xref: /openbmc/linux/kernel/time/hrtimer.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { {
139 		.cpu_base = &migration_cpu_base,
140 		.seq      = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq,
141 						     &migration_cpu_base.lock),
142 	}, },
143 };
144 
145 #define migration_base	migration_cpu_base.clock_base[0]
146 
147 static inline bool is_migration_base(struct hrtimer_clock_base *base)
148 {
149 	return base == &migration_base;
150 }
151 
152 /*
153  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
154  * means that all timers which are tied to this base via timer->base are
155  * locked, and the base itself is locked too.
156  *
157  * So __run_timers/migrate_timers can safely modify all timers which could
158  * be found on the lists/queues.
159  *
160  * When the timer's base is locked, and the timer removed from list, it is
161  * possible to set timer->base = &migration_base and drop the lock: the timer
162  * remains locked.
163  */
164 static
165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
166 					     unsigned long *flags)
167 {
168 	struct hrtimer_clock_base *base;
169 
170 	for (;;) {
171 		base = READ_ONCE(timer->base);
172 		if (likely(base != &migration_base)) {
173 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
174 			if (likely(base == timer->base))
175 				return base;
176 			/* The timer has migrated to another CPU: */
177 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
178 		}
179 		cpu_relax();
180 	}
181 }
182 
183 /*
184  * We do not migrate the timer when it is expiring before the next
185  * event on the target cpu. When high resolution is enabled, we cannot
186  * reprogram the target cpu hardware and we would cause it to fire
187  * late. To keep it simple, we handle the high resolution enabled and
188  * disabled case similar.
189  *
190  * Called with cpu_base->lock of target cpu held.
191  */
192 static int
193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
194 {
195 	ktime_t expires;
196 
197 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
198 	return expires < new_base->cpu_base->expires_next;
199 }
200 
201 static inline
202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
203 					 int pinned)
204 {
205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
206 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
207 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
208 #endif
209 	return base;
210 }
211 
212 /*
213  * We switch the timer base to a power-optimized selected CPU target,
214  * if:
215  *	- NO_HZ_COMMON is enabled
216  *	- timer migration is enabled
217  *	- the timer callback is not running
218  *	- the timer is not the first expiring timer on the new target
219  *
220  * If one of the above requirements is not fulfilled we move the timer
221  * to the current CPU or leave it on the previously assigned CPU if
222  * the timer callback is currently running.
223  */
224 static inline struct hrtimer_clock_base *
225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
226 		    int pinned)
227 {
228 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
229 	struct hrtimer_clock_base *new_base;
230 	int basenum = base->index;
231 
232 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
233 	new_cpu_base = get_target_base(this_cpu_base, pinned);
234 again:
235 	new_base = &new_cpu_base->clock_base[basenum];
236 
237 	if (base != new_base) {
238 		/*
239 		 * We are trying to move timer to new_base.
240 		 * However we can't change timer's base while it is running,
241 		 * so we keep it on the same CPU. No hassle vs. reprogramming
242 		 * the event source in the high resolution case. The softirq
243 		 * code will take care of this when the timer function has
244 		 * completed. There is no conflict as we hold the lock until
245 		 * the timer is enqueued.
246 		 */
247 		if (unlikely(hrtimer_callback_running(timer)))
248 			return base;
249 
250 		/* See the comment in lock_hrtimer_base() */
251 		WRITE_ONCE(timer->base, &migration_base);
252 		raw_spin_unlock(&base->cpu_base->lock);
253 		raw_spin_lock(&new_base->cpu_base->lock);
254 
255 		if (new_cpu_base != this_cpu_base &&
256 		    hrtimer_check_target(timer, new_base)) {
257 			raw_spin_unlock(&new_base->cpu_base->lock);
258 			raw_spin_lock(&base->cpu_base->lock);
259 			new_cpu_base = this_cpu_base;
260 			WRITE_ONCE(timer->base, base);
261 			goto again;
262 		}
263 		WRITE_ONCE(timer->base, new_base);
264 	} else {
265 		if (new_cpu_base != this_cpu_base &&
266 		    hrtimer_check_target(timer, new_base)) {
267 			new_cpu_base = this_cpu_base;
268 			goto again;
269 		}
270 	}
271 	return new_base;
272 }
273 
274 #else /* CONFIG_SMP */
275 
276 static inline bool is_migration_base(struct hrtimer_clock_base *base)
277 {
278 	return false;
279 }
280 
281 static inline struct hrtimer_clock_base *
282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
283 {
284 	struct hrtimer_clock_base *base = timer->base;
285 
286 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
287 
288 	return base;
289 }
290 
291 # define switch_hrtimer_base(t, b, p)	(b)
292 
293 #endif	/* !CONFIG_SMP */
294 
295 /*
296  * Functions for the union type storage format of ktime_t which are
297  * too large for inlining:
298  */
299 #if BITS_PER_LONG < 64
300 /*
301  * Divide a ktime value by a nanosecond value
302  */
303 s64 __ktime_divns(const ktime_t kt, s64 div)
304 {
305 	int sft = 0;
306 	s64 dclc;
307 	u64 tmp;
308 
309 	dclc = ktime_to_ns(kt);
310 	tmp = dclc < 0 ? -dclc : dclc;
311 
312 	/* Make sure the divisor is less than 2^32: */
313 	while (div >> 32) {
314 		sft++;
315 		div >>= 1;
316 	}
317 	tmp >>= sft;
318 	do_div(tmp, (u32) div);
319 	return dclc < 0 ? -tmp : tmp;
320 }
321 EXPORT_SYMBOL_GPL(__ktime_divns);
322 #endif /* BITS_PER_LONG >= 64 */
323 
324 /*
325  * Add two ktime values and do a safety check for overflow:
326  */
327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
328 {
329 	ktime_t res = ktime_add_unsafe(lhs, rhs);
330 
331 	/*
332 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
333 	 * return to user space in a timespec:
334 	 */
335 	if (res < 0 || res < lhs || res < rhs)
336 		res = ktime_set(KTIME_SEC_MAX, 0);
337 
338 	return res;
339 }
340 
341 EXPORT_SYMBOL_GPL(ktime_add_safe);
342 
343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
344 
345 static const struct debug_obj_descr hrtimer_debug_descr;
346 
347 static void *hrtimer_debug_hint(void *addr)
348 {
349 	return ((struct hrtimer *) addr)->function;
350 }
351 
352 /*
353  * fixup_init is called when:
354  * - an active object is initialized
355  */
356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
357 {
358 	struct hrtimer *timer = addr;
359 
360 	switch (state) {
361 	case ODEBUG_STATE_ACTIVE:
362 		hrtimer_cancel(timer);
363 		debug_object_init(timer, &hrtimer_debug_descr);
364 		return true;
365 	default:
366 		return false;
367 	}
368 }
369 
370 /*
371  * fixup_activate is called when:
372  * - an active object is activated
373  * - an unknown non-static object is activated
374  */
375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
376 {
377 	switch (state) {
378 	case ODEBUG_STATE_ACTIVE:
379 		WARN_ON(1);
380 		fallthrough;
381 	default:
382 		return false;
383 	}
384 }
385 
386 /*
387  * fixup_free is called when:
388  * - an active object is freed
389  */
390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
391 {
392 	struct hrtimer *timer = addr;
393 
394 	switch (state) {
395 	case ODEBUG_STATE_ACTIVE:
396 		hrtimer_cancel(timer);
397 		debug_object_free(timer, &hrtimer_debug_descr);
398 		return true;
399 	default:
400 		return false;
401 	}
402 }
403 
404 static const struct debug_obj_descr hrtimer_debug_descr = {
405 	.name		= "hrtimer",
406 	.debug_hint	= hrtimer_debug_hint,
407 	.fixup_init	= hrtimer_fixup_init,
408 	.fixup_activate	= hrtimer_fixup_activate,
409 	.fixup_free	= hrtimer_fixup_free,
410 };
411 
412 static inline void debug_hrtimer_init(struct hrtimer *timer)
413 {
414 	debug_object_init(timer, &hrtimer_debug_descr);
415 }
416 
417 static inline void debug_hrtimer_activate(struct hrtimer *timer,
418 					  enum hrtimer_mode mode)
419 {
420 	debug_object_activate(timer, &hrtimer_debug_descr);
421 }
422 
423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
424 {
425 	debug_object_deactivate(timer, &hrtimer_debug_descr);
426 }
427 
428 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
429 			   enum hrtimer_mode mode);
430 
431 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
432 			   enum hrtimer_mode mode)
433 {
434 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
435 	__hrtimer_init(timer, clock_id, mode);
436 }
437 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
438 
439 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
440 				   clockid_t clock_id, enum hrtimer_mode mode);
441 
442 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
443 				   clockid_t clock_id, enum hrtimer_mode mode)
444 {
445 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
446 	__hrtimer_init_sleeper(sl, clock_id, mode);
447 }
448 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
449 
450 void destroy_hrtimer_on_stack(struct hrtimer *timer)
451 {
452 	debug_object_free(timer, &hrtimer_debug_descr);
453 }
454 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
455 
456 #else
457 
458 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
459 static inline void debug_hrtimer_activate(struct hrtimer *timer,
460 					  enum hrtimer_mode mode) { }
461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
462 #endif
463 
464 static inline void
465 debug_init(struct hrtimer *timer, clockid_t clockid,
466 	   enum hrtimer_mode mode)
467 {
468 	debug_hrtimer_init(timer);
469 	trace_hrtimer_init(timer, clockid, mode);
470 }
471 
472 static inline void debug_activate(struct hrtimer *timer,
473 				  enum hrtimer_mode mode)
474 {
475 	debug_hrtimer_activate(timer, mode);
476 	trace_hrtimer_start(timer, mode);
477 }
478 
479 static inline void debug_deactivate(struct hrtimer *timer)
480 {
481 	debug_hrtimer_deactivate(timer);
482 	trace_hrtimer_cancel(timer);
483 }
484 
485 static struct hrtimer_clock_base *
486 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
487 {
488 	unsigned int idx;
489 
490 	if (!*active)
491 		return NULL;
492 
493 	idx = __ffs(*active);
494 	*active &= ~(1U << idx);
495 
496 	return &cpu_base->clock_base[idx];
497 }
498 
499 #define for_each_active_base(base, cpu_base, active)	\
500 	while ((base = __next_base((cpu_base), &(active))))
501 
502 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
503 					 const struct hrtimer *exclude,
504 					 unsigned int active,
505 					 ktime_t expires_next)
506 {
507 	struct hrtimer_clock_base *base;
508 	ktime_t expires;
509 
510 	for_each_active_base(base, cpu_base, active) {
511 		struct timerqueue_node *next;
512 		struct hrtimer *timer;
513 
514 		next = timerqueue_getnext(&base->active);
515 		timer = container_of(next, struct hrtimer, node);
516 		if (timer == exclude) {
517 			/* Get to the next timer in the queue. */
518 			next = timerqueue_iterate_next(next);
519 			if (!next)
520 				continue;
521 
522 			timer = container_of(next, struct hrtimer, node);
523 		}
524 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
525 		if (expires < expires_next) {
526 			expires_next = expires;
527 
528 			/* Skip cpu_base update if a timer is being excluded. */
529 			if (exclude)
530 				continue;
531 
532 			if (timer->is_soft)
533 				cpu_base->softirq_next_timer = timer;
534 			else
535 				cpu_base->next_timer = timer;
536 		}
537 	}
538 	/*
539 	 * clock_was_set() might have changed base->offset of any of
540 	 * the clock bases so the result might be negative. Fix it up
541 	 * to prevent a false positive in clockevents_program_event().
542 	 */
543 	if (expires_next < 0)
544 		expires_next = 0;
545 	return expires_next;
546 }
547 
548 /*
549  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
550  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
551  *
552  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
553  * those timers will get run whenever the softirq gets handled, at the end of
554  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
555  *
556  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
557  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
558  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
559  *
560  * @active_mask must be one of:
561  *  - HRTIMER_ACTIVE_ALL,
562  *  - HRTIMER_ACTIVE_SOFT, or
563  *  - HRTIMER_ACTIVE_HARD.
564  */
565 static ktime_t
566 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
567 {
568 	unsigned int active;
569 	struct hrtimer *next_timer = NULL;
570 	ktime_t expires_next = KTIME_MAX;
571 
572 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
573 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
574 		cpu_base->softirq_next_timer = NULL;
575 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
576 							 active, KTIME_MAX);
577 
578 		next_timer = cpu_base->softirq_next_timer;
579 	}
580 
581 	if (active_mask & HRTIMER_ACTIVE_HARD) {
582 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
583 		cpu_base->next_timer = next_timer;
584 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
585 							 expires_next);
586 	}
587 
588 	return expires_next;
589 }
590 
591 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
592 {
593 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
594 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
595 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
596 
597 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
598 					    offs_real, offs_boot, offs_tai);
599 
600 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
601 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
602 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
603 
604 	return now;
605 }
606 
607 /*
608  * Is the high resolution mode active ?
609  */
610 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
611 {
612 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
613 		cpu_base->hres_active : 0;
614 }
615 
616 static inline int hrtimer_hres_active(void)
617 {
618 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
619 }
620 
621 /*
622  * Reprogram the event source with checking both queues for the
623  * next event
624  * Called with interrupts disabled and base->lock held
625  */
626 static void
627 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
628 {
629 	ktime_t expires_next;
630 
631 	/*
632 	 * Find the current next expiration time.
633 	 */
634 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
635 
636 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
637 		/*
638 		 * When the softirq is activated, hrtimer has to be
639 		 * programmed with the first hard hrtimer because soft
640 		 * timer interrupt could occur too late.
641 		 */
642 		if (cpu_base->softirq_activated)
643 			expires_next = __hrtimer_get_next_event(cpu_base,
644 								HRTIMER_ACTIVE_HARD);
645 		else
646 			cpu_base->softirq_expires_next = expires_next;
647 	}
648 
649 	if (skip_equal && expires_next == cpu_base->expires_next)
650 		return;
651 
652 	cpu_base->expires_next = expires_next;
653 
654 	/*
655 	 * If hres is not active, hardware does not have to be
656 	 * reprogrammed yet.
657 	 *
658 	 * If a hang was detected in the last timer interrupt then we
659 	 * leave the hang delay active in the hardware. We want the
660 	 * system to make progress. That also prevents the following
661 	 * scenario:
662 	 * T1 expires 50ms from now
663 	 * T2 expires 5s from now
664 	 *
665 	 * T1 is removed, so this code is called and would reprogram
666 	 * the hardware to 5s from now. Any hrtimer_start after that
667 	 * will not reprogram the hardware due to hang_detected being
668 	 * set. So we'd effectivly block all timers until the T2 event
669 	 * fires.
670 	 */
671 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
672 		return;
673 
674 	tick_program_event(cpu_base->expires_next, 1);
675 }
676 
677 /* High resolution timer related functions */
678 #ifdef CONFIG_HIGH_RES_TIMERS
679 
680 /*
681  * High resolution timer enabled ?
682  */
683 static bool hrtimer_hres_enabled __read_mostly  = true;
684 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
685 EXPORT_SYMBOL_GPL(hrtimer_resolution);
686 
687 /*
688  * Enable / Disable high resolution mode
689  */
690 static int __init setup_hrtimer_hres(char *str)
691 {
692 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
693 }
694 
695 __setup("highres=", setup_hrtimer_hres);
696 
697 /*
698  * hrtimer_high_res_enabled - query, if the highres mode is enabled
699  */
700 static inline int hrtimer_is_hres_enabled(void)
701 {
702 	return hrtimer_hres_enabled;
703 }
704 
705 /*
706  * Retrigger next event is called after clock was set
707  *
708  * Called with interrupts disabled via on_each_cpu()
709  */
710 static void retrigger_next_event(void *arg)
711 {
712 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
713 
714 	if (!__hrtimer_hres_active(base))
715 		return;
716 
717 	raw_spin_lock(&base->lock);
718 	hrtimer_update_base(base);
719 	hrtimer_force_reprogram(base, 0);
720 	raw_spin_unlock(&base->lock);
721 }
722 
723 /*
724  * Switch to high resolution mode
725  */
726 static void hrtimer_switch_to_hres(void)
727 {
728 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
729 
730 	if (tick_init_highres()) {
731 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
732 			base->cpu);
733 		return;
734 	}
735 	base->hres_active = 1;
736 	hrtimer_resolution = HIGH_RES_NSEC;
737 
738 	tick_setup_sched_timer();
739 	/* "Retrigger" the interrupt to get things going */
740 	retrigger_next_event(NULL);
741 }
742 
743 static void clock_was_set_work(struct work_struct *work)
744 {
745 	clock_was_set();
746 }
747 
748 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
749 
750 /*
751  * Called from timekeeping and resume code to reprogram the hrtimer
752  * interrupt device on all cpus.
753  */
754 void clock_was_set_delayed(void)
755 {
756 	schedule_work(&hrtimer_work);
757 }
758 
759 #else
760 
761 static inline int hrtimer_is_hres_enabled(void) { return 0; }
762 static inline void hrtimer_switch_to_hres(void) { }
763 static inline void retrigger_next_event(void *arg) { }
764 
765 #endif /* CONFIG_HIGH_RES_TIMERS */
766 
767 /*
768  * When a timer is enqueued and expires earlier than the already enqueued
769  * timers, we have to check, whether it expires earlier than the timer for
770  * which the clock event device was armed.
771  *
772  * Called with interrupts disabled and base->cpu_base.lock held
773  */
774 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
775 {
776 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
777 	struct hrtimer_clock_base *base = timer->base;
778 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
779 
780 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
781 
782 	/*
783 	 * CLOCK_REALTIME timer might be requested with an absolute
784 	 * expiry time which is less than base->offset. Set it to 0.
785 	 */
786 	if (expires < 0)
787 		expires = 0;
788 
789 	if (timer->is_soft) {
790 		/*
791 		 * soft hrtimer could be started on a remote CPU. In this
792 		 * case softirq_expires_next needs to be updated on the
793 		 * remote CPU. The soft hrtimer will not expire before the
794 		 * first hard hrtimer on the remote CPU -
795 		 * hrtimer_check_target() prevents this case.
796 		 */
797 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
798 
799 		if (timer_cpu_base->softirq_activated)
800 			return;
801 
802 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
803 			return;
804 
805 		timer_cpu_base->softirq_next_timer = timer;
806 		timer_cpu_base->softirq_expires_next = expires;
807 
808 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
809 		    !reprogram)
810 			return;
811 	}
812 
813 	/*
814 	 * If the timer is not on the current cpu, we cannot reprogram
815 	 * the other cpus clock event device.
816 	 */
817 	if (base->cpu_base != cpu_base)
818 		return;
819 
820 	/*
821 	 * If the hrtimer interrupt is running, then it will
822 	 * reevaluate the clock bases and reprogram the clock event
823 	 * device. The callbacks are always executed in hard interrupt
824 	 * context so we don't need an extra check for a running
825 	 * callback.
826 	 */
827 	if (cpu_base->in_hrtirq)
828 		return;
829 
830 	if (expires >= cpu_base->expires_next)
831 		return;
832 
833 	/* Update the pointer to the next expiring timer */
834 	cpu_base->next_timer = timer;
835 	cpu_base->expires_next = expires;
836 
837 	/*
838 	 * If hres is not active, hardware does not have to be
839 	 * programmed yet.
840 	 *
841 	 * If a hang was detected in the last timer interrupt then we
842 	 * do not schedule a timer which is earlier than the expiry
843 	 * which we enforced in the hang detection. We want the system
844 	 * to make progress.
845 	 */
846 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
847 		return;
848 
849 	/*
850 	 * Program the timer hardware. We enforce the expiry for
851 	 * events which are already in the past.
852 	 */
853 	tick_program_event(expires, 1);
854 }
855 
856 /*
857  * Clock realtime was set
858  *
859  * Change the offset of the realtime clock vs. the monotonic
860  * clock.
861  *
862  * We might have to reprogram the high resolution timer interrupt. On
863  * SMP we call the architecture specific code to retrigger _all_ high
864  * resolution timer interrupts. On UP we just disable interrupts and
865  * call the high resolution interrupt code.
866  */
867 void clock_was_set(void)
868 {
869 #ifdef CONFIG_HIGH_RES_TIMERS
870 	/* Retrigger the CPU local events everywhere */
871 	on_each_cpu(retrigger_next_event, NULL, 1);
872 #endif
873 	timerfd_clock_was_set();
874 }
875 
876 /*
877  * During resume we might have to reprogram the high resolution timer
878  * interrupt on all online CPUs.  However, all other CPUs will be
879  * stopped with IRQs interrupts disabled so the clock_was_set() call
880  * must be deferred.
881  */
882 void hrtimers_resume(void)
883 {
884 	lockdep_assert_irqs_disabled();
885 	/* Retrigger on the local CPU */
886 	retrigger_next_event(NULL);
887 	/* And schedule a retrigger for all others */
888 	clock_was_set_delayed();
889 }
890 
891 /*
892  * Counterpart to lock_hrtimer_base above:
893  */
894 static inline
895 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
896 {
897 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
898 }
899 
900 /**
901  * hrtimer_forward - forward the timer expiry
902  * @timer:	hrtimer to forward
903  * @now:	forward past this time
904  * @interval:	the interval to forward
905  *
906  * Forward the timer expiry so it will expire in the future.
907  * Returns the number of overruns.
908  *
909  * Can be safely called from the callback function of @timer. If
910  * called from other contexts @timer must neither be enqueued nor
911  * running the callback and the caller needs to take care of
912  * serialization.
913  *
914  * Note: This only updates the timer expiry value and does not requeue
915  * the timer.
916  */
917 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
918 {
919 	u64 orun = 1;
920 	ktime_t delta;
921 
922 	delta = ktime_sub(now, hrtimer_get_expires(timer));
923 
924 	if (delta < 0)
925 		return 0;
926 
927 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
928 		return 0;
929 
930 	if (interval < hrtimer_resolution)
931 		interval = hrtimer_resolution;
932 
933 	if (unlikely(delta >= interval)) {
934 		s64 incr = ktime_to_ns(interval);
935 
936 		orun = ktime_divns(delta, incr);
937 		hrtimer_add_expires_ns(timer, incr * orun);
938 		if (hrtimer_get_expires_tv64(timer) > now)
939 			return orun;
940 		/*
941 		 * This (and the ktime_add() below) is the
942 		 * correction for exact:
943 		 */
944 		orun++;
945 	}
946 	hrtimer_add_expires(timer, interval);
947 
948 	return orun;
949 }
950 EXPORT_SYMBOL_GPL(hrtimer_forward);
951 
952 /*
953  * enqueue_hrtimer - internal function to (re)start a timer
954  *
955  * The timer is inserted in expiry order. Insertion into the
956  * red black tree is O(log(n)). Must hold the base lock.
957  *
958  * Returns 1 when the new timer is the leftmost timer in the tree.
959  */
960 static int enqueue_hrtimer(struct hrtimer *timer,
961 			   struct hrtimer_clock_base *base,
962 			   enum hrtimer_mode mode)
963 {
964 	debug_activate(timer, mode);
965 
966 	base->cpu_base->active_bases |= 1 << base->index;
967 
968 	/* Pairs with the lockless read in hrtimer_is_queued() */
969 	WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED);
970 
971 	return timerqueue_add(&base->active, &timer->node);
972 }
973 
974 /*
975  * __remove_hrtimer - internal function to remove a timer
976  *
977  * Caller must hold the base lock.
978  *
979  * High resolution timer mode reprograms the clock event device when the
980  * timer is the one which expires next. The caller can disable this by setting
981  * reprogram to zero. This is useful, when the context does a reprogramming
982  * anyway (e.g. timer interrupt)
983  */
984 static void __remove_hrtimer(struct hrtimer *timer,
985 			     struct hrtimer_clock_base *base,
986 			     u8 newstate, int reprogram)
987 {
988 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
989 	u8 state = timer->state;
990 
991 	/* Pairs with the lockless read in hrtimer_is_queued() */
992 	WRITE_ONCE(timer->state, newstate);
993 	if (!(state & HRTIMER_STATE_ENQUEUED))
994 		return;
995 
996 	if (!timerqueue_del(&base->active, &timer->node))
997 		cpu_base->active_bases &= ~(1 << base->index);
998 
999 	/*
1000 	 * Note: If reprogram is false we do not update
1001 	 * cpu_base->next_timer. This happens when we remove the first
1002 	 * timer on a remote cpu. No harm as we never dereference
1003 	 * cpu_base->next_timer. So the worst thing what can happen is
1004 	 * an superflous call to hrtimer_force_reprogram() on the
1005 	 * remote cpu later on if the same timer gets enqueued again.
1006 	 */
1007 	if (reprogram && timer == cpu_base->next_timer)
1008 		hrtimer_force_reprogram(cpu_base, 1);
1009 }
1010 
1011 /*
1012  * remove hrtimer, called with base lock held
1013  */
1014 static inline int
1015 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1016 {
1017 	u8 state = timer->state;
1018 
1019 	if (state & HRTIMER_STATE_ENQUEUED) {
1020 		int reprogram;
1021 
1022 		/*
1023 		 * Remove the timer and force reprogramming when high
1024 		 * resolution mode is active and the timer is on the current
1025 		 * CPU. If we remove a timer on another CPU, reprogramming is
1026 		 * skipped. The interrupt event on this CPU is fired and
1027 		 * reprogramming happens in the interrupt handler. This is a
1028 		 * rare case and less expensive than a smp call.
1029 		 */
1030 		debug_deactivate(timer);
1031 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1032 
1033 		if (!restart)
1034 			state = HRTIMER_STATE_INACTIVE;
1035 
1036 		__remove_hrtimer(timer, base, state, reprogram);
1037 		return 1;
1038 	}
1039 	return 0;
1040 }
1041 
1042 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1043 					    const enum hrtimer_mode mode)
1044 {
1045 #ifdef CONFIG_TIME_LOW_RES
1046 	/*
1047 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1048 	 * granular time values. For relative timers we add hrtimer_resolution
1049 	 * (i.e. one jiffie) to prevent short timeouts.
1050 	 */
1051 	timer->is_rel = mode & HRTIMER_MODE_REL;
1052 	if (timer->is_rel)
1053 		tim = ktime_add_safe(tim, hrtimer_resolution);
1054 #endif
1055 	return tim;
1056 }
1057 
1058 static void
1059 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1060 {
1061 	ktime_t expires;
1062 
1063 	/*
1064 	 * Find the next SOFT expiration.
1065 	 */
1066 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1067 
1068 	/*
1069 	 * reprogramming needs to be triggered, even if the next soft
1070 	 * hrtimer expires at the same time than the next hard
1071 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1072 	 */
1073 	if (expires == KTIME_MAX)
1074 		return;
1075 
1076 	/*
1077 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1078 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1079 	 */
1080 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1081 }
1082 
1083 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1084 				    u64 delta_ns, const enum hrtimer_mode mode,
1085 				    struct hrtimer_clock_base *base)
1086 {
1087 	struct hrtimer_clock_base *new_base;
1088 
1089 	/* Remove an active timer from the queue: */
1090 	remove_hrtimer(timer, base, true);
1091 
1092 	if (mode & HRTIMER_MODE_REL)
1093 		tim = ktime_add_safe(tim, base->get_time());
1094 
1095 	tim = hrtimer_update_lowres(timer, tim, mode);
1096 
1097 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1098 
1099 	/* Switch the timer base, if necessary: */
1100 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1101 
1102 	return enqueue_hrtimer(timer, new_base, mode);
1103 }
1104 
1105 /**
1106  * hrtimer_start_range_ns - (re)start an hrtimer
1107  * @timer:	the timer to be added
1108  * @tim:	expiry time
1109  * @delta_ns:	"slack" range for the timer
1110  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1111  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1112  *		softirq based mode is considered for debug purpose only!
1113  */
1114 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1115 			    u64 delta_ns, const enum hrtimer_mode mode)
1116 {
1117 	struct hrtimer_clock_base *base;
1118 	unsigned long flags;
1119 
1120 	/*
1121 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1122 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1123 	 * expiry mode because unmarked timers are moved to softirq expiry.
1124 	 */
1125 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1126 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1127 	else
1128 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1129 
1130 	base = lock_hrtimer_base(timer, &flags);
1131 
1132 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1133 		hrtimer_reprogram(timer, true);
1134 
1135 	unlock_hrtimer_base(timer, &flags);
1136 }
1137 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1138 
1139 /**
1140  * hrtimer_try_to_cancel - try to deactivate a timer
1141  * @timer:	hrtimer to stop
1142  *
1143  * Returns:
1144  *
1145  *  *  0 when the timer was not active
1146  *  *  1 when the timer was active
1147  *  * -1 when the timer is currently executing the callback function and
1148  *    cannot be stopped
1149  */
1150 int hrtimer_try_to_cancel(struct hrtimer *timer)
1151 {
1152 	struct hrtimer_clock_base *base;
1153 	unsigned long flags;
1154 	int ret = -1;
1155 
1156 	/*
1157 	 * Check lockless first. If the timer is not active (neither
1158 	 * enqueued nor running the callback, nothing to do here.  The
1159 	 * base lock does not serialize against a concurrent enqueue,
1160 	 * so we can avoid taking it.
1161 	 */
1162 	if (!hrtimer_active(timer))
1163 		return 0;
1164 
1165 	base = lock_hrtimer_base(timer, &flags);
1166 
1167 	if (!hrtimer_callback_running(timer))
1168 		ret = remove_hrtimer(timer, base, false);
1169 
1170 	unlock_hrtimer_base(timer, &flags);
1171 
1172 	return ret;
1173 
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1176 
1177 #ifdef CONFIG_PREEMPT_RT
1178 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1179 {
1180 	spin_lock_init(&base->softirq_expiry_lock);
1181 }
1182 
1183 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1184 {
1185 	spin_lock(&base->softirq_expiry_lock);
1186 }
1187 
1188 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1189 {
1190 	spin_unlock(&base->softirq_expiry_lock);
1191 }
1192 
1193 /*
1194  * The counterpart to hrtimer_cancel_wait_running().
1195  *
1196  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1197  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1198  * allows the waiter to acquire the lock and make progress.
1199  */
1200 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1201 				      unsigned long flags)
1202 {
1203 	if (atomic_read(&cpu_base->timer_waiters)) {
1204 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1205 		spin_unlock(&cpu_base->softirq_expiry_lock);
1206 		spin_lock(&cpu_base->softirq_expiry_lock);
1207 		raw_spin_lock_irq(&cpu_base->lock);
1208 	}
1209 }
1210 
1211 /*
1212  * This function is called on PREEMPT_RT kernels when the fast path
1213  * deletion of a timer failed because the timer callback function was
1214  * running.
1215  *
1216  * This prevents priority inversion: if the soft irq thread is preempted
1217  * in the middle of a timer callback, then calling del_timer_sync() can
1218  * lead to two issues:
1219  *
1220  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1221  *    handler to complete. This can result in unbound priority inversion.
1222  *
1223  *  - If the caller originates from the task which preempted the timer
1224  *    handler on the same CPU, then spin waiting for the timer handler to
1225  *    complete is never going to end.
1226  */
1227 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1228 {
1229 	/* Lockless read. Prevent the compiler from reloading it below */
1230 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1231 
1232 	/*
1233 	 * Just relax if the timer expires in hard interrupt context or if
1234 	 * it is currently on the migration base.
1235 	 */
1236 	if (!timer->is_soft || is_migration_base(base)) {
1237 		cpu_relax();
1238 		return;
1239 	}
1240 
1241 	/*
1242 	 * Mark the base as contended and grab the expiry lock, which is
1243 	 * held by the softirq across the timer callback. Drop the lock
1244 	 * immediately so the softirq can expire the next timer. In theory
1245 	 * the timer could already be running again, but that's more than
1246 	 * unlikely and just causes another wait loop.
1247 	 */
1248 	atomic_inc(&base->cpu_base->timer_waiters);
1249 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1250 	atomic_dec(&base->cpu_base->timer_waiters);
1251 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1252 }
1253 #else
1254 static inline void
1255 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1256 static inline void
1257 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1258 static inline void
1259 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1260 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1261 					     unsigned long flags) { }
1262 #endif
1263 
1264 /**
1265  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1266  * @timer:	the timer to be cancelled
1267  *
1268  * Returns:
1269  *  0 when the timer was not active
1270  *  1 when the timer was active
1271  */
1272 int hrtimer_cancel(struct hrtimer *timer)
1273 {
1274 	int ret;
1275 
1276 	do {
1277 		ret = hrtimer_try_to_cancel(timer);
1278 
1279 		if (ret < 0)
1280 			hrtimer_cancel_wait_running(timer);
1281 	} while (ret < 0);
1282 	return ret;
1283 }
1284 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1285 
1286 /**
1287  * __hrtimer_get_remaining - get remaining time for the timer
1288  * @timer:	the timer to read
1289  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1290  */
1291 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1292 {
1293 	unsigned long flags;
1294 	ktime_t rem;
1295 
1296 	lock_hrtimer_base(timer, &flags);
1297 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1298 		rem = hrtimer_expires_remaining_adjusted(timer);
1299 	else
1300 		rem = hrtimer_expires_remaining(timer);
1301 	unlock_hrtimer_base(timer, &flags);
1302 
1303 	return rem;
1304 }
1305 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1306 
1307 #ifdef CONFIG_NO_HZ_COMMON
1308 /**
1309  * hrtimer_get_next_event - get the time until next expiry event
1310  *
1311  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1312  */
1313 u64 hrtimer_get_next_event(void)
1314 {
1315 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1316 	u64 expires = KTIME_MAX;
1317 	unsigned long flags;
1318 
1319 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1320 
1321 	if (!__hrtimer_hres_active(cpu_base))
1322 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1323 
1324 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1325 
1326 	return expires;
1327 }
1328 
1329 /**
1330  * hrtimer_next_event_without - time until next expiry event w/o one timer
1331  * @exclude:	timer to exclude
1332  *
1333  * Returns the next expiry time over all timers except for the @exclude one or
1334  * KTIME_MAX if none of them is pending.
1335  */
1336 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1337 {
1338 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1339 	u64 expires = KTIME_MAX;
1340 	unsigned long flags;
1341 
1342 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1343 
1344 	if (__hrtimer_hres_active(cpu_base)) {
1345 		unsigned int active;
1346 
1347 		if (!cpu_base->softirq_activated) {
1348 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1349 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1350 							    active, KTIME_MAX);
1351 		}
1352 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1353 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1354 						    expires);
1355 	}
1356 
1357 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1358 
1359 	return expires;
1360 }
1361 #endif
1362 
1363 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1364 {
1365 	if (likely(clock_id < MAX_CLOCKS)) {
1366 		int base = hrtimer_clock_to_base_table[clock_id];
1367 
1368 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1369 			return base;
1370 	}
1371 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1372 	return HRTIMER_BASE_MONOTONIC;
1373 }
1374 
1375 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1376 			   enum hrtimer_mode mode)
1377 {
1378 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1379 	struct hrtimer_cpu_base *cpu_base;
1380 	int base;
1381 
1382 	/*
1383 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1384 	 * marked for hard interrupt expiry mode are moved into soft
1385 	 * interrupt context for latency reasons and because the callbacks
1386 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1387 	 */
1388 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1389 		softtimer = true;
1390 
1391 	memset(timer, 0, sizeof(struct hrtimer));
1392 
1393 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1394 
1395 	/*
1396 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1397 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1398 	 * ensure POSIX compliance.
1399 	 */
1400 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1401 		clock_id = CLOCK_MONOTONIC;
1402 
1403 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1404 	base += hrtimer_clockid_to_base(clock_id);
1405 	timer->is_soft = softtimer;
1406 	timer->is_hard = !!(mode & HRTIMER_MODE_HARD);
1407 	timer->base = &cpu_base->clock_base[base];
1408 	timerqueue_init(&timer->node);
1409 }
1410 
1411 /**
1412  * hrtimer_init - initialize a timer to the given clock
1413  * @timer:	the timer to be initialized
1414  * @clock_id:	the clock to be used
1415  * @mode:       The modes which are relevant for intitialization:
1416  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1417  *              HRTIMER_MODE_REL_SOFT
1418  *
1419  *              The PINNED variants of the above can be handed in,
1420  *              but the PINNED bit is ignored as pinning happens
1421  *              when the hrtimer is started
1422  */
1423 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1424 		  enum hrtimer_mode mode)
1425 {
1426 	debug_init(timer, clock_id, mode);
1427 	__hrtimer_init(timer, clock_id, mode);
1428 }
1429 EXPORT_SYMBOL_GPL(hrtimer_init);
1430 
1431 /*
1432  * A timer is active, when it is enqueued into the rbtree or the
1433  * callback function is running or it's in the state of being migrated
1434  * to another cpu.
1435  *
1436  * It is important for this function to not return a false negative.
1437  */
1438 bool hrtimer_active(const struct hrtimer *timer)
1439 {
1440 	struct hrtimer_clock_base *base;
1441 	unsigned int seq;
1442 
1443 	do {
1444 		base = READ_ONCE(timer->base);
1445 		seq = raw_read_seqcount_begin(&base->seq);
1446 
1447 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1448 		    base->running == timer)
1449 			return true;
1450 
1451 	} while (read_seqcount_retry(&base->seq, seq) ||
1452 		 base != READ_ONCE(timer->base));
1453 
1454 	return false;
1455 }
1456 EXPORT_SYMBOL_GPL(hrtimer_active);
1457 
1458 /*
1459  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1460  * distinct sections:
1461  *
1462  *  - queued:	the timer is queued
1463  *  - callback:	the timer is being ran
1464  *  - post:	the timer is inactive or (re)queued
1465  *
1466  * On the read side we ensure we observe timer->state and cpu_base->running
1467  * from the same section, if anything changed while we looked at it, we retry.
1468  * This includes timer->base changing because sequence numbers alone are
1469  * insufficient for that.
1470  *
1471  * The sequence numbers are required because otherwise we could still observe
1472  * a false negative if the read side got smeared over multiple consequtive
1473  * __run_hrtimer() invocations.
1474  */
1475 
1476 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1477 			  struct hrtimer_clock_base *base,
1478 			  struct hrtimer *timer, ktime_t *now,
1479 			  unsigned long flags) __must_hold(&cpu_base->lock)
1480 {
1481 	enum hrtimer_restart (*fn)(struct hrtimer *);
1482 	bool expires_in_hardirq;
1483 	int restart;
1484 
1485 	lockdep_assert_held(&cpu_base->lock);
1486 
1487 	debug_deactivate(timer);
1488 	base->running = timer;
1489 
1490 	/*
1491 	 * Separate the ->running assignment from the ->state assignment.
1492 	 *
1493 	 * As with a regular write barrier, this ensures the read side in
1494 	 * hrtimer_active() cannot observe base->running == NULL &&
1495 	 * timer->state == INACTIVE.
1496 	 */
1497 	raw_write_seqcount_barrier(&base->seq);
1498 
1499 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1500 	fn = timer->function;
1501 
1502 	/*
1503 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1504 	 * timer is restarted with a period then it becomes an absolute
1505 	 * timer. If its not restarted it does not matter.
1506 	 */
1507 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1508 		timer->is_rel = false;
1509 
1510 	/*
1511 	 * The timer is marked as running in the CPU base, so it is
1512 	 * protected against migration to a different CPU even if the lock
1513 	 * is dropped.
1514 	 */
1515 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1516 	trace_hrtimer_expire_entry(timer, now);
1517 	expires_in_hardirq = lockdep_hrtimer_enter(timer);
1518 
1519 	restart = fn(timer);
1520 
1521 	lockdep_hrtimer_exit(expires_in_hardirq);
1522 	trace_hrtimer_expire_exit(timer);
1523 	raw_spin_lock_irq(&cpu_base->lock);
1524 
1525 	/*
1526 	 * Note: We clear the running state after enqueue_hrtimer and
1527 	 * we do not reprogram the event hardware. Happens either in
1528 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1529 	 *
1530 	 * Note: Because we dropped the cpu_base->lock above,
1531 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1532 	 * for us already.
1533 	 */
1534 	if (restart != HRTIMER_NORESTART &&
1535 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1536 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1537 
1538 	/*
1539 	 * Separate the ->running assignment from the ->state assignment.
1540 	 *
1541 	 * As with a regular write barrier, this ensures the read side in
1542 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1543 	 * timer->state == INACTIVE.
1544 	 */
1545 	raw_write_seqcount_barrier(&base->seq);
1546 
1547 	WARN_ON_ONCE(base->running != timer);
1548 	base->running = NULL;
1549 }
1550 
1551 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1552 				 unsigned long flags, unsigned int active_mask)
1553 {
1554 	struct hrtimer_clock_base *base;
1555 	unsigned int active = cpu_base->active_bases & active_mask;
1556 
1557 	for_each_active_base(base, cpu_base, active) {
1558 		struct timerqueue_node *node;
1559 		ktime_t basenow;
1560 
1561 		basenow = ktime_add(now, base->offset);
1562 
1563 		while ((node = timerqueue_getnext(&base->active))) {
1564 			struct hrtimer *timer;
1565 
1566 			timer = container_of(node, struct hrtimer, node);
1567 
1568 			/*
1569 			 * The immediate goal for using the softexpires is
1570 			 * minimizing wakeups, not running timers at the
1571 			 * earliest interrupt after their soft expiration.
1572 			 * This allows us to avoid using a Priority Search
1573 			 * Tree, which can answer a stabbing querry for
1574 			 * overlapping intervals and instead use the simple
1575 			 * BST we already have.
1576 			 * We don't add extra wakeups by delaying timers that
1577 			 * are right-of a not yet expired timer, because that
1578 			 * timer will have to trigger a wakeup anyway.
1579 			 */
1580 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1581 				break;
1582 
1583 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1584 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1585 				hrtimer_sync_wait_running(cpu_base, flags);
1586 		}
1587 	}
1588 }
1589 
1590 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1591 {
1592 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1593 	unsigned long flags;
1594 	ktime_t now;
1595 
1596 	hrtimer_cpu_base_lock_expiry(cpu_base);
1597 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1598 
1599 	now = hrtimer_update_base(cpu_base);
1600 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1601 
1602 	cpu_base->softirq_activated = 0;
1603 	hrtimer_update_softirq_timer(cpu_base, true);
1604 
1605 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1606 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1607 }
1608 
1609 #ifdef CONFIG_HIGH_RES_TIMERS
1610 
1611 /*
1612  * High resolution timer interrupt
1613  * Called with interrupts disabled
1614  */
1615 void hrtimer_interrupt(struct clock_event_device *dev)
1616 {
1617 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1618 	ktime_t expires_next, now, entry_time, delta;
1619 	unsigned long flags;
1620 	int retries = 0;
1621 
1622 	BUG_ON(!cpu_base->hres_active);
1623 	cpu_base->nr_events++;
1624 	dev->next_event = KTIME_MAX;
1625 
1626 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1627 	entry_time = now = hrtimer_update_base(cpu_base);
1628 retry:
1629 	cpu_base->in_hrtirq = 1;
1630 	/*
1631 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1632 	 * held to prevent that a timer is enqueued in our queue via
1633 	 * the migration code. This does not affect enqueueing of
1634 	 * timers which run their callback and need to be requeued on
1635 	 * this CPU.
1636 	 */
1637 	cpu_base->expires_next = KTIME_MAX;
1638 
1639 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1640 		cpu_base->softirq_expires_next = KTIME_MAX;
1641 		cpu_base->softirq_activated = 1;
1642 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1643 	}
1644 
1645 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1646 
1647 	/* Reevaluate the clock bases for the next expiry */
1648 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1649 	/*
1650 	 * Store the new expiry value so the migration code can verify
1651 	 * against it.
1652 	 */
1653 	cpu_base->expires_next = expires_next;
1654 	cpu_base->in_hrtirq = 0;
1655 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1656 
1657 	/* Reprogramming necessary ? */
1658 	if (!tick_program_event(expires_next, 0)) {
1659 		cpu_base->hang_detected = 0;
1660 		return;
1661 	}
1662 
1663 	/*
1664 	 * The next timer was already expired due to:
1665 	 * - tracing
1666 	 * - long lasting callbacks
1667 	 * - being scheduled away when running in a VM
1668 	 *
1669 	 * We need to prevent that we loop forever in the hrtimer
1670 	 * interrupt routine. We give it 3 attempts to avoid
1671 	 * overreacting on some spurious event.
1672 	 *
1673 	 * Acquire base lock for updating the offsets and retrieving
1674 	 * the current time.
1675 	 */
1676 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1677 	now = hrtimer_update_base(cpu_base);
1678 	cpu_base->nr_retries++;
1679 	if (++retries < 3)
1680 		goto retry;
1681 	/*
1682 	 * Give the system a chance to do something else than looping
1683 	 * here. We stored the entry time, so we know exactly how long
1684 	 * we spent here. We schedule the next event this amount of
1685 	 * time away.
1686 	 */
1687 	cpu_base->nr_hangs++;
1688 	cpu_base->hang_detected = 1;
1689 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1690 
1691 	delta = ktime_sub(now, entry_time);
1692 	if ((unsigned int)delta > cpu_base->max_hang_time)
1693 		cpu_base->max_hang_time = (unsigned int) delta;
1694 	/*
1695 	 * Limit it to a sensible value as we enforce a longer
1696 	 * delay. Give the CPU at least 100ms to catch up.
1697 	 */
1698 	if (delta > 100 * NSEC_PER_MSEC)
1699 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1700 	else
1701 		expires_next = ktime_add(now, delta);
1702 	tick_program_event(expires_next, 1);
1703 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1704 }
1705 
1706 /* called with interrupts disabled */
1707 static inline void __hrtimer_peek_ahead_timers(void)
1708 {
1709 	struct tick_device *td;
1710 
1711 	if (!hrtimer_hres_active())
1712 		return;
1713 
1714 	td = this_cpu_ptr(&tick_cpu_device);
1715 	if (td && td->evtdev)
1716 		hrtimer_interrupt(td->evtdev);
1717 }
1718 
1719 #else /* CONFIG_HIGH_RES_TIMERS */
1720 
1721 static inline void __hrtimer_peek_ahead_timers(void) { }
1722 
1723 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1724 
1725 /*
1726  * Called from run_local_timers in hardirq context every jiffy
1727  */
1728 void hrtimer_run_queues(void)
1729 {
1730 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1731 	unsigned long flags;
1732 	ktime_t now;
1733 
1734 	if (__hrtimer_hres_active(cpu_base))
1735 		return;
1736 
1737 	/*
1738 	 * This _is_ ugly: We have to check periodically, whether we
1739 	 * can switch to highres and / or nohz mode. The clocksource
1740 	 * switch happens with xtime_lock held. Notification from
1741 	 * there only sets the check bit in the tick_oneshot code,
1742 	 * otherwise we might deadlock vs. xtime_lock.
1743 	 */
1744 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1745 		hrtimer_switch_to_hres();
1746 		return;
1747 	}
1748 
1749 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1750 	now = hrtimer_update_base(cpu_base);
1751 
1752 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1753 		cpu_base->softirq_expires_next = KTIME_MAX;
1754 		cpu_base->softirq_activated = 1;
1755 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1756 	}
1757 
1758 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1759 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1760 }
1761 
1762 /*
1763  * Sleep related functions:
1764  */
1765 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1766 {
1767 	struct hrtimer_sleeper *t =
1768 		container_of(timer, struct hrtimer_sleeper, timer);
1769 	struct task_struct *task = t->task;
1770 
1771 	t->task = NULL;
1772 	if (task)
1773 		wake_up_process(task);
1774 
1775 	return HRTIMER_NORESTART;
1776 }
1777 
1778 /**
1779  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1780  * @sl:		sleeper to be started
1781  * @mode:	timer mode abs/rel
1782  *
1783  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1784  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1785  */
1786 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1787 				   enum hrtimer_mode mode)
1788 {
1789 	/*
1790 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1791 	 * was initialized for hard interrupt delivery, force the mode bit.
1792 	 * This is a special case for hrtimer_sleepers because
1793 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1794 	 * fiddling with this decision is avoided at the call sites.
1795 	 */
1796 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1797 		mode |= HRTIMER_MODE_HARD;
1798 
1799 	hrtimer_start_expires(&sl->timer, mode);
1800 }
1801 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1802 
1803 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1804 				   clockid_t clock_id, enum hrtimer_mode mode)
1805 {
1806 	/*
1807 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1808 	 * marked for hard interrupt expiry mode are moved into soft
1809 	 * interrupt context either for latency reasons or because the
1810 	 * hrtimer callback takes regular spinlocks or invokes other
1811 	 * functions which are not suitable for hard interrupt context on
1812 	 * PREEMPT_RT.
1813 	 *
1814 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1815 	 * context, but there is a latency concern: Untrusted userspace can
1816 	 * spawn many threads which arm timers for the same expiry time on
1817 	 * the same CPU. That causes a latency spike due to the wakeup of
1818 	 * a gazillion threads.
1819 	 *
1820 	 * OTOH, priviledged real-time user space applications rely on the
1821 	 * low latency of hard interrupt wakeups. If the current task is in
1822 	 * a real-time scheduling class, mark the mode for hard interrupt
1823 	 * expiry.
1824 	 */
1825 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1826 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1827 			mode |= HRTIMER_MODE_HARD;
1828 	}
1829 
1830 	__hrtimer_init(&sl->timer, clock_id, mode);
1831 	sl->timer.function = hrtimer_wakeup;
1832 	sl->task = current;
1833 }
1834 
1835 /**
1836  * hrtimer_init_sleeper - initialize sleeper to the given clock
1837  * @sl:		sleeper to be initialized
1838  * @clock_id:	the clock to be used
1839  * @mode:	timer mode abs/rel
1840  */
1841 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1842 			  enum hrtimer_mode mode)
1843 {
1844 	debug_init(&sl->timer, clock_id, mode);
1845 	__hrtimer_init_sleeper(sl, clock_id, mode);
1846 
1847 }
1848 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1849 
1850 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1851 {
1852 	switch(restart->nanosleep.type) {
1853 #ifdef CONFIG_COMPAT_32BIT_TIME
1854 	case TT_COMPAT:
1855 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1856 			return -EFAULT;
1857 		break;
1858 #endif
1859 	case TT_NATIVE:
1860 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1861 			return -EFAULT;
1862 		break;
1863 	default:
1864 		BUG();
1865 	}
1866 	return -ERESTART_RESTARTBLOCK;
1867 }
1868 
1869 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1870 {
1871 	struct restart_block *restart;
1872 
1873 	do {
1874 		set_current_state(TASK_INTERRUPTIBLE);
1875 		hrtimer_sleeper_start_expires(t, mode);
1876 
1877 		if (likely(t->task))
1878 			freezable_schedule();
1879 
1880 		hrtimer_cancel(&t->timer);
1881 		mode = HRTIMER_MODE_ABS;
1882 
1883 	} while (t->task && !signal_pending(current));
1884 
1885 	__set_current_state(TASK_RUNNING);
1886 
1887 	if (!t->task)
1888 		return 0;
1889 
1890 	restart = &current->restart_block;
1891 	if (restart->nanosleep.type != TT_NONE) {
1892 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1893 		struct timespec64 rmt;
1894 
1895 		if (rem <= 0)
1896 			return 0;
1897 		rmt = ktime_to_timespec64(rem);
1898 
1899 		return nanosleep_copyout(restart, &rmt);
1900 	}
1901 	return -ERESTART_RESTARTBLOCK;
1902 }
1903 
1904 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1905 {
1906 	struct hrtimer_sleeper t;
1907 	int ret;
1908 
1909 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1910 				      HRTIMER_MODE_ABS);
1911 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1912 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1913 	destroy_hrtimer_on_stack(&t.timer);
1914 	return ret;
1915 }
1916 
1917 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode,
1918 		       const clockid_t clockid)
1919 {
1920 	struct restart_block *restart;
1921 	struct hrtimer_sleeper t;
1922 	int ret = 0;
1923 	u64 slack;
1924 
1925 	slack = current->timer_slack_ns;
1926 	if (dl_task(current) || rt_task(current))
1927 		slack = 0;
1928 
1929 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1930 	hrtimer_set_expires_range_ns(&t.timer, rqtp, slack);
1931 	ret = do_nanosleep(&t, mode);
1932 	if (ret != -ERESTART_RESTARTBLOCK)
1933 		goto out;
1934 
1935 	/* Absolute timers do not update the rmtp value and restart: */
1936 	if (mode == HRTIMER_MODE_ABS) {
1937 		ret = -ERESTARTNOHAND;
1938 		goto out;
1939 	}
1940 
1941 	restart = &current->restart_block;
1942 	restart->fn = hrtimer_nanosleep_restart;
1943 	restart->nanosleep.clockid = t.timer.base->clockid;
1944 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1945 out:
1946 	destroy_hrtimer_on_stack(&t.timer);
1947 	return ret;
1948 }
1949 
1950 #ifdef CONFIG_64BIT
1951 
1952 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1953 		struct __kernel_timespec __user *, rmtp)
1954 {
1955 	struct timespec64 tu;
1956 
1957 	if (get_timespec64(&tu, rqtp))
1958 		return -EFAULT;
1959 
1960 	if (!timespec64_valid(&tu))
1961 		return -EINVAL;
1962 
1963 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1964 	current->restart_block.nanosleep.rmtp = rmtp;
1965 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1966 				 CLOCK_MONOTONIC);
1967 }
1968 
1969 #endif
1970 
1971 #ifdef CONFIG_COMPAT_32BIT_TIME
1972 
1973 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1974 		       struct old_timespec32 __user *, rmtp)
1975 {
1976 	struct timespec64 tu;
1977 
1978 	if (get_old_timespec32(&tu, rqtp))
1979 		return -EFAULT;
1980 
1981 	if (!timespec64_valid(&tu))
1982 		return -EINVAL;
1983 
1984 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1985 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1986 	return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL,
1987 				 CLOCK_MONOTONIC);
1988 }
1989 #endif
1990 
1991 /*
1992  * Functions related to boot-time initialization:
1993  */
1994 int hrtimers_prepare_cpu(unsigned int cpu)
1995 {
1996 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1997 	int i;
1998 
1999 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2000 		struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i];
2001 
2002 		clock_b->cpu_base = cpu_base;
2003 		seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock);
2004 		timerqueue_init_head(&clock_b->active);
2005 	}
2006 
2007 	cpu_base->cpu = cpu;
2008 	cpu_base->active_bases = 0;
2009 	cpu_base->hres_active = 0;
2010 	cpu_base->hang_detected = 0;
2011 	cpu_base->next_timer = NULL;
2012 	cpu_base->softirq_next_timer = NULL;
2013 	cpu_base->expires_next = KTIME_MAX;
2014 	cpu_base->softirq_expires_next = KTIME_MAX;
2015 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2016 	return 0;
2017 }
2018 
2019 #ifdef CONFIG_HOTPLUG_CPU
2020 
2021 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2022 				struct hrtimer_clock_base *new_base)
2023 {
2024 	struct hrtimer *timer;
2025 	struct timerqueue_node *node;
2026 
2027 	while ((node = timerqueue_getnext(&old_base->active))) {
2028 		timer = container_of(node, struct hrtimer, node);
2029 		BUG_ON(hrtimer_callback_running(timer));
2030 		debug_deactivate(timer);
2031 
2032 		/*
2033 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2034 		 * timer could be seen as !active and just vanish away
2035 		 * under us on another CPU
2036 		 */
2037 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2038 		timer->base = new_base;
2039 		/*
2040 		 * Enqueue the timers on the new cpu. This does not
2041 		 * reprogram the event device in case the timer
2042 		 * expires before the earliest on this CPU, but we run
2043 		 * hrtimer_interrupt after we migrated everything to
2044 		 * sort out already expired timers and reprogram the
2045 		 * event device.
2046 		 */
2047 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2048 	}
2049 }
2050 
2051 int hrtimers_dead_cpu(unsigned int scpu)
2052 {
2053 	struct hrtimer_cpu_base *old_base, *new_base;
2054 	int i;
2055 
2056 	BUG_ON(cpu_online(scpu));
2057 	tick_cancel_sched_timer(scpu);
2058 
2059 	/*
2060 	 * this BH disable ensures that raise_softirq_irqoff() does
2061 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2062 	 * holding the cpu_base lock
2063 	 */
2064 	local_bh_disable();
2065 	local_irq_disable();
2066 	old_base = &per_cpu(hrtimer_bases, scpu);
2067 	new_base = this_cpu_ptr(&hrtimer_bases);
2068 	/*
2069 	 * The caller is globally serialized and nobody else
2070 	 * takes two locks at once, deadlock is not possible.
2071 	 */
2072 	raw_spin_lock(&new_base->lock);
2073 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2074 
2075 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2076 		migrate_hrtimer_list(&old_base->clock_base[i],
2077 				     &new_base->clock_base[i]);
2078 	}
2079 
2080 	/*
2081 	 * The migration might have changed the first expiring softirq
2082 	 * timer on this CPU. Update it.
2083 	 */
2084 	hrtimer_update_softirq_timer(new_base, false);
2085 
2086 	raw_spin_unlock(&old_base->lock);
2087 	raw_spin_unlock(&new_base->lock);
2088 
2089 	/* Check, if we got expired work to do */
2090 	__hrtimer_peek_ahead_timers();
2091 	local_irq_enable();
2092 	local_bh_enable();
2093 	return 0;
2094 }
2095 
2096 #endif /* CONFIG_HOTPLUG_CPU */
2097 
2098 void __init hrtimers_init(void)
2099 {
2100 	hrtimers_prepare_cpu(smp_processor_id());
2101 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2102 }
2103 
2104 /**
2105  * schedule_hrtimeout_range_clock - sleep until timeout
2106  * @expires:	timeout value (ktime_t)
2107  * @delta:	slack in expires timeout (ktime_t)
2108  * @mode:	timer mode
2109  * @clock_id:	timer clock to be used
2110  */
2111 int __sched
2112 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2113 			       const enum hrtimer_mode mode, clockid_t clock_id)
2114 {
2115 	struct hrtimer_sleeper t;
2116 
2117 	/*
2118 	 * Optimize when a zero timeout value is given. It does not
2119 	 * matter whether this is an absolute or a relative time.
2120 	 */
2121 	if (expires && *expires == 0) {
2122 		__set_current_state(TASK_RUNNING);
2123 		return 0;
2124 	}
2125 
2126 	/*
2127 	 * A NULL parameter means "infinite"
2128 	 */
2129 	if (!expires) {
2130 		schedule();
2131 		return -EINTR;
2132 	}
2133 
2134 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2135 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2136 	hrtimer_sleeper_start_expires(&t, mode);
2137 
2138 	if (likely(t.task))
2139 		schedule();
2140 
2141 	hrtimer_cancel(&t.timer);
2142 	destroy_hrtimer_on_stack(&t.timer);
2143 
2144 	__set_current_state(TASK_RUNNING);
2145 
2146 	return !t.task ? 0 : -EINTR;
2147 }
2148 
2149 /**
2150  * schedule_hrtimeout_range - sleep until timeout
2151  * @expires:	timeout value (ktime_t)
2152  * @delta:	slack in expires timeout (ktime_t)
2153  * @mode:	timer mode
2154  *
2155  * Make the current task sleep until the given expiry time has
2156  * elapsed. The routine will return immediately unless
2157  * the current task state has been set (see set_current_state()).
2158  *
2159  * The @delta argument gives the kernel the freedom to schedule the
2160  * actual wakeup to a time that is both power and performance friendly.
2161  * The kernel give the normal best effort behavior for "@expires+@delta",
2162  * but may decide to fire the timer earlier, but no earlier than @expires.
2163  *
2164  * You can set the task state as follows -
2165  *
2166  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2167  * pass before the routine returns unless the current task is explicitly
2168  * woken up, (e.g. by wake_up_process()).
2169  *
2170  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2171  * delivered to the current task or the current task is explicitly woken
2172  * up.
2173  *
2174  * The current task state is guaranteed to be TASK_RUNNING when this
2175  * routine returns.
2176  *
2177  * Returns 0 when the timer has expired. If the task was woken before the
2178  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2179  * by an explicit wakeup, it returns -EINTR.
2180  */
2181 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2182 				     const enum hrtimer_mode mode)
2183 {
2184 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2185 					      CLOCK_MONOTONIC);
2186 }
2187 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2188 
2189 /**
2190  * schedule_hrtimeout - sleep until timeout
2191  * @expires:	timeout value (ktime_t)
2192  * @mode:	timer mode
2193  *
2194  * Make the current task sleep until the given expiry time has
2195  * elapsed. The routine will return immediately unless
2196  * the current task state has been set (see set_current_state()).
2197  *
2198  * You can set the task state as follows -
2199  *
2200  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2201  * pass before the routine returns unless the current task is explicitly
2202  * woken up, (e.g. by wake_up_process()).
2203  *
2204  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2205  * delivered to the current task or the current task is explicitly woken
2206  * up.
2207  *
2208  * The current task state is guaranteed to be TASK_RUNNING when this
2209  * routine returns.
2210  *
2211  * Returns 0 when the timer has expired. If the task was woken before the
2212  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2213  * by an explicit wakeup, it returns -EINTR.
2214  */
2215 int __sched schedule_hrtimeout(ktime_t *expires,
2216 			       const enum hrtimer_mode mode)
2217 {
2218 	return schedule_hrtimeout_range(expires, 0, mode);
2219 }
2220 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2221