xref: /openbmc/linux/kernel/time/hrtimer.c (revision 56d06fa2)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return base;
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return base;
195 }
196 #endif
197 
198 /*
199  * We switch the timer base to a power-optimized selected CPU target,
200  * if:
201  *	- NO_HZ_COMMON is enabled
202  *	- timer migration is enabled
203  *	- the timer callback is not running
204  *	- the timer is not the first expiring timer on the new target
205  *
206  * If one of the above requirements is not fulfilled we move the timer
207  * to the current CPU or leave it on the previously assigned CPU if
208  * the timer callback is currently running.
209  */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 		    int pinned)
213 {
214 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 	struct hrtimer_clock_base *new_base;
216 	int basenum = base->index;
217 
218 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 	new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_hrtimer_base() */
237 		timer->base = &migration_base;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (new_cpu_base != this_cpu_base &&
242 		    hrtimer_check_target(timer, new_base)) {
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			new_cpu_base = this_cpu_base;
246 			timer->base = base;
247 			goto again;
248 		}
249 		timer->base = new_base;
250 	} else {
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			new_cpu_base = this_cpu_base;
254 			goto again;
255 		}
256 	}
257 	return new_base;
258 }
259 
260 #else /* CONFIG_SMP */
261 
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 	struct hrtimer_clock_base *base = timer->base;
266 
267 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 
269 	return base;
270 }
271 
272 # define switch_hrtimer_base(t, b, p)	(b)
273 
274 #endif	/* !CONFIG_SMP */
275 
276 /*
277  * Functions for the union type storage format of ktime_t which are
278  * too large for inlining:
279  */
280 #if BITS_PER_LONG < 64
281 /*
282  * Divide a ktime value by a nanosecond value
283  */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 	int sft = 0;
287 	s64 dclc;
288 	u64 tmp;
289 
290 	dclc = ktime_to_ns(kt);
291 	tmp = dclc < 0 ? -dclc : dclc;
292 
293 	/* Make sure the divisor is less than 2^32: */
294 	while (div >> 32) {
295 		sft++;
296 		div >>= 1;
297 	}
298 	tmp >>= sft;
299 	do_div(tmp, (unsigned long) div);
300 	return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304 
305 /*
306  * Add two ktime values and do a safety check for overflow:
307  */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 	ktime_t res = ktime_add(lhs, rhs);
311 
312 	/*
313 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 	 * return to user space in a timespec:
315 	 */
316 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 		res = ktime_set(KTIME_SEC_MAX, 0);
318 
319 	return res;
320 }
321 
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323 
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 
326 static struct debug_obj_descr hrtimer_debug_descr;
327 
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 	return ((struct hrtimer *) addr)->function;
331 }
332 
333 /*
334  * fixup_init is called when:
335  * - an active object is initialized
336  */
337 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 	struct hrtimer *timer = addr;
340 
341 	switch (state) {
342 	case ODEBUG_STATE_ACTIVE:
343 		hrtimer_cancel(timer);
344 		debug_object_init(timer, &hrtimer_debug_descr);
345 		return 1;
346 	default:
347 		return 0;
348 	}
349 }
350 
351 /*
352  * fixup_activate is called when:
353  * - an active object is activated
354  * - an unknown object is activated (might be a statically initialized object)
355  */
356 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 	switch (state) {
359 
360 	case ODEBUG_STATE_NOTAVAILABLE:
361 		WARN_ON_ONCE(1);
362 		return 0;
363 
364 	case ODEBUG_STATE_ACTIVE:
365 		WARN_ON(1);
366 
367 	default:
368 		return 0;
369 	}
370 }
371 
372 /*
373  * fixup_free is called when:
374  * - an active object is freed
375  */
376 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
377 {
378 	struct hrtimer *timer = addr;
379 
380 	switch (state) {
381 	case ODEBUG_STATE_ACTIVE:
382 		hrtimer_cancel(timer);
383 		debug_object_free(timer, &hrtimer_debug_descr);
384 		return 1;
385 	default:
386 		return 0;
387 	}
388 }
389 
390 static struct debug_obj_descr hrtimer_debug_descr = {
391 	.name		= "hrtimer",
392 	.debug_hint	= hrtimer_debug_hint,
393 	.fixup_init	= hrtimer_fixup_init,
394 	.fixup_activate	= hrtimer_fixup_activate,
395 	.fixup_free	= hrtimer_fixup_free,
396 };
397 
398 static inline void debug_hrtimer_init(struct hrtimer *timer)
399 {
400 	debug_object_init(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_activate(struct hrtimer *timer)
404 {
405 	debug_object_activate(timer, &hrtimer_debug_descr);
406 }
407 
408 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
409 {
410 	debug_object_deactivate(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_free(struct hrtimer *timer)
414 {
415 	debug_object_free(timer, &hrtimer_debug_descr);
416 }
417 
418 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
419 			   enum hrtimer_mode mode);
420 
421 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
422 			   enum hrtimer_mode mode)
423 {
424 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
425 	__hrtimer_init(timer, clock_id, mode);
426 }
427 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
428 
429 void destroy_hrtimer_on_stack(struct hrtimer *timer)
430 {
431 	debug_object_free(timer, &hrtimer_debug_descr);
432 }
433 
434 #else
435 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
436 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
437 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
438 #endif
439 
440 static inline void
441 debug_init(struct hrtimer *timer, clockid_t clockid,
442 	   enum hrtimer_mode mode)
443 {
444 	debug_hrtimer_init(timer);
445 	trace_hrtimer_init(timer, clockid, mode);
446 }
447 
448 static inline void debug_activate(struct hrtimer *timer)
449 {
450 	debug_hrtimer_activate(timer);
451 	trace_hrtimer_start(timer);
452 }
453 
454 static inline void debug_deactivate(struct hrtimer *timer)
455 {
456 	debug_hrtimer_deactivate(timer);
457 	trace_hrtimer_cancel(timer);
458 }
459 
460 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
461 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
462 					     struct hrtimer *timer)
463 {
464 #ifdef CONFIG_HIGH_RES_TIMERS
465 	cpu_base->next_timer = timer;
466 #endif
467 }
468 
469 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
470 {
471 	struct hrtimer_clock_base *base = cpu_base->clock_base;
472 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
473 	unsigned int active = cpu_base->active_bases;
474 
475 	hrtimer_update_next_timer(cpu_base, NULL);
476 	for (; active; base++, active >>= 1) {
477 		struct timerqueue_node *next;
478 		struct hrtimer *timer;
479 
480 		if (!(active & 0x01))
481 			continue;
482 
483 		next = timerqueue_getnext(&base->active);
484 		timer = container_of(next, struct hrtimer, node);
485 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
486 		if (expires.tv64 < expires_next.tv64) {
487 			expires_next = expires;
488 			hrtimer_update_next_timer(cpu_base, timer);
489 		}
490 	}
491 	/*
492 	 * clock_was_set() might have changed base->offset of any of
493 	 * the clock bases so the result might be negative. Fix it up
494 	 * to prevent a false positive in clockevents_program_event().
495 	 */
496 	if (expires_next.tv64 < 0)
497 		expires_next.tv64 = 0;
498 	return expires_next;
499 }
500 #endif
501 
502 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
503 {
504 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
505 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
506 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
507 
508 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
509 					    offs_real, offs_boot, offs_tai);
510 }
511 
512 /* High resolution timer related functions */
513 #ifdef CONFIG_HIGH_RES_TIMERS
514 
515 /*
516  * High resolution timer enabled ?
517  */
518 static bool hrtimer_hres_enabled __read_mostly  = true;
519 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
520 EXPORT_SYMBOL_GPL(hrtimer_resolution);
521 
522 /*
523  * Enable / Disable high resolution mode
524  */
525 static int __init setup_hrtimer_hres(char *str)
526 {
527 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
528 }
529 
530 __setup("highres=", setup_hrtimer_hres);
531 
532 /*
533  * hrtimer_high_res_enabled - query, if the highres mode is enabled
534  */
535 static inline int hrtimer_is_hres_enabled(void)
536 {
537 	return hrtimer_hres_enabled;
538 }
539 
540 /*
541  * Is the high resolution mode active ?
542  */
543 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
544 {
545 	return cpu_base->hres_active;
546 }
547 
548 static inline int hrtimer_hres_active(void)
549 {
550 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
551 }
552 
553 /*
554  * Reprogram the event source with checking both queues for the
555  * next event
556  * Called with interrupts disabled and base->lock held
557  */
558 static void
559 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
560 {
561 	ktime_t expires_next;
562 
563 	if (!cpu_base->hres_active)
564 		return;
565 
566 	expires_next = __hrtimer_get_next_event(cpu_base);
567 
568 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
569 		return;
570 
571 	cpu_base->expires_next.tv64 = expires_next.tv64;
572 
573 	/*
574 	 * If a hang was detected in the last timer interrupt then we
575 	 * leave the hang delay active in the hardware. We want the
576 	 * system to make progress. That also prevents the following
577 	 * scenario:
578 	 * T1 expires 50ms from now
579 	 * T2 expires 5s from now
580 	 *
581 	 * T1 is removed, so this code is called and would reprogram
582 	 * the hardware to 5s from now. Any hrtimer_start after that
583 	 * will not reprogram the hardware due to hang_detected being
584 	 * set. So we'd effectivly block all timers until the T2 event
585 	 * fires.
586 	 */
587 	if (cpu_base->hang_detected)
588 		return;
589 
590 	tick_program_event(cpu_base->expires_next, 1);
591 }
592 
593 /*
594  * When a timer is enqueued and expires earlier than the already enqueued
595  * timers, we have to check, whether it expires earlier than the timer for
596  * which the clock event device was armed.
597  *
598  * Called with interrupts disabled and base->cpu_base.lock held
599  */
600 static void hrtimer_reprogram(struct hrtimer *timer,
601 			      struct hrtimer_clock_base *base)
602 {
603 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
604 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
605 
606 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
607 
608 	/*
609 	 * If the timer is not on the current cpu, we cannot reprogram
610 	 * the other cpus clock event device.
611 	 */
612 	if (base->cpu_base != cpu_base)
613 		return;
614 
615 	/*
616 	 * If the hrtimer interrupt is running, then it will
617 	 * reevaluate the clock bases and reprogram the clock event
618 	 * device. The callbacks are always executed in hard interrupt
619 	 * context so we don't need an extra check for a running
620 	 * callback.
621 	 */
622 	if (cpu_base->in_hrtirq)
623 		return;
624 
625 	/*
626 	 * CLOCK_REALTIME timer might be requested with an absolute
627 	 * expiry time which is less than base->offset. Set it to 0.
628 	 */
629 	if (expires.tv64 < 0)
630 		expires.tv64 = 0;
631 
632 	if (expires.tv64 >= cpu_base->expires_next.tv64)
633 		return;
634 
635 	/* Update the pointer to the next expiring timer */
636 	cpu_base->next_timer = timer;
637 
638 	/*
639 	 * If a hang was detected in the last timer interrupt then we
640 	 * do not schedule a timer which is earlier than the expiry
641 	 * which we enforced in the hang detection. We want the system
642 	 * to make progress.
643 	 */
644 	if (cpu_base->hang_detected)
645 		return;
646 
647 	/*
648 	 * Program the timer hardware. We enforce the expiry for
649 	 * events which are already in the past.
650 	 */
651 	cpu_base->expires_next = expires;
652 	tick_program_event(expires, 1);
653 }
654 
655 /*
656  * Initialize the high resolution related parts of cpu_base
657  */
658 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
659 {
660 	base->expires_next.tv64 = KTIME_MAX;
661 	base->hres_active = 0;
662 }
663 
664 /*
665  * Retrigger next event is called after clock was set
666  *
667  * Called with interrupts disabled via on_each_cpu()
668  */
669 static void retrigger_next_event(void *arg)
670 {
671 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
672 
673 	if (!base->hres_active)
674 		return;
675 
676 	raw_spin_lock(&base->lock);
677 	hrtimer_update_base(base);
678 	hrtimer_force_reprogram(base, 0);
679 	raw_spin_unlock(&base->lock);
680 }
681 
682 /*
683  * Switch to high resolution mode
684  */
685 static void hrtimer_switch_to_hres(void)
686 {
687 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
688 
689 	if (tick_init_highres()) {
690 		printk(KERN_WARNING "Could not switch to high resolution "
691 				    "mode on CPU %d\n", base->cpu);
692 		return;
693 	}
694 	base->hres_active = 1;
695 	hrtimer_resolution = HIGH_RES_NSEC;
696 
697 	tick_setup_sched_timer();
698 	/* "Retrigger" the interrupt to get things going */
699 	retrigger_next_event(NULL);
700 }
701 
702 static void clock_was_set_work(struct work_struct *work)
703 {
704 	clock_was_set();
705 }
706 
707 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
708 
709 /*
710  * Called from timekeeping and resume code to reprogramm the hrtimer
711  * interrupt device on all cpus.
712  */
713 void clock_was_set_delayed(void)
714 {
715 	schedule_work(&hrtimer_work);
716 }
717 
718 #else
719 
720 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
721 static inline int hrtimer_hres_active(void) { return 0; }
722 static inline int hrtimer_is_hres_enabled(void) { return 0; }
723 static inline void hrtimer_switch_to_hres(void) { }
724 static inline void
725 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
726 static inline int hrtimer_reprogram(struct hrtimer *timer,
727 				    struct hrtimer_clock_base *base)
728 {
729 	return 0;
730 }
731 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
732 static inline void retrigger_next_event(void *arg) { }
733 
734 #endif /* CONFIG_HIGH_RES_TIMERS */
735 
736 /*
737  * Clock realtime was set
738  *
739  * Change the offset of the realtime clock vs. the monotonic
740  * clock.
741  *
742  * We might have to reprogram the high resolution timer interrupt. On
743  * SMP we call the architecture specific code to retrigger _all_ high
744  * resolution timer interrupts. On UP we just disable interrupts and
745  * call the high resolution interrupt code.
746  */
747 void clock_was_set(void)
748 {
749 #ifdef CONFIG_HIGH_RES_TIMERS
750 	/* Retrigger the CPU local events everywhere */
751 	on_each_cpu(retrigger_next_event, NULL, 1);
752 #endif
753 	timerfd_clock_was_set();
754 }
755 
756 /*
757  * During resume we might have to reprogram the high resolution timer
758  * interrupt on all online CPUs.  However, all other CPUs will be
759  * stopped with IRQs interrupts disabled so the clock_was_set() call
760  * must be deferred.
761  */
762 void hrtimers_resume(void)
763 {
764 	WARN_ONCE(!irqs_disabled(),
765 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
766 
767 	/* Retrigger on the local CPU */
768 	retrigger_next_event(NULL);
769 	/* And schedule a retrigger for all others */
770 	clock_was_set_delayed();
771 }
772 
773 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
774 {
775 #ifdef CONFIG_TIMER_STATS
776 	if (timer->start_site)
777 		return;
778 	timer->start_site = __builtin_return_address(0);
779 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
780 	timer->start_pid = current->pid;
781 #endif
782 }
783 
784 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
785 {
786 #ifdef CONFIG_TIMER_STATS
787 	timer->start_site = NULL;
788 #endif
789 }
790 
791 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
792 {
793 #ifdef CONFIG_TIMER_STATS
794 	if (likely(!timer_stats_active))
795 		return;
796 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
797 				 timer->function, timer->start_comm, 0);
798 #endif
799 }
800 
801 /*
802  * Counterpart to lock_hrtimer_base above:
803  */
804 static inline
805 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
806 {
807 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
808 }
809 
810 /**
811  * hrtimer_forward - forward the timer expiry
812  * @timer:	hrtimer to forward
813  * @now:	forward past this time
814  * @interval:	the interval to forward
815  *
816  * Forward the timer expiry so it will expire in the future.
817  * Returns the number of overruns.
818  *
819  * Can be safely called from the callback function of @timer. If
820  * called from other contexts @timer must neither be enqueued nor
821  * running the callback and the caller needs to take care of
822  * serialization.
823  *
824  * Note: This only updates the timer expiry value and does not requeue
825  * the timer.
826  */
827 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
828 {
829 	u64 orun = 1;
830 	ktime_t delta;
831 
832 	delta = ktime_sub(now, hrtimer_get_expires(timer));
833 
834 	if (delta.tv64 < 0)
835 		return 0;
836 
837 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
838 		return 0;
839 
840 	if (interval.tv64 < hrtimer_resolution)
841 		interval.tv64 = hrtimer_resolution;
842 
843 	if (unlikely(delta.tv64 >= interval.tv64)) {
844 		s64 incr = ktime_to_ns(interval);
845 
846 		orun = ktime_divns(delta, incr);
847 		hrtimer_add_expires_ns(timer, incr * orun);
848 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
849 			return orun;
850 		/*
851 		 * This (and the ktime_add() below) is the
852 		 * correction for exact:
853 		 */
854 		orun++;
855 	}
856 	hrtimer_add_expires(timer, interval);
857 
858 	return orun;
859 }
860 EXPORT_SYMBOL_GPL(hrtimer_forward);
861 
862 /*
863  * enqueue_hrtimer - internal function to (re)start a timer
864  *
865  * The timer is inserted in expiry order. Insertion into the
866  * red black tree is O(log(n)). Must hold the base lock.
867  *
868  * Returns 1 when the new timer is the leftmost timer in the tree.
869  */
870 static int enqueue_hrtimer(struct hrtimer *timer,
871 			   struct hrtimer_clock_base *base)
872 {
873 	debug_activate(timer);
874 
875 	base->cpu_base->active_bases |= 1 << base->index;
876 
877 	timer->state = HRTIMER_STATE_ENQUEUED;
878 
879 	return timerqueue_add(&base->active, &timer->node);
880 }
881 
882 /*
883  * __remove_hrtimer - internal function to remove a timer
884  *
885  * Caller must hold the base lock.
886  *
887  * High resolution timer mode reprograms the clock event device when the
888  * timer is the one which expires next. The caller can disable this by setting
889  * reprogram to zero. This is useful, when the context does a reprogramming
890  * anyway (e.g. timer interrupt)
891  */
892 static void __remove_hrtimer(struct hrtimer *timer,
893 			     struct hrtimer_clock_base *base,
894 			     u8 newstate, int reprogram)
895 {
896 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
897 	u8 state = timer->state;
898 
899 	timer->state = newstate;
900 	if (!(state & HRTIMER_STATE_ENQUEUED))
901 		return;
902 
903 	if (!timerqueue_del(&base->active, &timer->node))
904 		cpu_base->active_bases &= ~(1 << base->index);
905 
906 #ifdef CONFIG_HIGH_RES_TIMERS
907 	/*
908 	 * Note: If reprogram is false we do not update
909 	 * cpu_base->next_timer. This happens when we remove the first
910 	 * timer on a remote cpu. No harm as we never dereference
911 	 * cpu_base->next_timer. So the worst thing what can happen is
912 	 * an superflous call to hrtimer_force_reprogram() on the
913 	 * remote cpu later on if the same timer gets enqueued again.
914 	 */
915 	if (reprogram && timer == cpu_base->next_timer)
916 		hrtimer_force_reprogram(cpu_base, 1);
917 #endif
918 }
919 
920 /*
921  * remove hrtimer, called with base lock held
922  */
923 static inline int
924 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
925 {
926 	if (hrtimer_is_queued(timer)) {
927 		u8 state = timer->state;
928 		int reprogram;
929 
930 		/*
931 		 * Remove the timer and force reprogramming when high
932 		 * resolution mode is active and the timer is on the current
933 		 * CPU. If we remove a timer on another CPU, reprogramming is
934 		 * skipped. The interrupt event on this CPU is fired and
935 		 * reprogramming happens in the interrupt handler. This is a
936 		 * rare case and less expensive than a smp call.
937 		 */
938 		debug_deactivate(timer);
939 		timer_stats_hrtimer_clear_start_info(timer);
940 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
941 
942 		if (!restart)
943 			state = HRTIMER_STATE_INACTIVE;
944 
945 		__remove_hrtimer(timer, base, state, reprogram);
946 		return 1;
947 	}
948 	return 0;
949 }
950 
951 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
952 					    const enum hrtimer_mode mode)
953 {
954 #ifdef CONFIG_TIME_LOW_RES
955 	/*
956 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
957 	 * granular time values. For relative timers we add hrtimer_resolution
958 	 * (i.e. one jiffie) to prevent short timeouts.
959 	 */
960 	timer->is_rel = mode & HRTIMER_MODE_REL;
961 	if (timer->is_rel)
962 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
963 #endif
964 	return tim;
965 }
966 
967 /**
968  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
969  * @timer:	the timer to be added
970  * @tim:	expiry time
971  * @delta_ns:	"slack" range for the timer
972  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
973  *		relative (HRTIMER_MODE_REL)
974  */
975 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
976 			    u64 delta_ns, const enum hrtimer_mode mode)
977 {
978 	struct hrtimer_clock_base *base, *new_base;
979 	unsigned long flags;
980 	int leftmost;
981 
982 	base = lock_hrtimer_base(timer, &flags);
983 
984 	/* Remove an active timer from the queue: */
985 	remove_hrtimer(timer, base, true);
986 
987 	if (mode & HRTIMER_MODE_REL)
988 		tim = ktime_add_safe(tim, base->get_time());
989 
990 	tim = hrtimer_update_lowres(timer, tim, mode);
991 
992 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
993 
994 	/* Switch the timer base, if necessary: */
995 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
996 
997 	timer_stats_hrtimer_set_start_info(timer);
998 
999 	leftmost = enqueue_hrtimer(timer, new_base);
1000 	if (!leftmost)
1001 		goto unlock;
1002 
1003 	if (!hrtimer_is_hres_active(timer)) {
1004 		/*
1005 		 * Kick to reschedule the next tick to handle the new timer
1006 		 * on dynticks target.
1007 		 */
1008 		if (new_base->cpu_base->nohz_active)
1009 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1010 	} else {
1011 		hrtimer_reprogram(timer, new_base);
1012 	}
1013 unlock:
1014 	unlock_hrtimer_base(timer, &flags);
1015 }
1016 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1017 
1018 /**
1019  * hrtimer_try_to_cancel - try to deactivate a timer
1020  * @timer:	hrtimer to stop
1021  *
1022  * Returns:
1023  *  0 when the timer was not active
1024  *  1 when the timer was active
1025  * -1 when the timer is currently excuting the callback function and
1026  *    cannot be stopped
1027  */
1028 int hrtimer_try_to_cancel(struct hrtimer *timer)
1029 {
1030 	struct hrtimer_clock_base *base;
1031 	unsigned long flags;
1032 	int ret = -1;
1033 
1034 	/*
1035 	 * Check lockless first. If the timer is not active (neither
1036 	 * enqueued nor running the callback, nothing to do here.  The
1037 	 * base lock does not serialize against a concurrent enqueue,
1038 	 * so we can avoid taking it.
1039 	 */
1040 	if (!hrtimer_active(timer))
1041 		return 0;
1042 
1043 	base = lock_hrtimer_base(timer, &flags);
1044 
1045 	if (!hrtimer_callback_running(timer))
1046 		ret = remove_hrtimer(timer, base, false);
1047 
1048 	unlock_hrtimer_base(timer, &flags);
1049 
1050 	return ret;
1051 
1052 }
1053 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1054 
1055 /**
1056  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1057  * @timer:	the timer to be cancelled
1058  *
1059  * Returns:
1060  *  0 when the timer was not active
1061  *  1 when the timer was active
1062  */
1063 int hrtimer_cancel(struct hrtimer *timer)
1064 {
1065 	for (;;) {
1066 		int ret = hrtimer_try_to_cancel(timer);
1067 
1068 		if (ret >= 0)
1069 			return ret;
1070 		cpu_relax();
1071 	}
1072 }
1073 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1074 
1075 /**
1076  * hrtimer_get_remaining - get remaining time for the timer
1077  * @timer:	the timer to read
1078  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1079  */
1080 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1081 {
1082 	unsigned long flags;
1083 	ktime_t rem;
1084 
1085 	lock_hrtimer_base(timer, &flags);
1086 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1087 		rem = hrtimer_expires_remaining_adjusted(timer);
1088 	else
1089 		rem = hrtimer_expires_remaining(timer);
1090 	unlock_hrtimer_base(timer, &flags);
1091 
1092 	return rem;
1093 }
1094 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1095 
1096 #ifdef CONFIG_NO_HZ_COMMON
1097 /**
1098  * hrtimer_get_next_event - get the time until next expiry event
1099  *
1100  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1101  */
1102 u64 hrtimer_get_next_event(void)
1103 {
1104 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1105 	u64 expires = KTIME_MAX;
1106 	unsigned long flags;
1107 
1108 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1109 
1110 	if (!__hrtimer_hres_active(cpu_base))
1111 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1112 
1113 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1114 
1115 	return expires;
1116 }
1117 #endif
1118 
1119 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1120 			   enum hrtimer_mode mode)
1121 {
1122 	struct hrtimer_cpu_base *cpu_base;
1123 	int base;
1124 
1125 	memset(timer, 0, sizeof(struct hrtimer));
1126 
1127 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1128 
1129 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1130 		clock_id = CLOCK_MONOTONIC;
1131 
1132 	base = hrtimer_clockid_to_base(clock_id);
1133 	timer->base = &cpu_base->clock_base[base];
1134 	timerqueue_init(&timer->node);
1135 
1136 #ifdef CONFIG_TIMER_STATS
1137 	timer->start_site = NULL;
1138 	timer->start_pid = -1;
1139 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1140 #endif
1141 }
1142 
1143 /**
1144  * hrtimer_init - initialize a timer to the given clock
1145  * @timer:	the timer to be initialized
1146  * @clock_id:	the clock to be used
1147  * @mode:	timer mode abs/rel
1148  */
1149 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1150 		  enum hrtimer_mode mode)
1151 {
1152 	debug_init(timer, clock_id, mode);
1153 	__hrtimer_init(timer, clock_id, mode);
1154 }
1155 EXPORT_SYMBOL_GPL(hrtimer_init);
1156 
1157 /*
1158  * A timer is active, when it is enqueued into the rbtree or the
1159  * callback function is running or it's in the state of being migrated
1160  * to another cpu.
1161  *
1162  * It is important for this function to not return a false negative.
1163  */
1164 bool hrtimer_active(const struct hrtimer *timer)
1165 {
1166 	struct hrtimer_cpu_base *cpu_base;
1167 	unsigned int seq;
1168 
1169 	do {
1170 		cpu_base = READ_ONCE(timer->base->cpu_base);
1171 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1172 
1173 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1174 		    cpu_base->running == timer)
1175 			return true;
1176 
1177 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1178 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1179 
1180 	return false;
1181 }
1182 EXPORT_SYMBOL_GPL(hrtimer_active);
1183 
1184 /*
1185  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1186  * distinct sections:
1187  *
1188  *  - queued:	the timer is queued
1189  *  - callback:	the timer is being ran
1190  *  - post:	the timer is inactive or (re)queued
1191  *
1192  * On the read side we ensure we observe timer->state and cpu_base->running
1193  * from the same section, if anything changed while we looked at it, we retry.
1194  * This includes timer->base changing because sequence numbers alone are
1195  * insufficient for that.
1196  *
1197  * The sequence numbers are required because otherwise we could still observe
1198  * a false negative if the read side got smeared over multiple consequtive
1199  * __run_hrtimer() invocations.
1200  */
1201 
1202 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1203 			  struct hrtimer_clock_base *base,
1204 			  struct hrtimer *timer, ktime_t *now)
1205 {
1206 	enum hrtimer_restart (*fn)(struct hrtimer *);
1207 	int restart;
1208 
1209 	lockdep_assert_held(&cpu_base->lock);
1210 
1211 	debug_deactivate(timer);
1212 	cpu_base->running = timer;
1213 
1214 	/*
1215 	 * Separate the ->running assignment from the ->state assignment.
1216 	 *
1217 	 * As with a regular write barrier, this ensures the read side in
1218 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1219 	 * timer->state == INACTIVE.
1220 	 */
1221 	raw_write_seqcount_barrier(&cpu_base->seq);
1222 
1223 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1224 	timer_stats_account_hrtimer(timer);
1225 	fn = timer->function;
1226 
1227 	/*
1228 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1229 	 * timer is restarted with a period then it becomes an absolute
1230 	 * timer. If its not restarted it does not matter.
1231 	 */
1232 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1233 		timer->is_rel = false;
1234 
1235 	/*
1236 	 * Because we run timers from hardirq context, there is no chance
1237 	 * they get migrated to another cpu, therefore its safe to unlock
1238 	 * the timer base.
1239 	 */
1240 	raw_spin_unlock(&cpu_base->lock);
1241 	trace_hrtimer_expire_entry(timer, now);
1242 	restart = fn(timer);
1243 	trace_hrtimer_expire_exit(timer);
1244 	raw_spin_lock(&cpu_base->lock);
1245 
1246 	/*
1247 	 * Note: We clear the running state after enqueue_hrtimer and
1248 	 * we do not reprogramm the event hardware. Happens either in
1249 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1250 	 *
1251 	 * Note: Because we dropped the cpu_base->lock above,
1252 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1253 	 * for us already.
1254 	 */
1255 	if (restart != HRTIMER_NORESTART &&
1256 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1257 		enqueue_hrtimer(timer, base);
1258 
1259 	/*
1260 	 * Separate the ->running assignment from the ->state assignment.
1261 	 *
1262 	 * As with a regular write barrier, this ensures the read side in
1263 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1264 	 * timer->state == INACTIVE.
1265 	 */
1266 	raw_write_seqcount_barrier(&cpu_base->seq);
1267 
1268 	WARN_ON_ONCE(cpu_base->running != timer);
1269 	cpu_base->running = NULL;
1270 }
1271 
1272 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1273 {
1274 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1275 	unsigned int active = cpu_base->active_bases;
1276 
1277 	for (; active; base++, active >>= 1) {
1278 		struct timerqueue_node *node;
1279 		ktime_t basenow;
1280 
1281 		if (!(active & 0x01))
1282 			continue;
1283 
1284 		basenow = ktime_add(now, base->offset);
1285 
1286 		while ((node = timerqueue_getnext(&base->active))) {
1287 			struct hrtimer *timer;
1288 
1289 			timer = container_of(node, struct hrtimer, node);
1290 
1291 			/*
1292 			 * The immediate goal for using the softexpires is
1293 			 * minimizing wakeups, not running timers at the
1294 			 * earliest interrupt after their soft expiration.
1295 			 * This allows us to avoid using a Priority Search
1296 			 * Tree, which can answer a stabbing querry for
1297 			 * overlapping intervals and instead use the simple
1298 			 * BST we already have.
1299 			 * We don't add extra wakeups by delaying timers that
1300 			 * are right-of a not yet expired timer, because that
1301 			 * timer will have to trigger a wakeup anyway.
1302 			 */
1303 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1304 				break;
1305 
1306 			__run_hrtimer(cpu_base, base, timer, &basenow);
1307 		}
1308 	}
1309 }
1310 
1311 #ifdef CONFIG_HIGH_RES_TIMERS
1312 
1313 /*
1314  * High resolution timer interrupt
1315  * Called with interrupts disabled
1316  */
1317 void hrtimer_interrupt(struct clock_event_device *dev)
1318 {
1319 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1320 	ktime_t expires_next, now, entry_time, delta;
1321 	int retries = 0;
1322 
1323 	BUG_ON(!cpu_base->hres_active);
1324 	cpu_base->nr_events++;
1325 	dev->next_event.tv64 = KTIME_MAX;
1326 
1327 	raw_spin_lock(&cpu_base->lock);
1328 	entry_time = now = hrtimer_update_base(cpu_base);
1329 retry:
1330 	cpu_base->in_hrtirq = 1;
1331 	/*
1332 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1333 	 * held to prevent that a timer is enqueued in our queue via
1334 	 * the migration code. This does not affect enqueueing of
1335 	 * timers which run their callback and need to be requeued on
1336 	 * this CPU.
1337 	 */
1338 	cpu_base->expires_next.tv64 = KTIME_MAX;
1339 
1340 	__hrtimer_run_queues(cpu_base, now);
1341 
1342 	/* Reevaluate the clock bases for the next expiry */
1343 	expires_next = __hrtimer_get_next_event(cpu_base);
1344 	/*
1345 	 * Store the new expiry value so the migration code can verify
1346 	 * against it.
1347 	 */
1348 	cpu_base->expires_next = expires_next;
1349 	cpu_base->in_hrtirq = 0;
1350 	raw_spin_unlock(&cpu_base->lock);
1351 
1352 	/* Reprogramming necessary ? */
1353 	if (!tick_program_event(expires_next, 0)) {
1354 		cpu_base->hang_detected = 0;
1355 		return;
1356 	}
1357 
1358 	/*
1359 	 * The next timer was already expired due to:
1360 	 * - tracing
1361 	 * - long lasting callbacks
1362 	 * - being scheduled away when running in a VM
1363 	 *
1364 	 * We need to prevent that we loop forever in the hrtimer
1365 	 * interrupt routine. We give it 3 attempts to avoid
1366 	 * overreacting on some spurious event.
1367 	 *
1368 	 * Acquire base lock for updating the offsets and retrieving
1369 	 * the current time.
1370 	 */
1371 	raw_spin_lock(&cpu_base->lock);
1372 	now = hrtimer_update_base(cpu_base);
1373 	cpu_base->nr_retries++;
1374 	if (++retries < 3)
1375 		goto retry;
1376 	/*
1377 	 * Give the system a chance to do something else than looping
1378 	 * here. We stored the entry time, so we know exactly how long
1379 	 * we spent here. We schedule the next event this amount of
1380 	 * time away.
1381 	 */
1382 	cpu_base->nr_hangs++;
1383 	cpu_base->hang_detected = 1;
1384 	raw_spin_unlock(&cpu_base->lock);
1385 	delta = ktime_sub(now, entry_time);
1386 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1387 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1388 	/*
1389 	 * Limit it to a sensible value as we enforce a longer
1390 	 * delay. Give the CPU at least 100ms to catch up.
1391 	 */
1392 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1393 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1394 	else
1395 		expires_next = ktime_add(now, delta);
1396 	tick_program_event(expires_next, 1);
1397 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1398 		    ktime_to_ns(delta));
1399 }
1400 
1401 /*
1402  * local version of hrtimer_peek_ahead_timers() called with interrupts
1403  * disabled.
1404  */
1405 static inline void __hrtimer_peek_ahead_timers(void)
1406 {
1407 	struct tick_device *td;
1408 
1409 	if (!hrtimer_hres_active())
1410 		return;
1411 
1412 	td = this_cpu_ptr(&tick_cpu_device);
1413 	if (td && td->evtdev)
1414 		hrtimer_interrupt(td->evtdev);
1415 }
1416 
1417 #else /* CONFIG_HIGH_RES_TIMERS */
1418 
1419 static inline void __hrtimer_peek_ahead_timers(void) { }
1420 
1421 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1422 
1423 /*
1424  * Called from run_local_timers in hardirq context every jiffy
1425  */
1426 void hrtimer_run_queues(void)
1427 {
1428 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1429 	ktime_t now;
1430 
1431 	if (__hrtimer_hres_active(cpu_base))
1432 		return;
1433 
1434 	/*
1435 	 * This _is_ ugly: We have to check periodically, whether we
1436 	 * can switch to highres and / or nohz mode. The clocksource
1437 	 * switch happens with xtime_lock held. Notification from
1438 	 * there only sets the check bit in the tick_oneshot code,
1439 	 * otherwise we might deadlock vs. xtime_lock.
1440 	 */
1441 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1442 		hrtimer_switch_to_hres();
1443 		return;
1444 	}
1445 
1446 	raw_spin_lock(&cpu_base->lock);
1447 	now = hrtimer_update_base(cpu_base);
1448 	__hrtimer_run_queues(cpu_base, now);
1449 	raw_spin_unlock(&cpu_base->lock);
1450 }
1451 
1452 /*
1453  * Sleep related functions:
1454  */
1455 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1456 {
1457 	struct hrtimer_sleeper *t =
1458 		container_of(timer, struct hrtimer_sleeper, timer);
1459 	struct task_struct *task = t->task;
1460 
1461 	t->task = NULL;
1462 	if (task)
1463 		wake_up_process(task);
1464 
1465 	return HRTIMER_NORESTART;
1466 }
1467 
1468 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1469 {
1470 	sl->timer.function = hrtimer_wakeup;
1471 	sl->task = task;
1472 }
1473 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1474 
1475 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1476 {
1477 	hrtimer_init_sleeper(t, current);
1478 
1479 	do {
1480 		set_current_state(TASK_INTERRUPTIBLE);
1481 		hrtimer_start_expires(&t->timer, mode);
1482 
1483 		if (likely(t->task))
1484 			freezable_schedule();
1485 
1486 		hrtimer_cancel(&t->timer);
1487 		mode = HRTIMER_MODE_ABS;
1488 
1489 	} while (t->task && !signal_pending(current));
1490 
1491 	__set_current_state(TASK_RUNNING);
1492 
1493 	return t->task == NULL;
1494 }
1495 
1496 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1497 {
1498 	struct timespec rmt;
1499 	ktime_t rem;
1500 
1501 	rem = hrtimer_expires_remaining(timer);
1502 	if (rem.tv64 <= 0)
1503 		return 0;
1504 	rmt = ktime_to_timespec(rem);
1505 
1506 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1507 		return -EFAULT;
1508 
1509 	return 1;
1510 }
1511 
1512 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1513 {
1514 	struct hrtimer_sleeper t;
1515 	struct timespec __user  *rmtp;
1516 	int ret = 0;
1517 
1518 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1519 				HRTIMER_MODE_ABS);
1520 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1521 
1522 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1523 		goto out;
1524 
1525 	rmtp = restart->nanosleep.rmtp;
1526 	if (rmtp) {
1527 		ret = update_rmtp(&t.timer, rmtp);
1528 		if (ret <= 0)
1529 			goto out;
1530 	}
1531 
1532 	/* The other values in restart are already filled in */
1533 	ret = -ERESTART_RESTARTBLOCK;
1534 out:
1535 	destroy_hrtimer_on_stack(&t.timer);
1536 	return ret;
1537 }
1538 
1539 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1540 		       const enum hrtimer_mode mode, const clockid_t clockid)
1541 {
1542 	struct restart_block *restart;
1543 	struct hrtimer_sleeper t;
1544 	int ret = 0;
1545 	u64 slack;
1546 
1547 	slack = current->timer_slack_ns;
1548 	if (dl_task(current) || rt_task(current))
1549 		slack = 0;
1550 
1551 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1552 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1553 	if (do_nanosleep(&t, mode))
1554 		goto out;
1555 
1556 	/* Absolute timers do not update the rmtp value and restart: */
1557 	if (mode == HRTIMER_MODE_ABS) {
1558 		ret = -ERESTARTNOHAND;
1559 		goto out;
1560 	}
1561 
1562 	if (rmtp) {
1563 		ret = update_rmtp(&t.timer, rmtp);
1564 		if (ret <= 0)
1565 			goto out;
1566 	}
1567 
1568 	restart = &current->restart_block;
1569 	restart->fn = hrtimer_nanosleep_restart;
1570 	restart->nanosleep.clockid = t.timer.base->clockid;
1571 	restart->nanosleep.rmtp = rmtp;
1572 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1573 
1574 	ret = -ERESTART_RESTARTBLOCK;
1575 out:
1576 	destroy_hrtimer_on_stack(&t.timer);
1577 	return ret;
1578 }
1579 
1580 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1581 		struct timespec __user *, rmtp)
1582 {
1583 	struct timespec tu;
1584 
1585 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1586 		return -EFAULT;
1587 
1588 	if (!timespec_valid(&tu))
1589 		return -EINVAL;
1590 
1591 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1592 }
1593 
1594 /*
1595  * Functions related to boot-time initialization:
1596  */
1597 static void init_hrtimers_cpu(int cpu)
1598 {
1599 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1600 	int i;
1601 
1602 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1603 		cpu_base->clock_base[i].cpu_base = cpu_base;
1604 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1605 	}
1606 
1607 	cpu_base->cpu = cpu;
1608 	hrtimer_init_hres(cpu_base);
1609 }
1610 
1611 #ifdef CONFIG_HOTPLUG_CPU
1612 
1613 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1614 				struct hrtimer_clock_base *new_base)
1615 {
1616 	struct hrtimer *timer;
1617 	struct timerqueue_node *node;
1618 
1619 	while ((node = timerqueue_getnext(&old_base->active))) {
1620 		timer = container_of(node, struct hrtimer, node);
1621 		BUG_ON(hrtimer_callback_running(timer));
1622 		debug_deactivate(timer);
1623 
1624 		/*
1625 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1626 		 * timer could be seen as !active and just vanish away
1627 		 * under us on another CPU
1628 		 */
1629 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1630 		timer->base = new_base;
1631 		/*
1632 		 * Enqueue the timers on the new cpu. This does not
1633 		 * reprogram the event device in case the timer
1634 		 * expires before the earliest on this CPU, but we run
1635 		 * hrtimer_interrupt after we migrated everything to
1636 		 * sort out already expired timers and reprogram the
1637 		 * event device.
1638 		 */
1639 		enqueue_hrtimer(timer, new_base);
1640 	}
1641 }
1642 
1643 static void migrate_hrtimers(int scpu)
1644 {
1645 	struct hrtimer_cpu_base *old_base, *new_base;
1646 	int i;
1647 
1648 	BUG_ON(cpu_online(scpu));
1649 	tick_cancel_sched_timer(scpu);
1650 
1651 	local_irq_disable();
1652 	old_base = &per_cpu(hrtimer_bases, scpu);
1653 	new_base = this_cpu_ptr(&hrtimer_bases);
1654 	/*
1655 	 * The caller is globally serialized and nobody else
1656 	 * takes two locks at once, deadlock is not possible.
1657 	 */
1658 	raw_spin_lock(&new_base->lock);
1659 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1660 
1661 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1662 		migrate_hrtimer_list(&old_base->clock_base[i],
1663 				     &new_base->clock_base[i]);
1664 	}
1665 
1666 	raw_spin_unlock(&old_base->lock);
1667 	raw_spin_unlock(&new_base->lock);
1668 
1669 	/* Check, if we got expired work to do */
1670 	__hrtimer_peek_ahead_timers();
1671 	local_irq_enable();
1672 }
1673 
1674 #endif /* CONFIG_HOTPLUG_CPU */
1675 
1676 static int hrtimer_cpu_notify(struct notifier_block *self,
1677 					unsigned long action, void *hcpu)
1678 {
1679 	int scpu = (long)hcpu;
1680 
1681 	switch (action) {
1682 
1683 	case CPU_UP_PREPARE:
1684 	case CPU_UP_PREPARE_FROZEN:
1685 		init_hrtimers_cpu(scpu);
1686 		break;
1687 
1688 #ifdef CONFIG_HOTPLUG_CPU
1689 	case CPU_DEAD:
1690 	case CPU_DEAD_FROZEN:
1691 		migrate_hrtimers(scpu);
1692 		break;
1693 #endif
1694 
1695 	default:
1696 		break;
1697 	}
1698 
1699 	return NOTIFY_OK;
1700 }
1701 
1702 static struct notifier_block hrtimers_nb = {
1703 	.notifier_call = hrtimer_cpu_notify,
1704 };
1705 
1706 void __init hrtimers_init(void)
1707 {
1708 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1709 			  (void *)(long)smp_processor_id());
1710 	register_cpu_notifier(&hrtimers_nb);
1711 }
1712 
1713 /**
1714  * schedule_hrtimeout_range_clock - sleep until timeout
1715  * @expires:	timeout value (ktime_t)
1716  * @delta:	slack in expires timeout (ktime_t)
1717  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1719  */
1720 int __sched
1721 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1722 			       const enum hrtimer_mode mode, int clock)
1723 {
1724 	struct hrtimer_sleeper t;
1725 
1726 	/*
1727 	 * Optimize when a zero timeout value is given. It does not
1728 	 * matter whether this is an absolute or a relative time.
1729 	 */
1730 	if (expires && !expires->tv64) {
1731 		__set_current_state(TASK_RUNNING);
1732 		return 0;
1733 	}
1734 
1735 	/*
1736 	 * A NULL parameter means "infinite"
1737 	 */
1738 	if (!expires) {
1739 		schedule();
1740 		return -EINTR;
1741 	}
1742 
1743 	hrtimer_init_on_stack(&t.timer, clock, mode);
1744 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1745 
1746 	hrtimer_init_sleeper(&t, current);
1747 
1748 	hrtimer_start_expires(&t.timer, mode);
1749 
1750 	if (likely(t.task))
1751 		schedule();
1752 
1753 	hrtimer_cancel(&t.timer);
1754 	destroy_hrtimer_on_stack(&t.timer);
1755 
1756 	__set_current_state(TASK_RUNNING);
1757 
1758 	return !t.task ? 0 : -EINTR;
1759 }
1760 
1761 /**
1762  * schedule_hrtimeout_range - sleep until timeout
1763  * @expires:	timeout value (ktime_t)
1764  * @delta:	slack in expires timeout (ktime_t)
1765  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1766  *
1767  * Make the current task sleep until the given expiry time has
1768  * elapsed. The routine will return immediately unless
1769  * the current task state has been set (see set_current_state()).
1770  *
1771  * The @delta argument gives the kernel the freedom to schedule the
1772  * actual wakeup to a time that is both power and performance friendly.
1773  * The kernel give the normal best effort behavior for "@expires+@delta",
1774  * but may decide to fire the timer earlier, but no earlier than @expires.
1775  *
1776  * You can set the task state as follows -
1777  *
1778  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1779  * pass before the routine returns.
1780  *
1781  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1782  * delivered to the current task.
1783  *
1784  * The current task state is guaranteed to be TASK_RUNNING when this
1785  * routine returns.
1786  *
1787  * Returns 0 when the timer has expired otherwise -EINTR
1788  */
1789 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1790 				     const enum hrtimer_mode mode)
1791 {
1792 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1793 					      CLOCK_MONOTONIC);
1794 }
1795 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1796 
1797 /**
1798  * schedule_hrtimeout - sleep until timeout
1799  * @expires:	timeout value (ktime_t)
1800  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1801  *
1802  * Make the current task sleep until the given expiry time has
1803  * elapsed. The routine will return immediately unless
1804  * the current task state has been set (see set_current_state()).
1805  *
1806  * You can set the task state as follows -
1807  *
1808  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1809  * pass before the routine returns.
1810  *
1811  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1812  * delivered to the current task.
1813  *
1814  * The current task state is guaranteed to be TASK_RUNNING when this
1815  * routine returns.
1816  *
1817  * Returns 0 when the timer has expired otherwise -EINTR
1818  */
1819 int __sched schedule_hrtimeout(ktime_t *expires,
1820 			       const enum hrtimer_mode mode)
1821 {
1822 	return schedule_hrtimeout_range(expires, 0, mode);
1823 }
1824 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1825