xref: /openbmc/linux/kernel/time/hrtimer.c (revision 52fb57e7)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 			.resolution = KTIME_LOW_RES,
78 		},
79 		{
80 			.index = HRTIMER_BASE_REALTIME,
81 			.clockid = CLOCK_REALTIME,
82 			.get_time = &ktime_get_real,
83 			.resolution = KTIME_LOW_RES,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 			.get_time = &ktime_get_boottime,
89 			.resolution = KTIME_LOW_RES,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 			.resolution = KTIME_LOW_RES,
96 		},
97 	}
98 };
99 
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
102 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
103 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105 };
106 
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 	return hrtimer_clock_to_base_table[clock_id];
110 }
111 
112 
113 /*
114  * Get the coarse grained time at the softirq based on xtime and
115  * wall_to_monotonic.
116  */
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 	ktime_t xtim, mono, boot, tai;
120 	ktime_t off_real, off_boot, off_tai;
121 
122 	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 	boot = ktime_add(mono, off_boot);
124 	xtim = ktime_add(mono, off_real);
125 	tai = ktime_add(mono, off_tai);
126 
127 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132 
133 /*
134  * Functions and macros which are different for UP/SMP systems are kept in a
135  * single place
136  */
137 #ifdef CONFIG_SMP
138 
139 /*
140  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141  * means that all timers which are tied to this base via timer->base are
142  * locked, and the base itself is locked too.
143  *
144  * So __run_timers/migrate_timers can safely modify all timers which could
145  * be found on the lists/queues.
146  *
147  * When the timer's base is locked, and the timer removed from list, it is
148  * possible to set timer->base = NULL and drop the lock: the timer remains
149  * locked.
150  */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 					     unsigned long *flags)
154 {
155 	struct hrtimer_clock_base *base;
156 
157 	for (;;) {
158 		base = timer->base;
159 		if (likely(base != NULL)) {
160 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 			if (likely(base == timer->base))
162 				return base;
163 			/* The timer has migrated to another CPU: */
164 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 		}
166 		cpu_relax();
167 	}
168 }
169 
170 /*
171  * With HIGHRES=y we do not migrate the timer when it is expiring
172  * before the next event on the target cpu because we cannot reprogram
173  * the target cpu hardware and we would cause it to fire late.
174  *
175  * Called with cpu_base->lock of target cpu held.
176  */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 	ktime_t expires;
182 
183 	if (!new_base->cpu_base->hres_active)
184 		return 0;
185 
186 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 	return 0;
190 #endif
191 }
192 
193 /*
194  * Switch the timer base to the current CPU when possible.
195  */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 		    int pinned)
199 {
200 	struct hrtimer_clock_base *new_base;
201 	struct hrtimer_cpu_base *new_cpu_base;
202 	int this_cpu = smp_processor_id();
203 	int cpu = get_nohz_timer_target(pinned);
204 	int basenum = base->index;
205 
206 again:
207 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 	new_base = &new_cpu_base->clock_base[basenum];
209 
210 	if (base != new_base) {
211 		/*
212 		 * We are trying to move timer to new_base.
213 		 * However we can't change timer's base while it is running,
214 		 * so we keep it on the same CPU. No hassle vs. reprogramming
215 		 * the event source in the high resolution case. The softirq
216 		 * code will take care of this when the timer function has
217 		 * completed. There is no conflict as we hold the lock until
218 		 * the timer is enqueued.
219 		 */
220 		if (unlikely(hrtimer_callback_running(timer)))
221 			return base;
222 
223 		/* See the comment in lock_timer_base() */
224 		timer->base = NULL;
225 		raw_spin_unlock(&base->cpu_base->lock);
226 		raw_spin_lock(&new_base->cpu_base->lock);
227 
228 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 			cpu = this_cpu;
230 			raw_spin_unlock(&new_base->cpu_base->lock);
231 			raw_spin_lock(&base->cpu_base->lock);
232 			timer->base = base;
233 			goto again;
234 		}
235 		timer->base = new_base;
236 	} else {
237 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 			cpu = this_cpu;
239 			goto again;
240 		}
241 	}
242 	return new_base;
243 }
244 
245 #else /* CONFIG_SMP */
246 
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 	struct hrtimer_clock_base *base = timer->base;
251 
252 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 
254 	return base;
255 }
256 
257 # define switch_hrtimer_base(t, b, p)	(b)
258 
259 #endif	/* !CONFIG_SMP */
260 
261 /*
262  * Functions for the union type storage format of ktime_t which are
263  * too large for inlining:
264  */
265 #if BITS_PER_LONG < 64
266 /*
267  * Divide a ktime value by a nanosecond value
268  */
269 s64 __ktime_divns(const ktime_t kt, s64 div)
270 {
271 	int sft = 0;
272 	s64 dclc;
273 	u64 tmp;
274 
275 	dclc = ktime_to_ns(kt);
276 	tmp = dclc < 0 ? -dclc : dclc;
277 
278 	/* Make sure the divisor is less than 2^32: */
279 	while (div >> 32) {
280 		sft++;
281 		div >>= 1;
282 	}
283 	tmp >>= sft;
284 	do_div(tmp, (unsigned long) div);
285 	return dclc < 0 ? -tmp : tmp;
286 }
287 EXPORT_SYMBOL_GPL(__ktime_divns);
288 #endif /* BITS_PER_LONG >= 64 */
289 
290 /*
291  * Add two ktime values and do a safety check for overflow:
292  */
293 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
294 {
295 	ktime_t res = ktime_add(lhs, rhs);
296 
297 	/*
298 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
299 	 * return to user space in a timespec:
300 	 */
301 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
302 		res = ktime_set(KTIME_SEC_MAX, 0);
303 
304 	return res;
305 }
306 
307 EXPORT_SYMBOL_GPL(ktime_add_safe);
308 
309 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
310 
311 static struct debug_obj_descr hrtimer_debug_descr;
312 
313 static void *hrtimer_debug_hint(void *addr)
314 {
315 	return ((struct hrtimer *) addr)->function;
316 }
317 
318 /*
319  * fixup_init is called when:
320  * - an active object is initialized
321  */
322 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
323 {
324 	struct hrtimer *timer = addr;
325 
326 	switch (state) {
327 	case ODEBUG_STATE_ACTIVE:
328 		hrtimer_cancel(timer);
329 		debug_object_init(timer, &hrtimer_debug_descr);
330 		return 1;
331 	default:
332 		return 0;
333 	}
334 }
335 
336 /*
337  * fixup_activate is called when:
338  * - an active object is activated
339  * - an unknown object is activated (might be a statically initialized object)
340  */
341 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
342 {
343 	switch (state) {
344 
345 	case ODEBUG_STATE_NOTAVAILABLE:
346 		WARN_ON_ONCE(1);
347 		return 0;
348 
349 	case ODEBUG_STATE_ACTIVE:
350 		WARN_ON(1);
351 
352 	default:
353 		return 0;
354 	}
355 }
356 
357 /*
358  * fixup_free is called when:
359  * - an active object is freed
360  */
361 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
362 {
363 	struct hrtimer *timer = addr;
364 
365 	switch (state) {
366 	case ODEBUG_STATE_ACTIVE:
367 		hrtimer_cancel(timer);
368 		debug_object_free(timer, &hrtimer_debug_descr);
369 		return 1;
370 	default:
371 		return 0;
372 	}
373 }
374 
375 static struct debug_obj_descr hrtimer_debug_descr = {
376 	.name		= "hrtimer",
377 	.debug_hint	= hrtimer_debug_hint,
378 	.fixup_init	= hrtimer_fixup_init,
379 	.fixup_activate	= hrtimer_fixup_activate,
380 	.fixup_free	= hrtimer_fixup_free,
381 };
382 
383 static inline void debug_hrtimer_init(struct hrtimer *timer)
384 {
385 	debug_object_init(timer, &hrtimer_debug_descr);
386 }
387 
388 static inline void debug_hrtimer_activate(struct hrtimer *timer)
389 {
390 	debug_object_activate(timer, &hrtimer_debug_descr);
391 }
392 
393 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
394 {
395 	debug_object_deactivate(timer, &hrtimer_debug_descr);
396 }
397 
398 static inline void debug_hrtimer_free(struct hrtimer *timer)
399 {
400 	debug_object_free(timer, &hrtimer_debug_descr);
401 }
402 
403 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
404 			   enum hrtimer_mode mode);
405 
406 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
407 			   enum hrtimer_mode mode)
408 {
409 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
410 	__hrtimer_init(timer, clock_id, mode);
411 }
412 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
413 
414 void destroy_hrtimer_on_stack(struct hrtimer *timer)
415 {
416 	debug_object_free(timer, &hrtimer_debug_descr);
417 }
418 
419 #else
420 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
421 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
422 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
423 #endif
424 
425 static inline void
426 debug_init(struct hrtimer *timer, clockid_t clockid,
427 	   enum hrtimer_mode mode)
428 {
429 	debug_hrtimer_init(timer);
430 	trace_hrtimer_init(timer, clockid, mode);
431 }
432 
433 static inline void debug_activate(struct hrtimer *timer)
434 {
435 	debug_hrtimer_activate(timer);
436 	trace_hrtimer_start(timer);
437 }
438 
439 static inline void debug_deactivate(struct hrtimer *timer)
440 {
441 	debug_hrtimer_deactivate(timer);
442 	trace_hrtimer_cancel(timer);
443 }
444 
445 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
446 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
447 {
448 	struct hrtimer_clock_base *base = cpu_base->clock_base;
449 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
450 	int i;
451 
452 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
453 		struct timerqueue_node *next;
454 		struct hrtimer *timer;
455 
456 		next = timerqueue_getnext(&base->active);
457 		if (!next)
458 			continue;
459 
460 		timer = container_of(next, struct hrtimer, node);
461 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
462 		if (expires.tv64 < expires_next.tv64)
463 			expires_next = expires;
464 	}
465 	/*
466 	 * clock_was_set() might have changed base->offset of any of
467 	 * the clock bases so the result might be negative. Fix it up
468 	 * to prevent a false positive in clockevents_program_event().
469 	 */
470 	if (expires_next.tv64 < 0)
471 		expires_next.tv64 = 0;
472 	return expires_next;
473 }
474 #endif
475 
476 /* High resolution timer related functions */
477 #ifdef CONFIG_HIGH_RES_TIMERS
478 
479 /*
480  * High resolution timer enabled ?
481  */
482 static int hrtimer_hres_enabled __read_mostly  = 1;
483 
484 /*
485  * Enable / Disable high resolution mode
486  */
487 static int __init setup_hrtimer_hres(char *str)
488 {
489 	if (!strcmp(str, "off"))
490 		hrtimer_hres_enabled = 0;
491 	else if (!strcmp(str, "on"))
492 		hrtimer_hres_enabled = 1;
493 	else
494 		return 0;
495 	return 1;
496 }
497 
498 __setup("highres=", setup_hrtimer_hres);
499 
500 /*
501  * hrtimer_high_res_enabled - query, if the highres mode is enabled
502  */
503 static inline int hrtimer_is_hres_enabled(void)
504 {
505 	return hrtimer_hres_enabled;
506 }
507 
508 /*
509  * Is the high resolution mode active ?
510  */
511 static inline int hrtimer_hres_active(void)
512 {
513 	return __this_cpu_read(hrtimer_bases.hres_active);
514 }
515 
516 /*
517  * Reprogram the event source with checking both queues for the
518  * next event
519  * Called with interrupts disabled and base->lock held
520  */
521 static void
522 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
523 {
524 	ktime_t expires_next = __hrtimer_get_next_event(cpu_base);
525 
526 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
527 		return;
528 
529 	cpu_base->expires_next.tv64 = expires_next.tv64;
530 
531 	/*
532 	 * If a hang was detected in the last timer interrupt then we
533 	 * leave the hang delay active in the hardware. We want the
534 	 * system to make progress. That also prevents the following
535 	 * scenario:
536 	 * T1 expires 50ms from now
537 	 * T2 expires 5s from now
538 	 *
539 	 * T1 is removed, so this code is called and would reprogram
540 	 * the hardware to 5s from now. Any hrtimer_start after that
541 	 * will not reprogram the hardware due to hang_detected being
542 	 * set. So we'd effectivly block all timers until the T2 event
543 	 * fires.
544 	 */
545 	if (cpu_base->hang_detected)
546 		return;
547 
548 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
549 		tick_program_event(cpu_base->expires_next, 1);
550 }
551 
552 /*
553  * Shared reprogramming for clock_realtime and clock_monotonic
554  *
555  * When a timer is enqueued and expires earlier than the already enqueued
556  * timers, we have to check, whether it expires earlier than the timer for
557  * which the clock event device was armed.
558  *
559  * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
560  * and no expiry check happens. The timer gets enqueued into the rbtree. The
561  * reprogramming and expiry check is done in the hrtimer_interrupt or in the
562  * softirq.
563  *
564  * Called with interrupts disabled and base->cpu_base.lock held
565  */
566 static int hrtimer_reprogram(struct hrtimer *timer,
567 			     struct hrtimer_clock_base *base)
568 {
569 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
570 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
571 	int res;
572 
573 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
574 
575 	/*
576 	 * When the callback is running, we do not reprogram the clock event
577 	 * device. The timer callback is either running on a different CPU or
578 	 * the callback is executed in the hrtimer_interrupt context. The
579 	 * reprogramming is handled either by the softirq, which called the
580 	 * callback or at the end of the hrtimer_interrupt.
581 	 */
582 	if (hrtimer_callback_running(timer))
583 		return 0;
584 
585 	/*
586 	 * CLOCK_REALTIME timer might be requested with an absolute
587 	 * expiry time which is less than base->offset. Nothing wrong
588 	 * about that, just avoid to call into the tick code, which
589 	 * has now objections against negative expiry values.
590 	 */
591 	if (expires.tv64 < 0)
592 		return -ETIME;
593 
594 	if (expires.tv64 >= cpu_base->expires_next.tv64)
595 		return 0;
596 
597 	/*
598 	 * When the target cpu of the timer is currently executing
599 	 * hrtimer_interrupt(), then we do not touch the clock event
600 	 * device. hrtimer_interrupt() will reevaluate all clock bases
601 	 * before reprogramming the device.
602 	 */
603 	if (cpu_base->in_hrtirq)
604 		return 0;
605 
606 	/*
607 	 * If a hang was detected in the last timer interrupt then we
608 	 * do not schedule a timer which is earlier than the expiry
609 	 * which we enforced in the hang detection. We want the system
610 	 * to make progress.
611 	 */
612 	if (cpu_base->hang_detected)
613 		return 0;
614 
615 	/*
616 	 * Clockevents returns -ETIME, when the event was in the past.
617 	 */
618 	res = tick_program_event(expires, 0);
619 	if (!IS_ERR_VALUE(res))
620 		cpu_base->expires_next = expires;
621 	return res;
622 }
623 
624 /*
625  * Initialize the high resolution related parts of cpu_base
626  */
627 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
628 {
629 	base->expires_next.tv64 = KTIME_MAX;
630 	base->hres_active = 0;
631 }
632 
633 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
634 {
635 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
636 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
637 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
638 
639 	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
640 }
641 
642 /*
643  * Retrigger next event is called after clock was set
644  *
645  * Called with interrupts disabled via on_each_cpu()
646  */
647 static void retrigger_next_event(void *arg)
648 {
649 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
650 
651 	if (!hrtimer_hres_active())
652 		return;
653 
654 	raw_spin_lock(&base->lock);
655 	hrtimer_update_base(base);
656 	hrtimer_force_reprogram(base, 0);
657 	raw_spin_unlock(&base->lock);
658 }
659 
660 /*
661  * Switch to high resolution mode
662  */
663 static int hrtimer_switch_to_hres(void)
664 {
665 	int i, cpu = smp_processor_id();
666 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
667 	unsigned long flags;
668 
669 	if (base->hres_active)
670 		return 1;
671 
672 	local_irq_save(flags);
673 
674 	if (tick_init_highres()) {
675 		local_irq_restore(flags);
676 		printk(KERN_WARNING "Could not switch to high resolution "
677 				    "mode on CPU %d\n", cpu);
678 		return 0;
679 	}
680 	base->hres_active = 1;
681 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
682 		base->clock_base[i].resolution = KTIME_HIGH_RES;
683 
684 	tick_setup_sched_timer();
685 	/* "Retrigger" the interrupt to get things going */
686 	retrigger_next_event(NULL);
687 	local_irq_restore(flags);
688 	return 1;
689 }
690 
691 static void clock_was_set_work(struct work_struct *work)
692 {
693 	clock_was_set();
694 }
695 
696 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
697 
698 /*
699  * Called from timekeeping and resume code to reprogramm the hrtimer
700  * interrupt device on all cpus.
701  */
702 void clock_was_set_delayed(void)
703 {
704 	schedule_work(&hrtimer_work);
705 }
706 
707 #else
708 
709 static inline int hrtimer_hres_active(void) { return 0; }
710 static inline int hrtimer_is_hres_enabled(void) { return 0; }
711 static inline int hrtimer_switch_to_hres(void) { return 0; }
712 static inline void
713 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
714 static inline int hrtimer_reprogram(struct hrtimer *timer,
715 				    struct hrtimer_clock_base *base)
716 {
717 	return 0;
718 }
719 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
720 static inline void retrigger_next_event(void *arg) { }
721 
722 #endif /* CONFIG_HIGH_RES_TIMERS */
723 
724 /*
725  * Clock realtime was set
726  *
727  * Change the offset of the realtime clock vs. the monotonic
728  * clock.
729  *
730  * We might have to reprogram the high resolution timer interrupt. On
731  * SMP we call the architecture specific code to retrigger _all_ high
732  * resolution timer interrupts. On UP we just disable interrupts and
733  * call the high resolution interrupt code.
734  */
735 void clock_was_set(void)
736 {
737 #ifdef CONFIG_HIGH_RES_TIMERS
738 	/* Retrigger the CPU local events everywhere */
739 	on_each_cpu(retrigger_next_event, NULL, 1);
740 #endif
741 	timerfd_clock_was_set();
742 }
743 
744 /*
745  * During resume we might have to reprogram the high resolution timer
746  * interrupt on all online CPUs.  However, all other CPUs will be
747  * stopped with IRQs interrupts disabled so the clock_was_set() call
748  * must be deferred.
749  */
750 void hrtimers_resume(void)
751 {
752 	WARN_ONCE(!irqs_disabled(),
753 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
754 
755 	/* Retrigger on the local CPU */
756 	retrigger_next_event(NULL);
757 	/* And schedule a retrigger for all others */
758 	clock_was_set_delayed();
759 }
760 
761 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
762 {
763 #ifdef CONFIG_TIMER_STATS
764 	if (timer->start_site)
765 		return;
766 	timer->start_site = __builtin_return_address(0);
767 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
768 	timer->start_pid = current->pid;
769 #endif
770 }
771 
772 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
773 {
774 #ifdef CONFIG_TIMER_STATS
775 	timer->start_site = NULL;
776 #endif
777 }
778 
779 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
780 {
781 #ifdef CONFIG_TIMER_STATS
782 	if (likely(!timer_stats_active))
783 		return;
784 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
785 				 timer->function, timer->start_comm, 0);
786 #endif
787 }
788 
789 /*
790  * Counterpart to lock_hrtimer_base above:
791  */
792 static inline
793 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
794 {
795 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
796 }
797 
798 /**
799  * hrtimer_forward - forward the timer expiry
800  * @timer:	hrtimer to forward
801  * @now:	forward past this time
802  * @interval:	the interval to forward
803  *
804  * Forward the timer expiry so it will expire in the future.
805  * Returns the number of overruns.
806  */
807 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
808 {
809 	u64 orun = 1;
810 	ktime_t delta;
811 
812 	delta = ktime_sub(now, hrtimer_get_expires(timer));
813 
814 	if (delta.tv64 < 0)
815 		return 0;
816 
817 	if (interval.tv64 < timer->base->resolution.tv64)
818 		interval.tv64 = timer->base->resolution.tv64;
819 
820 	if (unlikely(delta.tv64 >= interval.tv64)) {
821 		s64 incr = ktime_to_ns(interval);
822 
823 		orun = ktime_divns(delta, incr);
824 		hrtimer_add_expires_ns(timer, incr * orun);
825 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
826 			return orun;
827 		/*
828 		 * This (and the ktime_add() below) is the
829 		 * correction for exact:
830 		 */
831 		orun++;
832 	}
833 	hrtimer_add_expires(timer, interval);
834 
835 	return orun;
836 }
837 EXPORT_SYMBOL_GPL(hrtimer_forward);
838 
839 /*
840  * enqueue_hrtimer - internal function to (re)start a timer
841  *
842  * The timer is inserted in expiry order. Insertion into the
843  * red black tree is O(log(n)). Must hold the base lock.
844  *
845  * Returns 1 when the new timer is the leftmost timer in the tree.
846  */
847 static int enqueue_hrtimer(struct hrtimer *timer,
848 			   struct hrtimer_clock_base *base)
849 {
850 	debug_activate(timer);
851 
852 	timerqueue_add(&base->active, &timer->node);
853 	base->cpu_base->active_bases |= 1 << base->index;
854 
855 	/*
856 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
857 	 * state of a possibly running callback.
858 	 */
859 	timer->state |= HRTIMER_STATE_ENQUEUED;
860 
861 	return (&timer->node == base->active.next);
862 }
863 
864 /*
865  * __remove_hrtimer - internal function to remove a timer
866  *
867  * Caller must hold the base lock.
868  *
869  * High resolution timer mode reprograms the clock event device when the
870  * timer is the one which expires next. The caller can disable this by setting
871  * reprogram to zero. This is useful, when the context does a reprogramming
872  * anyway (e.g. timer interrupt)
873  */
874 static void __remove_hrtimer(struct hrtimer *timer,
875 			     struct hrtimer_clock_base *base,
876 			     unsigned long newstate, int reprogram)
877 {
878 	struct timerqueue_node *next_timer;
879 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
880 		goto out;
881 
882 	next_timer = timerqueue_getnext(&base->active);
883 	timerqueue_del(&base->active, &timer->node);
884 	if (&timer->node == next_timer) {
885 #ifdef CONFIG_HIGH_RES_TIMERS
886 		/* Reprogram the clock event device. if enabled */
887 		if (reprogram && hrtimer_hres_active()) {
888 			ktime_t expires;
889 
890 			expires = ktime_sub(hrtimer_get_expires(timer),
891 					    base->offset);
892 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
893 				hrtimer_force_reprogram(base->cpu_base, 1);
894 		}
895 #endif
896 	}
897 	if (!timerqueue_getnext(&base->active))
898 		base->cpu_base->active_bases &= ~(1 << base->index);
899 out:
900 	timer->state = newstate;
901 }
902 
903 /*
904  * remove hrtimer, called with base lock held
905  */
906 static inline int
907 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
908 {
909 	if (hrtimer_is_queued(timer)) {
910 		unsigned long state;
911 		int reprogram;
912 
913 		/*
914 		 * Remove the timer and force reprogramming when high
915 		 * resolution mode is active and the timer is on the current
916 		 * CPU. If we remove a timer on another CPU, reprogramming is
917 		 * skipped. The interrupt event on this CPU is fired and
918 		 * reprogramming happens in the interrupt handler. This is a
919 		 * rare case and less expensive than a smp call.
920 		 */
921 		debug_deactivate(timer);
922 		timer_stats_hrtimer_clear_start_info(timer);
923 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
924 		/*
925 		 * We must preserve the CALLBACK state flag here,
926 		 * otherwise we could move the timer base in
927 		 * switch_hrtimer_base.
928 		 */
929 		state = timer->state & HRTIMER_STATE_CALLBACK;
930 		__remove_hrtimer(timer, base, state, reprogram);
931 		return 1;
932 	}
933 	return 0;
934 }
935 
936 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
937 		unsigned long delta_ns, const enum hrtimer_mode mode,
938 		int wakeup)
939 {
940 	struct hrtimer_clock_base *base, *new_base;
941 	unsigned long flags;
942 	int ret, leftmost;
943 
944 	base = lock_hrtimer_base(timer, &flags);
945 
946 	/* Remove an active timer from the queue: */
947 	ret = remove_hrtimer(timer, base);
948 
949 	if (mode & HRTIMER_MODE_REL) {
950 		tim = ktime_add_safe(tim, base->get_time());
951 		/*
952 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
953 		 * to signal that they simply return xtime in
954 		 * do_gettimeoffset(). In this case we want to round up by
955 		 * resolution when starting a relative timer, to avoid short
956 		 * timeouts. This will go away with the GTOD framework.
957 		 */
958 #ifdef CONFIG_TIME_LOW_RES
959 		tim = ktime_add_safe(tim, base->resolution);
960 #endif
961 	}
962 
963 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
964 
965 	/* Switch the timer base, if necessary: */
966 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
967 
968 	timer_stats_hrtimer_set_start_info(timer);
969 
970 	leftmost = enqueue_hrtimer(timer, new_base);
971 
972 	if (!leftmost) {
973 		unlock_hrtimer_base(timer, &flags);
974 		return ret;
975 	}
976 
977 	if (!hrtimer_is_hres_active(timer)) {
978 		/*
979 		 * Kick to reschedule the next tick to handle the new timer
980 		 * on dynticks target.
981 		 */
982 		wake_up_nohz_cpu(new_base->cpu_base->cpu);
983 	} else if (new_base->cpu_base == this_cpu_ptr(&hrtimer_bases) &&
984 			hrtimer_reprogram(timer, new_base)) {
985 		/*
986 		 * Only allow reprogramming if the new base is on this CPU.
987 		 * (it might still be on another CPU if the timer was pending)
988 		 *
989 		 * XXX send_remote_softirq() ?
990 		 */
991 		if (wakeup) {
992 			/*
993 			 * We need to drop cpu_base->lock to avoid a
994 			 * lock ordering issue vs. rq->lock.
995 			 */
996 			raw_spin_unlock(&new_base->cpu_base->lock);
997 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
998 			local_irq_restore(flags);
999 			return ret;
1000 		} else {
1001 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1002 		}
1003 	}
1004 
1005 	unlock_hrtimer_base(timer, &flags);
1006 
1007 	return ret;
1008 }
1009 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
1010 
1011 /**
1012  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1013  * @timer:	the timer to be added
1014  * @tim:	expiry time
1015  * @delta_ns:	"slack" range for the timer
1016  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1017  *		relative (HRTIMER_MODE_REL)
1018  *
1019  * Returns:
1020  *  0 on success
1021  *  1 when the timer was active
1022  */
1023 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1024 		unsigned long delta_ns, const enum hrtimer_mode mode)
1025 {
1026 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1027 }
1028 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1029 
1030 /**
1031  * hrtimer_start - (re)start an hrtimer on the current CPU
1032  * @timer:	the timer to be added
1033  * @tim:	expiry time
1034  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1035  *		relative (HRTIMER_MODE_REL)
1036  *
1037  * Returns:
1038  *  0 on success
1039  *  1 when the timer was active
1040  */
1041 int
1042 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1043 {
1044 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1045 }
1046 EXPORT_SYMBOL_GPL(hrtimer_start);
1047 
1048 
1049 /**
1050  * hrtimer_try_to_cancel - try to deactivate a timer
1051  * @timer:	hrtimer to stop
1052  *
1053  * Returns:
1054  *  0 when the timer was not active
1055  *  1 when the timer was active
1056  * -1 when the timer is currently excuting the callback function and
1057  *    cannot be stopped
1058  */
1059 int hrtimer_try_to_cancel(struct hrtimer *timer)
1060 {
1061 	struct hrtimer_clock_base *base;
1062 	unsigned long flags;
1063 	int ret = -1;
1064 
1065 	base = lock_hrtimer_base(timer, &flags);
1066 
1067 	if (!hrtimer_callback_running(timer))
1068 		ret = remove_hrtimer(timer, base);
1069 
1070 	unlock_hrtimer_base(timer, &flags);
1071 
1072 	return ret;
1073 
1074 }
1075 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1076 
1077 /**
1078  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1079  * @timer:	the timer to be cancelled
1080  *
1081  * Returns:
1082  *  0 when the timer was not active
1083  *  1 when the timer was active
1084  */
1085 int hrtimer_cancel(struct hrtimer *timer)
1086 {
1087 	for (;;) {
1088 		int ret = hrtimer_try_to_cancel(timer);
1089 
1090 		if (ret >= 0)
1091 			return ret;
1092 		cpu_relax();
1093 	}
1094 }
1095 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1096 
1097 /**
1098  * hrtimer_get_remaining - get remaining time for the timer
1099  * @timer:	the timer to read
1100  */
1101 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1102 {
1103 	unsigned long flags;
1104 	ktime_t rem;
1105 
1106 	lock_hrtimer_base(timer, &flags);
1107 	rem = hrtimer_expires_remaining(timer);
1108 	unlock_hrtimer_base(timer, &flags);
1109 
1110 	return rem;
1111 }
1112 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1113 
1114 #ifdef CONFIG_NO_HZ_COMMON
1115 /**
1116  * hrtimer_get_next_event - get the time until next expiry event
1117  *
1118  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1119  * is pending.
1120  */
1121 ktime_t hrtimer_get_next_event(void)
1122 {
1123 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1124 	ktime_t mindelta = { .tv64 = KTIME_MAX };
1125 	unsigned long flags;
1126 
1127 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1128 
1129 	if (!hrtimer_hres_active())
1130 		mindelta = ktime_sub(__hrtimer_get_next_event(cpu_base),
1131 				     ktime_get());
1132 
1133 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1134 
1135 	if (mindelta.tv64 < 0)
1136 		mindelta.tv64 = 0;
1137 	return mindelta;
1138 }
1139 #endif
1140 
1141 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1142 			   enum hrtimer_mode mode)
1143 {
1144 	struct hrtimer_cpu_base *cpu_base;
1145 	int base;
1146 
1147 	memset(timer, 0, sizeof(struct hrtimer));
1148 
1149 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1150 
1151 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1152 		clock_id = CLOCK_MONOTONIC;
1153 
1154 	base = hrtimer_clockid_to_base(clock_id);
1155 	timer->base = &cpu_base->clock_base[base];
1156 	timerqueue_init(&timer->node);
1157 
1158 #ifdef CONFIG_TIMER_STATS
1159 	timer->start_site = NULL;
1160 	timer->start_pid = -1;
1161 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1162 #endif
1163 }
1164 
1165 /**
1166  * hrtimer_init - initialize a timer to the given clock
1167  * @timer:	the timer to be initialized
1168  * @clock_id:	the clock to be used
1169  * @mode:	timer mode abs/rel
1170  */
1171 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1172 		  enum hrtimer_mode mode)
1173 {
1174 	debug_init(timer, clock_id, mode);
1175 	__hrtimer_init(timer, clock_id, mode);
1176 }
1177 EXPORT_SYMBOL_GPL(hrtimer_init);
1178 
1179 /**
1180  * hrtimer_get_res - get the timer resolution for a clock
1181  * @which_clock: which clock to query
1182  * @tp:		 pointer to timespec variable to store the resolution
1183  *
1184  * Store the resolution of the clock selected by @which_clock in the
1185  * variable pointed to by @tp.
1186  */
1187 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1188 {
1189 	struct hrtimer_cpu_base *cpu_base;
1190 	int base = hrtimer_clockid_to_base(which_clock);
1191 
1192 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1193 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1194 
1195 	return 0;
1196 }
1197 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1198 
1199 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1200 {
1201 	struct hrtimer_clock_base *base = timer->base;
1202 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1203 	enum hrtimer_restart (*fn)(struct hrtimer *);
1204 	int restart;
1205 
1206 	WARN_ON(!irqs_disabled());
1207 
1208 	debug_deactivate(timer);
1209 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1210 	timer_stats_account_hrtimer(timer);
1211 	fn = timer->function;
1212 
1213 	/*
1214 	 * Because we run timers from hardirq context, there is no chance
1215 	 * they get migrated to another cpu, therefore its safe to unlock
1216 	 * the timer base.
1217 	 */
1218 	raw_spin_unlock(&cpu_base->lock);
1219 	trace_hrtimer_expire_entry(timer, now);
1220 	restart = fn(timer);
1221 	trace_hrtimer_expire_exit(timer);
1222 	raw_spin_lock(&cpu_base->lock);
1223 
1224 	/*
1225 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1226 	 * we do not reprogramm the event hardware. Happens either in
1227 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1228 	 */
1229 	if (restart != HRTIMER_NORESTART) {
1230 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1231 		enqueue_hrtimer(timer, base);
1232 	}
1233 
1234 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1235 
1236 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1237 }
1238 
1239 #ifdef CONFIG_HIGH_RES_TIMERS
1240 
1241 /*
1242  * High resolution timer interrupt
1243  * Called with interrupts disabled
1244  */
1245 void hrtimer_interrupt(struct clock_event_device *dev)
1246 {
1247 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1248 	ktime_t expires_next, now, entry_time, delta;
1249 	int i, retries = 0;
1250 
1251 	BUG_ON(!cpu_base->hres_active);
1252 	cpu_base->nr_events++;
1253 	dev->next_event.tv64 = KTIME_MAX;
1254 
1255 	raw_spin_lock(&cpu_base->lock);
1256 	entry_time = now = hrtimer_update_base(cpu_base);
1257 retry:
1258 	cpu_base->in_hrtirq = 1;
1259 	/*
1260 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1261 	 * held to prevent that a timer is enqueued in our queue via
1262 	 * the migration code. This does not affect enqueueing of
1263 	 * timers which run their callback and need to be requeued on
1264 	 * this CPU.
1265 	 */
1266 	cpu_base->expires_next.tv64 = KTIME_MAX;
1267 
1268 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1269 		struct hrtimer_clock_base *base;
1270 		struct timerqueue_node *node;
1271 		ktime_t basenow;
1272 
1273 		if (!(cpu_base->active_bases & (1 << i)))
1274 			continue;
1275 
1276 		base = cpu_base->clock_base + i;
1277 		basenow = ktime_add(now, base->offset);
1278 
1279 		while ((node = timerqueue_getnext(&base->active))) {
1280 			struct hrtimer *timer;
1281 
1282 			timer = container_of(node, struct hrtimer, node);
1283 
1284 			/*
1285 			 * The immediate goal for using the softexpires is
1286 			 * minimizing wakeups, not running timers at the
1287 			 * earliest interrupt after their soft expiration.
1288 			 * This allows us to avoid using a Priority Search
1289 			 * Tree, which can answer a stabbing querry for
1290 			 * overlapping intervals and instead use the simple
1291 			 * BST we already have.
1292 			 * We don't add extra wakeups by delaying timers that
1293 			 * are right-of a not yet expired timer, because that
1294 			 * timer will have to trigger a wakeup anyway.
1295 			 */
1296 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1297 				break;
1298 
1299 			__run_hrtimer(timer, &basenow);
1300 		}
1301 	}
1302 	/* Reevaluate the clock bases for the next expiry */
1303 	expires_next = __hrtimer_get_next_event(cpu_base);
1304 	/*
1305 	 * Store the new expiry value so the migration code can verify
1306 	 * against it.
1307 	 */
1308 	cpu_base->expires_next = expires_next;
1309 	cpu_base->in_hrtirq = 0;
1310 	raw_spin_unlock(&cpu_base->lock);
1311 
1312 	/* Reprogramming necessary ? */
1313 	if (expires_next.tv64 == KTIME_MAX ||
1314 	    !tick_program_event(expires_next, 0)) {
1315 		cpu_base->hang_detected = 0;
1316 		return;
1317 	}
1318 
1319 	/*
1320 	 * The next timer was already expired due to:
1321 	 * - tracing
1322 	 * - long lasting callbacks
1323 	 * - being scheduled away when running in a VM
1324 	 *
1325 	 * We need to prevent that we loop forever in the hrtimer
1326 	 * interrupt routine. We give it 3 attempts to avoid
1327 	 * overreacting on some spurious event.
1328 	 *
1329 	 * Acquire base lock for updating the offsets and retrieving
1330 	 * the current time.
1331 	 */
1332 	raw_spin_lock(&cpu_base->lock);
1333 	now = hrtimer_update_base(cpu_base);
1334 	cpu_base->nr_retries++;
1335 	if (++retries < 3)
1336 		goto retry;
1337 	/*
1338 	 * Give the system a chance to do something else than looping
1339 	 * here. We stored the entry time, so we know exactly how long
1340 	 * we spent here. We schedule the next event this amount of
1341 	 * time away.
1342 	 */
1343 	cpu_base->nr_hangs++;
1344 	cpu_base->hang_detected = 1;
1345 	raw_spin_unlock(&cpu_base->lock);
1346 	delta = ktime_sub(now, entry_time);
1347 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1348 		cpu_base->max_hang_time = delta;
1349 	/*
1350 	 * Limit it to a sensible value as we enforce a longer
1351 	 * delay. Give the CPU at least 100ms to catch up.
1352 	 */
1353 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1354 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1355 	else
1356 		expires_next = ktime_add(now, delta);
1357 	tick_program_event(expires_next, 1);
1358 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1359 		    ktime_to_ns(delta));
1360 }
1361 
1362 /*
1363  * local version of hrtimer_peek_ahead_timers() called with interrupts
1364  * disabled.
1365  */
1366 static void __hrtimer_peek_ahead_timers(void)
1367 {
1368 	struct tick_device *td;
1369 
1370 	if (!hrtimer_hres_active())
1371 		return;
1372 
1373 	td = this_cpu_ptr(&tick_cpu_device);
1374 	if (td && td->evtdev)
1375 		hrtimer_interrupt(td->evtdev);
1376 }
1377 
1378 /**
1379  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1380  *
1381  * hrtimer_peek_ahead_timers will peek at the timer queue of
1382  * the current cpu and check if there are any timers for which
1383  * the soft expires time has passed. If any such timers exist,
1384  * they are run immediately and then removed from the timer queue.
1385  *
1386  */
1387 void hrtimer_peek_ahead_timers(void)
1388 {
1389 	unsigned long flags;
1390 
1391 	local_irq_save(flags);
1392 	__hrtimer_peek_ahead_timers();
1393 	local_irq_restore(flags);
1394 }
1395 
1396 static void run_hrtimer_softirq(struct softirq_action *h)
1397 {
1398 	hrtimer_peek_ahead_timers();
1399 }
1400 
1401 #else /* CONFIG_HIGH_RES_TIMERS */
1402 
1403 static inline void __hrtimer_peek_ahead_timers(void) { }
1404 
1405 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1406 
1407 /*
1408  * Called from timer softirq every jiffy, expire hrtimers:
1409  *
1410  * For HRT its the fall back code to run the softirq in the timer
1411  * softirq context in case the hrtimer initialization failed or has
1412  * not been done yet.
1413  */
1414 void hrtimer_run_pending(void)
1415 {
1416 	if (hrtimer_hres_active())
1417 		return;
1418 
1419 	/*
1420 	 * This _is_ ugly: We have to check in the softirq context,
1421 	 * whether we can switch to highres and / or nohz mode. The
1422 	 * clocksource switch happens in the timer interrupt with
1423 	 * xtime_lock held. Notification from there only sets the
1424 	 * check bit in the tick_oneshot code, otherwise we might
1425 	 * deadlock vs. xtime_lock.
1426 	 */
1427 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1428 		hrtimer_switch_to_hres();
1429 }
1430 
1431 /*
1432  * Called from hardirq context every jiffy
1433  */
1434 void hrtimer_run_queues(void)
1435 {
1436 	struct timerqueue_node *node;
1437 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1438 	struct hrtimer_clock_base *base;
1439 	int index, gettime = 1;
1440 
1441 	if (hrtimer_hres_active())
1442 		return;
1443 
1444 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1445 		base = &cpu_base->clock_base[index];
1446 		if (!timerqueue_getnext(&base->active))
1447 			continue;
1448 
1449 		if (gettime) {
1450 			hrtimer_get_softirq_time(cpu_base);
1451 			gettime = 0;
1452 		}
1453 
1454 		raw_spin_lock(&cpu_base->lock);
1455 
1456 		while ((node = timerqueue_getnext(&base->active))) {
1457 			struct hrtimer *timer;
1458 
1459 			timer = container_of(node, struct hrtimer, node);
1460 			if (base->softirq_time.tv64 <=
1461 					hrtimer_get_expires_tv64(timer))
1462 				break;
1463 
1464 			__run_hrtimer(timer, &base->softirq_time);
1465 		}
1466 		raw_spin_unlock(&cpu_base->lock);
1467 	}
1468 }
1469 
1470 /*
1471  * Sleep related functions:
1472  */
1473 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1474 {
1475 	struct hrtimer_sleeper *t =
1476 		container_of(timer, struct hrtimer_sleeper, timer);
1477 	struct task_struct *task = t->task;
1478 
1479 	t->task = NULL;
1480 	if (task)
1481 		wake_up_process(task);
1482 
1483 	return HRTIMER_NORESTART;
1484 }
1485 
1486 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1487 {
1488 	sl->timer.function = hrtimer_wakeup;
1489 	sl->task = task;
1490 }
1491 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1492 
1493 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1494 {
1495 	hrtimer_init_sleeper(t, current);
1496 
1497 	do {
1498 		set_current_state(TASK_INTERRUPTIBLE);
1499 		hrtimer_start_expires(&t->timer, mode);
1500 		if (!hrtimer_active(&t->timer))
1501 			t->task = NULL;
1502 
1503 		if (likely(t->task))
1504 			freezable_schedule();
1505 
1506 		hrtimer_cancel(&t->timer);
1507 		mode = HRTIMER_MODE_ABS;
1508 
1509 	} while (t->task && !signal_pending(current));
1510 
1511 	__set_current_state(TASK_RUNNING);
1512 
1513 	return t->task == NULL;
1514 }
1515 
1516 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1517 {
1518 	struct timespec rmt;
1519 	ktime_t rem;
1520 
1521 	rem = hrtimer_expires_remaining(timer);
1522 	if (rem.tv64 <= 0)
1523 		return 0;
1524 	rmt = ktime_to_timespec(rem);
1525 
1526 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1527 		return -EFAULT;
1528 
1529 	return 1;
1530 }
1531 
1532 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1533 {
1534 	struct hrtimer_sleeper t;
1535 	struct timespec __user  *rmtp;
1536 	int ret = 0;
1537 
1538 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1539 				HRTIMER_MODE_ABS);
1540 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1541 
1542 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1543 		goto out;
1544 
1545 	rmtp = restart->nanosleep.rmtp;
1546 	if (rmtp) {
1547 		ret = update_rmtp(&t.timer, rmtp);
1548 		if (ret <= 0)
1549 			goto out;
1550 	}
1551 
1552 	/* The other values in restart are already filled in */
1553 	ret = -ERESTART_RESTARTBLOCK;
1554 out:
1555 	destroy_hrtimer_on_stack(&t.timer);
1556 	return ret;
1557 }
1558 
1559 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1560 		       const enum hrtimer_mode mode, const clockid_t clockid)
1561 {
1562 	struct restart_block *restart;
1563 	struct hrtimer_sleeper t;
1564 	int ret = 0;
1565 	unsigned long slack;
1566 
1567 	slack = current->timer_slack_ns;
1568 	if (dl_task(current) || rt_task(current))
1569 		slack = 0;
1570 
1571 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1572 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1573 	if (do_nanosleep(&t, mode))
1574 		goto out;
1575 
1576 	/* Absolute timers do not update the rmtp value and restart: */
1577 	if (mode == HRTIMER_MODE_ABS) {
1578 		ret = -ERESTARTNOHAND;
1579 		goto out;
1580 	}
1581 
1582 	if (rmtp) {
1583 		ret = update_rmtp(&t.timer, rmtp);
1584 		if (ret <= 0)
1585 			goto out;
1586 	}
1587 
1588 	restart = &current->restart_block;
1589 	restart->fn = hrtimer_nanosleep_restart;
1590 	restart->nanosleep.clockid = t.timer.base->clockid;
1591 	restart->nanosleep.rmtp = rmtp;
1592 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1593 
1594 	ret = -ERESTART_RESTARTBLOCK;
1595 out:
1596 	destroy_hrtimer_on_stack(&t.timer);
1597 	return ret;
1598 }
1599 
1600 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1601 		struct timespec __user *, rmtp)
1602 {
1603 	struct timespec tu;
1604 
1605 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1606 		return -EFAULT;
1607 
1608 	if (!timespec_valid(&tu))
1609 		return -EINVAL;
1610 
1611 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1612 }
1613 
1614 /*
1615  * Functions related to boot-time initialization:
1616  */
1617 static void init_hrtimers_cpu(int cpu)
1618 {
1619 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1620 	int i;
1621 
1622 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1623 		cpu_base->clock_base[i].cpu_base = cpu_base;
1624 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1625 	}
1626 
1627 	cpu_base->cpu = cpu;
1628 	hrtimer_init_hres(cpu_base);
1629 }
1630 
1631 #ifdef CONFIG_HOTPLUG_CPU
1632 
1633 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1634 				struct hrtimer_clock_base *new_base)
1635 {
1636 	struct hrtimer *timer;
1637 	struct timerqueue_node *node;
1638 
1639 	while ((node = timerqueue_getnext(&old_base->active))) {
1640 		timer = container_of(node, struct hrtimer, node);
1641 		BUG_ON(hrtimer_callback_running(timer));
1642 		debug_deactivate(timer);
1643 
1644 		/*
1645 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1646 		 * timer could be seen as !active and just vanish away
1647 		 * under us on another CPU
1648 		 */
1649 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1650 		timer->base = new_base;
1651 		/*
1652 		 * Enqueue the timers on the new cpu. This does not
1653 		 * reprogram the event device in case the timer
1654 		 * expires before the earliest on this CPU, but we run
1655 		 * hrtimer_interrupt after we migrated everything to
1656 		 * sort out already expired timers and reprogram the
1657 		 * event device.
1658 		 */
1659 		enqueue_hrtimer(timer, new_base);
1660 
1661 		/* Clear the migration state bit */
1662 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1663 	}
1664 }
1665 
1666 static void migrate_hrtimers(int scpu)
1667 {
1668 	struct hrtimer_cpu_base *old_base, *new_base;
1669 	int i;
1670 
1671 	BUG_ON(cpu_online(scpu));
1672 	tick_cancel_sched_timer(scpu);
1673 
1674 	local_irq_disable();
1675 	old_base = &per_cpu(hrtimer_bases, scpu);
1676 	new_base = this_cpu_ptr(&hrtimer_bases);
1677 	/*
1678 	 * The caller is globally serialized and nobody else
1679 	 * takes two locks at once, deadlock is not possible.
1680 	 */
1681 	raw_spin_lock(&new_base->lock);
1682 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1683 
1684 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1685 		migrate_hrtimer_list(&old_base->clock_base[i],
1686 				     &new_base->clock_base[i]);
1687 	}
1688 
1689 	raw_spin_unlock(&old_base->lock);
1690 	raw_spin_unlock(&new_base->lock);
1691 
1692 	/* Check, if we got expired work to do */
1693 	__hrtimer_peek_ahead_timers();
1694 	local_irq_enable();
1695 }
1696 
1697 #endif /* CONFIG_HOTPLUG_CPU */
1698 
1699 static int hrtimer_cpu_notify(struct notifier_block *self,
1700 					unsigned long action, void *hcpu)
1701 {
1702 	int scpu = (long)hcpu;
1703 
1704 	switch (action) {
1705 
1706 	case CPU_UP_PREPARE:
1707 	case CPU_UP_PREPARE_FROZEN:
1708 		init_hrtimers_cpu(scpu);
1709 		break;
1710 
1711 #ifdef CONFIG_HOTPLUG_CPU
1712 	case CPU_DEAD:
1713 	case CPU_DEAD_FROZEN:
1714 		migrate_hrtimers(scpu);
1715 		break;
1716 #endif
1717 
1718 	default:
1719 		break;
1720 	}
1721 
1722 	return NOTIFY_OK;
1723 }
1724 
1725 static struct notifier_block hrtimers_nb = {
1726 	.notifier_call = hrtimer_cpu_notify,
1727 };
1728 
1729 void __init hrtimers_init(void)
1730 {
1731 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1732 			  (void *)(long)smp_processor_id());
1733 	register_cpu_notifier(&hrtimers_nb);
1734 #ifdef CONFIG_HIGH_RES_TIMERS
1735 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1736 #endif
1737 }
1738 
1739 /**
1740  * schedule_hrtimeout_range_clock - sleep until timeout
1741  * @expires:	timeout value (ktime_t)
1742  * @delta:	slack in expires timeout (ktime_t)
1743  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1744  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1745  */
1746 int __sched
1747 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1748 			       const enum hrtimer_mode mode, int clock)
1749 {
1750 	struct hrtimer_sleeper t;
1751 
1752 	/*
1753 	 * Optimize when a zero timeout value is given. It does not
1754 	 * matter whether this is an absolute or a relative time.
1755 	 */
1756 	if (expires && !expires->tv64) {
1757 		__set_current_state(TASK_RUNNING);
1758 		return 0;
1759 	}
1760 
1761 	/*
1762 	 * A NULL parameter means "infinite"
1763 	 */
1764 	if (!expires) {
1765 		schedule();
1766 		return -EINTR;
1767 	}
1768 
1769 	hrtimer_init_on_stack(&t.timer, clock, mode);
1770 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1771 
1772 	hrtimer_init_sleeper(&t, current);
1773 
1774 	hrtimer_start_expires(&t.timer, mode);
1775 	if (!hrtimer_active(&t.timer))
1776 		t.task = NULL;
1777 
1778 	if (likely(t.task))
1779 		schedule();
1780 
1781 	hrtimer_cancel(&t.timer);
1782 	destroy_hrtimer_on_stack(&t.timer);
1783 
1784 	__set_current_state(TASK_RUNNING);
1785 
1786 	return !t.task ? 0 : -EINTR;
1787 }
1788 
1789 /**
1790  * schedule_hrtimeout_range - sleep until timeout
1791  * @expires:	timeout value (ktime_t)
1792  * @delta:	slack in expires timeout (ktime_t)
1793  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1794  *
1795  * Make the current task sleep until the given expiry time has
1796  * elapsed. The routine will return immediately unless
1797  * the current task state has been set (see set_current_state()).
1798  *
1799  * The @delta argument gives the kernel the freedom to schedule the
1800  * actual wakeup to a time that is both power and performance friendly.
1801  * The kernel give the normal best effort behavior for "@expires+@delta",
1802  * but may decide to fire the timer earlier, but no earlier than @expires.
1803  *
1804  * You can set the task state as follows -
1805  *
1806  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1807  * pass before the routine returns.
1808  *
1809  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1810  * delivered to the current task.
1811  *
1812  * The current task state is guaranteed to be TASK_RUNNING when this
1813  * routine returns.
1814  *
1815  * Returns 0 when the timer has expired otherwise -EINTR
1816  */
1817 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1818 				     const enum hrtimer_mode mode)
1819 {
1820 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1821 					      CLOCK_MONOTONIC);
1822 }
1823 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1824 
1825 /**
1826  * schedule_hrtimeout - sleep until timeout
1827  * @expires:	timeout value (ktime_t)
1828  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1829  *
1830  * Make the current task sleep until the given expiry time has
1831  * elapsed. The routine will return immediately unless
1832  * the current task state has been set (see set_current_state()).
1833  *
1834  * You can set the task state as follows -
1835  *
1836  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1837  * pass before the routine returns.
1838  *
1839  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1840  * delivered to the current task.
1841  *
1842  * The current task state is guaranteed to be TASK_RUNNING when this
1843  * routine returns.
1844  *
1845  * Returns 0 when the timer has expired otherwise -EINTR
1846  */
1847 int __sched schedule_hrtimeout(ktime_t *expires,
1848 			       const enum hrtimer_mode mode)
1849 {
1850 	return schedule_hrtimeout_range(expires, 0, mode);
1851 }
1852 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1853