1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids than hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 } 94 }; 95 96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 97 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 98 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 99 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 100 [CLOCK_TAI] = HRTIMER_BASE_TAI, 101 }; 102 103 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 104 { 105 return hrtimer_clock_to_base_table[clock_id]; 106 } 107 108 /* 109 * Functions and macros which are different for UP/SMP systems are kept in a 110 * single place 111 */ 112 #ifdef CONFIG_SMP 113 114 /* 115 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 116 * such that hrtimer_callback_running() can unconditionally dereference 117 * timer->base->cpu_base 118 */ 119 static struct hrtimer_cpu_base migration_cpu_base = { 120 .seq = SEQCNT_ZERO(migration_cpu_base), 121 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 122 }; 123 124 #define migration_base migration_cpu_base.clock_base[0] 125 126 /* 127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 128 * means that all timers which are tied to this base via timer->base are 129 * locked, and the base itself is locked too. 130 * 131 * So __run_timers/migrate_timers can safely modify all timers which could 132 * be found on the lists/queues. 133 * 134 * When the timer's base is locked, and the timer removed from list, it is 135 * possible to set timer->base = &migration_base and drop the lock: the timer 136 * remains locked. 137 */ 138 static 139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 140 unsigned long *flags) 141 { 142 struct hrtimer_clock_base *base; 143 144 for (;;) { 145 base = timer->base; 146 if (likely(base != &migration_base)) { 147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 148 if (likely(base == timer->base)) 149 return base; 150 /* The timer has migrated to another CPU: */ 151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 152 } 153 cpu_relax(); 154 } 155 } 156 157 /* 158 * With HIGHRES=y we do not migrate the timer when it is expiring 159 * before the next event on the target cpu because we cannot reprogram 160 * the target cpu hardware and we would cause it to fire late. 161 * 162 * Called with cpu_base->lock of target cpu held. 163 */ 164 static int 165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 166 { 167 #ifdef CONFIG_HIGH_RES_TIMERS 168 ktime_t expires; 169 170 if (!new_base->cpu_base->hres_active) 171 return 0; 172 173 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 174 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 175 #else 176 return 0; 177 #endif 178 } 179 180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 181 static inline 182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 183 int pinned) 184 { 185 if (pinned || !base->migration_enabled) 186 return base; 187 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 188 } 189 #else 190 static inline 191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 192 int pinned) 193 { 194 return base; 195 } 196 #endif 197 198 /* 199 * We switch the timer base to a power-optimized selected CPU target, 200 * if: 201 * - NO_HZ_COMMON is enabled 202 * - timer migration is enabled 203 * - the timer callback is not running 204 * - the timer is not the first expiring timer on the new target 205 * 206 * If one of the above requirements is not fulfilled we move the timer 207 * to the current CPU or leave it on the previously assigned CPU if 208 * the timer callback is currently running. 209 */ 210 static inline struct hrtimer_clock_base * 211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 212 int pinned) 213 { 214 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 215 struct hrtimer_clock_base *new_base; 216 int basenum = base->index; 217 218 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 219 new_cpu_base = get_target_base(this_cpu_base, pinned); 220 again: 221 new_base = &new_cpu_base->clock_base[basenum]; 222 223 if (base != new_base) { 224 /* 225 * We are trying to move timer to new_base. 226 * However we can't change timer's base while it is running, 227 * so we keep it on the same CPU. No hassle vs. reprogramming 228 * the event source in the high resolution case. The softirq 229 * code will take care of this when the timer function has 230 * completed. There is no conflict as we hold the lock until 231 * the timer is enqueued. 232 */ 233 if (unlikely(hrtimer_callback_running(timer))) 234 return base; 235 236 /* See the comment in lock_hrtimer_base() */ 237 timer->base = &migration_base; 238 raw_spin_unlock(&base->cpu_base->lock); 239 raw_spin_lock(&new_base->cpu_base->lock); 240 241 if (new_cpu_base != this_cpu_base && 242 hrtimer_check_target(timer, new_base)) { 243 raw_spin_unlock(&new_base->cpu_base->lock); 244 raw_spin_lock(&base->cpu_base->lock); 245 new_cpu_base = this_cpu_base; 246 timer->base = base; 247 goto again; 248 } 249 timer->base = new_base; 250 } else { 251 if (new_cpu_base != this_cpu_base && 252 hrtimer_check_target(timer, new_base)) { 253 new_cpu_base = this_cpu_base; 254 goto again; 255 } 256 } 257 return new_base; 258 } 259 260 #else /* CONFIG_SMP */ 261 262 static inline struct hrtimer_clock_base * 263 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 264 { 265 struct hrtimer_clock_base *base = timer->base; 266 267 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 268 269 return base; 270 } 271 272 # define switch_hrtimer_base(t, b, p) (b) 273 274 #endif /* !CONFIG_SMP */ 275 276 /* 277 * Functions for the union type storage format of ktime_t which are 278 * too large for inlining: 279 */ 280 #if BITS_PER_LONG < 64 281 /* 282 * Divide a ktime value by a nanosecond value 283 */ 284 s64 __ktime_divns(const ktime_t kt, s64 div) 285 { 286 int sft = 0; 287 s64 dclc; 288 u64 tmp; 289 290 dclc = ktime_to_ns(kt); 291 tmp = dclc < 0 ? -dclc : dclc; 292 293 /* Make sure the divisor is less than 2^32: */ 294 while (div >> 32) { 295 sft++; 296 div >>= 1; 297 } 298 tmp >>= sft; 299 do_div(tmp, (unsigned long) div); 300 return dclc < 0 ? -tmp : tmp; 301 } 302 EXPORT_SYMBOL_GPL(__ktime_divns); 303 #endif /* BITS_PER_LONG >= 64 */ 304 305 /* 306 * Add two ktime values and do a safety check for overflow: 307 */ 308 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 309 { 310 ktime_t res = ktime_add(lhs, rhs); 311 312 /* 313 * We use KTIME_SEC_MAX here, the maximum timeout which we can 314 * return to user space in a timespec: 315 */ 316 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 317 res = ktime_set(KTIME_SEC_MAX, 0); 318 319 return res; 320 } 321 322 EXPORT_SYMBOL_GPL(ktime_add_safe); 323 324 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 325 326 static struct debug_obj_descr hrtimer_debug_descr; 327 328 static void *hrtimer_debug_hint(void *addr) 329 { 330 return ((struct hrtimer *) addr)->function; 331 } 332 333 /* 334 * fixup_init is called when: 335 * - an active object is initialized 336 */ 337 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 338 { 339 struct hrtimer *timer = addr; 340 341 switch (state) { 342 case ODEBUG_STATE_ACTIVE: 343 hrtimer_cancel(timer); 344 debug_object_init(timer, &hrtimer_debug_descr); 345 return true; 346 default: 347 return false; 348 } 349 } 350 351 /* 352 * fixup_activate is called when: 353 * - an active object is activated 354 * - an unknown non-static object is activated 355 */ 356 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 357 { 358 switch (state) { 359 case ODEBUG_STATE_ACTIVE: 360 WARN_ON(1); 361 362 default: 363 return false; 364 } 365 } 366 367 /* 368 * fixup_free is called when: 369 * - an active object is freed 370 */ 371 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 372 { 373 struct hrtimer *timer = addr; 374 375 switch (state) { 376 case ODEBUG_STATE_ACTIVE: 377 hrtimer_cancel(timer); 378 debug_object_free(timer, &hrtimer_debug_descr); 379 return true; 380 default: 381 return false; 382 } 383 } 384 385 static struct debug_obj_descr hrtimer_debug_descr = { 386 .name = "hrtimer", 387 .debug_hint = hrtimer_debug_hint, 388 .fixup_init = hrtimer_fixup_init, 389 .fixup_activate = hrtimer_fixup_activate, 390 .fixup_free = hrtimer_fixup_free, 391 }; 392 393 static inline void debug_hrtimer_init(struct hrtimer *timer) 394 { 395 debug_object_init(timer, &hrtimer_debug_descr); 396 } 397 398 static inline void debug_hrtimer_activate(struct hrtimer *timer) 399 { 400 debug_object_activate(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 404 { 405 debug_object_deactivate(timer, &hrtimer_debug_descr); 406 } 407 408 static inline void debug_hrtimer_free(struct hrtimer *timer) 409 { 410 debug_object_free(timer, &hrtimer_debug_descr); 411 } 412 413 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 414 enum hrtimer_mode mode); 415 416 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 417 enum hrtimer_mode mode) 418 { 419 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 420 __hrtimer_init(timer, clock_id, mode); 421 } 422 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 423 424 void destroy_hrtimer_on_stack(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 429 #else 430 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 431 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 432 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 433 #endif 434 435 static inline void 436 debug_init(struct hrtimer *timer, clockid_t clockid, 437 enum hrtimer_mode mode) 438 { 439 debug_hrtimer_init(timer); 440 trace_hrtimer_init(timer, clockid, mode); 441 } 442 443 static inline void debug_activate(struct hrtimer *timer) 444 { 445 debug_hrtimer_activate(timer); 446 trace_hrtimer_start(timer); 447 } 448 449 static inline void debug_deactivate(struct hrtimer *timer) 450 { 451 debug_hrtimer_deactivate(timer); 452 trace_hrtimer_cancel(timer); 453 } 454 455 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 456 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 457 struct hrtimer *timer) 458 { 459 #ifdef CONFIG_HIGH_RES_TIMERS 460 cpu_base->next_timer = timer; 461 #endif 462 } 463 464 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 465 { 466 struct hrtimer_clock_base *base = cpu_base->clock_base; 467 ktime_t expires, expires_next = { .tv64 = KTIME_MAX }; 468 unsigned int active = cpu_base->active_bases; 469 470 hrtimer_update_next_timer(cpu_base, NULL); 471 for (; active; base++, active >>= 1) { 472 struct timerqueue_node *next; 473 struct hrtimer *timer; 474 475 if (!(active & 0x01)) 476 continue; 477 478 next = timerqueue_getnext(&base->active); 479 timer = container_of(next, struct hrtimer, node); 480 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 481 if (expires.tv64 < expires_next.tv64) { 482 expires_next = expires; 483 hrtimer_update_next_timer(cpu_base, timer); 484 } 485 } 486 /* 487 * clock_was_set() might have changed base->offset of any of 488 * the clock bases so the result might be negative. Fix it up 489 * to prevent a false positive in clockevents_program_event(). 490 */ 491 if (expires_next.tv64 < 0) 492 expires_next.tv64 = 0; 493 return expires_next; 494 } 495 #endif 496 497 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 498 { 499 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 500 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 501 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 502 503 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 504 offs_real, offs_boot, offs_tai); 505 } 506 507 /* High resolution timer related functions */ 508 #ifdef CONFIG_HIGH_RES_TIMERS 509 510 /* 511 * High resolution timer enabled ? 512 */ 513 static bool hrtimer_hres_enabled __read_mostly = true; 514 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 515 EXPORT_SYMBOL_GPL(hrtimer_resolution); 516 517 /* 518 * Enable / Disable high resolution mode 519 */ 520 static int __init setup_hrtimer_hres(char *str) 521 { 522 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 523 } 524 525 __setup("highres=", setup_hrtimer_hres); 526 527 /* 528 * hrtimer_high_res_enabled - query, if the highres mode is enabled 529 */ 530 static inline int hrtimer_is_hres_enabled(void) 531 { 532 return hrtimer_hres_enabled; 533 } 534 535 /* 536 * Is the high resolution mode active ? 537 */ 538 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 539 { 540 return cpu_base->hres_active; 541 } 542 543 static inline int hrtimer_hres_active(void) 544 { 545 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 546 } 547 548 /* 549 * Reprogram the event source with checking both queues for the 550 * next event 551 * Called with interrupts disabled and base->lock held 552 */ 553 static void 554 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 555 { 556 ktime_t expires_next; 557 558 if (!cpu_base->hres_active) 559 return; 560 561 expires_next = __hrtimer_get_next_event(cpu_base); 562 563 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 564 return; 565 566 cpu_base->expires_next.tv64 = expires_next.tv64; 567 568 /* 569 * If a hang was detected in the last timer interrupt then we 570 * leave the hang delay active in the hardware. We want the 571 * system to make progress. That also prevents the following 572 * scenario: 573 * T1 expires 50ms from now 574 * T2 expires 5s from now 575 * 576 * T1 is removed, so this code is called and would reprogram 577 * the hardware to 5s from now. Any hrtimer_start after that 578 * will not reprogram the hardware due to hang_detected being 579 * set. So we'd effectivly block all timers until the T2 event 580 * fires. 581 */ 582 if (cpu_base->hang_detected) 583 return; 584 585 tick_program_event(cpu_base->expires_next, 1); 586 } 587 588 /* 589 * When a timer is enqueued and expires earlier than the already enqueued 590 * timers, we have to check, whether it expires earlier than the timer for 591 * which the clock event device was armed. 592 * 593 * Called with interrupts disabled and base->cpu_base.lock held 594 */ 595 static void hrtimer_reprogram(struct hrtimer *timer, 596 struct hrtimer_clock_base *base) 597 { 598 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 599 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 600 601 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 602 603 /* 604 * If the timer is not on the current cpu, we cannot reprogram 605 * the other cpus clock event device. 606 */ 607 if (base->cpu_base != cpu_base) 608 return; 609 610 /* 611 * If the hrtimer interrupt is running, then it will 612 * reevaluate the clock bases and reprogram the clock event 613 * device. The callbacks are always executed in hard interrupt 614 * context so we don't need an extra check for a running 615 * callback. 616 */ 617 if (cpu_base->in_hrtirq) 618 return; 619 620 /* 621 * CLOCK_REALTIME timer might be requested with an absolute 622 * expiry time which is less than base->offset. Set it to 0. 623 */ 624 if (expires.tv64 < 0) 625 expires.tv64 = 0; 626 627 if (expires.tv64 >= cpu_base->expires_next.tv64) 628 return; 629 630 /* Update the pointer to the next expiring timer */ 631 cpu_base->next_timer = timer; 632 633 /* 634 * If a hang was detected in the last timer interrupt then we 635 * do not schedule a timer which is earlier than the expiry 636 * which we enforced in the hang detection. We want the system 637 * to make progress. 638 */ 639 if (cpu_base->hang_detected) 640 return; 641 642 /* 643 * Program the timer hardware. We enforce the expiry for 644 * events which are already in the past. 645 */ 646 cpu_base->expires_next = expires; 647 tick_program_event(expires, 1); 648 } 649 650 /* 651 * Initialize the high resolution related parts of cpu_base 652 */ 653 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 654 { 655 base->expires_next.tv64 = KTIME_MAX; 656 base->hres_active = 0; 657 } 658 659 /* 660 * Retrigger next event is called after clock was set 661 * 662 * Called with interrupts disabled via on_each_cpu() 663 */ 664 static void retrigger_next_event(void *arg) 665 { 666 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 667 668 if (!base->hres_active) 669 return; 670 671 raw_spin_lock(&base->lock); 672 hrtimer_update_base(base); 673 hrtimer_force_reprogram(base, 0); 674 raw_spin_unlock(&base->lock); 675 } 676 677 /* 678 * Switch to high resolution mode 679 */ 680 static void hrtimer_switch_to_hres(void) 681 { 682 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 683 684 if (tick_init_highres()) { 685 printk(KERN_WARNING "Could not switch to high resolution " 686 "mode on CPU %d\n", base->cpu); 687 return; 688 } 689 base->hres_active = 1; 690 hrtimer_resolution = HIGH_RES_NSEC; 691 692 tick_setup_sched_timer(); 693 /* "Retrigger" the interrupt to get things going */ 694 retrigger_next_event(NULL); 695 } 696 697 static void clock_was_set_work(struct work_struct *work) 698 { 699 clock_was_set(); 700 } 701 702 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 703 704 /* 705 * Called from timekeeping and resume code to reprogramm the hrtimer 706 * interrupt device on all cpus. 707 */ 708 void clock_was_set_delayed(void) 709 { 710 schedule_work(&hrtimer_work); 711 } 712 713 #else 714 715 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 716 static inline int hrtimer_hres_active(void) { return 0; } 717 static inline int hrtimer_is_hres_enabled(void) { return 0; } 718 static inline void hrtimer_switch_to_hres(void) { } 719 static inline void 720 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 721 static inline int hrtimer_reprogram(struct hrtimer *timer, 722 struct hrtimer_clock_base *base) 723 { 724 return 0; 725 } 726 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 727 static inline void retrigger_next_event(void *arg) { } 728 729 #endif /* CONFIG_HIGH_RES_TIMERS */ 730 731 /* 732 * Clock realtime was set 733 * 734 * Change the offset of the realtime clock vs. the monotonic 735 * clock. 736 * 737 * We might have to reprogram the high resolution timer interrupt. On 738 * SMP we call the architecture specific code to retrigger _all_ high 739 * resolution timer interrupts. On UP we just disable interrupts and 740 * call the high resolution interrupt code. 741 */ 742 void clock_was_set(void) 743 { 744 #ifdef CONFIG_HIGH_RES_TIMERS 745 /* Retrigger the CPU local events everywhere */ 746 on_each_cpu(retrigger_next_event, NULL, 1); 747 #endif 748 timerfd_clock_was_set(); 749 } 750 751 /* 752 * During resume we might have to reprogram the high resolution timer 753 * interrupt on all online CPUs. However, all other CPUs will be 754 * stopped with IRQs interrupts disabled so the clock_was_set() call 755 * must be deferred. 756 */ 757 void hrtimers_resume(void) 758 { 759 WARN_ONCE(!irqs_disabled(), 760 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 761 762 /* Retrigger on the local CPU */ 763 retrigger_next_event(NULL); 764 /* And schedule a retrigger for all others */ 765 clock_was_set_delayed(); 766 } 767 768 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 769 { 770 #ifdef CONFIG_TIMER_STATS 771 if (timer->start_site) 772 return; 773 timer->start_site = __builtin_return_address(0); 774 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 775 timer->start_pid = current->pid; 776 #endif 777 } 778 779 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 780 { 781 #ifdef CONFIG_TIMER_STATS 782 timer->start_site = NULL; 783 #endif 784 } 785 786 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 787 { 788 #ifdef CONFIG_TIMER_STATS 789 if (likely(!timer_stats_active)) 790 return; 791 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 792 timer->function, timer->start_comm, 0); 793 #endif 794 } 795 796 /* 797 * Counterpart to lock_hrtimer_base above: 798 */ 799 static inline 800 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 801 { 802 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 803 } 804 805 /** 806 * hrtimer_forward - forward the timer expiry 807 * @timer: hrtimer to forward 808 * @now: forward past this time 809 * @interval: the interval to forward 810 * 811 * Forward the timer expiry so it will expire in the future. 812 * Returns the number of overruns. 813 * 814 * Can be safely called from the callback function of @timer. If 815 * called from other contexts @timer must neither be enqueued nor 816 * running the callback and the caller needs to take care of 817 * serialization. 818 * 819 * Note: This only updates the timer expiry value and does not requeue 820 * the timer. 821 */ 822 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 823 { 824 u64 orun = 1; 825 ktime_t delta; 826 827 delta = ktime_sub(now, hrtimer_get_expires(timer)); 828 829 if (delta.tv64 < 0) 830 return 0; 831 832 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 833 return 0; 834 835 if (interval.tv64 < hrtimer_resolution) 836 interval.tv64 = hrtimer_resolution; 837 838 if (unlikely(delta.tv64 >= interval.tv64)) { 839 s64 incr = ktime_to_ns(interval); 840 841 orun = ktime_divns(delta, incr); 842 hrtimer_add_expires_ns(timer, incr * orun); 843 if (hrtimer_get_expires_tv64(timer) > now.tv64) 844 return orun; 845 /* 846 * This (and the ktime_add() below) is the 847 * correction for exact: 848 */ 849 orun++; 850 } 851 hrtimer_add_expires(timer, interval); 852 853 return orun; 854 } 855 EXPORT_SYMBOL_GPL(hrtimer_forward); 856 857 /* 858 * enqueue_hrtimer - internal function to (re)start a timer 859 * 860 * The timer is inserted in expiry order. Insertion into the 861 * red black tree is O(log(n)). Must hold the base lock. 862 * 863 * Returns 1 when the new timer is the leftmost timer in the tree. 864 */ 865 static int enqueue_hrtimer(struct hrtimer *timer, 866 struct hrtimer_clock_base *base) 867 { 868 debug_activate(timer); 869 870 base->cpu_base->active_bases |= 1 << base->index; 871 872 timer->state = HRTIMER_STATE_ENQUEUED; 873 874 return timerqueue_add(&base->active, &timer->node); 875 } 876 877 /* 878 * __remove_hrtimer - internal function to remove a timer 879 * 880 * Caller must hold the base lock. 881 * 882 * High resolution timer mode reprograms the clock event device when the 883 * timer is the one which expires next. The caller can disable this by setting 884 * reprogram to zero. This is useful, when the context does a reprogramming 885 * anyway (e.g. timer interrupt) 886 */ 887 static void __remove_hrtimer(struct hrtimer *timer, 888 struct hrtimer_clock_base *base, 889 u8 newstate, int reprogram) 890 { 891 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 892 u8 state = timer->state; 893 894 timer->state = newstate; 895 if (!(state & HRTIMER_STATE_ENQUEUED)) 896 return; 897 898 if (!timerqueue_del(&base->active, &timer->node)) 899 cpu_base->active_bases &= ~(1 << base->index); 900 901 #ifdef CONFIG_HIGH_RES_TIMERS 902 /* 903 * Note: If reprogram is false we do not update 904 * cpu_base->next_timer. This happens when we remove the first 905 * timer on a remote cpu. No harm as we never dereference 906 * cpu_base->next_timer. So the worst thing what can happen is 907 * an superflous call to hrtimer_force_reprogram() on the 908 * remote cpu later on if the same timer gets enqueued again. 909 */ 910 if (reprogram && timer == cpu_base->next_timer) 911 hrtimer_force_reprogram(cpu_base, 1); 912 #endif 913 } 914 915 /* 916 * remove hrtimer, called with base lock held 917 */ 918 static inline int 919 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 920 { 921 if (hrtimer_is_queued(timer)) { 922 u8 state = timer->state; 923 int reprogram; 924 925 /* 926 * Remove the timer and force reprogramming when high 927 * resolution mode is active and the timer is on the current 928 * CPU. If we remove a timer on another CPU, reprogramming is 929 * skipped. The interrupt event on this CPU is fired and 930 * reprogramming happens in the interrupt handler. This is a 931 * rare case and less expensive than a smp call. 932 */ 933 debug_deactivate(timer); 934 timer_stats_hrtimer_clear_start_info(timer); 935 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 936 937 if (!restart) 938 state = HRTIMER_STATE_INACTIVE; 939 940 __remove_hrtimer(timer, base, state, reprogram); 941 return 1; 942 } 943 return 0; 944 } 945 946 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 947 const enum hrtimer_mode mode) 948 { 949 #ifdef CONFIG_TIME_LOW_RES 950 /* 951 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 952 * granular time values. For relative timers we add hrtimer_resolution 953 * (i.e. one jiffie) to prevent short timeouts. 954 */ 955 timer->is_rel = mode & HRTIMER_MODE_REL; 956 if (timer->is_rel) 957 tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution)); 958 #endif 959 return tim; 960 } 961 962 /** 963 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 964 * @timer: the timer to be added 965 * @tim: expiry time 966 * @delta_ns: "slack" range for the timer 967 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 968 * relative (HRTIMER_MODE_REL) 969 */ 970 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 971 u64 delta_ns, const enum hrtimer_mode mode) 972 { 973 struct hrtimer_clock_base *base, *new_base; 974 unsigned long flags; 975 int leftmost; 976 977 base = lock_hrtimer_base(timer, &flags); 978 979 /* Remove an active timer from the queue: */ 980 remove_hrtimer(timer, base, true); 981 982 if (mode & HRTIMER_MODE_REL) 983 tim = ktime_add_safe(tim, base->get_time()); 984 985 tim = hrtimer_update_lowres(timer, tim, mode); 986 987 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 988 989 /* Switch the timer base, if necessary: */ 990 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 991 992 timer_stats_hrtimer_set_start_info(timer); 993 994 leftmost = enqueue_hrtimer(timer, new_base); 995 if (!leftmost) 996 goto unlock; 997 998 if (!hrtimer_is_hres_active(timer)) { 999 /* 1000 * Kick to reschedule the next tick to handle the new timer 1001 * on dynticks target. 1002 */ 1003 if (new_base->cpu_base->nohz_active) 1004 wake_up_nohz_cpu(new_base->cpu_base->cpu); 1005 } else { 1006 hrtimer_reprogram(timer, new_base); 1007 } 1008 unlock: 1009 unlock_hrtimer_base(timer, &flags); 1010 } 1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1012 1013 /** 1014 * hrtimer_try_to_cancel - try to deactivate a timer 1015 * @timer: hrtimer to stop 1016 * 1017 * Returns: 1018 * 0 when the timer was not active 1019 * 1 when the timer was active 1020 * -1 when the timer is currently excuting the callback function and 1021 * cannot be stopped 1022 */ 1023 int hrtimer_try_to_cancel(struct hrtimer *timer) 1024 { 1025 struct hrtimer_clock_base *base; 1026 unsigned long flags; 1027 int ret = -1; 1028 1029 /* 1030 * Check lockless first. If the timer is not active (neither 1031 * enqueued nor running the callback, nothing to do here. The 1032 * base lock does not serialize against a concurrent enqueue, 1033 * so we can avoid taking it. 1034 */ 1035 if (!hrtimer_active(timer)) 1036 return 0; 1037 1038 base = lock_hrtimer_base(timer, &flags); 1039 1040 if (!hrtimer_callback_running(timer)) 1041 ret = remove_hrtimer(timer, base, false); 1042 1043 unlock_hrtimer_base(timer, &flags); 1044 1045 return ret; 1046 1047 } 1048 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1049 1050 /** 1051 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1052 * @timer: the timer to be cancelled 1053 * 1054 * Returns: 1055 * 0 when the timer was not active 1056 * 1 when the timer was active 1057 */ 1058 int hrtimer_cancel(struct hrtimer *timer) 1059 { 1060 for (;;) { 1061 int ret = hrtimer_try_to_cancel(timer); 1062 1063 if (ret >= 0) 1064 return ret; 1065 cpu_relax(); 1066 } 1067 } 1068 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1069 1070 /** 1071 * hrtimer_get_remaining - get remaining time for the timer 1072 * @timer: the timer to read 1073 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1074 */ 1075 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1076 { 1077 unsigned long flags; 1078 ktime_t rem; 1079 1080 lock_hrtimer_base(timer, &flags); 1081 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1082 rem = hrtimer_expires_remaining_adjusted(timer); 1083 else 1084 rem = hrtimer_expires_remaining(timer); 1085 unlock_hrtimer_base(timer, &flags); 1086 1087 return rem; 1088 } 1089 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1090 1091 #ifdef CONFIG_NO_HZ_COMMON 1092 /** 1093 * hrtimer_get_next_event - get the time until next expiry event 1094 * 1095 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1096 */ 1097 u64 hrtimer_get_next_event(void) 1098 { 1099 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1100 u64 expires = KTIME_MAX; 1101 unsigned long flags; 1102 1103 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1104 1105 if (!__hrtimer_hres_active(cpu_base)) 1106 expires = __hrtimer_get_next_event(cpu_base).tv64; 1107 1108 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1109 1110 return expires; 1111 } 1112 #endif 1113 1114 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1115 enum hrtimer_mode mode) 1116 { 1117 struct hrtimer_cpu_base *cpu_base; 1118 int base; 1119 1120 memset(timer, 0, sizeof(struct hrtimer)); 1121 1122 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1123 1124 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1125 clock_id = CLOCK_MONOTONIC; 1126 1127 base = hrtimer_clockid_to_base(clock_id); 1128 timer->base = &cpu_base->clock_base[base]; 1129 timerqueue_init(&timer->node); 1130 1131 #ifdef CONFIG_TIMER_STATS 1132 timer->start_site = NULL; 1133 timer->start_pid = -1; 1134 memset(timer->start_comm, 0, TASK_COMM_LEN); 1135 #endif 1136 } 1137 1138 /** 1139 * hrtimer_init - initialize a timer to the given clock 1140 * @timer: the timer to be initialized 1141 * @clock_id: the clock to be used 1142 * @mode: timer mode abs/rel 1143 */ 1144 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1145 enum hrtimer_mode mode) 1146 { 1147 debug_init(timer, clock_id, mode); 1148 __hrtimer_init(timer, clock_id, mode); 1149 } 1150 EXPORT_SYMBOL_GPL(hrtimer_init); 1151 1152 /* 1153 * A timer is active, when it is enqueued into the rbtree or the 1154 * callback function is running or it's in the state of being migrated 1155 * to another cpu. 1156 * 1157 * It is important for this function to not return a false negative. 1158 */ 1159 bool hrtimer_active(const struct hrtimer *timer) 1160 { 1161 struct hrtimer_cpu_base *cpu_base; 1162 unsigned int seq; 1163 1164 do { 1165 cpu_base = READ_ONCE(timer->base->cpu_base); 1166 seq = raw_read_seqcount_begin(&cpu_base->seq); 1167 1168 if (timer->state != HRTIMER_STATE_INACTIVE || 1169 cpu_base->running == timer) 1170 return true; 1171 1172 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1173 cpu_base != READ_ONCE(timer->base->cpu_base)); 1174 1175 return false; 1176 } 1177 EXPORT_SYMBOL_GPL(hrtimer_active); 1178 1179 /* 1180 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1181 * distinct sections: 1182 * 1183 * - queued: the timer is queued 1184 * - callback: the timer is being ran 1185 * - post: the timer is inactive or (re)queued 1186 * 1187 * On the read side we ensure we observe timer->state and cpu_base->running 1188 * from the same section, if anything changed while we looked at it, we retry. 1189 * This includes timer->base changing because sequence numbers alone are 1190 * insufficient for that. 1191 * 1192 * The sequence numbers are required because otherwise we could still observe 1193 * a false negative if the read side got smeared over multiple consequtive 1194 * __run_hrtimer() invocations. 1195 */ 1196 1197 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1198 struct hrtimer_clock_base *base, 1199 struct hrtimer *timer, ktime_t *now) 1200 { 1201 enum hrtimer_restart (*fn)(struct hrtimer *); 1202 int restart; 1203 1204 lockdep_assert_held(&cpu_base->lock); 1205 1206 debug_deactivate(timer); 1207 cpu_base->running = timer; 1208 1209 /* 1210 * Separate the ->running assignment from the ->state assignment. 1211 * 1212 * As with a regular write barrier, this ensures the read side in 1213 * hrtimer_active() cannot observe cpu_base->running == NULL && 1214 * timer->state == INACTIVE. 1215 */ 1216 raw_write_seqcount_barrier(&cpu_base->seq); 1217 1218 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1219 timer_stats_account_hrtimer(timer); 1220 fn = timer->function; 1221 1222 /* 1223 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1224 * timer is restarted with a period then it becomes an absolute 1225 * timer. If its not restarted it does not matter. 1226 */ 1227 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1228 timer->is_rel = false; 1229 1230 /* 1231 * Because we run timers from hardirq context, there is no chance 1232 * they get migrated to another cpu, therefore its safe to unlock 1233 * the timer base. 1234 */ 1235 raw_spin_unlock(&cpu_base->lock); 1236 trace_hrtimer_expire_entry(timer, now); 1237 restart = fn(timer); 1238 trace_hrtimer_expire_exit(timer); 1239 raw_spin_lock(&cpu_base->lock); 1240 1241 /* 1242 * Note: We clear the running state after enqueue_hrtimer and 1243 * we do not reprogramm the event hardware. Happens either in 1244 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1245 * 1246 * Note: Because we dropped the cpu_base->lock above, 1247 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1248 * for us already. 1249 */ 1250 if (restart != HRTIMER_NORESTART && 1251 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1252 enqueue_hrtimer(timer, base); 1253 1254 /* 1255 * Separate the ->running assignment from the ->state assignment. 1256 * 1257 * As with a regular write barrier, this ensures the read side in 1258 * hrtimer_active() cannot observe cpu_base->running == NULL && 1259 * timer->state == INACTIVE. 1260 */ 1261 raw_write_seqcount_barrier(&cpu_base->seq); 1262 1263 WARN_ON_ONCE(cpu_base->running != timer); 1264 cpu_base->running = NULL; 1265 } 1266 1267 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1268 { 1269 struct hrtimer_clock_base *base = cpu_base->clock_base; 1270 unsigned int active = cpu_base->active_bases; 1271 1272 for (; active; base++, active >>= 1) { 1273 struct timerqueue_node *node; 1274 ktime_t basenow; 1275 1276 if (!(active & 0x01)) 1277 continue; 1278 1279 basenow = ktime_add(now, base->offset); 1280 1281 while ((node = timerqueue_getnext(&base->active))) { 1282 struct hrtimer *timer; 1283 1284 timer = container_of(node, struct hrtimer, node); 1285 1286 /* 1287 * The immediate goal for using the softexpires is 1288 * minimizing wakeups, not running timers at the 1289 * earliest interrupt after their soft expiration. 1290 * This allows us to avoid using a Priority Search 1291 * Tree, which can answer a stabbing querry for 1292 * overlapping intervals and instead use the simple 1293 * BST we already have. 1294 * We don't add extra wakeups by delaying timers that 1295 * are right-of a not yet expired timer, because that 1296 * timer will have to trigger a wakeup anyway. 1297 */ 1298 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) 1299 break; 1300 1301 __run_hrtimer(cpu_base, base, timer, &basenow); 1302 } 1303 } 1304 } 1305 1306 #ifdef CONFIG_HIGH_RES_TIMERS 1307 1308 /* 1309 * High resolution timer interrupt 1310 * Called with interrupts disabled 1311 */ 1312 void hrtimer_interrupt(struct clock_event_device *dev) 1313 { 1314 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1315 ktime_t expires_next, now, entry_time, delta; 1316 int retries = 0; 1317 1318 BUG_ON(!cpu_base->hres_active); 1319 cpu_base->nr_events++; 1320 dev->next_event.tv64 = KTIME_MAX; 1321 1322 raw_spin_lock(&cpu_base->lock); 1323 entry_time = now = hrtimer_update_base(cpu_base); 1324 retry: 1325 cpu_base->in_hrtirq = 1; 1326 /* 1327 * We set expires_next to KTIME_MAX here with cpu_base->lock 1328 * held to prevent that a timer is enqueued in our queue via 1329 * the migration code. This does not affect enqueueing of 1330 * timers which run their callback and need to be requeued on 1331 * this CPU. 1332 */ 1333 cpu_base->expires_next.tv64 = KTIME_MAX; 1334 1335 __hrtimer_run_queues(cpu_base, now); 1336 1337 /* Reevaluate the clock bases for the next expiry */ 1338 expires_next = __hrtimer_get_next_event(cpu_base); 1339 /* 1340 * Store the new expiry value so the migration code can verify 1341 * against it. 1342 */ 1343 cpu_base->expires_next = expires_next; 1344 cpu_base->in_hrtirq = 0; 1345 raw_spin_unlock(&cpu_base->lock); 1346 1347 /* Reprogramming necessary ? */ 1348 if (!tick_program_event(expires_next, 0)) { 1349 cpu_base->hang_detected = 0; 1350 return; 1351 } 1352 1353 /* 1354 * The next timer was already expired due to: 1355 * - tracing 1356 * - long lasting callbacks 1357 * - being scheduled away when running in a VM 1358 * 1359 * We need to prevent that we loop forever in the hrtimer 1360 * interrupt routine. We give it 3 attempts to avoid 1361 * overreacting on some spurious event. 1362 * 1363 * Acquire base lock for updating the offsets and retrieving 1364 * the current time. 1365 */ 1366 raw_spin_lock(&cpu_base->lock); 1367 now = hrtimer_update_base(cpu_base); 1368 cpu_base->nr_retries++; 1369 if (++retries < 3) 1370 goto retry; 1371 /* 1372 * Give the system a chance to do something else than looping 1373 * here. We stored the entry time, so we know exactly how long 1374 * we spent here. We schedule the next event this amount of 1375 * time away. 1376 */ 1377 cpu_base->nr_hangs++; 1378 cpu_base->hang_detected = 1; 1379 raw_spin_unlock(&cpu_base->lock); 1380 delta = ktime_sub(now, entry_time); 1381 if ((unsigned int)delta.tv64 > cpu_base->max_hang_time) 1382 cpu_base->max_hang_time = (unsigned int) delta.tv64; 1383 /* 1384 * Limit it to a sensible value as we enforce a longer 1385 * delay. Give the CPU at least 100ms to catch up. 1386 */ 1387 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1388 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1389 else 1390 expires_next = ktime_add(now, delta); 1391 tick_program_event(expires_next, 1); 1392 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1393 ktime_to_ns(delta)); 1394 } 1395 1396 /* 1397 * local version of hrtimer_peek_ahead_timers() called with interrupts 1398 * disabled. 1399 */ 1400 static inline void __hrtimer_peek_ahead_timers(void) 1401 { 1402 struct tick_device *td; 1403 1404 if (!hrtimer_hres_active()) 1405 return; 1406 1407 td = this_cpu_ptr(&tick_cpu_device); 1408 if (td && td->evtdev) 1409 hrtimer_interrupt(td->evtdev); 1410 } 1411 1412 #else /* CONFIG_HIGH_RES_TIMERS */ 1413 1414 static inline void __hrtimer_peek_ahead_timers(void) { } 1415 1416 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1417 1418 /* 1419 * Called from run_local_timers in hardirq context every jiffy 1420 */ 1421 void hrtimer_run_queues(void) 1422 { 1423 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1424 ktime_t now; 1425 1426 if (__hrtimer_hres_active(cpu_base)) 1427 return; 1428 1429 /* 1430 * This _is_ ugly: We have to check periodically, whether we 1431 * can switch to highres and / or nohz mode. The clocksource 1432 * switch happens with xtime_lock held. Notification from 1433 * there only sets the check bit in the tick_oneshot code, 1434 * otherwise we might deadlock vs. xtime_lock. 1435 */ 1436 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1437 hrtimer_switch_to_hres(); 1438 return; 1439 } 1440 1441 raw_spin_lock(&cpu_base->lock); 1442 now = hrtimer_update_base(cpu_base); 1443 __hrtimer_run_queues(cpu_base, now); 1444 raw_spin_unlock(&cpu_base->lock); 1445 } 1446 1447 /* 1448 * Sleep related functions: 1449 */ 1450 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1451 { 1452 struct hrtimer_sleeper *t = 1453 container_of(timer, struct hrtimer_sleeper, timer); 1454 struct task_struct *task = t->task; 1455 1456 t->task = NULL; 1457 if (task) 1458 wake_up_process(task); 1459 1460 return HRTIMER_NORESTART; 1461 } 1462 1463 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1464 { 1465 sl->timer.function = hrtimer_wakeup; 1466 sl->task = task; 1467 } 1468 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1469 1470 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1471 { 1472 hrtimer_init_sleeper(t, current); 1473 1474 do { 1475 set_current_state(TASK_INTERRUPTIBLE); 1476 hrtimer_start_expires(&t->timer, mode); 1477 1478 if (likely(t->task)) 1479 freezable_schedule(); 1480 1481 hrtimer_cancel(&t->timer); 1482 mode = HRTIMER_MODE_ABS; 1483 1484 } while (t->task && !signal_pending(current)); 1485 1486 __set_current_state(TASK_RUNNING); 1487 1488 return t->task == NULL; 1489 } 1490 1491 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1492 { 1493 struct timespec rmt; 1494 ktime_t rem; 1495 1496 rem = hrtimer_expires_remaining(timer); 1497 if (rem.tv64 <= 0) 1498 return 0; 1499 rmt = ktime_to_timespec(rem); 1500 1501 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1502 return -EFAULT; 1503 1504 return 1; 1505 } 1506 1507 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1508 { 1509 struct hrtimer_sleeper t; 1510 struct timespec __user *rmtp; 1511 int ret = 0; 1512 1513 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1514 HRTIMER_MODE_ABS); 1515 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1516 1517 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1518 goto out; 1519 1520 rmtp = restart->nanosleep.rmtp; 1521 if (rmtp) { 1522 ret = update_rmtp(&t.timer, rmtp); 1523 if (ret <= 0) 1524 goto out; 1525 } 1526 1527 /* The other values in restart are already filled in */ 1528 ret = -ERESTART_RESTARTBLOCK; 1529 out: 1530 destroy_hrtimer_on_stack(&t.timer); 1531 return ret; 1532 } 1533 1534 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1535 const enum hrtimer_mode mode, const clockid_t clockid) 1536 { 1537 struct restart_block *restart; 1538 struct hrtimer_sleeper t; 1539 int ret = 0; 1540 u64 slack; 1541 1542 slack = current->timer_slack_ns; 1543 if (dl_task(current) || rt_task(current)) 1544 slack = 0; 1545 1546 hrtimer_init_on_stack(&t.timer, clockid, mode); 1547 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1548 if (do_nanosleep(&t, mode)) 1549 goto out; 1550 1551 /* Absolute timers do not update the rmtp value and restart: */ 1552 if (mode == HRTIMER_MODE_ABS) { 1553 ret = -ERESTARTNOHAND; 1554 goto out; 1555 } 1556 1557 if (rmtp) { 1558 ret = update_rmtp(&t.timer, rmtp); 1559 if (ret <= 0) 1560 goto out; 1561 } 1562 1563 restart = ¤t->restart_block; 1564 restart->fn = hrtimer_nanosleep_restart; 1565 restart->nanosleep.clockid = t.timer.base->clockid; 1566 restart->nanosleep.rmtp = rmtp; 1567 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1568 1569 ret = -ERESTART_RESTARTBLOCK; 1570 out: 1571 destroy_hrtimer_on_stack(&t.timer); 1572 return ret; 1573 } 1574 1575 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1576 struct timespec __user *, rmtp) 1577 { 1578 struct timespec tu; 1579 1580 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1581 return -EFAULT; 1582 1583 if (!timespec_valid(&tu)) 1584 return -EINVAL; 1585 1586 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1587 } 1588 1589 /* 1590 * Functions related to boot-time initialization: 1591 */ 1592 static void init_hrtimers_cpu(int cpu) 1593 { 1594 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1595 int i; 1596 1597 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1598 cpu_base->clock_base[i].cpu_base = cpu_base; 1599 timerqueue_init_head(&cpu_base->clock_base[i].active); 1600 } 1601 1602 cpu_base->cpu = cpu; 1603 hrtimer_init_hres(cpu_base); 1604 } 1605 1606 #ifdef CONFIG_HOTPLUG_CPU 1607 1608 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1609 struct hrtimer_clock_base *new_base) 1610 { 1611 struct hrtimer *timer; 1612 struct timerqueue_node *node; 1613 1614 while ((node = timerqueue_getnext(&old_base->active))) { 1615 timer = container_of(node, struct hrtimer, node); 1616 BUG_ON(hrtimer_callback_running(timer)); 1617 debug_deactivate(timer); 1618 1619 /* 1620 * Mark it as ENQUEUED not INACTIVE otherwise the 1621 * timer could be seen as !active and just vanish away 1622 * under us on another CPU 1623 */ 1624 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1625 timer->base = new_base; 1626 /* 1627 * Enqueue the timers on the new cpu. This does not 1628 * reprogram the event device in case the timer 1629 * expires before the earliest on this CPU, but we run 1630 * hrtimer_interrupt after we migrated everything to 1631 * sort out already expired timers and reprogram the 1632 * event device. 1633 */ 1634 enqueue_hrtimer(timer, new_base); 1635 } 1636 } 1637 1638 static void migrate_hrtimers(int scpu) 1639 { 1640 struct hrtimer_cpu_base *old_base, *new_base; 1641 int i; 1642 1643 BUG_ON(cpu_online(scpu)); 1644 tick_cancel_sched_timer(scpu); 1645 1646 local_irq_disable(); 1647 old_base = &per_cpu(hrtimer_bases, scpu); 1648 new_base = this_cpu_ptr(&hrtimer_bases); 1649 /* 1650 * The caller is globally serialized and nobody else 1651 * takes two locks at once, deadlock is not possible. 1652 */ 1653 raw_spin_lock(&new_base->lock); 1654 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1655 1656 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1657 migrate_hrtimer_list(&old_base->clock_base[i], 1658 &new_base->clock_base[i]); 1659 } 1660 1661 raw_spin_unlock(&old_base->lock); 1662 raw_spin_unlock(&new_base->lock); 1663 1664 /* Check, if we got expired work to do */ 1665 __hrtimer_peek_ahead_timers(); 1666 local_irq_enable(); 1667 } 1668 1669 #endif /* CONFIG_HOTPLUG_CPU */ 1670 1671 static int hrtimer_cpu_notify(struct notifier_block *self, 1672 unsigned long action, void *hcpu) 1673 { 1674 int scpu = (long)hcpu; 1675 1676 switch (action) { 1677 1678 case CPU_UP_PREPARE: 1679 case CPU_UP_PREPARE_FROZEN: 1680 init_hrtimers_cpu(scpu); 1681 break; 1682 1683 #ifdef CONFIG_HOTPLUG_CPU 1684 case CPU_DEAD: 1685 case CPU_DEAD_FROZEN: 1686 migrate_hrtimers(scpu); 1687 break; 1688 #endif 1689 1690 default: 1691 break; 1692 } 1693 1694 return NOTIFY_OK; 1695 } 1696 1697 static struct notifier_block hrtimers_nb = { 1698 .notifier_call = hrtimer_cpu_notify, 1699 }; 1700 1701 void __init hrtimers_init(void) 1702 { 1703 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1704 (void *)(long)smp_processor_id()); 1705 register_cpu_notifier(&hrtimers_nb); 1706 } 1707 1708 /** 1709 * schedule_hrtimeout_range_clock - sleep until timeout 1710 * @expires: timeout value (ktime_t) 1711 * @delta: slack in expires timeout (ktime_t) 1712 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1713 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1714 */ 1715 int __sched 1716 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1717 const enum hrtimer_mode mode, int clock) 1718 { 1719 struct hrtimer_sleeper t; 1720 1721 /* 1722 * Optimize when a zero timeout value is given. It does not 1723 * matter whether this is an absolute or a relative time. 1724 */ 1725 if (expires && !expires->tv64) { 1726 __set_current_state(TASK_RUNNING); 1727 return 0; 1728 } 1729 1730 /* 1731 * A NULL parameter means "infinite" 1732 */ 1733 if (!expires) { 1734 schedule(); 1735 return -EINTR; 1736 } 1737 1738 hrtimer_init_on_stack(&t.timer, clock, mode); 1739 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1740 1741 hrtimer_init_sleeper(&t, current); 1742 1743 hrtimer_start_expires(&t.timer, mode); 1744 1745 if (likely(t.task)) 1746 schedule(); 1747 1748 hrtimer_cancel(&t.timer); 1749 destroy_hrtimer_on_stack(&t.timer); 1750 1751 __set_current_state(TASK_RUNNING); 1752 1753 return !t.task ? 0 : -EINTR; 1754 } 1755 1756 /** 1757 * schedule_hrtimeout_range - sleep until timeout 1758 * @expires: timeout value (ktime_t) 1759 * @delta: slack in expires timeout (ktime_t) 1760 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1761 * 1762 * Make the current task sleep until the given expiry time has 1763 * elapsed. The routine will return immediately unless 1764 * the current task state has been set (see set_current_state()). 1765 * 1766 * The @delta argument gives the kernel the freedom to schedule the 1767 * actual wakeup to a time that is both power and performance friendly. 1768 * The kernel give the normal best effort behavior for "@expires+@delta", 1769 * but may decide to fire the timer earlier, but no earlier than @expires. 1770 * 1771 * You can set the task state as follows - 1772 * 1773 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1774 * pass before the routine returns. 1775 * 1776 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1777 * delivered to the current task. 1778 * 1779 * The current task state is guaranteed to be TASK_RUNNING when this 1780 * routine returns. 1781 * 1782 * Returns 0 when the timer has expired otherwise -EINTR 1783 */ 1784 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1785 const enum hrtimer_mode mode) 1786 { 1787 return schedule_hrtimeout_range_clock(expires, delta, mode, 1788 CLOCK_MONOTONIC); 1789 } 1790 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1791 1792 /** 1793 * schedule_hrtimeout - sleep until timeout 1794 * @expires: timeout value (ktime_t) 1795 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1796 * 1797 * Make the current task sleep until the given expiry time has 1798 * elapsed. The routine will return immediately unless 1799 * the current task state has been set (see set_current_state()). 1800 * 1801 * You can set the task state as follows - 1802 * 1803 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1804 * pass before the routine returns. 1805 * 1806 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1807 * delivered to the current task. 1808 * 1809 * The current task state is guaranteed to be TASK_RUNNING when this 1810 * routine returns. 1811 * 1812 * Returns 0 when the timer has expired otherwise -EINTR 1813 */ 1814 int __sched schedule_hrtimeout(ktime_t *expires, 1815 const enum hrtimer_mode mode) 1816 { 1817 return schedule_hrtimeout_range(expires, 0, mode); 1818 } 1819 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1820