1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids then hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 .resolution = KTIME_LOW_RES, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 .resolution = KTIME_LOW_RES, 84 }, 85 { 86 .index = HRTIMER_BASE_BOOTTIME, 87 .clockid = CLOCK_BOOTTIME, 88 .get_time = &ktime_get_boottime, 89 .resolution = KTIME_LOW_RES, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 .resolution = KTIME_LOW_RES, 96 }, 97 } 98 }; 99 100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 104 [CLOCK_TAI] = HRTIMER_BASE_TAI, 105 }; 106 107 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 108 { 109 return hrtimer_clock_to_base_table[clock_id]; 110 } 111 112 113 /* 114 * Get the coarse grained time at the softirq based on xtime and 115 * wall_to_monotonic. 116 */ 117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 118 { 119 ktime_t xtim, mono, boot, tai; 120 ktime_t off_real, off_boot, off_tai; 121 122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai); 123 boot = ktime_add(mono, off_boot); 124 xtim = ktime_add(mono, off_real); 125 tai = ktime_add(mono, off_tai); 126 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; 128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; 129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; 130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai; 131 } 132 133 /* 134 * Functions and macros which are different for UP/SMP systems are kept in a 135 * single place 136 */ 137 #ifdef CONFIG_SMP 138 139 /* 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 141 * means that all timers which are tied to this base via timer->base are 142 * locked, and the base itself is locked too. 143 * 144 * So __run_timers/migrate_timers can safely modify all timers which could 145 * be found on the lists/queues. 146 * 147 * When the timer's base is locked, and the timer removed from list, it is 148 * possible to set timer->base = NULL and drop the lock: the timer remains 149 * locked. 150 */ 151 static 152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 153 unsigned long *flags) 154 { 155 struct hrtimer_clock_base *base; 156 157 for (;;) { 158 base = timer->base; 159 if (likely(base != NULL)) { 160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 161 if (likely(base == timer->base)) 162 return base; 163 /* The timer has migrated to another CPU: */ 164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 165 } 166 cpu_relax(); 167 } 168 } 169 170 /* 171 * With HIGHRES=y we do not migrate the timer when it is expiring 172 * before the next event on the target cpu because we cannot reprogram 173 * the target cpu hardware and we would cause it to fire late. 174 * 175 * Called with cpu_base->lock of target cpu held. 176 */ 177 static int 178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 179 { 180 #ifdef CONFIG_HIGH_RES_TIMERS 181 ktime_t expires; 182 183 if (!new_base->cpu_base->hres_active) 184 return 0; 185 186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 188 #else 189 return 0; 190 #endif 191 } 192 193 /* 194 * Switch the timer base to the current CPU when possible. 195 */ 196 static inline struct hrtimer_clock_base * 197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 198 int pinned) 199 { 200 struct hrtimer_clock_base *new_base; 201 struct hrtimer_cpu_base *new_cpu_base; 202 int this_cpu = smp_processor_id(); 203 int cpu = get_nohz_timer_target(pinned); 204 int basenum = base->index; 205 206 again: 207 new_cpu_base = &per_cpu(hrtimer_bases, cpu); 208 new_base = &new_cpu_base->clock_base[basenum]; 209 210 if (base != new_base) { 211 /* 212 * We are trying to move timer to new_base. 213 * However we can't change timer's base while it is running, 214 * so we keep it on the same CPU. No hassle vs. reprogramming 215 * the event source in the high resolution case. The softirq 216 * code will take care of this when the timer function has 217 * completed. There is no conflict as we hold the lock until 218 * the timer is enqueued. 219 */ 220 if (unlikely(hrtimer_callback_running(timer))) 221 return base; 222 223 /* See the comment in lock_timer_base() */ 224 timer->base = NULL; 225 raw_spin_unlock(&base->cpu_base->lock); 226 raw_spin_lock(&new_base->cpu_base->lock); 227 228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 229 cpu = this_cpu; 230 raw_spin_unlock(&new_base->cpu_base->lock); 231 raw_spin_lock(&base->cpu_base->lock); 232 timer->base = base; 233 goto again; 234 } 235 timer->base = new_base; 236 } else { 237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 238 cpu = this_cpu; 239 goto again; 240 } 241 } 242 return new_base; 243 } 244 245 #else /* CONFIG_SMP */ 246 247 static inline struct hrtimer_clock_base * 248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 249 { 250 struct hrtimer_clock_base *base = timer->base; 251 252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 253 254 return base; 255 } 256 257 # define switch_hrtimer_base(t, b, p) (b) 258 259 #endif /* !CONFIG_SMP */ 260 261 /* 262 * Functions for the union type storage format of ktime_t which are 263 * too large for inlining: 264 */ 265 #if BITS_PER_LONG < 64 266 /* 267 * Divide a ktime value by a nanosecond value 268 */ 269 s64 __ktime_divns(const ktime_t kt, s64 div) 270 { 271 int sft = 0; 272 s64 dclc; 273 u64 tmp; 274 275 dclc = ktime_to_ns(kt); 276 tmp = dclc < 0 ? -dclc : dclc; 277 278 /* Make sure the divisor is less than 2^32: */ 279 while (div >> 32) { 280 sft++; 281 div >>= 1; 282 } 283 tmp >>= sft; 284 do_div(tmp, (unsigned long) div); 285 return dclc < 0 ? -tmp : tmp; 286 } 287 EXPORT_SYMBOL_GPL(__ktime_divns); 288 #endif /* BITS_PER_LONG >= 64 */ 289 290 /* 291 * Add two ktime values and do a safety check for overflow: 292 */ 293 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 294 { 295 ktime_t res = ktime_add(lhs, rhs); 296 297 /* 298 * We use KTIME_SEC_MAX here, the maximum timeout which we can 299 * return to user space in a timespec: 300 */ 301 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 302 res = ktime_set(KTIME_SEC_MAX, 0); 303 304 return res; 305 } 306 307 EXPORT_SYMBOL_GPL(ktime_add_safe); 308 309 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 310 311 static struct debug_obj_descr hrtimer_debug_descr; 312 313 static void *hrtimer_debug_hint(void *addr) 314 { 315 return ((struct hrtimer *) addr)->function; 316 } 317 318 /* 319 * fixup_init is called when: 320 * - an active object is initialized 321 */ 322 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 323 { 324 struct hrtimer *timer = addr; 325 326 switch (state) { 327 case ODEBUG_STATE_ACTIVE: 328 hrtimer_cancel(timer); 329 debug_object_init(timer, &hrtimer_debug_descr); 330 return 1; 331 default: 332 return 0; 333 } 334 } 335 336 /* 337 * fixup_activate is called when: 338 * - an active object is activated 339 * - an unknown object is activated (might be a statically initialized object) 340 */ 341 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 342 { 343 switch (state) { 344 345 case ODEBUG_STATE_NOTAVAILABLE: 346 WARN_ON_ONCE(1); 347 return 0; 348 349 case ODEBUG_STATE_ACTIVE: 350 WARN_ON(1); 351 352 default: 353 return 0; 354 } 355 } 356 357 /* 358 * fixup_free is called when: 359 * - an active object is freed 360 */ 361 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 362 { 363 struct hrtimer *timer = addr; 364 365 switch (state) { 366 case ODEBUG_STATE_ACTIVE: 367 hrtimer_cancel(timer); 368 debug_object_free(timer, &hrtimer_debug_descr); 369 return 1; 370 default: 371 return 0; 372 } 373 } 374 375 static struct debug_obj_descr hrtimer_debug_descr = { 376 .name = "hrtimer", 377 .debug_hint = hrtimer_debug_hint, 378 .fixup_init = hrtimer_fixup_init, 379 .fixup_activate = hrtimer_fixup_activate, 380 .fixup_free = hrtimer_fixup_free, 381 }; 382 383 static inline void debug_hrtimer_init(struct hrtimer *timer) 384 { 385 debug_object_init(timer, &hrtimer_debug_descr); 386 } 387 388 static inline void debug_hrtimer_activate(struct hrtimer *timer) 389 { 390 debug_object_activate(timer, &hrtimer_debug_descr); 391 } 392 393 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 394 { 395 debug_object_deactivate(timer, &hrtimer_debug_descr); 396 } 397 398 static inline void debug_hrtimer_free(struct hrtimer *timer) 399 { 400 debug_object_free(timer, &hrtimer_debug_descr); 401 } 402 403 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 404 enum hrtimer_mode mode); 405 406 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 407 enum hrtimer_mode mode) 408 { 409 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 410 __hrtimer_init(timer, clock_id, mode); 411 } 412 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 413 414 void destroy_hrtimer_on_stack(struct hrtimer *timer) 415 { 416 debug_object_free(timer, &hrtimer_debug_descr); 417 } 418 419 #else 420 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 421 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 422 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 423 #endif 424 425 static inline void 426 debug_init(struct hrtimer *timer, clockid_t clockid, 427 enum hrtimer_mode mode) 428 { 429 debug_hrtimer_init(timer); 430 trace_hrtimer_init(timer, clockid, mode); 431 } 432 433 static inline void debug_activate(struct hrtimer *timer) 434 { 435 debug_hrtimer_activate(timer); 436 trace_hrtimer_start(timer); 437 } 438 439 static inline void debug_deactivate(struct hrtimer *timer) 440 { 441 debug_hrtimer_deactivate(timer); 442 trace_hrtimer_cancel(timer); 443 } 444 445 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 446 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 447 { 448 struct hrtimer_clock_base *base = cpu_base->clock_base; 449 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 450 int i; 451 452 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 453 struct timerqueue_node *next; 454 struct hrtimer *timer; 455 456 next = timerqueue_getnext(&base->active); 457 if (!next) 458 continue; 459 460 timer = container_of(next, struct hrtimer, node); 461 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 462 if (expires.tv64 < expires_next.tv64) 463 expires_next = expires; 464 } 465 /* 466 * clock_was_set() might have changed base->offset of any of 467 * the clock bases so the result might be negative. Fix it up 468 * to prevent a false positive in clockevents_program_event(). 469 */ 470 if (expires_next.tv64 < 0) 471 expires_next.tv64 = 0; 472 return expires_next; 473 } 474 #endif 475 476 /* High resolution timer related functions */ 477 #ifdef CONFIG_HIGH_RES_TIMERS 478 479 /* 480 * High resolution timer enabled ? 481 */ 482 static int hrtimer_hres_enabled __read_mostly = 1; 483 484 /* 485 * Enable / Disable high resolution mode 486 */ 487 static int __init setup_hrtimer_hres(char *str) 488 { 489 if (!strcmp(str, "off")) 490 hrtimer_hres_enabled = 0; 491 else if (!strcmp(str, "on")) 492 hrtimer_hres_enabled = 1; 493 else 494 return 0; 495 return 1; 496 } 497 498 __setup("highres=", setup_hrtimer_hres); 499 500 /* 501 * hrtimer_high_res_enabled - query, if the highres mode is enabled 502 */ 503 static inline int hrtimer_is_hres_enabled(void) 504 { 505 return hrtimer_hres_enabled; 506 } 507 508 /* 509 * Is the high resolution mode active ? 510 */ 511 static inline int hrtimer_hres_active(void) 512 { 513 return __this_cpu_read(hrtimer_bases.hres_active); 514 } 515 516 /* 517 * Reprogram the event source with checking both queues for the 518 * next event 519 * Called with interrupts disabled and base->lock held 520 */ 521 static void 522 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 523 { 524 ktime_t expires_next = __hrtimer_get_next_event(cpu_base); 525 526 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 527 return; 528 529 cpu_base->expires_next.tv64 = expires_next.tv64; 530 531 /* 532 * If a hang was detected in the last timer interrupt then we 533 * leave the hang delay active in the hardware. We want the 534 * system to make progress. That also prevents the following 535 * scenario: 536 * T1 expires 50ms from now 537 * T2 expires 5s from now 538 * 539 * T1 is removed, so this code is called and would reprogram 540 * the hardware to 5s from now. Any hrtimer_start after that 541 * will not reprogram the hardware due to hang_detected being 542 * set. So we'd effectivly block all timers until the T2 event 543 * fires. 544 */ 545 if (cpu_base->hang_detected) 546 return; 547 548 if (cpu_base->expires_next.tv64 != KTIME_MAX) 549 tick_program_event(cpu_base->expires_next, 1); 550 } 551 552 /* 553 * Shared reprogramming for clock_realtime and clock_monotonic 554 * 555 * When a timer is enqueued and expires earlier than the already enqueued 556 * timers, we have to check, whether it expires earlier than the timer for 557 * which the clock event device was armed. 558 * 559 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming 560 * and no expiry check happens. The timer gets enqueued into the rbtree. The 561 * reprogramming and expiry check is done in the hrtimer_interrupt or in the 562 * softirq. 563 * 564 * Called with interrupts disabled and base->cpu_base.lock held 565 */ 566 static int hrtimer_reprogram(struct hrtimer *timer, 567 struct hrtimer_clock_base *base) 568 { 569 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 570 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 571 int res; 572 573 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 574 575 /* 576 * When the callback is running, we do not reprogram the clock event 577 * device. The timer callback is either running on a different CPU or 578 * the callback is executed in the hrtimer_interrupt context. The 579 * reprogramming is handled either by the softirq, which called the 580 * callback or at the end of the hrtimer_interrupt. 581 */ 582 if (hrtimer_callback_running(timer)) 583 return 0; 584 585 /* 586 * CLOCK_REALTIME timer might be requested with an absolute 587 * expiry time which is less than base->offset. Nothing wrong 588 * about that, just avoid to call into the tick code, which 589 * has now objections against negative expiry values. 590 */ 591 if (expires.tv64 < 0) 592 return -ETIME; 593 594 if (expires.tv64 >= cpu_base->expires_next.tv64) 595 return 0; 596 597 /* 598 * When the target cpu of the timer is currently executing 599 * hrtimer_interrupt(), then we do not touch the clock event 600 * device. hrtimer_interrupt() will reevaluate all clock bases 601 * before reprogramming the device. 602 */ 603 if (cpu_base->in_hrtirq) 604 return 0; 605 606 /* 607 * If a hang was detected in the last timer interrupt then we 608 * do not schedule a timer which is earlier than the expiry 609 * which we enforced in the hang detection. We want the system 610 * to make progress. 611 */ 612 if (cpu_base->hang_detected) 613 return 0; 614 615 /* 616 * Clockevents returns -ETIME, when the event was in the past. 617 */ 618 res = tick_program_event(expires, 0); 619 if (!IS_ERR_VALUE(res)) 620 cpu_base->expires_next = expires; 621 return res; 622 } 623 624 /* 625 * Initialize the high resolution related parts of cpu_base 626 */ 627 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 628 { 629 base->expires_next.tv64 = KTIME_MAX; 630 base->hres_active = 0; 631 } 632 633 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 634 { 635 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 636 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 637 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 638 639 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai); 640 } 641 642 /* 643 * Retrigger next event is called after clock was set 644 * 645 * Called with interrupts disabled via on_each_cpu() 646 */ 647 static void retrigger_next_event(void *arg) 648 { 649 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 650 651 if (!hrtimer_hres_active()) 652 return; 653 654 raw_spin_lock(&base->lock); 655 hrtimer_update_base(base); 656 hrtimer_force_reprogram(base, 0); 657 raw_spin_unlock(&base->lock); 658 } 659 660 /* 661 * Switch to high resolution mode 662 */ 663 static int hrtimer_switch_to_hres(void) 664 { 665 int i, cpu = smp_processor_id(); 666 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 667 unsigned long flags; 668 669 if (base->hres_active) 670 return 1; 671 672 local_irq_save(flags); 673 674 if (tick_init_highres()) { 675 local_irq_restore(flags); 676 printk(KERN_WARNING "Could not switch to high resolution " 677 "mode on CPU %d\n", cpu); 678 return 0; 679 } 680 base->hres_active = 1; 681 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 682 base->clock_base[i].resolution = KTIME_HIGH_RES; 683 684 tick_setup_sched_timer(); 685 /* "Retrigger" the interrupt to get things going */ 686 retrigger_next_event(NULL); 687 local_irq_restore(flags); 688 return 1; 689 } 690 691 static void clock_was_set_work(struct work_struct *work) 692 { 693 clock_was_set(); 694 } 695 696 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 697 698 /* 699 * Called from timekeeping and resume code to reprogramm the hrtimer 700 * interrupt device on all cpus. 701 */ 702 void clock_was_set_delayed(void) 703 { 704 schedule_work(&hrtimer_work); 705 } 706 707 #else 708 709 static inline int hrtimer_hres_active(void) { return 0; } 710 static inline int hrtimer_is_hres_enabled(void) { return 0; } 711 static inline int hrtimer_switch_to_hres(void) { return 0; } 712 static inline void 713 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 714 static inline int hrtimer_reprogram(struct hrtimer *timer, 715 struct hrtimer_clock_base *base) 716 { 717 return 0; 718 } 719 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 720 static inline void retrigger_next_event(void *arg) { } 721 722 #endif /* CONFIG_HIGH_RES_TIMERS */ 723 724 /* 725 * Clock realtime was set 726 * 727 * Change the offset of the realtime clock vs. the monotonic 728 * clock. 729 * 730 * We might have to reprogram the high resolution timer interrupt. On 731 * SMP we call the architecture specific code to retrigger _all_ high 732 * resolution timer interrupts. On UP we just disable interrupts and 733 * call the high resolution interrupt code. 734 */ 735 void clock_was_set(void) 736 { 737 #ifdef CONFIG_HIGH_RES_TIMERS 738 /* Retrigger the CPU local events everywhere */ 739 on_each_cpu(retrigger_next_event, NULL, 1); 740 #endif 741 timerfd_clock_was_set(); 742 } 743 744 /* 745 * During resume we might have to reprogram the high resolution timer 746 * interrupt on all online CPUs. However, all other CPUs will be 747 * stopped with IRQs interrupts disabled so the clock_was_set() call 748 * must be deferred. 749 */ 750 void hrtimers_resume(void) 751 { 752 WARN_ONCE(!irqs_disabled(), 753 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 754 755 /* Retrigger on the local CPU */ 756 retrigger_next_event(NULL); 757 /* And schedule a retrigger for all others */ 758 clock_was_set_delayed(); 759 } 760 761 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 762 { 763 #ifdef CONFIG_TIMER_STATS 764 if (timer->start_site) 765 return; 766 timer->start_site = __builtin_return_address(0); 767 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 768 timer->start_pid = current->pid; 769 #endif 770 } 771 772 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 773 { 774 #ifdef CONFIG_TIMER_STATS 775 timer->start_site = NULL; 776 #endif 777 } 778 779 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 780 { 781 #ifdef CONFIG_TIMER_STATS 782 if (likely(!timer_stats_active)) 783 return; 784 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 785 timer->function, timer->start_comm, 0); 786 #endif 787 } 788 789 /* 790 * Counterpart to lock_hrtimer_base above: 791 */ 792 static inline 793 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 794 { 795 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 796 } 797 798 /** 799 * hrtimer_forward - forward the timer expiry 800 * @timer: hrtimer to forward 801 * @now: forward past this time 802 * @interval: the interval to forward 803 * 804 * Forward the timer expiry so it will expire in the future. 805 * Returns the number of overruns. 806 */ 807 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 808 { 809 u64 orun = 1; 810 ktime_t delta; 811 812 delta = ktime_sub(now, hrtimer_get_expires(timer)); 813 814 if (delta.tv64 < 0) 815 return 0; 816 817 if (interval.tv64 < timer->base->resolution.tv64) 818 interval.tv64 = timer->base->resolution.tv64; 819 820 if (unlikely(delta.tv64 >= interval.tv64)) { 821 s64 incr = ktime_to_ns(interval); 822 823 orun = ktime_divns(delta, incr); 824 hrtimer_add_expires_ns(timer, incr * orun); 825 if (hrtimer_get_expires_tv64(timer) > now.tv64) 826 return orun; 827 /* 828 * This (and the ktime_add() below) is the 829 * correction for exact: 830 */ 831 orun++; 832 } 833 hrtimer_add_expires(timer, interval); 834 835 return orun; 836 } 837 EXPORT_SYMBOL_GPL(hrtimer_forward); 838 839 /* 840 * enqueue_hrtimer - internal function to (re)start a timer 841 * 842 * The timer is inserted in expiry order. Insertion into the 843 * red black tree is O(log(n)). Must hold the base lock. 844 * 845 * Returns 1 when the new timer is the leftmost timer in the tree. 846 */ 847 static int enqueue_hrtimer(struct hrtimer *timer, 848 struct hrtimer_clock_base *base) 849 { 850 debug_activate(timer); 851 852 timerqueue_add(&base->active, &timer->node); 853 base->cpu_base->active_bases |= 1 << base->index; 854 855 /* 856 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 857 * state of a possibly running callback. 858 */ 859 timer->state |= HRTIMER_STATE_ENQUEUED; 860 861 return (&timer->node == base->active.next); 862 } 863 864 /* 865 * __remove_hrtimer - internal function to remove a timer 866 * 867 * Caller must hold the base lock. 868 * 869 * High resolution timer mode reprograms the clock event device when the 870 * timer is the one which expires next. The caller can disable this by setting 871 * reprogram to zero. This is useful, when the context does a reprogramming 872 * anyway (e.g. timer interrupt) 873 */ 874 static void __remove_hrtimer(struct hrtimer *timer, 875 struct hrtimer_clock_base *base, 876 unsigned long newstate, int reprogram) 877 { 878 struct timerqueue_node *next_timer; 879 if (!(timer->state & HRTIMER_STATE_ENQUEUED)) 880 goto out; 881 882 next_timer = timerqueue_getnext(&base->active); 883 timerqueue_del(&base->active, &timer->node); 884 if (&timer->node == next_timer) { 885 #ifdef CONFIG_HIGH_RES_TIMERS 886 /* Reprogram the clock event device. if enabled */ 887 if (reprogram && hrtimer_hres_active()) { 888 ktime_t expires; 889 890 expires = ktime_sub(hrtimer_get_expires(timer), 891 base->offset); 892 if (base->cpu_base->expires_next.tv64 == expires.tv64) 893 hrtimer_force_reprogram(base->cpu_base, 1); 894 } 895 #endif 896 } 897 if (!timerqueue_getnext(&base->active)) 898 base->cpu_base->active_bases &= ~(1 << base->index); 899 out: 900 timer->state = newstate; 901 } 902 903 /* 904 * remove hrtimer, called with base lock held 905 */ 906 static inline int 907 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 908 { 909 if (hrtimer_is_queued(timer)) { 910 unsigned long state; 911 int reprogram; 912 913 /* 914 * Remove the timer and force reprogramming when high 915 * resolution mode is active and the timer is on the current 916 * CPU. If we remove a timer on another CPU, reprogramming is 917 * skipped. The interrupt event on this CPU is fired and 918 * reprogramming happens in the interrupt handler. This is a 919 * rare case and less expensive than a smp call. 920 */ 921 debug_deactivate(timer); 922 timer_stats_hrtimer_clear_start_info(timer); 923 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 924 /* 925 * We must preserve the CALLBACK state flag here, 926 * otherwise we could move the timer base in 927 * switch_hrtimer_base. 928 */ 929 state = timer->state & HRTIMER_STATE_CALLBACK; 930 __remove_hrtimer(timer, base, state, reprogram); 931 return 1; 932 } 933 return 0; 934 } 935 936 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 937 unsigned long delta_ns, const enum hrtimer_mode mode, 938 int wakeup) 939 { 940 struct hrtimer_clock_base *base, *new_base; 941 unsigned long flags; 942 int ret, leftmost; 943 944 base = lock_hrtimer_base(timer, &flags); 945 946 /* Remove an active timer from the queue: */ 947 ret = remove_hrtimer(timer, base); 948 949 if (mode & HRTIMER_MODE_REL) { 950 tim = ktime_add_safe(tim, base->get_time()); 951 /* 952 * CONFIG_TIME_LOW_RES is a temporary way for architectures 953 * to signal that they simply return xtime in 954 * do_gettimeoffset(). In this case we want to round up by 955 * resolution when starting a relative timer, to avoid short 956 * timeouts. This will go away with the GTOD framework. 957 */ 958 #ifdef CONFIG_TIME_LOW_RES 959 tim = ktime_add_safe(tim, base->resolution); 960 #endif 961 } 962 963 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 964 965 /* Switch the timer base, if necessary: */ 966 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 967 968 timer_stats_hrtimer_set_start_info(timer); 969 970 leftmost = enqueue_hrtimer(timer, new_base); 971 972 if (!leftmost) { 973 unlock_hrtimer_base(timer, &flags); 974 return ret; 975 } 976 977 if (!hrtimer_is_hres_active(timer)) { 978 /* 979 * Kick to reschedule the next tick to handle the new timer 980 * on dynticks target. 981 */ 982 wake_up_nohz_cpu(new_base->cpu_base->cpu); 983 } else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) && 984 hrtimer_reprogram(timer, new_base)) { 985 /* 986 * Only allow reprogramming if the new base is on this CPU. 987 * (it might still be on another CPU if the timer was pending) 988 * 989 * XXX send_remote_softirq() ? 990 */ 991 if (wakeup) { 992 /* 993 * We need to drop cpu_base->lock to avoid a 994 * lock ordering issue vs. rq->lock. 995 */ 996 raw_spin_unlock(&new_base->cpu_base->lock); 997 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 998 local_irq_restore(flags); 999 return ret; 1000 } else { 1001 __raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1002 } 1003 } 1004 1005 unlock_hrtimer_base(timer, &flags); 1006 1007 return ret; 1008 } 1009 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns); 1010 1011 /** 1012 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 1013 * @timer: the timer to be added 1014 * @tim: expiry time 1015 * @delta_ns: "slack" range for the timer 1016 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1017 * relative (HRTIMER_MODE_REL) 1018 * 1019 * Returns: 1020 * 0 on success 1021 * 1 when the timer was active 1022 */ 1023 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1024 unsigned long delta_ns, const enum hrtimer_mode mode) 1025 { 1026 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); 1027 } 1028 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1029 1030 /** 1031 * hrtimer_start - (re)start an hrtimer on the current CPU 1032 * @timer: the timer to be added 1033 * @tim: expiry time 1034 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1035 * relative (HRTIMER_MODE_REL) 1036 * 1037 * Returns: 1038 * 0 on success 1039 * 1 when the timer was active 1040 */ 1041 int 1042 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 1043 { 1044 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); 1045 } 1046 EXPORT_SYMBOL_GPL(hrtimer_start); 1047 1048 1049 /** 1050 * hrtimer_try_to_cancel - try to deactivate a timer 1051 * @timer: hrtimer to stop 1052 * 1053 * Returns: 1054 * 0 when the timer was not active 1055 * 1 when the timer was active 1056 * -1 when the timer is currently excuting the callback function and 1057 * cannot be stopped 1058 */ 1059 int hrtimer_try_to_cancel(struct hrtimer *timer) 1060 { 1061 struct hrtimer_clock_base *base; 1062 unsigned long flags; 1063 int ret = -1; 1064 1065 base = lock_hrtimer_base(timer, &flags); 1066 1067 if (!hrtimer_callback_running(timer)) 1068 ret = remove_hrtimer(timer, base); 1069 1070 unlock_hrtimer_base(timer, &flags); 1071 1072 return ret; 1073 1074 } 1075 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1076 1077 /** 1078 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1079 * @timer: the timer to be cancelled 1080 * 1081 * Returns: 1082 * 0 when the timer was not active 1083 * 1 when the timer was active 1084 */ 1085 int hrtimer_cancel(struct hrtimer *timer) 1086 { 1087 for (;;) { 1088 int ret = hrtimer_try_to_cancel(timer); 1089 1090 if (ret >= 0) 1091 return ret; 1092 cpu_relax(); 1093 } 1094 } 1095 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1096 1097 /** 1098 * hrtimer_get_remaining - get remaining time for the timer 1099 * @timer: the timer to read 1100 */ 1101 ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1102 { 1103 unsigned long flags; 1104 ktime_t rem; 1105 1106 lock_hrtimer_base(timer, &flags); 1107 rem = hrtimer_expires_remaining(timer); 1108 unlock_hrtimer_base(timer, &flags); 1109 1110 return rem; 1111 } 1112 EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1113 1114 #ifdef CONFIG_NO_HZ_COMMON 1115 /** 1116 * hrtimer_get_next_event - get the time until next expiry event 1117 * 1118 * Returns the delta to the next expiry event or KTIME_MAX if no timer 1119 * is pending. 1120 */ 1121 ktime_t hrtimer_get_next_event(void) 1122 { 1123 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1124 ktime_t mindelta = { .tv64 = KTIME_MAX }; 1125 unsigned long flags; 1126 1127 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1128 1129 if (!hrtimer_hres_active()) 1130 mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base), 1131 ktime_get()); 1132 1133 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1134 1135 if (mindelta.tv64 < 0) 1136 mindelta.tv64 = 0; 1137 return mindelta; 1138 } 1139 #endif 1140 1141 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1142 enum hrtimer_mode mode) 1143 { 1144 struct hrtimer_cpu_base *cpu_base; 1145 int base; 1146 1147 memset(timer, 0, sizeof(struct hrtimer)); 1148 1149 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1150 1151 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1152 clock_id = CLOCK_MONOTONIC; 1153 1154 base = hrtimer_clockid_to_base(clock_id); 1155 timer->base = &cpu_base->clock_base[base]; 1156 timerqueue_init(&timer->node); 1157 1158 #ifdef CONFIG_TIMER_STATS 1159 timer->start_site = NULL; 1160 timer->start_pid = -1; 1161 memset(timer->start_comm, 0, TASK_COMM_LEN); 1162 #endif 1163 } 1164 1165 /** 1166 * hrtimer_init - initialize a timer to the given clock 1167 * @timer: the timer to be initialized 1168 * @clock_id: the clock to be used 1169 * @mode: timer mode abs/rel 1170 */ 1171 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1172 enum hrtimer_mode mode) 1173 { 1174 debug_init(timer, clock_id, mode); 1175 __hrtimer_init(timer, clock_id, mode); 1176 } 1177 EXPORT_SYMBOL_GPL(hrtimer_init); 1178 1179 /** 1180 * hrtimer_get_res - get the timer resolution for a clock 1181 * @which_clock: which clock to query 1182 * @tp: pointer to timespec variable to store the resolution 1183 * 1184 * Store the resolution of the clock selected by @which_clock in the 1185 * variable pointed to by @tp. 1186 */ 1187 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 1188 { 1189 struct hrtimer_cpu_base *cpu_base; 1190 int base = hrtimer_clockid_to_base(which_clock); 1191 1192 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1193 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); 1194 1195 return 0; 1196 } 1197 EXPORT_SYMBOL_GPL(hrtimer_get_res); 1198 1199 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) 1200 { 1201 struct hrtimer_clock_base *base = timer->base; 1202 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1203 enum hrtimer_restart (*fn)(struct hrtimer *); 1204 int restart; 1205 1206 WARN_ON(!irqs_disabled()); 1207 1208 debug_deactivate(timer); 1209 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1210 timer_stats_account_hrtimer(timer); 1211 fn = timer->function; 1212 1213 /* 1214 * Because we run timers from hardirq context, there is no chance 1215 * they get migrated to another cpu, therefore its safe to unlock 1216 * the timer base. 1217 */ 1218 raw_spin_unlock(&cpu_base->lock); 1219 trace_hrtimer_expire_entry(timer, now); 1220 restart = fn(timer); 1221 trace_hrtimer_expire_exit(timer); 1222 raw_spin_lock(&cpu_base->lock); 1223 1224 /* 1225 * Note: We clear the CALLBACK bit after enqueue_hrtimer and 1226 * we do not reprogramm the event hardware. Happens either in 1227 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1228 */ 1229 if (restart != HRTIMER_NORESTART) { 1230 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1231 enqueue_hrtimer(timer, base); 1232 } 1233 1234 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); 1235 1236 timer->state &= ~HRTIMER_STATE_CALLBACK; 1237 } 1238 1239 #ifdef CONFIG_HIGH_RES_TIMERS 1240 1241 /* 1242 * High resolution timer interrupt 1243 * Called with interrupts disabled 1244 */ 1245 void hrtimer_interrupt(struct clock_event_device *dev) 1246 { 1247 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1248 ktime_t expires_next, now, entry_time, delta; 1249 int i, retries = 0; 1250 1251 BUG_ON(!cpu_base->hres_active); 1252 cpu_base->nr_events++; 1253 dev->next_event.tv64 = KTIME_MAX; 1254 1255 raw_spin_lock(&cpu_base->lock); 1256 entry_time = now = hrtimer_update_base(cpu_base); 1257 retry: 1258 cpu_base->in_hrtirq = 1; 1259 /* 1260 * We set expires_next to KTIME_MAX here with cpu_base->lock 1261 * held to prevent that a timer is enqueued in our queue via 1262 * the migration code. This does not affect enqueueing of 1263 * timers which run their callback and need to be requeued on 1264 * this CPU. 1265 */ 1266 cpu_base->expires_next.tv64 = KTIME_MAX; 1267 1268 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1269 struct hrtimer_clock_base *base; 1270 struct timerqueue_node *node; 1271 ktime_t basenow; 1272 1273 if (!(cpu_base->active_bases & (1 << i))) 1274 continue; 1275 1276 base = cpu_base->clock_base + i; 1277 basenow = ktime_add(now, base->offset); 1278 1279 while ((node = timerqueue_getnext(&base->active))) { 1280 struct hrtimer *timer; 1281 1282 timer = container_of(node, struct hrtimer, node); 1283 1284 /* 1285 * The immediate goal for using the softexpires is 1286 * minimizing wakeups, not running timers at the 1287 * earliest interrupt after their soft expiration. 1288 * This allows us to avoid using a Priority Search 1289 * Tree, which can answer a stabbing querry for 1290 * overlapping intervals and instead use the simple 1291 * BST we already have. 1292 * We don't add extra wakeups by delaying timers that 1293 * are right-of a not yet expired timer, because that 1294 * timer will have to trigger a wakeup anyway. 1295 */ 1296 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1297 break; 1298 1299 __run_hrtimer(timer, &basenow); 1300 } 1301 } 1302 /* Reevaluate the clock bases for the next expiry */ 1303 expires_next = __hrtimer_get_next_event(cpu_base); 1304 /* 1305 * Store the new expiry value so the migration code can verify 1306 * against it. 1307 */ 1308 cpu_base->expires_next = expires_next; 1309 cpu_base->in_hrtirq = 0; 1310 raw_spin_unlock(&cpu_base->lock); 1311 1312 /* Reprogramming necessary ? */ 1313 if (expires_next.tv64 == KTIME_MAX || 1314 !tick_program_event(expires_next, 0)) { 1315 cpu_base->hang_detected = 0; 1316 return; 1317 } 1318 1319 /* 1320 * The next timer was already expired due to: 1321 * - tracing 1322 * - long lasting callbacks 1323 * - being scheduled away when running in a VM 1324 * 1325 * We need to prevent that we loop forever in the hrtimer 1326 * interrupt routine. We give it 3 attempts to avoid 1327 * overreacting on some spurious event. 1328 * 1329 * Acquire base lock for updating the offsets and retrieving 1330 * the current time. 1331 */ 1332 raw_spin_lock(&cpu_base->lock); 1333 now = hrtimer_update_base(cpu_base); 1334 cpu_base->nr_retries++; 1335 if (++retries < 3) 1336 goto retry; 1337 /* 1338 * Give the system a chance to do something else than looping 1339 * here. We stored the entry time, so we know exactly how long 1340 * we spent here. We schedule the next event this amount of 1341 * time away. 1342 */ 1343 cpu_base->nr_hangs++; 1344 cpu_base->hang_detected = 1; 1345 raw_spin_unlock(&cpu_base->lock); 1346 delta = ktime_sub(now, entry_time); 1347 if (delta.tv64 > cpu_base->max_hang_time.tv64) 1348 cpu_base->max_hang_time = delta; 1349 /* 1350 * Limit it to a sensible value as we enforce a longer 1351 * delay. Give the CPU at least 100ms to catch up. 1352 */ 1353 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1354 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1355 else 1356 expires_next = ktime_add(now, delta); 1357 tick_program_event(expires_next, 1); 1358 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1359 ktime_to_ns(delta)); 1360 } 1361 1362 /* 1363 * local version of hrtimer_peek_ahead_timers() called with interrupts 1364 * disabled. 1365 */ 1366 static void __hrtimer_peek_ahead_timers(void) 1367 { 1368 struct tick_device *td; 1369 1370 if (!hrtimer_hres_active()) 1371 return; 1372 1373 td = this_cpu_ptr(&tick_cpu_device); 1374 if (td && td->evtdev) 1375 hrtimer_interrupt(td->evtdev); 1376 } 1377 1378 /** 1379 * hrtimer_peek_ahead_timers -- run soft-expired timers now 1380 * 1381 * hrtimer_peek_ahead_timers will peek at the timer queue of 1382 * the current cpu and check if there are any timers for which 1383 * the soft expires time has passed. If any such timers exist, 1384 * they are run immediately and then removed from the timer queue. 1385 * 1386 */ 1387 void hrtimer_peek_ahead_timers(void) 1388 { 1389 unsigned long flags; 1390 1391 local_irq_save(flags); 1392 __hrtimer_peek_ahead_timers(); 1393 local_irq_restore(flags); 1394 } 1395 1396 static void run_hrtimer_softirq(struct softirq_action *h) 1397 { 1398 hrtimer_peek_ahead_timers(); 1399 } 1400 1401 #else /* CONFIG_HIGH_RES_TIMERS */ 1402 1403 static inline void __hrtimer_peek_ahead_timers(void) { } 1404 1405 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1406 1407 /* 1408 * Called from timer softirq every jiffy, expire hrtimers: 1409 * 1410 * For HRT its the fall back code to run the softirq in the timer 1411 * softirq context in case the hrtimer initialization failed or has 1412 * not been done yet. 1413 */ 1414 void hrtimer_run_pending(void) 1415 { 1416 if (hrtimer_hres_active()) 1417 return; 1418 1419 /* 1420 * This _is_ ugly: We have to check in the softirq context, 1421 * whether we can switch to highres and / or nohz mode. The 1422 * clocksource switch happens in the timer interrupt with 1423 * xtime_lock held. Notification from there only sets the 1424 * check bit in the tick_oneshot code, otherwise we might 1425 * deadlock vs. xtime_lock. 1426 */ 1427 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1428 hrtimer_switch_to_hres(); 1429 } 1430 1431 /* 1432 * Called from hardirq context every jiffy 1433 */ 1434 void hrtimer_run_queues(void) 1435 { 1436 struct timerqueue_node *node; 1437 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1438 struct hrtimer_clock_base *base; 1439 int index, gettime = 1; 1440 1441 if (hrtimer_hres_active()) 1442 return; 1443 1444 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { 1445 base = &cpu_base->clock_base[index]; 1446 if (!timerqueue_getnext(&base->active)) 1447 continue; 1448 1449 if (gettime) { 1450 hrtimer_get_softirq_time(cpu_base); 1451 gettime = 0; 1452 } 1453 1454 raw_spin_lock(&cpu_base->lock); 1455 1456 while ((node = timerqueue_getnext(&base->active))) { 1457 struct hrtimer *timer; 1458 1459 timer = container_of(node, struct hrtimer, node); 1460 if (base->softirq_time.tv64 <= 1461 hrtimer_get_expires_tv64(timer)) 1462 break; 1463 1464 __run_hrtimer(timer, &base->softirq_time); 1465 } 1466 raw_spin_unlock(&cpu_base->lock); 1467 } 1468 } 1469 1470 /* 1471 * Sleep related functions: 1472 */ 1473 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1474 { 1475 struct hrtimer_sleeper *t = 1476 container_of(timer, struct hrtimer_sleeper, timer); 1477 struct task_struct *task = t->task; 1478 1479 t->task = NULL; 1480 if (task) 1481 wake_up_process(task); 1482 1483 return HRTIMER_NORESTART; 1484 } 1485 1486 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1487 { 1488 sl->timer.function = hrtimer_wakeup; 1489 sl->task = task; 1490 } 1491 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1492 1493 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1494 { 1495 hrtimer_init_sleeper(t, current); 1496 1497 do { 1498 set_current_state(TASK_INTERRUPTIBLE); 1499 hrtimer_start_expires(&t->timer, mode); 1500 if (!hrtimer_active(&t->timer)) 1501 t->task = NULL; 1502 1503 if (likely(t->task)) 1504 freezable_schedule(); 1505 1506 hrtimer_cancel(&t->timer); 1507 mode = HRTIMER_MODE_ABS; 1508 1509 } while (t->task && !signal_pending(current)); 1510 1511 __set_current_state(TASK_RUNNING); 1512 1513 return t->task == NULL; 1514 } 1515 1516 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1517 { 1518 struct timespec rmt; 1519 ktime_t rem; 1520 1521 rem = hrtimer_expires_remaining(timer); 1522 if (rem.tv64 <= 0) 1523 return 0; 1524 rmt = ktime_to_timespec(rem); 1525 1526 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1527 return -EFAULT; 1528 1529 return 1; 1530 } 1531 1532 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1533 { 1534 struct hrtimer_sleeper t; 1535 struct timespec __user *rmtp; 1536 int ret = 0; 1537 1538 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1539 HRTIMER_MODE_ABS); 1540 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1541 1542 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1543 goto out; 1544 1545 rmtp = restart->nanosleep.rmtp; 1546 if (rmtp) { 1547 ret = update_rmtp(&t.timer, rmtp); 1548 if (ret <= 0) 1549 goto out; 1550 } 1551 1552 /* The other values in restart are already filled in */ 1553 ret = -ERESTART_RESTARTBLOCK; 1554 out: 1555 destroy_hrtimer_on_stack(&t.timer); 1556 return ret; 1557 } 1558 1559 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1560 const enum hrtimer_mode mode, const clockid_t clockid) 1561 { 1562 struct restart_block *restart; 1563 struct hrtimer_sleeper t; 1564 int ret = 0; 1565 unsigned long slack; 1566 1567 slack = current->timer_slack_ns; 1568 if (dl_task(current) || rt_task(current)) 1569 slack = 0; 1570 1571 hrtimer_init_on_stack(&t.timer, clockid, mode); 1572 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1573 if (do_nanosleep(&t, mode)) 1574 goto out; 1575 1576 /* Absolute timers do not update the rmtp value and restart: */ 1577 if (mode == HRTIMER_MODE_ABS) { 1578 ret = -ERESTARTNOHAND; 1579 goto out; 1580 } 1581 1582 if (rmtp) { 1583 ret = update_rmtp(&t.timer, rmtp); 1584 if (ret <= 0) 1585 goto out; 1586 } 1587 1588 restart = ¤t->restart_block; 1589 restart->fn = hrtimer_nanosleep_restart; 1590 restart->nanosleep.clockid = t.timer.base->clockid; 1591 restart->nanosleep.rmtp = rmtp; 1592 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1593 1594 ret = -ERESTART_RESTARTBLOCK; 1595 out: 1596 destroy_hrtimer_on_stack(&t.timer); 1597 return ret; 1598 } 1599 1600 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1601 struct timespec __user *, rmtp) 1602 { 1603 struct timespec tu; 1604 1605 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1606 return -EFAULT; 1607 1608 if (!timespec_valid(&tu)) 1609 return -EINVAL; 1610 1611 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1612 } 1613 1614 /* 1615 * Functions related to boot-time initialization: 1616 */ 1617 static void init_hrtimers_cpu(int cpu) 1618 { 1619 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1620 int i; 1621 1622 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1623 cpu_base->clock_base[i].cpu_base = cpu_base; 1624 timerqueue_init_head(&cpu_base->clock_base[i].active); 1625 } 1626 1627 cpu_base->cpu = cpu; 1628 hrtimer_init_hres(cpu_base); 1629 } 1630 1631 #ifdef CONFIG_HOTPLUG_CPU 1632 1633 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1634 struct hrtimer_clock_base *new_base) 1635 { 1636 struct hrtimer *timer; 1637 struct timerqueue_node *node; 1638 1639 while ((node = timerqueue_getnext(&old_base->active))) { 1640 timer = container_of(node, struct hrtimer, node); 1641 BUG_ON(hrtimer_callback_running(timer)); 1642 debug_deactivate(timer); 1643 1644 /* 1645 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1646 * timer could be seen as !active and just vanish away 1647 * under us on another CPU 1648 */ 1649 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1650 timer->base = new_base; 1651 /* 1652 * Enqueue the timers on the new cpu. This does not 1653 * reprogram the event device in case the timer 1654 * expires before the earliest on this CPU, but we run 1655 * hrtimer_interrupt after we migrated everything to 1656 * sort out already expired timers and reprogram the 1657 * event device. 1658 */ 1659 enqueue_hrtimer(timer, new_base); 1660 1661 /* Clear the migration state bit */ 1662 timer->state &= ~HRTIMER_STATE_MIGRATE; 1663 } 1664 } 1665 1666 static void migrate_hrtimers(int scpu) 1667 { 1668 struct hrtimer_cpu_base *old_base, *new_base; 1669 int i; 1670 1671 BUG_ON(cpu_online(scpu)); 1672 tick_cancel_sched_timer(scpu); 1673 1674 local_irq_disable(); 1675 old_base = &per_cpu(hrtimer_bases, scpu); 1676 new_base = this_cpu_ptr(&hrtimer_bases); 1677 /* 1678 * The caller is globally serialized and nobody else 1679 * takes two locks at once, deadlock is not possible. 1680 */ 1681 raw_spin_lock(&new_base->lock); 1682 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1683 1684 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1685 migrate_hrtimer_list(&old_base->clock_base[i], 1686 &new_base->clock_base[i]); 1687 } 1688 1689 raw_spin_unlock(&old_base->lock); 1690 raw_spin_unlock(&new_base->lock); 1691 1692 /* Check, if we got expired work to do */ 1693 __hrtimer_peek_ahead_timers(); 1694 local_irq_enable(); 1695 } 1696 1697 #endif /* CONFIG_HOTPLUG_CPU */ 1698 1699 static int hrtimer_cpu_notify(struct notifier_block *self, 1700 unsigned long action, void *hcpu) 1701 { 1702 int scpu = (long)hcpu; 1703 1704 switch (action) { 1705 1706 case CPU_UP_PREPARE: 1707 case CPU_UP_PREPARE_FROZEN: 1708 init_hrtimers_cpu(scpu); 1709 break; 1710 1711 #ifdef CONFIG_HOTPLUG_CPU 1712 case CPU_DEAD: 1713 case CPU_DEAD_FROZEN: 1714 migrate_hrtimers(scpu); 1715 break; 1716 #endif 1717 1718 default: 1719 break; 1720 } 1721 1722 return NOTIFY_OK; 1723 } 1724 1725 static struct notifier_block hrtimers_nb = { 1726 .notifier_call = hrtimer_cpu_notify, 1727 }; 1728 1729 void __init hrtimers_init(void) 1730 { 1731 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1732 (void *)(long)smp_processor_id()); 1733 register_cpu_notifier(&hrtimers_nb); 1734 #ifdef CONFIG_HIGH_RES_TIMERS 1735 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); 1736 #endif 1737 } 1738 1739 /** 1740 * schedule_hrtimeout_range_clock - sleep until timeout 1741 * @expires: timeout value (ktime_t) 1742 * @delta: slack in expires timeout (ktime_t) 1743 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1744 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1745 */ 1746 int __sched 1747 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1748 const enum hrtimer_mode mode, int clock) 1749 { 1750 struct hrtimer_sleeper t; 1751 1752 /* 1753 * Optimize when a zero timeout value is given. It does not 1754 * matter whether this is an absolute or a relative time. 1755 */ 1756 if (expires && !expires->tv64) { 1757 __set_current_state(TASK_RUNNING); 1758 return 0; 1759 } 1760 1761 /* 1762 * A NULL parameter means "infinite" 1763 */ 1764 if (!expires) { 1765 schedule(); 1766 return -EINTR; 1767 } 1768 1769 hrtimer_init_on_stack(&t.timer, clock, mode); 1770 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1771 1772 hrtimer_init_sleeper(&t, current); 1773 1774 hrtimer_start_expires(&t.timer, mode); 1775 if (!hrtimer_active(&t.timer)) 1776 t.task = NULL; 1777 1778 if (likely(t.task)) 1779 schedule(); 1780 1781 hrtimer_cancel(&t.timer); 1782 destroy_hrtimer_on_stack(&t.timer); 1783 1784 __set_current_state(TASK_RUNNING); 1785 1786 return !t.task ? 0 : -EINTR; 1787 } 1788 1789 /** 1790 * schedule_hrtimeout_range - sleep until timeout 1791 * @expires: timeout value (ktime_t) 1792 * @delta: slack in expires timeout (ktime_t) 1793 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1794 * 1795 * Make the current task sleep until the given expiry time has 1796 * elapsed. The routine will return immediately unless 1797 * the current task state has been set (see set_current_state()). 1798 * 1799 * The @delta argument gives the kernel the freedom to schedule the 1800 * actual wakeup to a time that is both power and performance friendly. 1801 * The kernel give the normal best effort behavior for "@expires+@delta", 1802 * but may decide to fire the timer earlier, but no earlier than @expires. 1803 * 1804 * You can set the task state as follows - 1805 * 1806 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1807 * pass before the routine returns. 1808 * 1809 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1810 * delivered to the current task. 1811 * 1812 * The current task state is guaranteed to be TASK_RUNNING when this 1813 * routine returns. 1814 * 1815 * Returns 0 when the timer has expired otherwise -EINTR 1816 */ 1817 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1818 const enum hrtimer_mode mode) 1819 { 1820 return schedule_hrtimeout_range_clock(expires, delta, mode, 1821 CLOCK_MONOTONIC); 1822 } 1823 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1824 1825 /** 1826 * schedule_hrtimeout - sleep until timeout 1827 * @expires: timeout value (ktime_t) 1828 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1829 * 1830 * Make the current task sleep until the given expiry time has 1831 * elapsed. The routine will return immediately unless 1832 * the current task state has been set (see set_current_state()). 1833 * 1834 * You can set the task state as follows - 1835 * 1836 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1837 * pass before the routine returns. 1838 * 1839 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1840 * delivered to the current task. 1841 * 1842 * The current task state is guaranteed to be TASK_RUNNING when this 1843 * routine returns. 1844 * 1845 * Returns 0 when the timer has expired otherwise -EINTR 1846 */ 1847 int __sched schedule_hrtimeout(ktime_t *expires, 1848 const enum hrtimer_mode mode) 1849 { 1850 return schedule_hrtimeout_range(expires, 0, mode); 1851 } 1852 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1853