xref: /openbmc/linux/kernel/time/hrtimer.c (revision 3805e6a1)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return base;
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return base;
195 }
196 #endif
197 
198 /*
199  * We switch the timer base to a power-optimized selected CPU target,
200  * if:
201  *	- NO_HZ_COMMON is enabled
202  *	- timer migration is enabled
203  *	- the timer callback is not running
204  *	- the timer is not the first expiring timer on the new target
205  *
206  * If one of the above requirements is not fulfilled we move the timer
207  * to the current CPU or leave it on the previously assigned CPU if
208  * the timer callback is currently running.
209  */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 		    int pinned)
213 {
214 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
215 	struct hrtimer_clock_base *new_base;
216 	int basenum = base->index;
217 
218 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
219 	new_cpu_base = get_target_base(this_cpu_base, pinned);
220 again:
221 	new_base = &new_cpu_base->clock_base[basenum];
222 
223 	if (base != new_base) {
224 		/*
225 		 * We are trying to move timer to new_base.
226 		 * However we can't change timer's base while it is running,
227 		 * so we keep it on the same CPU. No hassle vs. reprogramming
228 		 * the event source in the high resolution case. The softirq
229 		 * code will take care of this when the timer function has
230 		 * completed. There is no conflict as we hold the lock until
231 		 * the timer is enqueued.
232 		 */
233 		if (unlikely(hrtimer_callback_running(timer)))
234 			return base;
235 
236 		/* See the comment in lock_hrtimer_base() */
237 		timer->base = &migration_base;
238 		raw_spin_unlock(&base->cpu_base->lock);
239 		raw_spin_lock(&new_base->cpu_base->lock);
240 
241 		if (new_cpu_base != this_cpu_base &&
242 		    hrtimer_check_target(timer, new_base)) {
243 			raw_spin_unlock(&new_base->cpu_base->lock);
244 			raw_spin_lock(&base->cpu_base->lock);
245 			new_cpu_base = this_cpu_base;
246 			timer->base = base;
247 			goto again;
248 		}
249 		timer->base = new_base;
250 	} else {
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			new_cpu_base = this_cpu_base;
254 			goto again;
255 		}
256 	}
257 	return new_base;
258 }
259 
260 #else /* CONFIG_SMP */
261 
262 static inline struct hrtimer_clock_base *
263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
264 {
265 	struct hrtimer_clock_base *base = timer->base;
266 
267 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
268 
269 	return base;
270 }
271 
272 # define switch_hrtimer_base(t, b, p)	(b)
273 
274 #endif	/* !CONFIG_SMP */
275 
276 /*
277  * Functions for the union type storage format of ktime_t which are
278  * too large for inlining:
279  */
280 #if BITS_PER_LONG < 64
281 /*
282  * Divide a ktime value by a nanosecond value
283  */
284 s64 __ktime_divns(const ktime_t kt, s64 div)
285 {
286 	int sft = 0;
287 	s64 dclc;
288 	u64 tmp;
289 
290 	dclc = ktime_to_ns(kt);
291 	tmp = dclc < 0 ? -dclc : dclc;
292 
293 	/* Make sure the divisor is less than 2^32: */
294 	while (div >> 32) {
295 		sft++;
296 		div >>= 1;
297 	}
298 	tmp >>= sft;
299 	do_div(tmp, (unsigned long) div);
300 	return dclc < 0 ? -tmp : tmp;
301 }
302 EXPORT_SYMBOL_GPL(__ktime_divns);
303 #endif /* BITS_PER_LONG >= 64 */
304 
305 /*
306  * Add two ktime values and do a safety check for overflow:
307  */
308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
309 {
310 	ktime_t res = ktime_add(lhs, rhs);
311 
312 	/*
313 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
314 	 * return to user space in a timespec:
315 	 */
316 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
317 		res = ktime_set(KTIME_SEC_MAX, 0);
318 
319 	return res;
320 }
321 
322 EXPORT_SYMBOL_GPL(ktime_add_safe);
323 
324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
325 
326 static struct debug_obj_descr hrtimer_debug_descr;
327 
328 static void *hrtimer_debug_hint(void *addr)
329 {
330 	return ((struct hrtimer *) addr)->function;
331 }
332 
333 /*
334  * fixup_init is called when:
335  * - an active object is initialized
336  */
337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
338 {
339 	struct hrtimer *timer = addr;
340 
341 	switch (state) {
342 	case ODEBUG_STATE_ACTIVE:
343 		hrtimer_cancel(timer);
344 		debug_object_init(timer, &hrtimer_debug_descr);
345 		return true;
346 	default:
347 		return false;
348 	}
349 }
350 
351 /*
352  * fixup_activate is called when:
353  * - an active object is activated
354  * - an unknown non-static object is activated
355  */
356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
357 {
358 	switch (state) {
359 	case ODEBUG_STATE_ACTIVE:
360 		WARN_ON(1);
361 
362 	default:
363 		return false;
364 	}
365 }
366 
367 /*
368  * fixup_free is called when:
369  * - an active object is freed
370  */
371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
372 {
373 	struct hrtimer *timer = addr;
374 
375 	switch (state) {
376 	case ODEBUG_STATE_ACTIVE:
377 		hrtimer_cancel(timer);
378 		debug_object_free(timer, &hrtimer_debug_descr);
379 		return true;
380 	default:
381 		return false;
382 	}
383 }
384 
385 static struct debug_obj_descr hrtimer_debug_descr = {
386 	.name		= "hrtimer",
387 	.debug_hint	= hrtimer_debug_hint,
388 	.fixup_init	= hrtimer_fixup_init,
389 	.fixup_activate	= hrtimer_fixup_activate,
390 	.fixup_free	= hrtimer_fixup_free,
391 };
392 
393 static inline void debug_hrtimer_init(struct hrtimer *timer)
394 {
395 	debug_object_init(timer, &hrtimer_debug_descr);
396 }
397 
398 static inline void debug_hrtimer_activate(struct hrtimer *timer)
399 {
400 	debug_object_activate(timer, &hrtimer_debug_descr);
401 }
402 
403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
404 {
405 	debug_object_deactivate(timer, &hrtimer_debug_descr);
406 }
407 
408 static inline void debug_hrtimer_free(struct hrtimer *timer)
409 {
410 	debug_object_free(timer, &hrtimer_debug_descr);
411 }
412 
413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
414 			   enum hrtimer_mode mode);
415 
416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
417 			   enum hrtimer_mode mode)
418 {
419 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
420 	__hrtimer_init(timer, clock_id, mode);
421 }
422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
423 
424 void destroy_hrtimer_on_stack(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 
429 #else
430 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
431 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
432 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
433 #endif
434 
435 static inline void
436 debug_init(struct hrtimer *timer, clockid_t clockid,
437 	   enum hrtimer_mode mode)
438 {
439 	debug_hrtimer_init(timer);
440 	trace_hrtimer_init(timer, clockid, mode);
441 }
442 
443 static inline void debug_activate(struct hrtimer *timer)
444 {
445 	debug_hrtimer_activate(timer);
446 	trace_hrtimer_start(timer);
447 }
448 
449 static inline void debug_deactivate(struct hrtimer *timer)
450 {
451 	debug_hrtimer_deactivate(timer);
452 	trace_hrtimer_cancel(timer);
453 }
454 
455 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
456 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
457 					     struct hrtimer *timer)
458 {
459 #ifdef CONFIG_HIGH_RES_TIMERS
460 	cpu_base->next_timer = timer;
461 #endif
462 }
463 
464 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
465 {
466 	struct hrtimer_clock_base *base = cpu_base->clock_base;
467 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
468 	unsigned int active = cpu_base->active_bases;
469 
470 	hrtimer_update_next_timer(cpu_base, NULL);
471 	for (; active; base++, active >>= 1) {
472 		struct timerqueue_node *next;
473 		struct hrtimer *timer;
474 
475 		if (!(active & 0x01))
476 			continue;
477 
478 		next = timerqueue_getnext(&base->active);
479 		timer = container_of(next, struct hrtimer, node);
480 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
481 		if (expires.tv64 < expires_next.tv64) {
482 			expires_next = expires;
483 			hrtimer_update_next_timer(cpu_base, timer);
484 		}
485 	}
486 	/*
487 	 * clock_was_set() might have changed base->offset of any of
488 	 * the clock bases so the result might be negative. Fix it up
489 	 * to prevent a false positive in clockevents_program_event().
490 	 */
491 	if (expires_next.tv64 < 0)
492 		expires_next.tv64 = 0;
493 	return expires_next;
494 }
495 #endif
496 
497 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
498 {
499 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
500 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
501 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
502 
503 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
504 					    offs_real, offs_boot, offs_tai);
505 }
506 
507 /* High resolution timer related functions */
508 #ifdef CONFIG_HIGH_RES_TIMERS
509 
510 /*
511  * High resolution timer enabled ?
512  */
513 static bool hrtimer_hres_enabled __read_mostly  = true;
514 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
515 EXPORT_SYMBOL_GPL(hrtimer_resolution);
516 
517 /*
518  * Enable / Disable high resolution mode
519  */
520 static int __init setup_hrtimer_hres(char *str)
521 {
522 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
523 }
524 
525 __setup("highres=", setup_hrtimer_hres);
526 
527 /*
528  * hrtimer_high_res_enabled - query, if the highres mode is enabled
529  */
530 static inline int hrtimer_is_hres_enabled(void)
531 {
532 	return hrtimer_hres_enabled;
533 }
534 
535 /*
536  * Is the high resolution mode active ?
537  */
538 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
539 {
540 	return cpu_base->hres_active;
541 }
542 
543 static inline int hrtimer_hres_active(void)
544 {
545 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
546 }
547 
548 /*
549  * Reprogram the event source with checking both queues for the
550  * next event
551  * Called with interrupts disabled and base->lock held
552  */
553 static void
554 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
555 {
556 	ktime_t expires_next;
557 
558 	if (!cpu_base->hres_active)
559 		return;
560 
561 	expires_next = __hrtimer_get_next_event(cpu_base);
562 
563 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
564 		return;
565 
566 	cpu_base->expires_next.tv64 = expires_next.tv64;
567 
568 	/*
569 	 * If a hang was detected in the last timer interrupt then we
570 	 * leave the hang delay active in the hardware. We want the
571 	 * system to make progress. That also prevents the following
572 	 * scenario:
573 	 * T1 expires 50ms from now
574 	 * T2 expires 5s from now
575 	 *
576 	 * T1 is removed, so this code is called and would reprogram
577 	 * the hardware to 5s from now. Any hrtimer_start after that
578 	 * will not reprogram the hardware due to hang_detected being
579 	 * set. So we'd effectivly block all timers until the T2 event
580 	 * fires.
581 	 */
582 	if (cpu_base->hang_detected)
583 		return;
584 
585 	tick_program_event(cpu_base->expires_next, 1);
586 }
587 
588 /*
589  * When a timer is enqueued and expires earlier than the already enqueued
590  * timers, we have to check, whether it expires earlier than the timer for
591  * which the clock event device was armed.
592  *
593  * Called with interrupts disabled and base->cpu_base.lock held
594  */
595 static void hrtimer_reprogram(struct hrtimer *timer,
596 			      struct hrtimer_clock_base *base)
597 {
598 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
599 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
600 
601 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
602 
603 	/*
604 	 * If the timer is not on the current cpu, we cannot reprogram
605 	 * the other cpus clock event device.
606 	 */
607 	if (base->cpu_base != cpu_base)
608 		return;
609 
610 	/*
611 	 * If the hrtimer interrupt is running, then it will
612 	 * reevaluate the clock bases and reprogram the clock event
613 	 * device. The callbacks are always executed in hard interrupt
614 	 * context so we don't need an extra check for a running
615 	 * callback.
616 	 */
617 	if (cpu_base->in_hrtirq)
618 		return;
619 
620 	/*
621 	 * CLOCK_REALTIME timer might be requested with an absolute
622 	 * expiry time which is less than base->offset. Set it to 0.
623 	 */
624 	if (expires.tv64 < 0)
625 		expires.tv64 = 0;
626 
627 	if (expires.tv64 >= cpu_base->expires_next.tv64)
628 		return;
629 
630 	/* Update the pointer to the next expiring timer */
631 	cpu_base->next_timer = timer;
632 
633 	/*
634 	 * If a hang was detected in the last timer interrupt then we
635 	 * do not schedule a timer which is earlier than the expiry
636 	 * which we enforced in the hang detection. We want the system
637 	 * to make progress.
638 	 */
639 	if (cpu_base->hang_detected)
640 		return;
641 
642 	/*
643 	 * Program the timer hardware. We enforce the expiry for
644 	 * events which are already in the past.
645 	 */
646 	cpu_base->expires_next = expires;
647 	tick_program_event(expires, 1);
648 }
649 
650 /*
651  * Initialize the high resolution related parts of cpu_base
652  */
653 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
654 {
655 	base->expires_next.tv64 = KTIME_MAX;
656 	base->hres_active = 0;
657 }
658 
659 /*
660  * Retrigger next event is called after clock was set
661  *
662  * Called with interrupts disabled via on_each_cpu()
663  */
664 static void retrigger_next_event(void *arg)
665 {
666 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
667 
668 	if (!base->hres_active)
669 		return;
670 
671 	raw_spin_lock(&base->lock);
672 	hrtimer_update_base(base);
673 	hrtimer_force_reprogram(base, 0);
674 	raw_spin_unlock(&base->lock);
675 }
676 
677 /*
678  * Switch to high resolution mode
679  */
680 static void hrtimer_switch_to_hres(void)
681 {
682 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
683 
684 	if (tick_init_highres()) {
685 		printk(KERN_WARNING "Could not switch to high resolution "
686 				    "mode on CPU %d\n", base->cpu);
687 		return;
688 	}
689 	base->hres_active = 1;
690 	hrtimer_resolution = HIGH_RES_NSEC;
691 
692 	tick_setup_sched_timer();
693 	/* "Retrigger" the interrupt to get things going */
694 	retrigger_next_event(NULL);
695 }
696 
697 static void clock_was_set_work(struct work_struct *work)
698 {
699 	clock_was_set();
700 }
701 
702 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
703 
704 /*
705  * Called from timekeeping and resume code to reprogramm the hrtimer
706  * interrupt device on all cpus.
707  */
708 void clock_was_set_delayed(void)
709 {
710 	schedule_work(&hrtimer_work);
711 }
712 
713 #else
714 
715 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
716 static inline int hrtimer_hres_active(void) { return 0; }
717 static inline int hrtimer_is_hres_enabled(void) { return 0; }
718 static inline void hrtimer_switch_to_hres(void) { }
719 static inline void
720 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
721 static inline int hrtimer_reprogram(struct hrtimer *timer,
722 				    struct hrtimer_clock_base *base)
723 {
724 	return 0;
725 }
726 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
727 static inline void retrigger_next_event(void *arg) { }
728 
729 #endif /* CONFIG_HIGH_RES_TIMERS */
730 
731 /*
732  * Clock realtime was set
733  *
734  * Change the offset of the realtime clock vs. the monotonic
735  * clock.
736  *
737  * We might have to reprogram the high resolution timer interrupt. On
738  * SMP we call the architecture specific code to retrigger _all_ high
739  * resolution timer interrupts. On UP we just disable interrupts and
740  * call the high resolution interrupt code.
741  */
742 void clock_was_set(void)
743 {
744 #ifdef CONFIG_HIGH_RES_TIMERS
745 	/* Retrigger the CPU local events everywhere */
746 	on_each_cpu(retrigger_next_event, NULL, 1);
747 #endif
748 	timerfd_clock_was_set();
749 }
750 
751 /*
752  * During resume we might have to reprogram the high resolution timer
753  * interrupt on all online CPUs.  However, all other CPUs will be
754  * stopped with IRQs interrupts disabled so the clock_was_set() call
755  * must be deferred.
756  */
757 void hrtimers_resume(void)
758 {
759 	WARN_ONCE(!irqs_disabled(),
760 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
761 
762 	/* Retrigger on the local CPU */
763 	retrigger_next_event(NULL);
764 	/* And schedule a retrigger for all others */
765 	clock_was_set_delayed();
766 }
767 
768 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
769 {
770 #ifdef CONFIG_TIMER_STATS
771 	if (timer->start_site)
772 		return;
773 	timer->start_site = __builtin_return_address(0);
774 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
775 	timer->start_pid = current->pid;
776 #endif
777 }
778 
779 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
780 {
781 #ifdef CONFIG_TIMER_STATS
782 	timer->start_site = NULL;
783 #endif
784 }
785 
786 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
787 {
788 #ifdef CONFIG_TIMER_STATS
789 	if (likely(!timer_stats_active))
790 		return;
791 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
792 				 timer->function, timer->start_comm, 0);
793 #endif
794 }
795 
796 /*
797  * Counterpart to lock_hrtimer_base above:
798  */
799 static inline
800 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
801 {
802 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
803 }
804 
805 /**
806  * hrtimer_forward - forward the timer expiry
807  * @timer:	hrtimer to forward
808  * @now:	forward past this time
809  * @interval:	the interval to forward
810  *
811  * Forward the timer expiry so it will expire in the future.
812  * Returns the number of overruns.
813  *
814  * Can be safely called from the callback function of @timer. If
815  * called from other contexts @timer must neither be enqueued nor
816  * running the callback and the caller needs to take care of
817  * serialization.
818  *
819  * Note: This only updates the timer expiry value and does not requeue
820  * the timer.
821  */
822 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
823 {
824 	u64 orun = 1;
825 	ktime_t delta;
826 
827 	delta = ktime_sub(now, hrtimer_get_expires(timer));
828 
829 	if (delta.tv64 < 0)
830 		return 0;
831 
832 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
833 		return 0;
834 
835 	if (interval.tv64 < hrtimer_resolution)
836 		interval.tv64 = hrtimer_resolution;
837 
838 	if (unlikely(delta.tv64 >= interval.tv64)) {
839 		s64 incr = ktime_to_ns(interval);
840 
841 		orun = ktime_divns(delta, incr);
842 		hrtimer_add_expires_ns(timer, incr * orun);
843 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
844 			return orun;
845 		/*
846 		 * This (and the ktime_add() below) is the
847 		 * correction for exact:
848 		 */
849 		orun++;
850 	}
851 	hrtimer_add_expires(timer, interval);
852 
853 	return orun;
854 }
855 EXPORT_SYMBOL_GPL(hrtimer_forward);
856 
857 /*
858  * enqueue_hrtimer - internal function to (re)start a timer
859  *
860  * The timer is inserted in expiry order. Insertion into the
861  * red black tree is O(log(n)). Must hold the base lock.
862  *
863  * Returns 1 when the new timer is the leftmost timer in the tree.
864  */
865 static int enqueue_hrtimer(struct hrtimer *timer,
866 			   struct hrtimer_clock_base *base)
867 {
868 	debug_activate(timer);
869 
870 	base->cpu_base->active_bases |= 1 << base->index;
871 
872 	timer->state = HRTIMER_STATE_ENQUEUED;
873 
874 	return timerqueue_add(&base->active, &timer->node);
875 }
876 
877 /*
878  * __remove_hrtimer - internal function to remove a timer
879  *
880  * Caller must hold the base lock.
881  *
882  * High resolution timer mode reprograms the clock event device when the
883  * timer is the one which expires next. The caller can disable this by setting
884  * reprogram to zero. This is useful, when the context does a reprogramming
885  * anyway (e.g. timer interrupt)
886  */
887 static void __remove_hrtimer(struct hrtimer *timer,
888 			     struct hrtimer_clock_base *base,
889 			     u8 newstate, int reprogram)
890 {
891 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
892 	u8 state = timer->state;
893 
894 	timer->state = newstate;
895 	if (!(state & HRTIMER_STATE_ENQUEUED))
896 		return;
897 
898 	if (!timerqueue_del(&base->active, &timer->node))
899 		cpu_base->active_bases &= ~(1 << base->index);
900 
901 #ifdef CONFIG_HIGH_RES_TIMERS
902 	/*
903 	 * Note: If reprogram is false we do not update
904 	 * cpu_base->next_timer. This happens when we remove the first
905 	 * timer on a remote cpu. No harm as we never dereference
906 	 * cpu_base->next_timer. So the worst thing what can happen is
907 	 * an superflous call to hrtimer_force_reprogram() on the
908 	 * remote cpu later on if the same timer gets enqueued again.
909 	 */
910 	if (reprogram && timer == cpu_base->next_timer)
911 		hrtimer_force_reprogram(cpu_base, 1);
912 #endif
913 }
914 
915 /*
916  * remove hrtimer, called with base lock held
917  */
918 static inline int
919 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
920 {
921 	if (hrtimer_is_queued(timer)) {
922 		u8 state = timer->state;
923 		int reprogram;
924 
925 		/*
926 		 * Remove the timer and force reprogramming when high
927 		 * resolution mode is active and the timer is on the current
928 		 * CPU. If we remove a timer on another CPU, reprogramming is
929 		 * skipped. The interrupt event on this CPU is fired and
930 		 * reprogramming happens in the interrupt handler. This is a
931 		 * rare case and less expensive than a smp call.
932 		 */
933 		debug_deactivate(timer);
934 		timer_stats_hrtimer_clear_start_info(timer);
935 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
936 
937 		if (!restart)
938 			state = HRTIMER_STATE_INACTIVE;
939 
940 		__remove_hrtimer(timer, base, state, reprogram);
941 		return 1;
942 	}
943 	return 0;
944 }
945 
946 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
947 					    const enum hrtimer_mode mode)
948 {
949 #ifdef CONFIG_TIME_LOW_RES
950 	/*
951 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
952 	 * granular time values. For relative timers we add hrtimer_resolution
953 	 * (i.e. one jiffie) to prevent short timeouts.
954 	 */
955 	timer->is_rel = mode & HRTIMER_MODE_REL;
956 	if (timer->is_rel)
957 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
958 #endif
959 	return tim;
960 }
961 
962 /**
963  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
964  * @timer:	the timer to be added
965  * @tim:	expiry time
966  * @delta_ns:	"slack" range for the timer
967  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
968  *		relative (HRTIMER_MODE_REL)
969  */
970 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
971 			    u64 delta_ns, const enum hrtimer_mode mode)
972 {
973 	struct hrtimer_clock_base *base, *new_base;
974 	unsigned long flags;
975 	int leftmost;
976 
977 	base = lock_hrtimer_base(timer, &flags);
978 
979 	/* Remove an active timer from the queue: */
980 	remove_hrtimer(timer, base, true);
981 
982 	if (mode & HRTIMER_MODE_REL)
983 		tim = ktime_add_safe(tim, base->get_time());
984 
985 	tim = hrtimer_update_lowres(timer, tim, mode);
986 
987 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
988 
989 	/* Switch the timer base, if necessary: */
990 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
991 
992 	timer_stats_hrtimer_set_start_info(timer);
993 
994 	leftmost = enqueue_hrtimer(timer, new_base);
995 	if (!leftmost)
996 		goto unlock;
997 
998 	if (!hrtimer_is_hres_active(timer)) {
999 		/*
1000 		 * Kick to reschedule the next tick to handle the new timer
1001 		 * on dynticks target.
1002 		 */
1003 		if (new_base->cpu_base->nohz_active)
1004 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1005 	} else {
1006 		hrtimer_reprogram(timer, new_base);
1007 	}
1008 unlock:
1009 	unlock_hrtimer_base(timer, &flags);
1010 }
1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012 
1013 /**
1014  * hrtimer_try_to_cancel - try to deactivate a timer
1015  * @timer:	hrtimer to stop
1016  *
1017  * Returns:
1018  *  0 when the timer was not active
1019  *  1 when the timer was active
1020  * -1 when the timer is currently excuting the callback function and
1021  *    cannot be stopped
1022  */
1023 int hrtimer_try_to_cancel(struct hrtimer *timer)
1024 {
1025 	struct hrtimer_clock_base *base;
1026 	unsigned long flags;
1027 	int ret = -1;
1028 
1029 	/*
1030 	 * Check lockless first. If the timer is not active (neither
1031 	 * enqueued nor running the callback, nothing to do here.  The
1032 	 * base lock does not serialize against a concurrent enqueue,
1033 	 * so we can avoid taking it.
1034 	 */
1035 	if (!hrtimer_active(timer))
1036 		return 0;
1037 
1038 	base = lock_hrtimer_base(timer, &flags);
1039 
1040 	if (!hrtimer_callback_running(timer))
1041 		ret = remove_hrtimer(timer, base, false);
1042 
1043 	unlock_hrtimer_base(timer, &flags);
1044 
1045 	return ret;
1046 
1047 }
1048 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1049 
1050 /**
1051  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1052  * @timer:	the timer to be cancelled
1053  *
1054  * Returns:
1055  *  0 when the timer was not active
1056  *  1 when the timer was active
1057  */
1058 int hrtimer_cancel(struct hrtimer *timer)
1059 {
1060 	for (;;) {
1061 		int ret = hrtimer_try_to_cancel(timer);
1062 
1063 		if (ret >= 0)
1064 			return ret;
1065 		cpu_relax();
1066 	}
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1069 
1070 /**
1071  * hrtimer_get_remaining - get remaining time for the timer
1072  * @timer:	the timer to read
1073  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1074  */
1075 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1076 {
1077 	unsigned long flags;
1078 	ktime_t rem;
1079 
1080 	lock_hrtimer_base(timer, &flags);
1081 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1082 		rem = hrtimer_expires_remaining_adjusted(timer);
1083 	else
1084 		rem = hrtimer_expires_remaining(timer);
1085 	unlock_hrtimer_base(timer, &flags);
1086 
1087 	return rem;
1088 }
1089 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1090 
1091 #ifdef CONFIG_NO_HZ_COMMON
1092 /**
1093  * hrtimer_get_next_event - get the time until next expiry event
1094  *
1095  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1096  */
1097 u64 hrtimer_get_next_event(void)
1098 {
1099 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1100 	u64 expires = KTIME_MAX;
1101 	unsigned long flags;
1102 
1103 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1104 
1105 	if (!__hrtimer_hres_active(cpu_base))
1106 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1107 
1108 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1109 
1110 	return expires;
1111 }
1112 #endif
1113 
1114 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1115 			   enum hrtimer_mode mode)
1116 {
1117 	struct hrtimer_cpu_base *cpu_base;
1118 	int base;
1119 
1120 	memset(timer, 0, sizeof(struct hrtimer));
1121 
1122 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1123 
1124 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1125 		clock_id = CLOCK_MONOTONIC;
1126 
1127 	base = hrtimer_clockid_to_base(clock_id);
1128 	timer->base = &cpu_base->clock_base[base];
1129 	timerqueue_init(&timer->node);
1130 
1131 #ifdef CONFIG_TIMER_STATS
1132 	timer->start_site = NULL;
1133 	timer->start_pid = -1;
1134 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1135 #endif
1136 }
1137 
1138 /**
1139  * hrtimer_init - initialize a timer to the given clock
1140  * @timer:	the timer to be initialized
1141  * @clock_id:	the clock to be used
1142  * @mode:	timer mode abs/rel
1143  */
1144 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1145 		  enum hrtimer_mode mode)
1146 {
1147 	debug_init(timer, clock_id, mode);
1148 	__hrtimer_init(timer, clock_id, mode);
1149 }
1150 EXPORT_SYMBOL_GPL(hrtimer_init);
1151 
1152 /*
1153  * A timer is active, when it is enqueued into the rbtree or the
1154  * callback function is running or it's in the state of being migrated
1155  * to another cpu.
1156  *
1157  * It is important for this function to not return a false negative.
1158  */
1159 bool hrtimer_active(const struct hrtimer *timer)
1160 {
1161 	struct hrtimer_cpu_base *cpu_base;
1162 	unsigned int seq;
1163 
1164 	do {
1165 		cpu_base = READ_ONCE(timer->base->cpu_base);
1166 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1167 
1168 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1169 		    cpu_base->running == timer)
1170 			return true;
1171 
1172 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1173 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1174 
1175 	return false;
1176 }
1177 EXPORT_SYMBOL_GPL(hrtimer_active);
1178 
1179 /*
1180  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1181  * distinct sections:
1182  *
1183  *  - queued:	the timer is queued
1184  *  - callback:	the timer is being ran
1185  *  - post:	the timer is inactive or (re)queued
1186  *
1187  * On the read side we ensure we observe timer->state and cpu_base->running
1188  * from the same section, if anything changed while we looked at it, we retry.
1189  * This includes timer->base changing because sequence numbers alone are
1190  * insufficient for that.
1191  *
1192  * The sequence numbers are required because otherwise we could still observe
1193  * a false negative if the read side got smeared over multiple consequtive
1194  * __run_hrtimer() invocations.
1195  */
1196 
1197 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1198 			  struct hrtimer_clock_base *base,
1199 			  struct hrtimer *timer, ktime_t *now)
1200 {
1201 	enum hrtimer_restart (*fn)(struct hrtimer *);
1202 	int restart;
1203 
1204 	lockdep_assert_held(&cpu_base->lock);
1205 
1206 	debug_deactivate(timer);
1207 	cpu_base->running = timer;
1208 
1209 	/*
1210 	 * Separate the ->running assignment from the ->state assignment.
1211 	 *
1212 	 * As with a regular write barrier, this ensures the read side in
1213 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1214 	 * timer->state == INACTIVE.
1215 	 */
1216 	raw_write_seqcount_barrier(&cpu_base->seq);
1217 
1218 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1219 	timer_stats_account_hrtimer(timer);
1220 	fn = timer->function;
1221 
1222 	/*
1223 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1224 	 * timer is restarted with a period then it becomes an absolute
1225 	 * timer. If its not restarted it does not matter.
1226 	 */
1227 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1228 		timer->is_rel = false;
1229 
1230 	/*
1231 	 * Because we run timers from hardirq context, there is no chance
1232 	 * they get migrated to another cpu, therefore its safe to unlock
1233 	 * the timer base.
1234 	 */
1235 	raw_spin_unlock(&cpu_base->lock);
1236 	trace_hrtimer_expire_entry(timer, now);
1237 	restart = fn(timer);
1238 	trace_hrtimer_expire_exit(timer);
1239 	raw_spin_lock(&cpu_base->lock);
1240 
1241 	/*
1242 	 * Note: We clear the running state after enqueue_hrtimer and
1243 	 * we do not reprogramm the event hardware. Happens either in
1244 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1245 	 *
1246 	 * Note: Because we dropped the cpu_base->lock above,
1247 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1248 	 * for us already.
1249 	 */
1250 	if (restart != HRTIMER_NORESTART &&
1251 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1252 		enqueue_hrtimer(timer, base);
1253 
1254 	/*
1255 	 * Separate the ->running assignment from the ->state assignment.
1256 	 *
1257 	 * As with a regular write barrier, this ensures the read side in
1258 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1259 	 * timer->state == INACTIVE.
1260 	 */
1261 	raw_write_seqcount_barrier(&cpu_base->seq);
1262 
1263 	WARN_ON_ONCE(cpu_base->running != timer);
1264 	cpu_base->running = NULL;
1265 }
1266 
1267 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1268 {
1269 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1270 	unsigned int active = cpu_base->active_bases;
1271 
1272 	for (; active; base++, active >>= 1) {
1273 		struct timerqueue_node *node;
1274 		ktime_t basenow;
1275 
1276 		if (!(active & 0x01))
1277 			continue;
1278 
1279 		basenow = ktime_add(now, base->offset);
1280 
1281 		while ((node = timerqueue_getnext(&base->active))) {
1282 			struct hrtimer *timer;
1283 
1284 			timer = container_of(node, struct hrtimer, node);
1285 
1286 			/*
1287 			 * The immediate goal for using the softexpires is
1288 			 * minimizing wakeups, not running timers at the
1289 			 * earliest interrupt after their soft expiration.
1290 			 * This allows us to avoid using a Priority Search
1291 			 * Tree, which can answer a stabbing querry for
1292 			 * overlapping intervals and instead use the simple
1293 			 * BST we already have.
1294 			 * We don't add extra wakeups by delaying timers that
1295 			 * are right-of a not yet expired timer, because that
1296 			 * timer will have to trigger a wakeup anyway.
1297 			 */
1298 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1299 				break;
1300 
1301 			__run_hrtimer(cpu_base, base, timer, &basenow);
1302 		}
1303 	}
1304 }
1305 
1306 #ifdef CONFIG_HIGH_RES_TIMERS
1307 
1308 /*
1309  * High resolution timer interrupt
1310  * Called with interrupts disabled
1311  */
1312 void hrtimer_interrupt(struct clock_event_device *dev)
1313 {
1314 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1315 	ktime_t expires_next, now, entry_time, delta;
1316 	int retries = 0;
1317 
1318 	BUG_ON(!cpu_base->hres_active);
1319 	cpu_base->nr_events++;
1320 	dev->next_event.tv64 = KTIME_MAX;
1321 
1322 	raw_spin_lock(&cpu_base->lock);
1323 	entry_time = now = hrtimer_update_base(cpu_base);
1324 retry:
1325 	cpu_base->in_hrtirq = 1;
1326 	/*
1327 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1328 	 * held to prevent that a timer is enqueued in our queue via
1329 	 * the migration code. This does not affect enqueueing of
1330 	 * timers which run their callback and need to be requeued on
1331 	 * this CPU.
1332 	 */
1333 	cpu_base->expires_next.tv64 = KTIME_MAX;
1334 
1335 	__hrtimer_run_queues(cpu_base, now);
1336 
1337 	/* Reevaluate the clock bases for the next expiry */
1338 	expires_next = __hrtimer_get_next_event(cpu_base);
1339 	/*
1340 	 * Store the new expiry value so the migration code can verify
1341 	 * against it.
1342 	 */
1343 	cpu_base->expires_next = expires_next;
1344 	cpu_base->in_hrtirq = 0;
1345 	raw_spin_unlock(&cpu_base->lock);
1346 
1347 	/* Reprogramming necessary ? */
1348 	if (!tick_program_event(expires_next, 0)) {
1349 		cpu_base->hang_detected = 0;
1350 		return;
1351 	}
1352 
1353 	/*
1354 	 * The next timer was already expired due to:
1355 	 * - tracing
1356 	 * - long lasting callbacks
1357 	 * - being scheduled away when running in a VM
1358 	 *
1359 	 * We need to prevent that we loop forever in the hrtimer
1360 	 * interrupt routine. We give it 3 attempts to avoid
1361 	 * overreacting on some spurious event.
1362 	 *
1363 	 * Acquire base lock for updating the offsets and retrieving
1364 	 * the current time.
1365 	 */
1366 	raw_spin_lock(&cpu_base->lock);
1367 	now = hrtimer_update_base(cpu_base);
1368 	cpu_base->nr_retries++;
1369 	if (++retries < 3)
1370 		goto retry;
1371 	/*
1372 	 * Give the system a chance to do something else than looping
1373 	 * here. We stored the entry time, so we know exactly how long
1374 	 * we spent here. We schedule the next event this amount of
1375 	 * time away.
1376 	 */
1377 	cpu_base->nr_hangs++;
1378 	cpu_base->hang_detected = 1;
1379 	raw_spin_unlock(&cpu_base->lock);
1380 	delta = ktime_sub(now, entry_time);
1381 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1382 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1383 	/*
1384 	 * Limit it to a sensible value as we enforce a longer
1385 	 * delay. Give the CPU at least 100ms to catch up.
1386 	 */
1387 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1388 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1389 	else
1390 		expires_next = ktime_add(now, delta);
1391 	tick_program_event(expires_next, 1);
1392 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1393 		    ktime_to_ns(delta));
1394 }
1395 
1396 /*
1397  * local version of hrtimer_peek_ahead_timers() called with interrupts
1398  * disabled.
1399  */
1400 static inline void __hrtimer_peek_ahead_timers(void)
1401 {
1402 	struct tick_device *td;
1403 
1404 	if (!hrtimer_hres_active())
1405 		return;
1406 
1407 	td = this_cpu_ptr(&tick_cpu_device);
1408 	if (td && td->evtdev)
1409 		hrtimer_interrupt(td->evtdev);
1410 }
1411 
1412 #else /* CONFIG_HIGH_RES_TIMERS */
1413 
1414 static inline void __hrtimer_peek_ahead_timers(void) { }
1415 
1416 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1417 
1418 /*
1419  * Called from run_local_timers in hardirq context every jiffy
1420  */
1421 void hrtimer_run_queues(void)
1422 {
1423 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1424 	ktime_t now;
1425 
1426 	if (__hrtimer_hres_active(cpu_base))
1427 		return;
1428 
1429 	/*
1430 	 * This _is_ ugly: We have to check periodically, whether we
1431 	 * can switch to highres and / or nohz mode. The clocksource
1432 	 * switch happens with xtime_lock held. Notification from
1433 	 * there only sets the check bit in the tick_oneshot code,
1434 	 * otherwise we might deadlock vs. xtime_lock.
1435 	 */
1436 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1437 		hrtimer_switch_to_hres();
1438 		return;
1439 	}
1440 
1441 	raw_spin_lock(&cpu_base->lock);
1442 	now = hrtimer_update_base(cpu_base);
1443 	__hrtimer_run_queues(cpu_base, now);
1444 	raw_spin_unlock(&cpu_base->lock);
1445 }
1446 
1447 /*
1448  * Sleep related functions:
1449  */
1450 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1451 {
1452 	struct hrtimer_sleeper *t =
1453 		container_of(timer, struct hrtimer_sleeper, timer);
1454 	struct task_struct *task = t->task;
1455 
1456 	t->task = NULL;
1457 	if (task)
1458 		wake_up_process(task);
1459 
1460 	return HRTIMER_NORESTART;
1461 }
1462 
1463 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1464 {
1465 	sl->timer.function = hrtimer_wakeup;
1466 	sl->task = task;
1467 }
1468 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1469 
1470 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1471 {
1472 	hrtimer_init_sleeper(t, current);
1473 
1474 	do {
1475 		set_current_state(TASK_INTERRUPTIBLE);
1476 		hrtimer_start_expires(&t->timer, mode);
1477 
1478 		if (likely(t->task))
1479 			freezable_schedule();
1480 
1481 		hrtimer_cancel(&t->timer);
1482 		mode = HRTIMER_MODE_ABS;
1483 
1484 	} while (t->task && !signal_pending(current));
1485 
1486 	__set_current_state(TASK_RUNNING);
1487 
1488 	return t->task == NULL;
1489 }
1490 
1491 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1492 {
1493 	struct timespec rmt;
1494 	ktime_t rem;
1495 
1496 	rem = hrtimer_expires_remaining(timer);
1497 	if (rem.tv64 <= 0)
1498 		return 0;
1499 	rmt = ktime_to_timespec(rem);
1500 
1501 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1502 		return -EFAULT;
1503 
1504 	return 1;
1505 }
1506 
1507 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1508 {
1509 	struct hrtimer_sleeper t;
1510 	struct timespec __user  *rmtp;
1511 	int ret = 0;
1512 
1513 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1514 				HRTIMER_MODE_ABS);
1515 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1516 
1517 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1518 		goto out;
1519 
1520 	rmtp = restart->nanosleep.rmtp;
1521 	if (rmtp) {
1522 		ret = update_rmtp(&t.timer, rmtp);
1523 		if (ret <= 0)
1524 			goto out;
1525 	}
1526 
1527 	/* The other values in restart are already filled in */
1528 	ret = -ERESTART_RESTARTBLOCK;
1529 out:
1530 	destroy_hrtimer_on_stack(&t.timer);
1531 	return ret;
1532 }
1533 
1534 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1535 		       const enum hrtimer_mode mode, const clockid_t clockid)
1536 {
1537 	struct restart_block *restart;
1538 	struct hrtimer_sleeper t;
1539 	int ret = 0;
1540 	u64 slack;
1541 
1542 	slack = current->timer_slack_ns;
1543 	if (dl_task(current) || rt_task(current))
1544 		slack = 0;
1545 
1546 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1547 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1548 	if (do_nanosleep(&t, mode))
1549 		goto out;
1550 
1551 	/* Absolute timers do not update the rmtp value and restart: */
1552 	if (mode == HRTIMER_MODE_ABS) {
1553 		ret = -ERESTARTNOHAND;
1554 		goto out;
1555 	}
1556 
1557 	if (rmtp) {
1558 		ret = update_rmtp(&t.timer, rmtp);
1559 		if (ret <= 0)
1560 			goto out;
1561 	}
1562 
1563 	restart = &current->restart_block;
1564 	restart->fn = hrtimer_nanosleep_restart;
1565 	restart->nanosleep.clockid = t.timer.base->clockid;
1566 	restart->nanosleep.rmtp = rmtp;
1567 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1568 
1569 	ret = -ERESTART_RESTARTBLOCK;
1570 out:
1571 	destroy_hrtimer_on_stack(&t.timer);
1572 	return ret;
1573 }
1574 
1575 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1576 		struct timespec __user *, rmtp)
1577 {
1578 	struct timespec tu;
1579 
1580 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1581 		return -EFAULT;
1582 
1583 	if (!timespec_valid(&tu))
1584 		return -EINVAL;
1585 
1586 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1587 }
1588 
1589 /*
1590  * Functions related to boot-time initialization:
1591  */
1592 static void init_hrtimers_cpu(int cpu)
1593 {
1594 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1595 	int i;
1596 
1597 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1598 		cpu_base->clock_base[i].cpu_base = cpu_base;
1599 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1600 	}
1601 
1602 	cpu_base->cpu = cpu;
1603 	hrtimer_init_hres(cpu_base);
1604 }
1605 
1606 #ifdef CONFIG_HOTPLUG_CPU
1607 
1608 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1609 				struct hrtimer_clock_base *new_base)
1610 {
1611 	struct hrtimer *timer;
1612 	struct timerqueue_node *node;
1613 
1614 	while ((node = timerqueue_getnext(&old_base->active))) {
1615 		timer = container_of(node, struct hrtimer, node);
1616 		BUG_ON(hrtimer_callback_running(timer));
1617 		debug_deactivate(timer);
1618 
1619 		/*
1620 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1621 		 * timer could be seen as !active and just vanish away
1622 		 * under us on another CPU
1623 		 */
1624 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1625 		timer->base = new_base;
1626 		/*
1627 		 * Enqueue the timers on the new cpu. This does not
1628 		 * reprogram the event device in case the timer
1629 		 * expires before the earliest on this CPU, but we run
1630 		 * hrtimer_interrupt after we migrated everything to
1631 		 * sort out already expired timers and reprogram the
1632 		 * event device.
1633 		 */
1634 		enqueue_hrtimer(timer, new_base);
1635 	}
1636 }
1637 
1638 static void migrate_hrtimers(int scpu)
1639 {
1640 	struct hrtimer_cpu_base *old_base, *new_base;
1641 	int i;
1642 
1643 	BUG_ON(cpu_online(scpu));
1644 	tick_cancel_sched_timer(scpu);
1645 
1646 	local_irq_disable();
1647 	old_base = &per_cpu(hrtimer_bases, scpu);
1648 	new_base = this_cpu_ptr(&hrtimer_bases);
1649 	/*
1650 	 * The caller is globally serialized and nobody else
1651 	 * takes two locks at once, deadlock is not possible.
1652 	 */
1653 	raw_spin_lock(&new_base->lock);
1654 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1655 
1656 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1657 		migrate_hrtimer_list(&old_base->clock_base[i],
1658 				     &new_base->clock_base[i]);
1659 	}
1660 
1661 	raw_spin_unlock(&old_base->lock);
1662 	raw_spin_unlock(&new_base->lock);
1663 
1664 	/* Check, if we got expired work to do */
1665 	__hrtimer_peek_ahead_timers();
1666 	local_irq_enable();
1667 }
1668 
1669 #endif /* CONFIG_HOTPLUG_CPU */
1670 
1671 static int hrtimer_cpu_notify(struct notifier_block *self,
1672 					unsigned long action, void *hcpu)
1673 {
1674 	int scpu = (long)hcpu;
1675 
1676 	switch (action) {
1677 
1678 	case CPU_UP_PREPARE:
1679 	case CPU_UP_PREPARE_FROZEN:
1680 		init_hrtimers_cpu(scpu);
1681 		break;
1682 
1683 #ifdef CONFIG_HOTPLUG_CPU
1684 	case CPU_DEAD:
1685 	case CPU_DEAD_FROZEN:
1686 		migrate_hrtimers(scpu);
1687 		break;
1688 #endif
1689 
1690 	default:
1691 		break;
1692 	}
1693 
1694 	return NOTIFY_OK;
1695 }
1696 
1697 static struct notifier_block hrtimers_nb = {
1698 	.notifier_call = hrtimer_cpu_notify,
1699 };
1700 
1701 void __init hrtimers_init(void)
1702 {
1703 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1704 			  (void *)(long)smp_processor_id());
1705 	register_cpu_notifier(&hrtimers_nb);
1706 }
1707 
1708 /**
1709  * schedule_hrtimeout_range_clock - sleep until timeout
1710  * @expires:	timeout value (ktime_t)
1711  * @delta:	slack in expires timeout (ktime_t)
1712  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1713  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1714  */
1715 int __sched
1716 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1717 			       const enum hrtimer_mode mode, int clock)
1718 {
1719 	struct hrtimer_sleeper t;
1720 
1721 	/*
1722 	 * Optimize when a zero timeout value is given. It does not
1723 	 * matter whether this is an absolute or a relative time.
1724 	 */
1725 	if (expires && !expires->tv64) {
1726 		__set_current_state(TASK_RUNNING);
1727 		return 0;
1728 	}
1729 
1730 	/*
1731 	 * A NULL parameter means "infinite"
1732 	 */
1733 	if (!expires) {
1734 		schedule();
1735 		return -EINTR;
1736 	}
1737 
1738 	hrtimer_init_on_stack(&t.timer, clock, mode);
1739 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1740 
1741 	hrtimer_init_sleeper(&t, current);
1742 
1743 	hrtimer_start_expires(&t.timer, mode);
1744 
1745 	if (likely(t.task))
1746 		schedule();
1747 
1748 	hrtimer_cancel(&t.timer);
1749 	destroy_hrtimer_on_stack(&t.timer);
1750 
1751 	__set_current_state(TASK_RUNNING);
1752 
1753 	return !t.task ? 0 : -EINTR;
1754 }
1755 
1756 /**
1757  * schedule_hrtimeout_range - sleep until timeout
1758  * @expires:	timeout value (ktime_t)
1759  * @delta:	slack in expires timeout (ktime_t)
1760  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1761  *
1762  * Make the current task sleep until the given expiry time has
1763  * elapsed. The routine will return immediately unless
1764  * the current task state has been set (see set_current_state()).
1765  *
1766  * The @delta argument gives the kernel the freedom to schedule the
1767  * actual wakeup to a time that is both power and performance friendly.
1768  * The kernel give the normal best effort behavior for "@expires+@delta",
1769  * but may decide to fire the timer earlier, but no earlier than @expires.
1770  *
1771  * You can set the task state as follows -
1772  *
1773  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1774  * pass before the routine returns.
1775  *
1776  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1777  * delivered to the current task.
1778  *
1779  * The current task state is guaranteed to be TASK_RUNNING when this
1780  * routine returns.
1781  *
1782  * Returns 0 when the timer has expired otherwise -EINTR
1783  */
1784 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1785 				     const enum hrtimer_mode mode)
1786 {
1787 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1788 					      CLOCK_MONOTONIC);
1789 }
1790 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1791 
1792 /**
1793  * schedule_hrtimeout - sleep until timeout
1794  * @expires:	timeout value (ktime_t)
1795  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1796  *
1797  * Make the current task sleep until the given expiry time has
1798  * elapsed. The routine will return immediately unless
1799  * the current task state has been set (see set_current_state()).
1800  *
1801  * You can set the task state as follows -
1802  *
1803  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1804  * pass before the routine returns.
1805  *
1806  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1807  * delivered to the current task.
1808  *
1809  * The current task state is guaranteed to be TASK_RUNNING when this
1810  * routine returns.
1811  *
1812  * Returns 0 when the timer has expired otherwise -EINTR
1813  */
1814 int __sched schedule_hrtimeout(ktime_t *expires,
1815 			       const enum hrtimer_mode mode)
1816 {
1817 	return schedule_hrtimeout_range(expires, 0, mode);
1818 }
1819 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1820