOL_GPL(hrtimer_resolution); 704 705 /* 706 * Enable / Disable high resolution mode 707 */ 708 static int __init setup_hrtimer_hres(char *str) 709 { 710 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 711 } 712 713 __setup("highres=", setup_hrtimer_hres); 714 715 /* 716 * hrtimer_high_res_enabled - query, if the highres mode is enabled 717 */ 718 static inline int hrtimer_is_hres_enabled(void) 719 { 720 return hrtimer_hres_enabled; 721 } 722 723 /* 724 * Retrigger next event is called after clock was set 725 * 726 * Called with interrupts disabled via on_each_cpu() 727 */ 728 static void retrigger_next_event(void *arg) 729 { 730 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 731 732 if (!__hrtimer_hres_active(base)) 733 return; 734 735 raw_spin_lock(&base->lock); 736 hrtimer_update_base(base); 737 hrtimer_force_reprogram(base, 0); 738 raw_spin_unlock(&base->lock); 739 } 740 741 /* 742 * Switch to high resolution mode 743 */ 744 static void hrtimer_switch_to_hres(void) 745 { 746 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 747 748 if (tick_init_highres()) { 749 pr_warn("Could not switch to high resolution mode on CPU %u\n", 750 base->cpu); 751 return; 752 } 753 base->hres_active = 1; 754 hrtimer_resolution = HIGH_RES_NSEC; 755 756 tick_setup_sched_timer(); 757 /* "Retrigger" the interrupt to get things going */ 758 retrigger_next_event(NULL); 759 } 760 761 static void clock_was_set_work(struct work_struct *work) 762 { 763 clock_was_set(); 764 } 765 766 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 767 768 /* 769 * Called from timekeeping and resume code to reprogram the hrtimer 770 * interrupt device on all cpus. 771 */ 772 void clock_was_set_delayed(void) 773 { 774 schedule_work(&hrtimer_work); 775 } 776 777 #else 778 779 static inline int hrtimer_is_hres_enabled(void) { return 0; } 780 static inline void hrtimer_switch_to_hres(void) { } 781 static inline void retrigger_next_event(void *arg) { } 782 783 #endif /* CONFIG_HIGH_RES_TIMERS */ 784 785 /* 786 * When a timer is enqueued and expires earlier than the already enqueued 787 * timers, we have to check, whether it expires earlier than the timer for 788 * which the clock event device was armed. 789 * 790 * Called with interrupts disabled and base->cpu_base.lock held 791 */ 792 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 793 { 794 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 795 struct hrtimer_clock_base *base = timer->base; 796 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 797 798 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 799 800 /* 801 * CLOCK_REALTIME timer might be requested with an absolute 802 * expiry time which is less than base->offset. Set it to 0. 803 */ 804 if (expires < 0) 805 expires = 0; 806 807 if (timer->is_soft) { 808 /* 809 * soft hrtimer could be started on a remote CPU. In this 810 * case softirq_expires_next needs to be updated on the 811 * remote CPU. The soft hrtimer will not expire before the 812 * first hard hrtimer on the remote CPU - 813 * hrtimer_check_target() prevents this case. 814 */ 815 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 816 817 if (timer_cpu_base->softirq_activated) 818 return; 819 820 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 821 return; 822 823 timer_cpu_base->softirq_next_timer = timer; 824 timer_cpu_base->softirq_expires_next = expires; 825 826 if (!ktime_before(expires, timer_cpu_base->expires_next) || 827 !reprogram) 828 return; 829 } 830 831 /* 832 * If the timer is not on the current cpu, we cannot reprogram 833 * the other cpus clock event device. 834 */ 835 if (base->cpu_base != cpu_base) 836 return; 837 838 /* 839 * If the hrtimer interrupt is running, then it will 840 * reevaluate the clock bases and reprogram the clock event 841 * device. The callbacks are always executed in hard interrupt 842 * context so we don't need an extra check for a running 843 * callback. 844 */ 845 if (cpu_base->in_hrtirq) 846 return; 847 848 if (expires >= cpu_base->expires_next) 849 return; 850 851 /* Update the pointer to the next expiring timer */ 852 cpu_base->next_timer = timer; 853 cpu_base->expires_next = expires; 854 855 /* 856 * If hres is not active, hardware does not have to be 857 * programmed yet. 858 * 859 * If a hang was detected in the last timer interrupt then we 860 * do not schedule a timer which is earlier than the expiry 861 * which we enforced in the hang detection. We want the system 862 * to make progress. 863 */ 864 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 865 return; 866 867 /* 868 * Program the timer hardware. We enforce the expiry for 869 * events which are already in the past. 870 */ 871 tick_program_event(expires, 1); 872 } 873 874 /* 875 * Clock realtime was set 876 * 877 * Change the offset of the realtime clock vs. the monotonic 878 * clock. 879 * 880 * We might have to reprogram the high resolution timer interrupt. On 881 * SMP we call the architecture specific code to retrigger _all_ high 882 * resolution timer interrupts. On UP we just disable interrupts and 883 * call the high resolution interrupt code. 884 */ 885 void clock_was_set(void) 886 { 887 #ifdef CONFIG_HIGH_RES_TIMERS 888 /* Retrigger the CPU local events everywhere */ 889 on_each_cpu(retrigger_next_event, NULL, 1); 890 #endif 891 timerfd_clock_was_set(); 892 } 893 894 /* 895 * During resume we might have to reprogram the high resolution timer 896 * interrupt on all online CPUs. However, all other CPUs will be 897 * stopped with IRQs interrupts disabled so the clock_was_set() call 898 * must be deferred. 899 */ 900 void hrtimers_resume(void) 901 { 902 lockdep_assert_irqs_disabled(); 903 /* Retrigger on the local CPU */ 904 retrigger_next_event(NULL); 905 /* And schedule a retrigger for all others */ 906 clock_was_set_delayed(); 907 } 908 909 /* 910 * Counterpart to lock_hrtimer_base above: 911 */ 912 static inline 913 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 914 { 915 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 916 } 917 918 /** 919 * hrtimer_forward - forward the timer expiry 920 * @timer: hrtimer to forward 921 * @now: forward past this time 922 * @interval: the interval to forward 923 * 924 * Forward the timer expiry so it will expire in the future. 925 * Returns the number of overruns. 926 * 927 * Can be safely called from the callback function of @timer. If 928 * called from other contexts @timer must neither be enqueued nor 929 * running the callback and the caller needs to take care of 930 * serialization. 931 * 932 * Note: This only updates the timer expiry value and does not requeue 933 * the timer. 934 */ 935 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 936 { 937 u64 orun = 1; 938 ktime_t delta; 939 940 delta = ktime_sub(now, hrtimer_get_expires(timer)); 941 942 if (delta < 0) 943 return 0; 944 945 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 946 return 0; 947 948 if (interval < hrtimer_resolution) 949 interval = hrtimer_resolution; 950 951 if (unlikely(delta >= interval)) { 952 s64 incr = ktime_to_ns(interval); 953 954 orun = ktime_divns(delta, incr); 955 hrtimer_add_expires_ns(timer, incr * orun); 956 if (hrtimer_get_expires_tv64(timer) > now) 957 return orun; 958 /* 959 * This (and the ktime_add() below) is the 960 * correction for exact: 961 */ 962 orun++; 963 } 964 hrtimer_add_expires(timer, interval); 965 966 return orun; 967 } 968 EXPORT_SYMBOL_GPL(hrtimer_forward); 969 970 /* 971 * enqueue_hrtimer - internal function to (re)start a timer 972 * 973 * The timer is inserted in expiry order. Insertion into the 974 * red black tree is O(log(n)). Must hold the base lock. 975 * 976 * Returns 1 when the new timer is the leftmost timer in the tree. 977 */ 978 static int enqueue_hrtimer(struct hrtimer *timer, 979 struct hrtimer_clock_base *base, 980 enum hrtimer_mode mode) 981 { 982 debug_activate(timer, mode); 983 984 base->cpu_base->active_bases |= 1 << base->index; 985 986 /* Pairs with the lockless read in hrtimer_is_queued() */ 987 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 988 989 return timerqueue_add(&base->active, &timer->node); 990 } 991 992 /* 993 * __remove_hrtimer - internal function to remove a timer 994 * 995 * Caller must hold the base lock. 996 * 997 * High resolution timer mode reprograms the clock event device when the 998 * timer is the one which expires next. The caller can disable this by setting 999 * reprogram to zero. This is useful, when the context does a reprogramming 1000 * anyway (e.g. timer interrupt) 1001 */ 1002 static void __remove_hrtimer(struct hrtimer *timer, 1003 struct hrtimer_clock_base *base, 1004 u8 newstate, int reprogram) 1005 { 1006 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1007 u8 state = timer->state; 1008 1009 /* Pairs with the lockless read in hrtimer_is_queued() */ 1010 WRITE_ONCE(timer->state, newstate); 1011 if (!(state & HRTIMER_STATE_ENQUEUED)) 1012 return; 1013 1014 if (!timerqueue_del(&base->active, &timer->node)) 1015 cpu_base->active_bases &= ~(1 << base->index); 1016 1017 /* 1018 * Note: If reprogram is false we do not update 1019 * cpu_base->next_timer. This happens when we remove the first 1020 * timer on a remote cpu. No harm as we never dereference 1021 * cpu_base->next_timer. So the worst thing what can happen is 1022 * an superflous call to hrtimer_force_reprogram() on the 1023 * remote cpu later on if the same timer gets enqueued again. 1024 */ 1025 if (reprogram && timer == cpu_base->next_timer) 1026 hrtimer_force_reprogram(cpu_base, 1); 1027 } 1028 1029 /* 1030 * remove hrtimer, called with base lock held 1031 */ 1032 static inline int 1033 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1034 { 1035 u8 state = timer->state; 1036 1037 if (state & HRTIMER_STATE_ENQUEUED) { 1038 int reprogram; 1039 1040 /* 1041 * Remove the timer and force reprogramming when high 1042 * resolution mode is active and the timer is on the current 1043 * CPU. If we remove a timer on another CPU, reprogramming is 1044 * skipped. The interrupt event on this CPU is fired and 1045 * reprogramming happens in the interrupt handler. This is a 1046 * rare case and less expensive than a smp call. 1047 */ 1048 debug_deactivate(timer); 1049 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1050 1051 if (!restart) 1052 state = HRTIMER_STATE_INACTIVE; 1053 1054 __remove_hrtimer(timer, base, state, reprogram); 1055 return 1; 1056 } 1057 return 0; 1058 } 1059 1060 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1061 const enum hrtimer_mode mode) 1062 { 1063 #ifdef CONFIG_TIME_LOW_RES 1064 /* 1065 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1066 * granular time values. For relative timers we add hrtimer_resolution 1067 * (i.e. one jiffie) to prevent short timeouts. 1068 */ 1069 timer->is_rel = mode & HRTIMER_MODE_REL; 1070 if (timer->is_rel) 1071 tim = ktime_add_safe(tim, hrtimer_resolution); 1072 #endif 1073 return tim; 1074 } 1075 1076 static void 1077 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1078 { 1079 ktime_t expires; 1080 1081 /* 1082 * Find the next SOFT expiration. 1083 */ 1084 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1085 1086 /* 1087 * reprogramming needs to be triggered, even if the next soft 1088 * hrtimer expires at the same time than the next hard 1089 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1090 */ 1091 if (expires == KTIME_MAX) 1092 return; 1093 1094 /* 1095 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1096 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1097 */ 1098 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1099 } 1100 1101 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1102 u64 delta_ns, const enum hrtimer_mode mode, 1103 struct hrtimer_clock_base *base) 1104 { 1105 struct hrtimer_clock_base *new_base; 1106 1107 /* Remove an active timer from the queue: */ 1108 remove_hrtimer(timer, base, true); 1109 1110 if (mode & HRTIMER_MODE_REL) 1111 tim = ktime_add_safe(tim, base->get_time()); 1112 1113 tim = hrtimer_update_lowres(timer, tim, mode); 1114 1115 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1116 1117 /* Switch the timer base, if necessary: */ 1118 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1119 1120 return enqueue_hrtimer(timer, new_base, mode); 1121 } 1122 1123 /** 1124 * hrtimer_start_range_ns - (re)start an hrtimer 1125 * @timer: the timer to be added 1126 * @tim: expiry time 1127 * @delta_ns: "slack" range for the timer 1128 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1129 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1130 * softirq based mode is considered for debug purpose only! 1131 */ 1132 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1133 u64 delta_ns, const enum hrtimer_mode mode) 1134 { 1135 struct hrtimer_clock_base *base; 1136 unsigned long flags; 1137 1138 /* 1139 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1140 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1141 * expiry mode because unmarked timers are moved to softirq expiry. 1142 */ 1143 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1144 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1145 else 1146 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1147 1148 base = lock_hrtimer_base(timer, &flags); 1149 1150 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1151 hrtimer_reprogram(timer, true); 1152 1153 unlock_hrtimer_base(timer, &flags); 1154 } 1155 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1156 1157 /** 1158 * hrtimer_try_to_cancel - try to deactivate a timer 1159 * @timer: hrtimer to stop 1160 * 1161 * Returns: 1162 * 1163 * * 0 when the timer was not active 1164 * * 1 when the timer was active 1165 * * -1 when the timer is currently executing the callback function and 1166 * cannot be stopped 1167 */ 1168 int hrtimer_try_to_cancel(struct hrtimer *timer) 1169 { 1170 struct hrtimer_clock_base *base; 1171 unsigned long flags; 1172 int ret = -1; 1173 1174 /* 1175 * Check lockless first. If the timer is not active (neither 1176 * enqueued nor running the callback, nothing to do here. The 1177 * base lock does not serialize against a concurrent enqueue, 1178 * so we can avoid taking it. 1179 */ 1180 if (!hrtimer_active(timer)) 1181 return 0; 1182 1183 base = lock_hrtimer_base(timer, &flags); 1184 1185 if (!hrtimer_callback_running(timer)) 1186 ret = remove_hrtimer(timer, base, false); 1187 1188 unlock_hrtimer_base(timer, &flags); 1189 1190 return ret; 1191 1192 } 1193 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1194 1195 #ifdef CONFIG_PREEMPT_RT 1196 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1197 { 1198 spin_lock_init(&base->softirq_expiry_lock); 1199 } 1200 1201 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1202 { 1203 spin_lock(&base->softirq_expiry_lock); 1204 } 1205 1206 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1207 { 1208 spin_unlock(&base->softirq_expiry_lock); 1209 } 1210 1211 /* 1212 * The counterpart to hrtimer_cancel_wait_running(). 1213 * 1214 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1215 * the timer callback to finish. Drop expiry_lock and reaquire it. That 1216 * allows the waiter to acquire the lock and make progress. 1217 */ 1218 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1219 unsigned long flags) 1220 { 1221 if (atomic_read(&cpu_base->timer_waiters)) { 1222 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1223 spin_unlock(&cpu_base->softirq_expiry_lock); 1224 spin_lock(&cpu_base->softirq_expiry_lock); 1225 raw_spin_lock_irq(&cpu_base->lock); 1226 } 1227 } 1228 1229 /* 1230 * This function is called on PREEMPT_RT kernels when the fast path 1231 * deletion of a timer failed because the timer callback function was 1232 * running. 1233 * 1234 * This prevents priority inversion: if the soft irq thread is preempted 1235 * in the middle of a timer callback, then calling del_timer_sync() can 1236 * lead to two issues: 1237 * 1238 * - If the caller is on a remote CPU then it has to spin wait for the timer 1239 * handler to complete. This can result in unbound priority inversion. 1240 * 1241 * - If the caller originates from the task which preempted the timer 1242 * handler on the same CPU, then spin waiting for the timer handler to 1243 * complete is never going to end. 1244 */ 1245 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1246 { 1247 /* Lockless read. Prevent the compiler from reloading it below */ 1248 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1249 1250 /* 1251 * Just relax if the timer expires in hard interrupt context or if 1252 * it is currently on the migration base. 1253 */ 1254 if (!timer->is_soft || is_migration_base(base)) { 1255 cpu_relax(); 1256 return; 1257 } 1258 1259 /* 1260 * Mark the base as contended and grab the expiry lock, which is 1261 * held by the softirq across the timer callback. Drop the lock 1262 * immediately so the softirq can expire the next timer. In theory 1263 * the timer could already be running again, but that's more than 1264 * unlikely and just causes another wait loop. 1265 */ 1266 atomic_inc(&base->cpu_base->timer_waiters); 1267 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1268 atomic_dec(&base->cpu_base->timer_waiters); 1269 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1270 } 1271 #else 1272 static inline void 1273 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1274 static inline void 1275 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1276 static inline void 1277 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1278 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1279 unsigned long flags) { } 1280 #endif 1281 1282 /** 1283 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1284 * @timer: the timer to be cancelled 1285 * 1286 * Returns: 1287 * 0 when the timer was not active 1288 * 1 when the timer was active 1289 */ 1290 int hrtimer_cancel(struct hrtimer *timer) 1291 { 1292 int ret; 1293 1294 do { 1295 ret = hrtimer_try_to_cancel(timer); 1296 1297 if (ret < 0) 1298 hrtimer_cancel_wait_running(timer); 1299 } while (ret < 0); 1300 return ret; 1301 } 1302 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1303 1304 /** 1305 * __hrtimer_get_remaining - get remaining time for the timer 1306 * @timer: the timer to read 1307 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1308 */ 1309 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1310 { 1311 unsigned long flags; 1312 ktime_t rem; 1313 1314 lock_hrtimer_base(timer, &flags); 1315 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1316 rem = hrtimer_expires_remaining_adjusted(timer); 1317 else 1318 rem = hrtimer_expires_remaining(timer); 1319 unlock_hrtimer_base(timer, &flags); 1320 1321 return rem; 1322 } 1323 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1324 1325 #ifdef CONFIG_NO_HZ_COMMON 1326 /** 1327 * hrtimer_get_next_event - get the time until next expiry event 1328 * 1329 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1330 */ 1331 u64 hrtimer_get_next_event(void) 1332 { 1333 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1334 u64 expires = KTIME_MAX; 1335 unsigned long flags; 1336 1337 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1338 1339 if (!__hrtimer_hres_active(cpu_base)) 1340 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1341 1342 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1343 1344 return expires; 1345 } 1346 1347 /** 1348 * hrtimer_next_event_without - time until next expiry event w/o one timer 1349 * @exclude: timer to exclude 1350 * 1351 * Returns the next expiry time over all timers except for the @exclude one or 1352 * KTIME_MAX if none of them is pending. 1353 */ 1354 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1355 { 1356 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1357 u64 expires = KTIME_MAX; 1358 unsigned long flags; 1359 1360 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1361 1362 if (__hrtimer_hres_active(cpu_base)) { 1363 unsigned int active; 1364 1365 if (!cpu_base->softirq_activated) { 1366 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1367 expires = __hrtimer_next_event_base(cpu_base, exclude, 1368 active, KTIME_MAX); 1369 } 1370 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1371 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1372 expires); 1373 } 1374 1375 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1376 1377 return expires; 1378 } 1379 #endif 1380 1381 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1382 { 1383 if (likely(clock_id < MAX_CLOCKS)) { 1384 int base = hrtimer_clock_to_base_table[clock_id]; 1385 1386 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1387 return base; 1388 } 1389 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1390 return HRTIMER_BASE_MONOTONIC; 1391 } 1392 1393 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1394 enum hrtimer_mode mode) 1395 { 1396 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1397 struct hrtimer_cpu_base *cpu_base; 1398 int base; 1399 1400 /* 1401 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1402 * marked for hard interrupt expiry mode are moved into soft 1403 * interrupt context for latency reasons and because the callbacks 1404 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1405 */ 1406 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1407 softtimer = true; 1408 1409 memset(timer, 0, sizeof(struct hrtimer)); 1410 1411 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1412 1413 /* 1414 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1415 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1416 * ensure POSIX compliance. 1417 */ 1418 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1419 clock_id = CLOCK_MONOTONIC; 1420 1421 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1422 base += hrtimer_clockid_to_base(clock_id); 1423 timer->is_soft = softtimer; 1424 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1425 timer->base = &cpu_base->clock_base[base]; 1426 timerqueue_init(&timer->node); 1427 } 1428 1429 /** 1430 * hrtimer_init - initialize a timer to the given clock 1431 * @timer: the timer to be initialized 1432 * @clock_id: the clock to be used 1433 * @mode: The modes which are relevant for intitialization: 1434 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1435 * HRTIMER_MODE_REL_SOFT 1436 * 1437 * The PINNED variants of the above can be handed in, 1438 * but the PINNED bit is ignored as pinning happens 1439 * when the hrtimer is started 1440 */ 1441 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1442 enum hrtimer_mode mode) 1443 { 1444 debug_init(timer, clock_id, mode); 1445 __hrtimer_init(timer, clock_id, mode); 1446 } 1447 EXPORT_SYMBOL_GPL(hrtimer_init); 1448 1449 /* 1450 * A timer is active, when it is enqueued into the rbtree or the 1451 * callback function is running or it's in the state of being migrated 1452 * to another cpu. 1453 * 1454 * It is important for this function to not return a false negative. 1455 */ 1456 bool hrtimer_active(const struct hrtimer *timer) 1457 { 1458 struct hrtimer_clock_base *base; 1459 unsigned int seq; 1460 1461 do { 1462 base = READ_ONCE(timer->base); 1463 seq = raw_read_seqcount_begin(&base->seq); 1464 1465 if (timer->state != HRTIMER_STATE_INACTIVE || 1466 base->running == timer) 1467 return true; 1468 1469 } while (read_seqcount_retry(&base->seq, seq) || 1470 base != READ_ONCE(timer->base)); 1471 1472 return false; 1473 } 1474 EXPORT_SYMBOL_GPL(hrtimer_active); 1475 1476 /* 1477 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1478 * distinct sections: 1479 * 1480 * - queued: the timer is queued 1481 * - callback: the timer is being ran 1482 * - post: the timer is inactive or (re)queued 1483 * 1484 * On the read side we ensure we observe timer->state and cpu_base->running 1485 * from the same section, if anything changed while we looked at it, we retry. 1486 * This includes timer->base changing because sequence numbers alone are 1487 * insufficient for that. 1488 * 1489 * The sequence numbers are required because otherwise we could still observe 1490 * a false negative if the read side got smeared over multiple consequtive 1491 * __run_hrtimer() invocations. 1492 */ 1493 1494 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1495 struct hrtimer_clock_base *base, 1496 struct hrtimer *timer, ktime_t *now, 1497 unsigned long flags) __must_hold(&cpu_base->lock) 1498 { 1499 enum hrtimer_restart (*fn)(struct hrtimer *); 1500 bool expires_in_hardirq; 1501 int restart; 1502 1503 lockdep_assert_held(&cpu_base->lock); 1504 1505 debug_deactivate(timer); 1506 base->running = timer; 1507 1508 /* 1509 * Separate the ->running assignment from the ->state assignment. 1510 * 1511 * As with a regular write barrier, this ensures the read side in 1512 * hrtimer_active() cannot observe base->running == NULL && 1513 * timer->state == INACTIVE. 1514 */ 1515 raw_write_seqcount_barrier(&base->seq); 1516 1517 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1518 fn = timer->function; 1519 1520 /* 1521 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1522 * timer is restarted with a period then it becomes an absolute 1523 * timer. If its not restarted it does not matter. 1524 */ 1525 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1526 timer->is_rel = false; 1527 1528 /* 1529 * The timer is marked as running in the CPU base, so it is 1530 * protected against migration to a different CPU even if the lock 1531 * is dropped. 1532 */ 1533 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1534 trace_hrtimer_expire_entry(timer, now); 1535 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1536 1537 restart = fn(timer); 1538 1539 lockdep_hrtimer_exit(expires_in_hardirq); 1540 trace_hrtimer_expire_exit(timer); 1541 raw_spin_lock_irq(&cpu_base->lock); 1542 1543 /* 1544 * Note: We clear the running state after enqueue_hrtimer and 1545 * we do not reprogram the event hardware. Happens either in 1546 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1547 * 1548 * Note: Because we dropped the cpu_base->lock above, 1549 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1550 * for us already. 1551 */ 1552 if (restart != HRTIMER_NORESTART && 1553 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1554 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1555 1556 /* 1557 * Separate the ->running assignment from the ->state assignment. 1558 * 1559 * As with a regular write barrier, this ensures the read side in 1560 * hrtimer_active() cannot observe base->running.timer == NULL && 1561 * timer->state == INACTIVE. 1562 */ 1563 raw_write_seqcount_barrier(&base->seq); 1564 1565 WARN_ON_ONCE(base->running != timer); 1566 base->running = NULL; 1567 } 1568 1569 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1570 unsigned long flags, unsigned int active_mask) 1571 { 1572 struct hrtimer_clock_base *base; 1573 unsigned int active = cpu_base->active_bases & active_mask; 1574 1575 for_each_active_base(base, cpu_base, active) { 1576 struct timerqueue_node *node; 1577 ktime_t basenow; 1578 1579 basenow = ktime_add(now, base->offset); 1580 1581 while ((node = timerqueue_getnext(&base->active))) { 1582 struct hrtimer *timer; 1583 1584 timer = container_of(node, struct hrtimer, node); 1585 1586 /* 1587 * The immediate goal for using the softexpires is 1588 * minimizing wakeups, not running timers at the 1589 * earliest interrupt after their soft expiration. 1590 * This allows us to avoid using a Priority Search 1591 * Tree, which can answer a stabbing querry for 1592 * overlapping intervals and instead use the simple 1593 * BST we already have. 1594 * We don't add extra wakeups by delaying timers that 1595 * are right-of a not yet expired timer, because that 1596 * timer will have to trigger a wakeup anyway. 1597 */ 1598 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1599 break; 1600 1601 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1602 if (active_mask == HRTIMER_ACTIVE_SOFT) 1603 hrtimer_sync_wait_running(cpu_base, flags); 1604 } 1605 } 1606 } 1607 1608 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1609 { 1610 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1611 unsigned long flags; 1612 ktime_t now; 1613 1614 hrtimer_cpu_base_lock_expiry(cpu_base); 1615 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1616 1617 now = hrtimer_update_base(cpu_base); 1618 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1619 1620 cpu_base->softirq_activated = 0; 1621 hrtimer_update_softirq_timer(cpu_base, true); 1622 1623 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1624 hrtimer_cpu_base_unlock_expiry(cpu_base); 1625 } 1626 1627 #ifdef CONFIG_HIGH_RES_TIMERS 1628 1629 /* 1630 * High resolution timer interrupt 1631 * Called with interrupts disabled 1632 */ 1633 void hrtimer_interrupt(struct clock_event_device *dev) 1634 { 1635 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1636 ktime_t expires_next, now, entry_time, delta; 1637 unsigned long flags; 1638 int retries = 0; 1639 1640 BUG_ON(!cpu_base->hres_active); 1641 cpu_base->nr_events++; 1642 dev->next_event = KTIME_MAX; 1643 1644 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1645 entry_time = now = hrtimer_update_base(cpu_base); 1646 retry: 1647 cpu_base->in_hrtirq = 1; 1648 /* 1649 * We set expires_next to KTIME_MAX here with cpu_base->lock 1650 * held to prevent that a timer is enqueued in our queue via 1651 * the migration code. This does not affect enqueueing of 1652 * timers which run their callback and need to be requeued on 1653 * this CPU. 1654 */ 1655 cpu_base->expires_next = KTIME_MAX; 1656 1657 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1658 cpu_base->softirq_expires_next = KTIME_MAX; 1659 cpu_base->softirq_activated = 1; 1660 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1661 } 1662 1663 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1664 1665 /* Reevaluate the clock bases for the [soft] next expiry */ 1666 expires_next = hrtimer_update_next_event(cpu_base); 1667 /* 1668 * Store the new expiry value so the migration code can verify 1669 * against it. 1670 */ 1671 cpu_base->expires_next = expires_next; 1672 cpu_base->in_hrtirq = 0; 1673 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1674 1675 /* Reprogramming necessary ? */ 1676 if (!tick_program_event(expires_next, 0)) { 1677 cpu_base->hang_detected = 0; 1678 return; 1679 } 1680 1681 /* 1682 * The next timer was already expired due to: 1683 * - tracing 1684 * - long lasting callbacks 1685 * - being scheduled away when running in a VM 1686 * 1687 * We need to prevent that we loop forever in the hrtimer 1688 * interrupt routine. We give it 3 attempts to avoid 1689 * overreacting on some spurious event. 1690 * 1691 * Acquire base lock for updating the offsets and retrieving 1692 * the current time. 1693 */ 1694 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1695 now = hrtimer_update_base(cpu_base); 1696 cpu_base->nr_retries++; 1697 if (++retries < 3) 1698 goto retry; 1699 /* 1700 * Give the system a chance to do something else than looping 1701 * here. We stored the entry time, so we know exactly how long 1702 * we spent here. We schedule the next event this amount of 1703 * time away. 1704 */ 1705 cpu_base->nr_hangs++; 1706 cpu_base->hang_detected = 1; 1707 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1708 1709 delta = ktime_sub(now, entry_time); 1710 if ((unsigned int)delta > cpu_base->max_hang_time) 1711 cpu_base->max_hang_time = (unsigned int) delta; 1712 /* 1713 * Limit it to a sensible value as we enforce a longer 1714 * delay. Give the CPU at least 100ms to catch up. 1715 */ 1716 if (delta > 100 * NSEC_PER_MSEC) 1717 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1718 else 1719 expires_next = ktime_add(now, delta); 1720 tick_program_event(expires_next, 1); 1721 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1722 } 1723 1724 /* called with interrupts disabled */ 1725 static inline void __hrtimer_peek_ahead_timers(void) 1726 { 1727 struct tick_device *td; 1728 1729 if (!hrtimer_hres_active()) 1730 return; 1731 1732 td = this_cpu_ptr(&tick_cpu_device); 1733 if (td && td->evtdev) 1734 hrtimer_interrupt(td->evtdev); 1735 } 1736 1737 #else /* CONFIG_HIGH_RES_TIMERS */ 1738 1739 static inline void __hrtimer_peek_ahead_timers(void) { } 1740 1741 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1742 1743 /* 1744 * Called from run_local_timers in hardirq context every jiffy 1745 */ 1746 void hrtimer_run_queues(void) 1747 { 1748 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1749 unsigned long flags; 1750 ktime_t now; 1751 1752 if (__hrtimer_hres_active(cpu_base)) 1753 return; 1754 1755 /* 1756 * This _is_ ugly: We have to check periodically, whether we 1757 * can switch to highres and / or nohz mode. The clocksource 1758 * switch happens with xtime_lock held. Notification from 1759 * there only sets the check bit in the tick_oneshot code, 1760 * otherwise we might deadlock vs. xtime_lock. 1761 */ 1762 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1763 hrtimer_switch_to_hres(); 1764 return; 1765 } 1766 1767 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1768 now = hrtimer_update_base(cpu_base); 1769 1770 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1771 cpu_base->softirq_expires_next = KTIME_MAX; 1772 cpu_base->softirq_activated = 1; 1773 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1774 } 1775 1776 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1777 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1778 } 1779 1780 /* 1781 * Sleep related functions: 1782 */ 1783 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1784 { 1785 struct hrtimer_sleeper *t = 1786 container_of(timer, struct hrtimer_sleeper, timer); 1787 struct task_struct *task = t->task; 1788 1789 t->task = NULL; 1790 if (task) 1791 wake_up_process(task); 1792 1793 return HRTIMER_NORESTART; 1794 } 1795 1796 /** 1797 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1798 * @sl: sleeper to be started 1799 * @mode: timer mode abs/rel 1800 * 1801 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1802 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1803 */ 1804 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1805 enum hrtimer_mode mode) 1806 { 1807 /* 1808 * Make the enqueue delivery mode check work on RT. If the sleeper 1809 * was initialized for hard interrupt delivery, force the mode bit. 1810 * This is a special case for hrtimer_sleepers because 1811 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1812 * fiddling with this decision is avoided at the call sites. 1813 */ 1814 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1815 mode |= HRTIMER_MODE_HARD; 1816 1817 hrtimer_start_expires(&sl->timer, mode); 1818 } 1819 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1820 1821 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1822 clockid_t clock_id, enum hrtimer_mode mode) 1823 { 1824 /* 1825 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1826 * marked for hard interrupt expiry mode are moved into soft 1827 * interrupt context either for latency reasons or because the 1828 * hrtimer callback takes regular spinlocks or invokes other 1829 * functions which are not suitable for hard interrupt context on 1830 * PREEMPT_RT. 1831 * 1832 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1833 * context, but there is a latency concern: Untrusted userspace can 1834 * spawn many threads which arm timers for the same expiry time on 1835 * the same CPU. That causes a latency spike due to the wakeup of 1836 * a gazillion threads. 1837 * 1838 * OTOH, priviledged real-time user space applications rely on the 1839 * low latency of hard interrupt wakeups. If the current task is in 1840 * a real-time scheduling class, mark the mode for hard interrupt 1841 * expiry. 1842 */ 1843 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1844 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1845 mode |= HRTIMER_MODE_HARD; 1846 } 1847 1848 __hrtimer_init(&sl->timer, clock_id, mode); 1849 sl->timer.function = hrtimer_wakeup; 1850 sl->task = current; 1851 } 1852 1853 /** 1854 * hrtimer_init_sleeper - initialize sleeper to the given clock 1855 * @sl: sleeper to be initialized 1856 * @clock_id: the clock to be used 1857 * @mode: timer mode abs/rel 1858 */ 1859 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1860 enum hrtimer_mode mode) 1861 { 1862 debug_init(&sl->timer, clock_id, mode); 1863 __hrtimer_init_sleeper(sl, clock_id, mode); 1864 1865 } 1866 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1867 1868 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1869 { 1870 switch(restart->nanosleep.type) { 1871 #ifdef CONFIG_COMPAT_32BIT_TIME 1872 case TT_COMPAT: 1873 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1874 return -EFAULT; 1875 break; 1876 #endif 1877 case TT_NATIVE: 1878 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1879 return -EFAULT; 1880 break; 1881 default: 1882 BUG(); 1883 } 1884 return -ERESTART_RESTARTBLOCK; 1885 } 1886 1887 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1888 { 1889 struct restart_block *restart; 1890 1891 do { 1892 set_current_state(TASK_INTERRUPTIBLE); 1893 hrtimer_sleeper_start_expires(t, mode); 1894 1895 if (likely(t->task)) 1896 freezable_schedule(); 1897 1898 hrtimer_cancel(&t->timer); 1899 mode = HRTIMER_MODE_ABS; 1900 1901 } while (t->task && !signal_pending(current)); 1902 1903 __set_current_state(TASK_RUNNING); 1904 1905 if (!t->task) 1906 return 0; 1907 1908 restart = ¤t->restart_block; 1909 if (restart->nanosleep.type != TT_NONE) { 1910 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1911 struct timespec64 rmt; 1912 1913 if (rem <= 0) 1914 return 0; 1915 rmt = ktime_to_timespec64(rem); 1916 1917 return nanosleep_copyout(restart, &rmt); 1918 } 1919 return -ERESTART_RESTARTBLOCK; 1920 } 1921 1922 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1923 { 1924 struct hrtimer_sleeper t; 1925 int ret; 1926 1927 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 1928 HRTIMER_MODE_ABS); 1929 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1930 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1931 destroy_hrtimer_on_stack(&t.timer); 1932 return ret; 1933 } 1934 1935 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 1936 const clockid_t clockid) 1937 { 1938 struct restart_block *restart; 1939 struct hrtimer_sleeper t; 1940 int ret = 0; 1941 u64 slack; 1942 1943 slack = current->timer_slack_ns; 1944 if (dl_task(current) || rt_task(current)) 1945 slack = 0; 1946 1947 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 1948 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 1949 ret = do_nanosleep(&t, mode); 1950 if (ret != -ERESTART_RESTARTBLOCK) 1951 goto out; 1952 1953 /* Absolute timers do not update the rmtp value and restart: */ 1954 if (mode == HRTIMER_MODE_ABS) { 1955 ret = -ERESTARTNOHAND; 1956 goto out; 1957 } 1958 1959 restart = ¤t->restart_block; 1960 restart->fn = hrtimer_nanosleep_restart; 1961 restart->nanosleep.clockid = t.timer.base->clockid; 1962 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1963 out: 1964 destroy_hrtimer_on_stack(&t.timer); 1965 return ret; 1966 } 1967 1968 #ifdef CONFIG_64BIT 1969 1970 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1971 struct __kernel_timespec __user *, rmtp) 1972 { 1973 struct timespec64 tu; 1974 1975 if (get_timespec64(&tu, rqtp)) 1976 return -EFAULT; 1977 1978 if (!timespec64_valid(&tu)) 1979 return -EINVAL; 1980 1981 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1982 current->restart_block.nanosleep.rmtp = rmtp; 1983 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1984 CLOCK_MONOTONIC); 1985 } 1986 1987 #endif 1988 1989 #ifdef CONFIG_COMPAT_32BIT_TIME 1990 1991 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1992 struct old_timespec32 __user *, rmtp) 1993 { 1994 struct timespec64 tu; 1995 1996 if (get_old_timespec32(&tu, rqtp)) 1997 return -EFAULT; 1998 1999 if (!timespec64_valid(&tu)) 2000 return -EINVAL; 2001 2002 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2003 current->restart_block.nanosleep.compat_rmtp = rmtp; 2004 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2005 CLOCK_MONOTONIC); 2006 } 2007 #endif 2008 2009 /* 2010 * Functions related to boot-time initialization: 2011 */ 2012 int hrtimers_prepare_cpu(unsigned int cpu) 2013 { 2014 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2015 int i; 2016 2017 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2018 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2019 2020 clock_b->cpu_base = cpu_base; 2021 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2022 timerqueue_init_head(&clock_b->active); 2023 } 2024 2025 cpu_base->cpu = cpu; 2026 cpu_base->active_bases = 0; 2027 cpu_base->hres_active = 0; 2028 cpu_base->hang_detected = 0; 2029 cpu_base->next_timer = NULL; 2030 cpu_base->softirq_next_timer = NULL; 2031 cpu_base->expires_next = KTIME_MAX; 2032 cpu_base->softirq_expires_next = KTIME_MAX; 2033 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2034 return 0; 2035 } 2036 2037 #ifdef CONFIG_HOTPLUG_CPU 2038 2039 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2040 struct hrtimer_clock_base *new_base) 2041 { 2042 struct hrtimer *timer; 2043 struct timerqueue_node *node; 2044 2045 while ((node = timerqueue_getnext(&old_base->active))) { 2046 timer = container_of(node, struct hrtimer, node); 2047 BUG_ON(hrtimer_callback_running(timer)); 2048 debug_deactivate(timer); 2049 2050 /* 2051 * Mark it as ENQUEUED not INACTIVE otherwise the 2052 * timer could be seen as !active and just vanish away 2053 * under us on another CPU 2054 */ 2055 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2056 timer->base = new_base; 2057 /* 2058 * Enqueue the timers on the new cpu. This does not 2059 * reprogram the event device in case the timer 2060 * expires before the earliest on this CPU, but we run 2061 * hrtimer_interrupt after we migrated everything to 2062 * sort out already expired timers and reprogram the 2063 * event device. 2064 */ 2065 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2066 } 2067 } 2068 2069 int hrtimers_dead_cpu(unsigned int scpu) 2070 { 2071 struct hrtimer_cpu_base *old_base, *new_base; 2072 int i; 2073 2074 BUG_ON(cpu_online(scpu)); 2075 tick_cancel_sched_timer(scpu); 2076 2077 /* 2078 * this BH disable ensures that raise_softirq_irqoff() does 2079 * not wakeup ksoftirqd (and acquire the pi-lock) while 2080 * holding the cpu_base lock 2081 */ 2082 local_bh_disable(); 2083 local_irq_disable(); 2084 old_base = &per_cpu(hrtimer_bases, scpu); 2085 new_base = this_cpu_ptr(&hrtimer_bases); 2086 /* 2087 * The caller is globally serialized and nobody else 2088 * takes two locks at once, deadlock is not possible. 2089 */ 2090 raw_spin_lock(&new_base->lock); 2091 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2092 2093 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2094 migrate_hrtimer_list(&old_base->clock_base[i], 2095 &new_base->clock_base[i]); 2096 } 2097 2098 /* 2099 * The migration might have changed the first expiring softirq 2100 * timer on this CPU. Update it. 2101 */ 2102 hrtimer_update_softirq_timer(new_base, false); 2103 2104 raw_spin_unlock(&old_base->lock); 2105 raw_spin_unlock(&new_base->lock); 2106 2107 /* Check, if we got expired work to do */ 2108 __hrtimer_peek_ahead_timers(); 2109 local_irq_enable(); 2110 local_bh_enable(); 2111 return 0; 2112 } 2113 2114 #endif /* CONFIG_HOTPLUG_CPU */ 2115 2116 void __init hrtimers_init(void) 2117 { 2118 hrtimers_prepare_cpu(smp_processor_id()); 2119 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2120 } 2121 2122 /** 2123 * schedule_hrtimeout_range_clock - sleep until timeout 2124 * @expires: timeout value (ktime_t) 2125 * @delta: slack in expires timeout (ktime_t) 2126 * @mode: timer mode 2127 * @clock_id: timer clock to be used 2128 */ 2129 int __sched 2130 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2131 const enum hrtimer_mode mode, clockid_t clock_id) 2132 { 2133 struct hrtimer_sleeper t; 2134 2135 /* 2136 * Optimize when a zero timeout value is given. It does not 2137 * matter whether this is an absolute or a relative time. 2138 */ 2139 if (expires && *expires == 0) { 2140 __set_current_state(TASK_RUNNING); 2141 return 0; 2142 } 2143 2144 /* 2145 * A NULL parameter means "infinite" 2146 */ 2147 if (!expires) { 2148 schedule(); 2149 return -EINTR; 2150 } 2151 2152 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2153 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2154 hrtimer_sleeper_start_expires(&t, mode); 2155 2156 if (likely(t.task)) 2157 schedule(); 2158 2159 hrtimer_cancel(&t.timer); 2160 destroy_hrtimer_on_stack(&t.timer); 2161 2162 __set_current_state(TASK_RUNNING); 2163 2164 return !t.task ? 0 : -EINTR; 2165 } 2166 2167 /** 2168 * schedule_hrtimeout_range - sleep until timeout 2169 * @expires: timeout value (ktime_t) 2170 * @delta: slack in expires timeout (ktime_t) 2171 * @mode: timer mode 2172 * 2173 * Make the current task sleep until the given expiry time has 2174 * elapsed. The routine will return immediately unless 2175 * the current task state has been set (see set_current_state()). 2176 * 2177 * The @delta argument gives the kernel the freedom to schedule the 2178 * actual wakeup to a time that is both power and performance friendly. 2179 * The kernel give the normal best effort behavior for "@expires+@delta", 2180 * but may decide to fire the timer earlier, but no earlier than @expires. 2181 * 2182 * You can set the task state as follows - 2183 * 2184 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2185 * pass before the routine returns unless the current task is explicitly 2186 * woken up, (e.g. by wake_up_process()). 2187 * 2188 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2189 * delivered to the current task or the current task is explicitly woken 2190 * up. 2191 * 2192 * The current task state is guaranteed to be TASK_RUNNING when this 2193 * routine returns. 2194 * 2195 * Returns 0 when the timer has expired. If the task was woken before the 2196 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2197 * by an explicit wakeup, it returns -EINTR. 2198 */ 2199 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2200 const enum hrtimer_mode mode) 2201 { 2202 return schedule_hrtimeout_range_clock(expires, delta, mode, 2203 CLOCK_MONOTONIC); 2204 } 2205 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2206 2207 /** 2208 * schedule_hrtimeout - sleep until timeout 2209 * @expires: timeout value (ktime_t) 2210 * @mode: timer mode 2211 * 2212 * Make the current task sleep until the given expiry time has 2213 * elapsed. The routine will return immediately unless 2214 * the current task state has been set (see set_current_state()). 2215 * 2216 * You can set the task state as follows - 2217 * 2218 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2219 * pass before the routine returns unless the current task is explicitly 2220 * woken up, (e.g. by wake_up_process()). 2221 * 2222 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2223 * delivered to the current task or the current task is explicitly woken 2224 * up. 2225 * 2226 * The current task state is guaranteed to be TASK_RUNNING when this 2227 * routine returns. 2228 * 2229 * Returns 0 when the timer has expired. If the task was woken before the 2230 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2231 * by an explicit wakeup, it returns -EINTR. 2232 */ 2233 int __sched schedule_hrtimeout(ktime_t *expires, 2234 const enum hrtimer_mode mode) 2235 { 2236 return schedule_hrtimeout_range(expires, 0, mode); 2237 } 2238 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2239