xref: /openbmc/linux/kernel/time/hrtimer.c (revision 275876e2)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "timekeeping.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 			.resolution = KTIME_LOW_RES,
78 		},
79 		{
80 			.index = HRTIMER_BASE_REALTIME,
81 			.clockid = CLOCK_REALTIME,
82 			.get_time = &ktime_get_real,
83 			.resolution = KTIME_LOW_RES,
84 		},
85 		{
86 			.index = HRTIMER_BASE_BOOTTIME,
87 			.clockid = CLOCK_BOOTTIME,
88 			.get_time = &ktime_get_boottime,
89 			.resolution = KTIME_LOW_RES,
90 		},
91 		{
92 			.index = HRTIMER_BASE_TAI,
93 			.clockid = CLOCK_TAI,
94 			.get_time = &ktime_get_clocktai,
95 			.resolution = KTIME_LOW_RES,
96 		},
97 	}
98 };
99 
100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
101 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
102 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
103 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
104 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
105 };
106 
107 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
108 {
109 	return hrtimer_clock_to_base_table[clock_id];
110 }
111 
112 
113 /*
114  * Get the coarse grained time at the softirq based on xtime and
115  * wall_to_monotonic.
116  */
117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
118 {
119 	ktime_t xtim, mono, boot, tai;
120 	ktime_t off_real, off_boot, off_tai;
121 
122 	mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai);
123 	boot = ktime_add(mono, off_boot);
124 	xtim = ktime_add(mono, off_real);
125 	tai = ktime_add(xtim, off_tai);
126 
127 	base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 	base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 	base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 	base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai;
131 }
132 
133 /*
134  * Functions and macros which are different for UP/SMP systems are kept in a
135  * single place
136  */
137 #ifdef CONFIG_SMP
138 
139 /*
140  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141  * means that all timers which are tied to this base via timer->base are
142  * locked, and the base itself is locked too.
143  *
144  * So __run_timers/migrate_timers can safely modify all timers which could
145  * be found on the lists/queues.
146  *
147  * When the timer's base is locked, and the timer removed from list, it is
148  * possible to set timer->base = NULL and drop the lock: the timer remains
149  * locked.
150  */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 					     unsigned long *flags)
154 {
155 	struct hrtimer_clock_base *base;
156 
157 	for (;;) {
158 		base = timer->base;
159 		if (likely(base != NULL)) {
160 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 			if (likely(base == timer->base))
162 				return base;
163 			/* The timer has migrated to another CPU: */
164 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 		}
166 		cpu_relax();
167 	}
168 }
169 
170 /*
171  * With HIGHRES=y we do not migrate the timer when it is expiring
172  * before the next event on the target cpu because we cannot reprogram
173  * the target cpu hardware and we would cause it to fire late.
174  *
175  * Called with cpu_base->lock of target cpu held.
176  */
177 static int
178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179 {
180 #ifdef CONFIG_HIGH_RES_TIMERS
181 	ktime_t expires;
182 
183 	if (!new_base->cpu_base->hres_active)
184 		return 0;
185 
186 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188 #else
189 	return 0;
190 #endif
191 }
192 
193 /*
194  * Switch the timer base to the current CPU when possible.
195  */
196 static inline struct hrtimer_clock_base *
197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 		    int pinned)
199 {
200 	struct hrtimer_clock_base *new_base;
201 	struct hrtimer_cpu_base *new_cpu_base;
202 	int this_cpu = smp_processor_id();
203 	int cpu = get_nohz_timer_target(pinned);
204 	int basenum = base->index;
205 
206 again:
207 	new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 	new_base = &new_cpu_base->clock_base[basenum];
209 
210 	if (base != new_base) {
211 		/*
212 		 * We are trying to move timer to new_base.
213 		 * However we can't change timer's base while it is running,
214 		 * so we keep it on the same CPU. No hassle vs. reprogramming
215 		 * the event source in the high resolution case. The softirq
216 		 * code will take care of this when the timer function has
217 		 * completed. There is no conflict as we hold the lock until
218 		 * the timer is enqueued.
219 		 */
220 		if (unlikely(hrtimer_callback_running(timer)))
221 			return base;
222 
223 		/* See the comment in lock_timer_base() */
224 		timer->base = NULL;
225 		raw_spin_unlock(&base->cpu_base->lock);
226 		raw_spin_lock(&new_base->cpu_base->lock);
227 
228 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 			cpu = this_cpu;
230 			raw_spin_unlock(&new_base->cpu_base->lock);
231 			raw_spin_lock(&base->cpu_base->lock);
232 			timer->base = base;
233 			goto again;
234 		}
235 		timer->base = new_base;
236 	} else {
237 		if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 			cpu = this_cpu;
239 			goto again;
240 		}
241 	}
242 	return new_base;
243 }
244 
245 #else /* CONFIG_SMP */
246 
247 static inline struct hrtimer_clock_base *
248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249 {
250 	struct hrtimer_clock_base *base = timer->base;
251 
252 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253 
254 	return base;
255 }
256 
257 # define switch_hrtimer_base(t, b, p)	(b)
258 
259 #endif	/* !CONFIG_SMP */
260 
261 /*
262  * Functions for the union type storage format of ktime_t which are
263  * too large for inlining:
264  */
265 #if BITS_PER_LONG < 64
266 /*
267  * Divide a ktime value by a nanosecond value
268  */
269 u64 ktime_divns(const ktime_t kt, s64 div)
270 {
271 	u64 dclc;
272 	int sft = 0;
273 
274 	dclc = ktime_to_ns(kt);
275 	/* Make sure the divisor is less than 2^32: */
276 	while (div >> 32) {
277 		sft++;
278 		div >>= 1;
279 	}
280 	dclc >>= sft;
281 	do_div(dclc, (unsigned long) div);
282 
283 	return dclc;
284 }
285 EXPORT_SYMBOL_GPL(ktime_divns);
286 #endif /* BITS_PER_LONG >= 64 */
287 
288 /*
289  * Add two ktime values and do a safety check for overflow:
290  */
291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
292 {
293 	ktime_t res = ktime_add(lhs, rhs);
294 
295 	/*
296 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
297 	 * return to user space in a timespec:
298 	 */
299 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
300 		res = ktime_set(KTIME_SEC_MAX, 0);
301 
302 	return res;
303 }
304 
305 EXPORT_SYMBOL_GPL(ktime_add_safe);
306 
307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
308 
309 static struct debug_obj_descr hrtimer_debug_descr;
310 
311 static void *hrtimer_debug_hint(void *addr)
312 {
313 	return ((struct hrtimer *) addr)->function;
314 }
315 
316 /*
317  * fixup_init is called when:
318  * - an active object is initialized
319  */
320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
321 {
322 	struct hrtimer *timer = addr;
323 
324 	switch (state) {
325 	case ODEBUG_STATE_ACTIVE:
326 		hrtimer_cancel(timer);
327 		debug_object_init(timer, &hrtimer_debug_descr);
328 		return 1;
329 	default:
330 		return 0;
331 	}
332 }
333 
334 /*
335  * fixup_activate is called when:
336  * - an active object is activated
337  * - an unknown object is activated (might be a statically initialized object)
338  */
339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
340 {
341 	switch (state) {
342 
343 	case ODEBUG_STATE_NOTAVAILABLE:
344 		WARN_ON_ONCE(1);
345 		return 0;
346 
347 	case ODEBUG_STATE_ACTIVE:
348 		WARN_ON(1);
349 
350 	default:
351 		return 0;
352 	}
353 }
354 
355 /*
356  * fixup_free is called when:
357  * - an active object is freed
358  */
359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
360 {
361 	struct hrtimer *timer = addr;
362 
363 	switch (state) {
364 	case ODEBUG_STATE_ACTIVE:
365 		hrtimer_cancel(timer);
366 		debug_object_free(timer, &hrtimer_debug_descr);
367 		return 1;
368 	default:
369 		return 0;
370 	}
371 }
372 
373 static struct debug_obj_descr hrtimer_debug_descr = {
374 	.name		= "hrtimer",
375 	.debug_hint	= hrtimer_debug_hint,
376 	.fixup_init	= hrtimer_fixup_init,
377 	.fixup_activate	= hrtimer_fixup_activate,
378 	.fixup_free	= hrtimer_fixup_free,
379 };
380 
381 static inline void debug_hrtimer_init(struct hrtimer *timer)
382 {
383 	debug_object_init(timer, &hrtimer_debug_descr);
384 }
385 
386 static inline void debug_hrtimer_activate(struct hrtimer *timer)
387 {
388 	debug_object_activate(timer, &hrtimer_debug_descr);
389 }
390 
391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
392 {
393 	debug_object_deactivate(timer, &hrtimer_debug_descr);
394 }
395 
396 static inline void debug_hrtimer_free(struct hrtimer *timer)
397 {
398 	debug_object_free(timer, &hrtimer_debug_descr);
399 }
400 
401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
402 			   enum hrtimer_mode mode);
403 
404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
405 			   enum hrtimer_mode mode)
406 {
407 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
408 	__hrtimer_init(timer, clock_id, mode);
409 }
410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
411 
412 void destroy_hrtimer_on_stack(struct hrtimer *timer)
413 {
414 	debug_object_free(timer, &hrtimer_debug_descr);
415 }
416 
417 #else
418 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
421 #endif
422 
423 static inline void
424 debug_init(struct hrtimer *timer, clockid_t clockid,
425 	   enum hrtimer_mode mode)
426 {
427 	debug_hrtimer_init(timer);
428 	trace_hrtimer_init(timer, clockid, mode);
429 }
430 
431 static inline void debug_activate(struct hrtimer *timer)
432 {
433 	debug_hrtimer_activate(timer);
434 	trace_hrtimer_start(timer);
435 }
436 
437 static inline void debug_deactivate(struct hrtimer *timer)
438 {
439 	debug_hrtimer_deactivate(timer);
440 	trace_hrtimer_cancel(timer);
441 }
442 
443 /* High resolution timer related functions */
444 #ifdef CONFIG_HIGH_RES_TIMERS
445 
446 /*
447  * High resolution timer enabled ?
448  */
449 static int hrtimer_hres_enabled __read_mostly  = 1;
450 
451 /*
452  * Enable / Disable high resolution mode
453  */
454 static int __init setup_hrtimer_hres(char *str)
455 {
456 	if (!strcmp(str, "off"))
457 		hrtimer_hres_enabled = 0;
458 	else if (!strcmp(str, "on"))
459 		hrtimer_hres_enabled = 1;
460 	else
461 		return 0;
462 	return 1;
463 }
464 
465 __setup("highres=", setup_hrtimer_hres);
466 
467 /*
468  * hrtimer_high_res_enabled - query, if the highres mode is enabled
469  */
470 static inline int hrtimer_is_hres_enabled(void)
471 {
472 	return hrtimer_hres_enabled;
473 }
474 
475 /*
476  * Is the high resolution mode active ?
477  */
478 static inline int hrtimer_hres_active(void)
479 {
480 	return __this_cpu_read(hrtimer_bases.hres_active);
481 }
482 
483 /*
484  * Reprogram the event source with checking both queues for the
485  * next event
486  * Called with interrupts disabled and base->lock held
487  */
488 static void
489 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
490 {
491 	int i;
492 	struct hrtimer_clock_base *base = cpu_base->clock_base;
493 	ktime_t expires, expires_next;
494 
495 	expires_next.tv64 = KTIME_MAX;
496 
497 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
498 		struct hrtimer *timer;
499 		struct timerqueue_node *next;
500 
501 		next = timerqueue_getnext(&base->active);
502 		if (!next)
503 			continue;
504 		timer = container_of(next, struct hrtimer, node);
505 
506 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
507 		/*
508 		 * clock_was_set() has changed base->offset so the
509 		 * result might be negative. Fix it up to prevent a
510 		 * false positive in clockevents_program_event()
511 		 */
512 		if (expires.tv64 < 0)
513 			expires.tv64 = 0;
514 		if (expires.tv64 < expires_next.tv64)
515 			expires_next = expires;
516 	}
517 
518 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
519 		return;
520 
521 	cpu_base->expires_next.tv64 = expires_next.tv64;
522 
523 	/*
524 	 * If a hang was detected in the last timer interrupt then we
525 	 * leave the hang delay active in the hardware. We want the
526 	 * system to make progress. That also prevents the following
527 	 * scenario:
528 	 * T1 expires 50ms from now
529 	 * T2 expires 5s from now
530 	 *
531 	 * T1 is removed, so this code is called and would reprogram
532 	 * the hardware to 5s from now. Any hrtimer_start after that
533 	 * will not reprogram the hardware due to hang_detected being
534 	 * set. So we'd effectivly block all timers until the T2 event
535 	 * fires.
536 	 */
537 	if (cpu_base->hang_detected)
538 		return;
539 
540 	if (cpu_base->expires_next.tv64 != KTIME_MAX)
541 		tick_program_event(cpu_base->expires_next, 1);
542 }
543 
544 /*
545  * Shared reprogramming for clock_realtime and clock_monotonic
546  *
547  * When a timer is enqueued and expires earlier than the already enqueued
548  * timers, we have to check, whether it expires earlier than the timer for
549  * which the clock event device was armed.
550  *
551  * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming
552  * and no expiry check happens. The timer gets enqueued into the rbtree. The
553  * reprogramming and expiry check is done in the hrtimer_interrupt or in the
554  * softirq.
555  *
556  * Called with interrupts disabled and base->cpu_base.lock held
557  */
558 static int hrtimer_reprogram(struct hrtimer *timer,
559 			     struct hrtimer_clock_base *base)
560 {
561 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
562 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
563 	int res;
564 
565 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
566 
567 	/*
568 	 * When the callback is running, we do not reprogram the clock event
569 	 * device. The timer callback is either running on a different CPU or
570 	 * the callback is executed in the hrtimer_interrupt context. The
571 	 * reprogramming is handled either by the softirq, which called the
572 	 * callback or at the end of the hrtimer_interrupt.
573 	 */
574 	if (hrtimer_callback_running(timer))
575 		return 0;
576 
577 	/*
578 	 * CLOCK_REALTIME timer might be requested with an absolute
579 	 * expiry time which is less than base->offset. Nothing wrong
580 	 * about that, just avoid to call into the tick code, which
581 	 * has now objections against negative expiry values.
582 	 */
583 	if (expires.tv64 < 0)
584 		return -ETIME;
585 
586 	if (expires.tv64 >= cpu_base->expires_next.tv64)
587 		return 0;
588 
589 	/*
590 	 * If a hang was detected in the last timer interrupt then we
591 	 * do not schedule a timer which is earlier than the expiry
592 	 * which we enforced in the hang detection. We want the system
593 	 * to make progress.
594 	 */
595 	if (cpu_base->hang_detected)
596 		return 0;
597 
598 	/*
599 	 * Clockevents returns -ETIME, when the event was in the past.
600 	 */
601 	res = tick_program_event(expires, 0);
602 	if (!IS_ERR_VALUE(res))
603 		cpu_base->expires_next = expires;
604 	return res;
605 }
606 
607 /*
608  * Initialize the high resolution related parts of cpu_base
609  */
610 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
611 {
612 	base->expires_next.tv64 = KTIME_MAX;
613 	base->hres_active = 0;
614 }
615 
616 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
617 {
618 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
619 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
620 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
621 
622 	return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai);
623 }
624 
625 /*
626  * Retrigger next event is called after clock was set
627  *
628  * Called with interrupts disabled via on_each_cpu()
629  */
630 static void retrigger_next_event(void *arg)
631 {
632 	struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
633 
634 	if (!hrtimer_hres_active())
635 		return;
636 
637 	raw_spin_lock(&base->lock);
638 	hrtimer_update_base(base);
639 	hrtimer_force_reprogram(base, 0);
640 	raw_spin_unlock(&base->lock);
641 }
642 
643 /*
644  * Switch to high resolution mode
645  */
646 static int hrtimer_switch_to_hres(void)
647 {
648 	int i, cpu = smp_processor_id();
649 	struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
650 	unsigned long flags;
651 
652 	if (base->hres_active)
653 		return 1;
654 
655 	local_irq_save(flags);
656 
657 	if (tick_init_highres()) {
658 		local_irq_restore(flags);
659 		printk(KERN_WARNING "Could not switch to high resolution "
660 				    "mode on CPU %d\n", cpu);
661 		return 0;
662 	}
663 	base->hres_active = 1;
664 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
665 		base->clock_base[i].resolution = KTIME_HIGH_RES;
666 
667 	tick_setup_sched_timer();
668 	/* "Retrigger" the interrupt to get things going */
669 	retrigger_next_event(NULL);
670 	local_irq_restore(flags);
671 	return 1;
672 }
673 
674 static void clock_was_set_work(struct work_struct *work)
675 {
676 	clock_was_set();
677 }
678 
679 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
680 
681 /*
682  * Called from timekeeping and resume code to reprogramm the hrtimer
683  * interrupt device on all cpus.
684  */
685 void clock_was_set_delayed(void)
686 {
687 	schedule_work(&hrtimer_work);
688 }
689 
690 #else
691 
692 static inline int hrtimer_hres_active(void) { return 0; }
693 static inline int hrtimer_is_hres_enabled(void) { return 0; }
694 static inline int hrtimer_switch_to_hres(void) { return 0; }
695 static inline void
696 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
697 static inline int hrtimer_reprogram(struct hrtimer *timer,
698 				    struct hrtimer_clock_base *base)
699 {
700 	return 0;
701 }
702 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
703 static inline void retrigger_next_event(void *arg) { }
704 
705 #endif /* CONFIG_HIGH_RES_TIMERS */
706 
707 /*
708  * Clock realtime was set
709  *
710  * Change the offset of the realtime clock vs. the monotonic
711  * clock.
712  *
713  * We might have to reprogram the high resolution timer interrupt. On
714  * SMP we call the architecture specific code to retrigger _all_ high
715  * resolution timer interrupts. On UP we just disable interrupts and
716  * call the high resolution interrupt code.
717  */
718 void clock_was_set(void)
719 {
720 #ifdef CONFIG_HIGH_RES_TIMERS
721 	/* Retrigger the CPU local events everywhere */
722 	on_each_cpu(retrigger_next_event, NULL, 1);
723 #endif
724 	timerfd_clock_was_set();
725 }
726 
727 /*
728  * During resume we might have to reprogram the high resolution timer
729  * interrupt on all online CPUs.  However, all other CPUs will be
730  * stopped with IRQs interrupts disabled so the clock_was_set() call
731  * must be deferred.
732  */
733 void hrtimers_resume(void)
734 {
735 	WARN_ONCE(!irqs_disabled(),
736 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
737 
738 	/* Retrigger on the local CPU */
739 	retrigger_next_event(NULL);
740 	/* And schedule a retrigger for all others */
741 	clock_was_set_delayed();
742 }
743 
744 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
745 {
746 #ifdef CONFIG_TIMER_STATS
747 	if (timer->start_site)
748 		return;
749 	timer->start_site = __builtin_return_address(0);
750 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
751 	timer->start_pid = current->pid;
752 #endif
753 }
754 
755 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
756 {
757 #ifdef CONFIG_TIMER_STATS
758 	timer->start_site = NULL;
759 #endif
760 }
761 
762 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
763 {
764 #ifdef CONFIG_TIMER_STATS
765 	if (likely(!timer_stats_active))
766 		return;
767 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
768 				 timer->function, timer->start_comm, 0);
769 #endif
770 }
771 
772 /*
773  * Counterpart to lock_hrtimer_base above:
774  */
775 static inline
776 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
777 {
778 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
779 }
780 
781 /**
782  * hrtimer_forward - forward the timer expiry
783  * @timer:	hrtimer to forward
784  * @now:	forward past this time
785  * @interval:	the interval to forward
786  *
787  * Forward the timer expiry so it will expire in the future.
788  * Returns the number of overruns.
789  */
790 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
791 {
792 	u64 orun = 1;
793 	ktime_t delta;
794 
795 	delta = ktime_sub(now, hrtimer_get_expires(timer));
796 
797 	if (delta.tv64 < 0)
798 		return 0;
799 
800 	if (interval.tv64 < timer->base->resolution.tv64)
801 		interval.tv64 = timer->base->resolution.tv64;
802 
803 	if (unlikely(delta.tv64 >= interval.tv64)) {
804 		s64 incr = ktime_to_ns(interval);
805 
806 		orun = ktime_divns(delta, incr);
807 		hrtimer_add_expires_ns(timer, incr * orun);
808 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
809 			return orun;
810 		/*
811 		 * This (and the ktime_add() below) is the
812 		 * correction for exact:
813 		 */
814 		orun++;
815 	}
816 	hrtimer_add_expires(timer, interval);
817 
818 	return orun;
819 }
820 EXPORT_SYMBOL_GPL(hrtimer_forward);
821 
822 /*
823  * enqueue_hrtimer - internal function to (re)start a timer
824  *
825  * The timer is inserted in expiry order. Insertion into the
826  * red black tree is O(log(n)). Must hold the base lock.
827  *
828  * Returns 1 when the new timer is the leftmost timer in the tree.
829  */
830 static int enqueue_hrtimer(struct hrtimer *timer,
831 			   struct hrtimer_clock_base *base)
832 {
833 	debug_activate(timer);
834 
835 	timerqueue_add(&base->active, &timer->node);
836 	base->cpu_base->active_bases |= 1 << base->index;
837 
838 	/*
839 	 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
840 	 * state of a possibly running callback.
841 	 */
842 	timer->state |= HRTIMER_STATE_ENQUEUED;
843 
844 	return (&timer->node == base->active.next);
845 }
846 
847 /*
848  * __remove_hrtimer - internal function to remove a timer
849  *
850  * Caller must hold the base lock.
851  *
852  * High resolution timer mode reprograms the clock event device when the
853  * timer is the one which expires next. The caller can disable this by setting
854  * reprogram to zero. This is useful, when the context does a reprogramming
855  * anyway (e.g. timer interrupt)
856  */
857 static void __remove_hrtimer(struct hrtimer *timer,
858 			     struct hrtimer_clock_base *base,
859 			     unsigned long newstate, int reprogram)
860 {
861 	struct timerqueue_node *next_timer;
862 	if (!(timer->state & HRTIMER_STATE_ENQUEUED))
863 		goto out;
864 
865 	next_timer = timerqueue_getnext(&base->active);
866 	timerqueue_del(&base->active, &timer->node);
867 	if (&timer->node == next_timer) {
868 #ifdef CONFIG_HIGH_RES_TIMERS
869 		/* Reprogram the clock event device. if enabled */
870 		if (reprogram && hrtimer_hres_active()) {
871 			ktime_t expires;
872 
873 			expires = ktime_sub(hrtimer_get_expires(timer),
874 					    base->offset);
875 			if (base->cpu_base->expires_next.tv64 == expires.tv64)
876 				hrtimer_force_reprogram(base->cpu_base, 1);
877 		}
878 #endif
879 	}
880 	if (!timerqueue_getnext(&base->active))
881 		base->cpu_base->active_bases &= ~(1 << base->index);
882 out:
883 	timer->state = newstate;
884 }
885 
886 /*
887  * remove hrtimer, called with base lock held
888  */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
891 {
892 	if (hrtimer_is_queued(timer)) {
893 		unsigned long state;
894 		int reprogram;
895 
896 		/*
897 		 * Remove the timer and force reprogramming when high
898 		 * resolution mode is active and the timer is on the current
899 		 * CPU. If we remove a timer on another CPU, reprogramming is
900 		 * skipped. The interrupt event on this CPU is fired and
901 		 * reprogramming happens in the interrupt handler. This is a
902 		 * rare case and less expensive than a smp call.
903 		 */
904 		debug_deactivate(timer);
905 		timer_stats_hrtimer_clear_start_info(timer);
906 		reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
907 		/*
908 		 * We must preserve the CALLBACK state flag here,
909 		 * otherwise we could move the timer base in
910 		 * switch_hrtimer_base.
911 		 */
912 		state = timer->state & HRTIMER_STATE_CALLBACK;
913 		__remove_hrtimer(timer, base, state, reprogram);
914 		return 1;
915 	}
916 	return 0;
917 }
918 
919 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
920 		unsigned long delta_ns, const enum hrtimer_mode mode,
921 		int wakeup)
922 {
923 	struct hrtimer_clock_base *base, *new_base;
924 	unsigned long flags;
925 	int ret, leftmost;
926 
927 	base = lock_hrtimer_base(timer, &flags);
928 
929 	/* Remove an active timer from the queue: */
930 	ret = remove_hrtimer(timer, base);
931 
932 	if (mode & HRTIMER_MODE_REL) {
933 		tim = ktime_add_safe(tim, base->get_time());
934 		/*
935 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
936 		 * to signal that they simply return xtime in
937 		 * do_gettimeoffset(). In this case we want to round up by
938 		 * resolution when starting a relative timer, to avoid short
939 		 * timeouts. This will go away with the GTOD framework.
940 		 */
941 #ifdef CONFIG_TIME_LOW_RES
942 		tim = ktime_add_safe(tim, base->resolution);
943 #endif
944 	}
945 
946 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
947 
948 	/* Switch the timer base, if necessary: */
949 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
950 
951 	timer_stats_hrtimer_set_start_info(timer);
952 
953 	leftmost = enqueue_hrtimer(timer, new_base);
954 
955 	if (!leftmost) {
956 		unlock_hrtimer_base(timer, &flags);
957 		return ret;
958 	}
959 
960 	if (!hrtimer_is_hres_active(timer)) {
961 		/*
962 		 * Kick to reschedule the next tick to handle the new timer
963 		 * on dynticks target.
964 		 */
965 		wake_up_nohz_cpu(new_base->cpu_base->cpu);
966 	} else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) &&
967 			hrtimer_reprogram(timer, new_base)) {
968 		/*
969 		 * Only allow reprogramming if the new base is on this CPU.
970 		 * (it might still be on another CPU if the timer was pending)
971 		 *
972 		 * XXX send_remote_softirq() ?
973 		 */
974 		if (wakeup) {
975 			/*
976 			 * We need to drop cpu_base->lock to avoid a
977 			 * lock ordering issue vs. rq->lock.
978 			 */
979 			raw_spin_unlock(&new_base->cpu_base->lock);
980 			raise_softirq_irqoff(HRTIMER_SOFTIRQ);
981 			local_irq_restore(flags);
982 			return ret;
983 		} else {
984 			__raise_softirq_irqoff(HRTIMER_SOFTIRQ);
985 		}
986 	}
987 
988 	unlock_hrtimer_base(timer, &flags);
989 
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns);
993 
994 /**
995  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996  * @timer:	the timer to be added
997  * @tim:	expiry time
998  * @delta_ns:	"slack" range for the timer
999  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1000  *		relative (HRTIMER_MODE_REL)
1001  *
1002  * Returns:
1003  *  0 on success
1004  *  1 when the timer was active
1005  */
1006 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1007 		unsigned long delta_ns, const enum hrtimer_mode mode)
1008 {
1009 	return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1010 }
1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1012 
1013 /**
1014  * hrtimer_start - (re)start an hrtimer on the current CPU
1015  * @timer:	the timer to be added
1016  * @tim:	expiry time
1017  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
1018  *		relative (HRTIMER_MODE_REL)
1019  *
1020  * Returns:
1021  *  0 on success
1022  *  1 when the timer was active
1023  */
1024 int
1025 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1026 {
1027 	return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1028 }
1029 EXPORT_SYMBOL_GPL(hrtimer_start);
1030 
1031 
1032 /**
1033  * hrtimer_try_to_cancel - try to deactivate a timer
1034  * @timer:	hrtimer to stop
1035  *
1036  * Returns:
1037  *  0 when the timer was not active
1038  *  1 when the timer was active
1039  * -1 when the timer is currently excuting the callback function and
1040  *    cannot be stopped
1041  */
1042 int hrtimer_try_to_cancel(struct hrtimer *timer)
1043 {
1044 	struct hrtimer_clock_base *base;
1045 	unsigned long flags;
1046 	int ret = -1;
1047 
1048 	base = lock_hrtimer_base(timer, &flags);
1049 
1050 	if (!hrtimer_callback_running(timer))
1051 		ret = remove_hrtimer(timer, base);
1052 
1053 	unlock_hrtimer_base(timer, &flags);
1054 
1055 	return ret;
1056 
1057 }
1058 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1059 
1060 /**
1061  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1062  * @timer:	the timer to be cancelled
1063  *
1064  * Returns:
1065  *  0 when the timer was not active
1066  *  1 when the timer was active
1067  */
1068 int hrtimer_cancel(struct hrtimer *timer)
1069 {
1070 	for (;;) {
1071 		int ret = hrtimer_try_to_cancel(timer);
1072 
1073 		if (ret >= 0)
1074 			return ret;
1075 		cpu_relax();
1076 	}
1077 }
1078 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1079 
1080 /**
1081  * hrtimer_get_remaining - get remaining time for the timer
1082  * @timer:	the timer to read
1083  */
1084 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1085 {
1086 	unsigned long flags;
1087 	ktime_t rem;
1088 
1089 	lock_hrtimer_base(timer, &flags);
1090 	rem = hrtimer_expires_remaining(timer);
1091 	unlock_hrtimer_base(timer, &flags);
1092 
1093 	return rem;
1094 }
1095 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1096 
1097 #ifdef CONFIG_NO_HZ_COMMON
1098 /**
1099  * hrtimer_get_next_event - get the time until next expiry event
1100  *
1101  * Returns the delta to the next expiry event or KTIME_MAX if no timer
1102  * is pending.
1103  */
1104 ktime_t hrtimer_get_next_event(void)
1105 {
1106 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1107 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1108 	ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1109 	unsigned long flags;
1110 	int i;
1111 
1112 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1113 
1114 	if (!hrtimer_hres_active()) {
1115 		for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1116 			struct hrtimer *timer;
1117 			struct timerqueue_node *next;
1118 
1119 			next = timerqueue_getnext(&base->active);
1120 			if (!next)
1121 				continue;
1122 
1123 			timer = container_of(next, struct hrtimer, node);
1124 			delta.tv64 = hrtimer_get_expires_tv64(timer);
1125 			delta = ktime_sub(delta, base->get_time());
1126 			if (delta.tv64 < mindelta.tv64)
1127 				mindelta.tv64 = delta.tv64;
1128 		}
1129 	}
1130 
1131 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1132 
1133 	if (mindelta.tv64 < 0)
1134 		mindelta.tv64 = 0;
1135 	return mindelta;
1136 }
1137 #endif
1138 
1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1140 			   enum hrtimer_mode mode)
1141 {
1142 	struct hrtimer_cpu_base *cpu_base;
1143 	int base;
1144 
1145 	memset(timer, 0, sizeof(struct hrtimer));
1146 
1147 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1148 
1149 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1150 		clock_id = CLOCK_MONOTONIC;
1151 
1152 	base = hrtimer_clockid_to_base(clock_id);
1153 	timer->base = &cpu_base->clock_base[base];
1154 	timerqueue_init(&timer->node);
1155 
1156 #ifdef CONFIG_TIMER_STATS
1157 	timer->start_site = NULL;
1158 	timer->start_pid = -1;
1159 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1160 #endif
1161 }
1162 
1163 /**
1164  * hrtimer_init - initialize a timer to the given clock
1165  * @timer:	the timer to be initialized
1166  * @clock_id:	the clock to be used
1167  * @mode:	timer mode abs/rel
1168  */
1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1170 		  enum hrtimer_mode mode)
1171 {
1172 	debug_init(timer, clock_id, mode);
1173 	__hrtimer_init(timer, clock_id, mode);
1174 }
1175 EXPORT_SYMBOL_GPL(hrtimer_init);
1176 
1177 /**
1178  * hrtimer_get_res - get the timer resolution for a clock
1179  * @which_clock: which clock to query
1180  * @tp:		 pointer to timespec variable to store the resolution
1181  *
1182  * Store the resolution of the clock selected by @which_clock in the
1183  * variable pointed to by @tp.
1184  */
1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1186 {
1187 	struct hrtimer_cpu_base *cpu_base;
1188 	int base = hrtimer_clockid_to_base(which_clock);
1189 
1190 	cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1191 	*tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1192 
1193 	return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1196 
1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1198 {
1199 	struct hrtimer_clock_base *base = timer->base;
1200 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1201 	enum hrtimer_restart (*fn)(struct hrtimer *);
1202 	int restart;
1203 
1204 	WARN_ON(!irqs_disabled());
1205 
1206 	debug_deactivate(timer);
1207 	__remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1208 	timer_stats_account_hrtimer(timer);
1209 	fn = timer->function;
1210 
1211 	/*
1212 	 * Because we run timers from hardirq context, there is no chance
1213 	 * they get migrated to another cpu, therefore its safe to unlock
1214 	 * the timer base.
1215 	 */
1216 	raw_spin_unlock(&cpu_base->lock);
1217 	trace_hrtimer_expire_entry(timer, now);
1218 	restart = fn(timer);
1219 	trace_hrtimer_expire_exit(timer);
1220 	raw_spin_lock(&cpu_base->lock);
1221 
1222 	/*
1223 	 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1224 	 * we do not reprogramm the event hardware. Happens either in
1225 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1226 	 */
1227 	if (restart != HRTIMER_NORESTART) {
1228 		BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1229 		enqueue_hrtimer(timer, base);
1230 	}
1231 
1232 	WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1233 
1234 	timer->state &= ~HRTIMER_STATE_CALLBACK;
1235 }
1236 
1237 #ifdef CONFIG_HIGH_RES_TIMERS
1238 
1239 /*
1240  * High resolution timer interrupt
1241  * Called with interrupts disabled
1242  */
1243 void hrtimer_interrupt(struct clock_event_device *dev)
1244 {
1245 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1246 	ktime_t expires_next, now, entry_time, delta;
1247 	int i, retries = 0;
1248 
1249 	BUG_ON(!cpu_base->hres_active);
1250 	cpu_base->nr_events++;
1251 	dev->next_event.tv64 = KTIME_MAX;
1252 
1253 	raw_spin_lock(&cpu_base->lock);
1254 	entry_time = now = hrtimer_update_base(cpu_base);
1255 retry:
1256 	expires_next.tv64 = KTIME_MAX;
1257 	/*
1258 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1259 	 * held to prevent that a timer is enqueued in our queue via
1260 	 * the migration code. This does not affect enqueueing of
1261 	 * timers which run their callback and need to be requeued on
1262 	 * this CPU.
1263 	 */
1264 	cpu_base->expires_next.tv64 = KTIME_MAX;
1265 
1266 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1267 		struct hrtimer_clock_base *base;
1268 		struct timerqueue_node *node;
1269 		ktime_t basenow;
1270 
1271 		if (!(cpu_base->active_bases & (1 << i)))
1272 			continue;
1273 
1274 		base = cpu_base->clock_base + i;
1275 		basenow = ktime_add(now, base->offset);
1276 
1277 		while ((node = timerqueue_getnext(&base->active))) {
1278 			struct hrtimer *timer;
1279 
1280 			timer = container_of(node, struct hrtimer, node);
1281 
1282 			/*
1283 			 * The immediate goal for using the softexpires is
1284 			 * minimizing wakeups, not running timers at the
1285 			 * earliest interrupt after their soft expiration.
1286 			 * This allows us to avoid using a Priority Search
1287 			 * Tree, which can answer a stabbing querry for
1288 			 * overlapping intervals and instead use the simple
1289 			 * BST we already have.
1290 			 * We don't add extra wakeups by delaying timers that
1291 			 * are right-of a not yet expired timer, because that
1292 			 * timer will have to trigger a wakeup anyway.
1293 			 */
1294 
1295 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1296 				ktime_t expires;
1297 
1298 				expires = ktime_sub(hrtimer_get_expires(timer),
1299 						    base->offset);
1300 				if (expires.tv64 < 0)
1301 					expires.tv64 = KTIME_MAX;
1302 				if (expires.tv64 < expires_next.tv64)
1303 					expires_next = expires;
1304 				break;
1305 			}
1306 
1307 			__run_hrtimer(timer, &basenow);
1308 		}
1309 	}
1310 
1311 	/*
1312 	 * Store the new expiry value so the migration code can verify
1313 	 * against it.
1314 	 */
1315 	cpu_base->expires_next = expires_next;
1316 	raw_spin_unlock(&cpu_base->lock);
1317 
1318 	/* Reprogramming necessary ? */
1319 	if (expires_next.tv64 == KTIME_MAX ||
1320 	    !tick_program_event(expires_next, 0)) {
1321 		cpu_base->hang_detected = 0;
1322 		return;
1323 	}
1324 
1325 	/*
1326 	 * The next timer was already expired due to:
1327 	 * - tracing
1328 	 * - long lasting callbacks
1329 	 * - being scheduled away when running in a VM
1330 	 *
1331 	 * We need to prevent that we loop forever in the hrtimer
1332 	 * interrupt routine. We give it 3 attempts to avoid
1333 	 * overreacting on some spurious event.
1334 	 *
1335 	 * Acquire base lock for updating the offsets and retrieving
1336 	 * the current time.
1337 	 */
1338 	raw_spin_lock(&cpu_base->lock);
1339 	now = hrtimer_update_base(cpu_base);
1340 	cpu_base->nr_retries++;
1341 	if (++retries < 3)
1342 		goto retry;
1343 	/*
1344 	 * Give the system a chance to do something else than looping
1345 	 * here. We stored the entry time, so we know exactly how long
1346 	 * we spent here. We schedule the next event this amount of
1347 	 * time away.
1348 	 */
1349 	cpu_base->nr_hangs++;
1350 	cpu_base->hang_detected = 1;
1351 	raw_spin_unlock(&cpu_base->lock);
1352 	delta = ktime_sub(now, entry_time);
1353 	if (delta.tv64 > cpu_base->max_hang_time.tv64)
1354 		cpu_base->max_hang_time = delta;
1355 	/*
1356 	 * Limit it to a sensible value as we enforce a longer
1357 	 * delay. Give the CPU at least 100ms to catch up.
1358 	 */
1359 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1360 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1361 	else
1362 		expires_next = ktime_add(now, delta);
1363 	tick_program_event(expires_next, 1);
1364 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1365 		    ktime_to_ns(delta));
1366 }
1367 
1368 /*
1369  * local version of hrtimer_peek_ahead_timers() called with interrupts
1370  * disabled.
1371  */
1372 static void __hrtimer_peek_ahead_timers(void)
1373 {
1374 	struct tick_device *td;
1375 
1376 	if (!hrtimer_hres_active())
1377 		return;
1378 
1379 	td = &__get_cpu_var(tick_cpu_device);
1380 	if (td && td->evtdev)
1381 		hrtimer_interrupt(td->evtdev);
1382 }
1383 
1384 /**
1385  * hrtimer_peek_ahead_timers -- run soft-expired timers now
1386  *
1387  * hrtimer_peek_ahead_timers will peek at the timer queue of
1388  * the current cpu and check if there are any timers for which
1389  * the soft expires time has passed. If any such timers exist,
1390  * they are run immediately and then removed from the timer queue.
1391  *
1392  */
1393 void hrtimer_peek_ahead_timers(void)
1394 {
1395 	unsigned long flags;
1396 
1397 	local_irq_save(flags);
1398 	__hrtimer_peek_ahead_timers();
1399 	local_irq_restore(flags);
1400 }
1401 
1402 static void run_hrtimer_softirq(struct softirq_action *h)
1403 {
1404 	hrtimer_peek_ahead_timers();
1405 }
1406 
1407 #else /* CONFIG_HIGH_RES_TIMERS */
1408 
1409 static inline void __hrtimer_peek_ahead_timers(void) { }
1410 
1411 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1412 
1413 /*
1414  * Called from timer softirq every jiffy, expire hrtimers:
1415  *
1416  * For HRT its the fall back code to run the softirq in the timer
1417  * softirq context in case the hrtimer initialization failed or has
1418  * not been done yet.
1419  */
1420 void hrtimer_run_pending(void)
1421 {
1422 	if (hrtimer_hres_active())
1423 		return;
1424 
1425 	/*
1426 	 * This _is_ ugly: We have to check in the softirq context,
1427 	 * whether we can switch to highres and / or nohz mode. The
1428 	 * clocksource switch happens in the timer interrupt with
1429 	 * xtime_lock held. Notification from there only sets the
1430 	 * check bit in the tick_oneshot code, otherwise we might
1431 	 * deadlock vs. xtime_lock.
1432 	 */
1433 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1434 		hrtimer_switch_to_hres();
1435 }
1436 
1437 /*
1438  * Called from hardirq context every jiffy
1439  */
1440 void hrtimer_run_queues(void)
1441 {
1442 	struct timerqueue_node *node;
1443 	struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1444 	struct hrtimer_clock_base *base;
1445 	int index, gettime = 1;
1446 
1447 	if (hrtimer_hres_active())
1448 		return;
1449 
1450 	for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1451 		base = &cpu_base->clock_base[index];
1452 		if (!timerqueue_getnext(&base->active))
1453 			continue;
1454 
1455 		if (gettime) {
1456 			hrtimer_get_softirq_time(cpu_base);
1457 			gettime = 0;
1458 		}
1459 
1460 		raw_spin_lock(&cpu_base->lock);
1461 
1462 		while ((node = timerqueue_getnext(&base->active))) {
1463 			struct hrtimer *timer;
1464 
1465 			timer = container_of(node, struct hrtimer, node);
1466 			if (base->softirq_time.tv64 <=
1467 					hrtimer_get_expires_tv64(timer))
1468 				break;
1469 
1470 			__run_hrtimer(timer, &base->softirq_time);
1471 		}
1472 		raw_spin_unlock(&cpu_base->lock);
1473 	}
1474 }
1475 
1476 /*
1477  * Sleep related functions:
1478  */
1479 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1480 {
1481 	struct hrtimer_sleeper *t =
1482 		container_of(timer, struct hrtimer_sleeper, timer);
1483 	struct task_struct *task = t->task;
1484 
1485 	t->task = NULL;
1486 	if (task)
1487 		wake_up_process(task);
1488 
1489 	return HRTIMER_NORESTART;
1490 }
1491 
1492 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1493 {
1494 	sl->timer.function = hrtimer_wakeup;
1495 	sl->task = task;
1496 }
1497 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1498 
1499 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1500 {
1501 	hrtimer_init_sleeper(t, current);
1502 
1503 	do {
1504 		set_current_state(TASK_INTERRUPTIBLE);
1505 		hrtimer_start_expires(&t->timer, mode);
1506 		if (!hrtimer_active(&t->timer))
1507 			t->task = NULL;
1508 
1509 		if (likely(t->task))
1510 			freezable_schedule();
1511 
1512 		hrtimer_cancel(&t->timer);
1513 		mode = HRTIMER_MODE_ABS;
1514 
1515 	} while (t->task && !signal_pending(current));
1516 
1517 	__set_current_state(TASK_RUNNING);
1518 
1519 	return t->task == NULL;
1520 }
1521 
1522 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1523 {
1524 	struct timespec rmt;
1525 	ktime_t rem;
1526 
1527 	rem = hrtimer_expires_remaining(timer);
1528 	if (rem.tv64 <= 0)
1529 		return 0;
1530 	rmt = ktime_to_timespec(rem);
1531 
1532 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1533 		return -EFAULT;
1534 
1535 	return 1;
1536 }
1537 
1538 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1539 {
1540 	struct hrtimer_sleeper t;
1541 	struct timespec __user  *rmtp;
1542 	int ret = 0;
1543 
1544 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1545 				HRTIMER_MODE_ABS);
1546 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1547 
1548 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1549 		goto out;
1550 
1551 	rmtp = restart->nanosleep.rmtp;
1552 	if (rmtp) {
1553 		ret = update_rmtp(&t.timer, rmtp);
1554 		if (ret <= 0)
1555 			goto out;
1556 	}
1557 
1558 	/* The other values in restart are already filled in */
1559 	ret = -ERESTART_RESTARTBLOCK;
1560 out:
1561 	destroy_hrtimer_on_stack(&t.timer);
1562 	return ret;
1563 }
1564 
1565 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1566 		       const enum hrtimer_mode mode, const clockid_t clockid)
1567 {
1568 	struct restart_block *restart;
1569 	struct hrtimer_sleeper t;
1570 	int ret = 0;
1571 	unsigned long slack;
1572 
1573 	slack = current->timer_slack_ns;
1574 	if (dl_task(current) || rt_task(current))
1575 		slack = 0;
1576 
1577 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1578 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1579 	if (do_nanosleep(&t, mode))
1580 		goto out;
1581 
1582 	/* Absolute timers do not update the rmtp value and restart: */
1583 	if (mode == HRTIMER_MODE_ABS) {
1584 		ret = -ERESTARTNOHAND;
1585 		goto out;
1586 	}
1587 
1588 	if (rmtp) {
1589 		ret = update_rmtp(&t.timer, rmtp);
1590 		if (ret <= 0)
1591 			goto out;
1592 	}
1593 
1594 	restart = &current_thread_info()->restart_block;
1595 	restart->fn = hrtimer_nanosleep_restart;
1596 	restart->nanosleep.clockid = t.timer.base->clockid;
1597 	restart->nanosleep.rmtp = rmtp;
1598 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1599 
1600 	ret = -ERESTART_RESTARTBLOCK;
1601 out:
1602 	destroy_hrtimer_on_stack(&t.timer);
1603 	return ret;
1604 }
1605 
1606 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1607 		struct timespec __user *, rmtp)
1608 {
1609 	struct timespec tu;
1610 
1611 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1612 		return -EFAULT;
1613 
1614 	if (!timespec_valid(&tu))
1615 		return -EINVAL;
1616 
1617 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1618 }
1619 
1620 /*
1621  * Functions related to boot-time initialization:
1622  */
1623 static void init_hrtimers_cpu(int cpu)
1624 {
1625 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1626 	int i;
1627 
1628 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1629 		cpu_base->clock_base[i].cpu_base = cpu_base;
1630 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1631 	}
1632 
1633 	cpu_base->cpu = cpu;
1634 	hrtimer_init_hres(cpu_base);
1635 }
1636 
1637 #ifdef CONFIG_HOTPLUG_CPU
1638 
1639 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1640 				struct hrtimer_clock_base *new_base)
1641 {
1642 	struct hrtimer *timer;
1643 	struct timerqueue_node *node;
1644 
1645 	while ((node = timerqueue_getnext(&old_base->active))) {
1646 		timer = container_of(node, struct hrtimer, node);
1647 		BUG_ON(hrtimer_callback_running(timer));
1648 		debug_deactivate(timer);
1649 
1650 		/*
1651 		 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1652 		 * timer could be seen as !active and just vanish away
1653 		 * under us on another CPU
1654 		 */
1655 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1656 		timer->base = new_base;
1657 		/*
1658 		 * Enqueue the timers on the new cpu. This does not
1659 		 * reprogram the event device in case the timer
1660 		 * expires before the earliest on this CPU, but we run
1661 		 * hrtimer_interrupt after we migrated everything to
1662 		 * sort out already expired timers and reprogram the
1663 		 * event device.
1664 		 */
1665 		enqueue_hrtimer(timer, new_base);
1666 
1667 		/* Clear the migration state bit */
1668 		timer->state &= ~HRTIMER_STATE_MIGRATE;
1669 	}
1670 }
1671 
1672 static void migrate_hrtimers(int scpu)
1673 {
1674 	struct hrtimer_cpu_base *old_base, *new_base;
1675 	int i;
1676 
1677 	BUG_ON(cpu_online(scpu));
1678 	tick_cancel_sched_timer(scpu);
1679 
1680 	local_irq_disable();
1681 	old_base = &per_cpu(hrtimer_bases, scpu);
1682 	new_base = &__get_cpu_var(hrtimer_bases);
1683 	/*
1684 	 * The caller is globally serialized and nobody else
1685 	 * takes two locks at once, deadlock is not possible.
1686 	 */
1687 	raw_spin_lock(&new_base->lock);
1688 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1689 
1690 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1691 		migrate_hrtimer_list(&old_base->clock_base[i],
1692 				     &new_base->clock_base[i]);
1693 	}
1694 
1695 	raw_spin_unlock(&old_base->lock);
1696 	raw_spin_unlock(&new_base->lock);
1697 
1698 	/* Check, if we got expired work to do */
1699 	__hrtimer_peek_ahead_timers();
1700 	local_irq_enable();
1701 }
1702 
1703 #endif /* CONFIG_HOTPLUG_CPU */
1704 
1705 static int hrtimer_cpu_notify(struct notifier_block *self,
1706 					unsigned long action, void *hcpu)
1707 {
1708 	int scpu = (long)hcpu;
1709 
1710 	switch (action) {
1711 
1712 	case CPU_UP_PREPARE:
1713 	case CPU_UP_PREPARE_FROZEN:
1714 		init_hrtimers_cpu(scpu);
1715 		break;
1716 
1717 #ifdef CONFIG_HOTPLUG_CPU
1718 	case CPU_DYING:
1719 	case CPU_DYING_FROZEN:
1720 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1721 		break;
1722 	case CPU_DEAD:
1723 	case CPU_DEAD_FROZEN:
1724 	{
1725 		clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1726 		migrate_hrtimers(scpu);
1727 		break;
1728 	}
1729 #endif
1730 
1731 	default:
1732 		break;
1733 	}
1734 
1735 	return NOTIFY_OK;
1736 }
1737 
1738 static struct notifier_block hrtimers_nb = {
1739 	.notifier_call = hrtimer_cpu_notify,
1740 };
1741 
1742 void __init hrtimers_init(void)
1743 {
1744 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1745 			  (void *)(long)smp_processor_id());
1746 	register_cpu_notifier(&hrtimers_nb);
1747 #ifdef CONFIG_HIGH_RES_TIMERS
1748 	open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1749 #endif
1750 }
1751 
1752 /**
1753  * schedule_hrtimeout_range_clock - sleep until timeout
1754  * @expires:	timeout value (ktime_t)
1755  * @delta:	slack in expires timeout (ktime_t)
1756  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1757  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1758  */
1759 int __sched
1760 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1761 			       const enum hrtimer_mode mode, int clock)
1762 {
1763 	struct hrtimer_sleeper t;
1764 
1765 	/*
1766 	 * Optimize when a zero timeout value is given. It does not
1767 	 * matter whether this is an absolute or a relative time.
1768 	 */
1769 	if (expires && !expires->tv64) {
1770 		__set_current_state(TASK_RUNNING);
1771 		return 0;
1772 	}
1773 
1774 	/*
1775 	 * A NULL parameter means "infinite"
1776 	 */
1777 	if (!expires) {
1778 		schedule();
1779 		__set_current_state(TASK_RUNNING);
1780 		return -EINTR;
1781 	}
1782 
1783 	hrtimer_init_on_stack(&t.timer, clock, mode);
1784 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1785 
1786 	hrtimer_init_sleeper(&t, current);
1787 
1788 	hrtimer_start_expires(&t.timer, mode);
1789 	if (!hrtimer_active(&t.timer))
1790 		t.task = NULL;
1791 
1792 	if (likely(t.task))
1793 		schedule();
1794 
1795 	hrtimer_cancel(&t.timer);
1796 	destroy_hrtimer_on_stack(&t.timer);
1797 
1798 	__set_current_state(TASK_RUNNING);
1799 
1800 	return !t.task ? 0 : -EINTR;
1801 }
1802 
1803 /**
1804  * schedule_hrtimeout_range - sleep until timeout
1805  * @expires:	timeout value (ktime_t)
1806  * @delta:	slack in expires timeout (ktime_t)
1807  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1808  *
1809  * Make the current task sleep until the given expiry time has
1810  * elapsed. The routine will return immediately unless
1811  * the current task state has been set (see set_current_state()).
1812  *
1813  * The @delta argument gives the kernel the freedom to schedule the
1814  * actual wakeup to a time that is both power and performance friendly.
1815  * The kernel give the normal best effort behavior for "@expires+@delta",
1816  * but may decide to fire the timer earlier, but no earlier than @expires.
1817  *
1818  * You can set the task state as follows -
1819  *
1820  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1821  * pass before the routine returns.
1822  *
1823  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1824  * delivered to the current task.
1825  *
1826  * The current task state is guaranteed to be TASK_RUNNING when this
1827  * routine returns.
1828  *
1829  * Returns 0 when the timer has expired otherwise -EINTR
1830  */
1831 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1832 				     const enum hrtimer_mode mode)
1833 {
1834 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1835 					      CLOCK_MONOTONIC);
1836 }
1837 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1838 
1839 /**
1840  * schedule_hrtimeout - sleep until timeout
1841  * @expires:	timeout value (ktime_t)
1842  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1843  *
1844  * Make the current task sleep until the given expiry time has
1845  * elapsed. The routine will return immediately unless
1846  * the current task state has been set (see set_current_state()).
1847  *
1848  * You can set the task state as follows -
1849  *
1850  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1851  * pass before the routine returns.
1852  *
1853  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1854  * delivered to the current task.
1855  *
1856  * The current task state is guaranteed to be TASK_RUNNING when this
1857  * routine returns.
1858  *
1859  * Returns 0 when the timer has expired otherwise -EINTR
1860  */
1861 int __sched schedule_hrtimeout(ktime_t *expires,
1862 			       const enum hrtimer_mode mode)
1863 {
1864 	return schedule_hrtimeout_range(expires, 0, mode);
1865 }
1866 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1867