1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <asm/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "timekeeping.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids then hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 .resolution = KTIME_LOW_RES, 78 }, 79 { 80 .index = HRTIMER_BASE_REALTIME, 81 .clockid = CLOCK_REALTIME, 82 .get_time = &ktime_get_real, 83 .resolution = KTIME_LOW_RES, 84 }, 85 { 86 .index = HRTIMER_BASE_BOOTTIME, 87 .clockid = CLOCK_BOOTTIME, 88 .get_time = &ktime_get_boottime, 89 .resolution = KTIME_LOW_RES, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 .resolution = KTIME_LOW_RES, 96 }, 97 } 98 }; 99 100 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 101 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 102 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 103 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 104 [CLOCK_TAI] = HRTIMER_BASE_TAI, 105 }; 106 107 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 108 { 109 return hrtimer_clock_to_base_table[clock_id]; 110 } 111 112 113 /* 114 * Get the coarse grained time at the softirq based on xtime and 115 * wall_to_monotonic. 116 */ 117 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) 118 { 119 ktime_t xtim, mono, boot, tai; 120 ktime_t off_real, off_boot, off_tai; 121 122 mono = ktime_get_update_offsets_tick(&off_real, &off_boot, &off_tai); 123 boot = ktime_add(mono, off_boot); 124 xtim = ktime_add(mono, off_real); 125 tai = ktime_add(xtim, off_tai); 126 127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; 128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; 129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; 130 base->clock_base[HRTIMER_BASE_TAI].softirq_time = tai; 131 } 132 133 /* 134 * Functions and macros which are different for UP/SMP systems are kept in a 135 * single place 136 */ 137 #ifdef CONFIG_SMP 138 139 /* 140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 141 * means that all timers which are tied to this base via timer->base are 142 * locked, and the base itself is locked too. 143 * 144 * So __run_timers/migrate_timers can safely modify all timers which could 145 * be found on the lists/queues. 146 * 147 * When the timer's base is locked, and the timer removed from list, it is 148 * possible to set timer->base = NULL and drop the lock: the timer remains 149 * locked. 150 */ 151 static 152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 153 unsigned long *flags) 154 { 155 struct hrtimer_clock_base *base; 156 157 for (;;) { 158 base = timer->base; 159 if (likely(base != NULL)) { 160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 161 if (likely(base == timer->base)) 162 return base; 163 /* The timer has migrated to another CPU: */ 164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 165 } 166 cpu_relax(); 167 } 168 } 169 170 /* 171 * With HIGHRES=y we do not migrate the timer when it is expiring 172 * before the next event on the target cpu because we cannot reprogram 173 * the target cpu hardware and we would cause it to fire late. 174 * 175 * Called with cpu_base->lock of target cpu held. 176 */ 177 static int 178 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 179 { 180 #ifdef CONFIG_HIGH_RES_TIMERS 181 ktime_t expires; 182 183 if (!new_base->cpu_base->hres_active) 184 return 0; 185 186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64; 188 #else 189 return 0; 190 #endif 191 } 192 193 /* 194 * Switch the timer base to the current CPU when possible. 195 */ 196 static inline struct hrtimer_clock_base * 197 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 198 int pinned) 199 { 200 struct hrtimer_clock_base *new_base; 201 struct hrtimer_cpu_base *new_cpu_base; 202 int this_cpu = smp_processor_id(); 203 int cpu = get_nohz_timer_target(pinned); 204 int basenum = base->index; 205 206 again: 207 new_cpu_base = &per_cpu(hrtimer_bases, cpu); 208 new_base = &new_cpu_base->clock_base[basenum]; 209 210 if (base != new_base) { 211 /* 212 * We are trying to move timer to new_base. 213 * However we can't change timer's base while it is running, 214 * so we keep it on the same CPU. No hassle vs. reprogramming 215 * the event source in the high resolution case. The softirq 216 * code will take care of this when the timer function has 217 * completed. There is no conflict as we hold the lock until 218 * the timer is enqueued. 219 */ 220 if (unlikely(hrtimer_callback_running(timer))) 221 return base; 222 223 /* See the comment in lock_timer_base() */ 224 timer->base = NULL; 225 raw_spin_unlock(&base->cpu_base->lock); 226 raw_spin_lock(&new_base->cpu_base->lock); 227 228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 229 cpu = this_cpu; 230 raw_spin_unlock(&new_base->cpu_base->lock); 231 raw_spin_lock(&base->cpu_base->lock); 232 timer->base = base; 233 goto again; 234 } 235 timer->base = new_base; 236 } else { 237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { 238 cpu = this_cpu; 239 goto again; 240 } 241 } 242 return new_base; 243 } 244 245 #else /* CONFIG_SMP */ 246 247 static inline struct hrtimer_clock_base * 248 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 249 { 250 struct hrtimer_clock_base *base = timer->base; 251 252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 253 254 return base; 255 } 256 257 # define switch_hrtimer_base(t, b, p) (b) 258 259 #endif /* !CONFIG_SMP */ 260 261 /* 262 * Functions for the union type storage format of ktime_t which are 263 * too large for inlining: 264 */ 265 #if BITS_PER_LONG < 64 266 /* 267 * Divide a ktime value by a nanosecond value 268 */ 269 u64 ktime_divns(const ktime_t kt, s64 div) 270 { 271 u64 dclc; 272 int sft = 0; 273 274 dclc = ktime_to_ns(kt); 275 /* Make sure the divisor is less than 2^32: */ 276 while (div >> 32) { 277 sft++; 278 div >>= 1; 279 } 280 dclc >>= sft; 281 do_div(dclc, (unsigned long) div); 282 283 return dclc; 284 } 285 EXPORT_SYMBOL_GPL(ktime_divns); 286 #endif /* BITS_PER_LONG >= 64 */ 287 288 /* 289 * Add two ktime values and do a safety check for overflow: 290 */ 291 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 292 { 293 ktime_t res = ktime_add(lhs, rhs); 294 295 /* 296 * We use KTIME_SEC_MAX here, the maximum timeout which we can 297 * return to user space in a timespec: 298 */ 299 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) 300 res = ktime_set(KTIME_SEC_MAX, 0); 301 302 return res; 303 } 304 305 EXPORT_SYMBOL_GPL(ktime_add_safe); 306 307 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 308 309 static struct debug_obj_descr hrtimer_debug_descr; 310 311 static void *hrtimer_debug_hint(void *addr) 312 { 313 return ((struct hrtimer *) addr)->function; 314 } 315 316 /* 317 * fixup_init is called when: 318 * - an active object is initialized 319 */ 320 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) 321 { 322 struct hrtimer *timer = addr; 323 324 switch (state) { 325 case ODEBUG_STATE_ACTIVE: 326 hrtimer_cancel(timer); 327 debug_object_init(timer, &hrtimer_debug_descr); 328 return 1; 329 default: 330 return 0; 331 } 332 } 333 334 /* 335 * fixup_activate is called when: 336 * - an active object is activated 337 * - an unknown object is activated (might be a statically initialized object) 338 */ 339 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 340 { 341 switch (state) { 342 343 case ODEBUG_STATE_NOTAVAILABLE: 344 WARN_ON_ONCE(1); 345 return 0; 346 347 case ODEBUG_STATE_ACTIVE: 348 WARN_ON(1); 349 350 default: 351 return 0; 352 } 353 } 354 355 /* 356 * fixup_free is called when: 357 * - an active object is freed 358 */ 359 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) 360 { 361 struct hrtimer *timer = addr; 362 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 hrtimer_cancel(timer); 366 debug_object_free(timer, &hrtimer_debug_descr); 367 return 1; 368 default: 369 return 0; 370 } 371 } 372 373 static struct debug_obj_descr hrtimer_debug_descr = { 374 .name = "hrtimer", 375 .debug_hint = hrtimer_debug_hint, 376 .fixup_init = hrtimer_fixup_init, 377 .fixup_activate = hrtimer_fixup_activate, 378 .fixup_free = hrtimer_fixup_free, 379 }; 380 381 static inline void debug_hrtimer_init(struct hrtimer *timer) 382 { 383 debug_object_init(timer, &hrtimer_debug_descr); 384 } 385 386 static inline void debug_hrtimer_activate(struct hrtimer *timer) 387 { 388 debug_object_activate(timer, &hrtimer_debug_descr); 389 } 390 391 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 392 { 393 debug_object_deactivate(timer, &hrtimer_debug_descr); 394 } 395 396 static inline void debug_hrtimer_free(struct hrtimer *timer) 397 { 398 debug_object_free(timer, &hrtimer_debug_descr); 399 } 400 401 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 402 enum hrtimer_mode mode); 403 404 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 405 enum hrtimer_mode mode) 406 { 407 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 408 __hrtimer_init(timer, clock_id, mode); 409 } 410 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 411 412 void destroy_hrtimer_on_stack(struct hrtimer *timer) 413 { 414 debug_object_free(timer, &hrtimer_debug_descr); 415 } 416 417 #else 418 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 419 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 420 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 421 #endif 422 423 static inline void 424 debug_init(struct hrtimer *timer, clockid_t clockid, 425 enum hrtimer_mode mode) 426 { 427 debug_hrtimer_init(timer); 428 trace_hrtimer_init(timer, clockid, mode); 429 } 430 431 static inline void debug_activate(struct hrtimer *timer) 432 { 433 debug_hrtimer_activate(timer); 434 trace_hrtimer_start(timer); 435 } 436 437 static inline void debug_deactivate(struct hrtimer *timer) 438 { 439 debug_hrtimer_deactivate(timer); 440 trace_hrtimer_cancel(timer); 441 } 442 443 /* High resolution timer related functions */ 444 #ifdef CONFIG_HIGH_RES_TIMERS 445 446 /* 447 * High resolution timer enabled ? 448 */ 449 static int hrtimer_hres_enabled __read_mostly = 1; 450 451 /* 452 * Enable / Disable high resolution mode 453 */ 454 static int __init setup_hrtimer_hres(char *str) 455 { 456 if (!strcmp(str, "off")) 457 hrtimer_hres_enabled = 0; 458 else if (!strcmp(str, "on")) 459 hrtimer_hres_enabled = 1; 460 else 461 return 0; 462 return 1; 463 } 464 465 __setup("highres=", setup_hrtimer_hres); 466 467 /* 468 * hrtimer_high_res_enabled - query, if the highres mode is enabled 469 */ 470 static inline int hrtimer_is_hres_enabled(void) 471 { 472 return hrtimer_hres_enabled; 473 } 474 475 /* 476 * Is the high resolution mode active ? 477 */ 478 static inline int hrtimer_hres_active(void) 479 { 480 return __this_cpu_read(hrtimer_bases.hres_active); 481 } 482 483 /* 484 * Reprogram the event source with checking both queues for the 485 * next event 486 * Called with interrupts disabled and base->lock held 487 */ 488 static void 489 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 490 { 491 int i; 492 struct hrtimer_clock_base *base = cpu_base->clock_base; 493 ktime_t expires, expires_next; 494 495 expires_next.tv64 = KTIME_MAX; 496 497 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 498 struct hrtimer *timer; 499 struct timerqueue_node *next; 500 501 next = timerqueue_getnext(&base->active); 502 if (!next) 503 continue; 504 timer = container_of(next, struct hrtimer, node); 505 506 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 507 /* 508 * clock_was_set() has changed base->offset so the 509 * result might be negative. Fix it up to prevent a 510 * false positive in clockevents_program_event() 511 */ 512 if (expires.tv64 < 0) 513 expires.tv64 = 0; 514 if (expires.tv64 < expires_next.tv64) 515 expires_next = expires; 516 } 517 518 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) 519 return; 520 521 cpu_base->expires_next.tv64 = expires_next.tv64; 522 523 /* 524 * If a hang was detected in the last timer interrupt then we 525 * leave the hang delay active in the hardware. We want the 526 * system to make progress. That also prevents the following 527 * scenario: 528 * T1 expires 50ms from now 529 * T2 expires 5s from now 530 * 531 * T1 is removed, so this code is called and would reprogram 532 * the hardware to 5s from now. Any hrtimer_start after that 533 * will not reprogram the hardware due to hang_detected being 534 * set. So we'd effectivly block all timers until the T2 event 535 * fires. 536 */ 537 if (cpu_base->hang_detected) 538 return; 539 540 if (cpu_base->expires_next.tv64 != KTIME_MAX) 541 tick_program_event(cpu_base->expires_next, 1); 542 } 543 544 /* 545 * Shared reprogramming for clock_realtime and clock_monotonic 546 * 547 * When a timer is enqueued and expires earlier than the already enqueued 548 * timers, we have to check, whether it expires earlier than the timer for 549 * which the clock event device was armed. 550 * 551 * Note, that in case the state has HRTIMER_STATE_CALLBACK set, no reprogramming 552 * and no expiry check happens. The timer gets enqueued into the rbtree. The 553 * reprogramming and expiry check is done in the hrtimer_interrupt or in the 554 * softirq. 555 * 556 * Called with interrupts disabled and base->cpu_base.lock held 557 */ 558 static int hrtimer_reprogram(struct hrtimer *timer, 559 struct hrtimer_clock_base *base) 560 { 561 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 562 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 563 int res; 564 565 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 566 567 /* 568 * When the callback is running, we do not reprogram the clock event 569 * device. The timer callback is either running on a different CPU or 570 * the callback is executed in the hrtimer_interrupt context. The 571 * reprogramming is handled either by the softirq, which called the 572 * callback or at the end of the hrtimer_interrupt. 573 */ 574 if (hrtimer_callback_running(timer)) 575 return 0; 576 577 /* 578 * CLOCK_REALTIME timer might be requested with an absolute 579 * expiry time which is less than base->offset. Nothing wrong 580 * about that, just avoid to call into the tick code, which 581 * has now objections against negative expiry values. 582 */ 583 if (expires.tv64 < 0) 584 return -ETIME; 585 586 if (expires.tv64 >= cpu_base->expires_next.tv64) 587 return 0; 588 589 /* 590 * If a hang was detected in the last timer interrupt then we 591 * do not schedule a timer which is earlier than the expiry 592 * which we enforced in the hang detection. We want the system 593 * to make progress. 594 */ 595 if (cpu_base->hang_detected) 596 return 0; 597 598 /* 599 * Clockevents returns -ETIME, when the event was in the past. 600 */ 601 res = tick_program_event(expires, 0); 602 if (!IS_ERR_VALUE(res)) 603 cpu_base->expires_next = expires; 604 return res; 605 } 606 607 /* 608 * Initialize the high resolution related parts of cpu_base 609 */ 610 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 611 { 612 base->expires_next.tv64 = KTIME_MAX; 613 base->hres_active = 0; 614 } 615 616 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 617 { 618 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 619 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 620 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 621 622 return ktime_get_update_offsets_now(offs_real, offs_boot, offs_tai); 623 } 624 625 /* 626 * Retrigger next event is called after clock was set 627 * 628 * Called with interrupts disabled via on_each_cpu() 629 */ 630 static void retrigger_next_event(void *arg) 631 { 632 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); 633 634 if (!hrtimer_hres_active()) 635 return; 636 637 raw_spin_lock(&base->lock); 638 hrtimer_update_base(base); 639 hrtimer_force_reprogram(base, 0); 640 raw_spin_unlock(&base->lock); 641 } 642 643 /* 644 * Switch to high resolution mode 645 */ 646 static int hrtimer_switch_to_hres(void) 647 { 648 int i, cpu = smp_processor_id(); 649 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); 650 unsigned long flags; 651 652 if (base->hres_active) 653 return 1; 654 655 local_irq_save(flags); 656 657 if (tick_init_highres()) { 658 local_irq_restore(flags); 659 printk(KERN_WARNING "Could not switch to high resolution " 660 "mode on CPU %d\n", cpu); 661 return 0; 662 } 663 base->hres_active = 1; 664 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) 665 base->clock_base[i].resolution = KTIME_HIGH_RES; 666 667 tick_setup_sched_timer(); 668 /* "Retrigger" the interrupt to get things going */ 669 retrigger_next_event(NULL); 670 local_irq_restore(flags); 671 return 1; 672 } 673 674 static void clock_was_set_work(struct work_struct *work) 675 { 676 clock_was_set(); 677 } 678 679 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 680 681 /* 682 * Called from timekeeping and resume code to reprogramm the hrtimer 683 * interrupt device on all cpus. 684 */ 685 void clock_was_set_delayed(void) 686 { 687 schedule_work(&hrtimer_work); 688 } 689 690 #else 691 692 static inline int hrtimer_hres_active(void) { return 0; } 693 static inline int hrtimer_is_hres_enabled(void) { return 0; } 694 static inline int hrtimer_switch_to_hres(void) { return 0; } 695 static inline void 696 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 697 static inline int hrtimer_reprogram(struct hrtimer *timer, 698 struct hrtimer_clock_base *base) 699 { 700 return 0; 701 } 702 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 703 static inline void retrigger_next_event(void *arg) { } 704 705 #endif /* CONFIG_HIGH_RES_TIMERS */ 706 707 /* 708 * Clock realtime was set 709 * 710 * Change the offset of the realtime clock vs. the monotonic 711 * clock. 712 * 713 * We might have to reprogram the high resolution timer interrupt. On 714 * SMP we call the architecture specific code to retrigger _all_ high 715 * resolution timer interrupts. On UP we just disable interrupts and 716 * call the high resolution interrupt code. 717 */ 718 void clock_was_set(void) 719 { 720 #ifdef CONFIG_HIGH_RES_TIMERS 721 /* Retrigger the CPU local events everywhere */ 722 on_each_cpu(retrigger_next_event, NULL, 1); 723 #endif 724 timerfd_clock_was_set(); 725 } 726 727 /* 728 * During resume we might have to reprogram the high resolution timer 729 * interrupt on all online CPUs. However, all other CPUs will be 730 * stopped with IRQs interrupts disabled so the clock_was_set() call 731 * must be deferred. 732 */ 733 void hrtimers_resume(void) 734 { 735 WARN_ONCE(!irqs_disabled(), 736 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 737 738 /* Retrigger on the local CPU */ 739 retrigger_next_event(NULL); 740 /* And schedule a retrigger for all others */ 741 clock_was_set_delayed(); 742 } 743 744 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) 745 { 746 #ifdef CONFIG_TIMER_STATS 747 if (timer->start_site) 748 return; 749 timer->start_site = __builtin_return_address(0); 750 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); 751 timer->start_pid = current->pid; 752 #endif 753 } 754 755 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) 756 { 757 #ifdef CONFIG_TIMER_STATS 758 timer->start_site = NULL; 759 #endif 760 } 761 762 static inline void timer_stats_account_hrtimer(struct hrtimer *timer) 763 { 764 #ifdef CONFIG_TIMER_STATS 765 if (likely(!timer_stats_active)) 766 return; 767 timer_stats_update_stats(timer, timer->start_pid, timer->start_site, 768 timer->function, timer->start_comm, 0); 769 #endif 770 } 771 772 /* 773 * Counterpart to lock_hrtimer_base above: 774 */ 775 static inline 776 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 777 { 778 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 779 } 780 781 /** 782 * hrtimer_forward - forward the timer expiry 783 * @timer: hrtimer to forward 784 * @now: forward past this time 785 * @interval: the interval to forward 786 * 787 * Forward the timer expiry so it will expire in the future. 788 * Returns the number of overruns. 789 */ 790 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 791 { 792 u64 orun = 1; 793 ktime_t delta; 794 795 delta = ktime_sub(now, hrtimer_get_expires(timer)); 796 797 if (delta.tv64 < 0) 798 return 0; 799 800 if (interval.tv64 < timer->base->resolution.tv64) 801 interval.tv64 = timer->base->resolution.tv64; 802 803 if (unlikely(delta.tv64 >= interval.tv64)) { 804 s64 incr = ktime_to_ns(interval); 805 806 orun = ktime_divns(delta, incr); 807 hrtimer_add_expires_ns(timer, incr * orun); 808 if (hrtimer_get_expires_tv64(timer) > now.tv64) 809 return orun; 810 /* 811 * This (and the ktime_add() below) is the 812 * correction for exact: 813 */ 814 orun++; 815 } 816 hrtimer_add_expires(timer, interval); 817 818 return orun; 819 } 820 EXPORT_SYMBOL_GPL(hrtimer_forward); 821 822 /* 823 * enqueue_hrtimer - internal function to (re)start a timer 824 * 825 * The timer is inserted in expiry order. Insertion into the 826 * red black tree is O(log(n)). Must hold the base lock. 827 * 828 * Returns 1 when the new timer is the leftmost timer in the tree. 829 */ 830 static int enqueue_hrtimer(struct hrtimer *timer, 831 struct hrtimer_clock_base *base) 832 { 833 debug_activate(timer); 834 835 timerqueue_add(&base->active, &timer->node); 836 base->cpu_base->active_bases |= 1 << base->index; 837 838 /* 839 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the 840 * state of a possibly running callback. 841 */ 842 timer->state |= HRTIMER_STATE_ENQUEUED; 843 844 return (&timer->node == base->active.next); 845 } 846 847 /* 848 * __remove_hrtimer - internal function to remove a timer 849 * 850 * Caller must hold the base lock. 851 * 852 * High resolution timer mode reprograms the clock event device when the 853 * timer is the one which expires next. The caller can disable this by setting 854 * reprogram to zero. This is useful, when the context does a reprogramming 855 * anyway (e.g. timer interrupt) 856 */ 857 static void __remove_hrtimer(struct hrtimer *timer, 858 struct hrtimer_clock_base *base, 859 unsigned long newstate, int reprogram) 860 { 861 struct timerqueue_node *next_timer; 862 if (!(timer->state & HRTIMER_STATE_ENQUEUED)) 863 goto out; 864 865 next_timer = timerqueue_getnext(&base->active); 866 timerqueue_del(&base->active, &timer->node); 867 if (&timer->node == next_timer) { 868 #ifdef CONFIG_HIGH_RES_TIMERS 869 /* Reprogram the clock event device. if enabled */ 870 if (reprogram && hrtimer_hres_active()) { 871 ktime_t expires; 872 873 expires = ktime_sub(hrtimer_get_expires(timer), 874 base->offset); 875 if (base->cpu_base->expires_next.tv64 == expires.tv64) 876 hrtimer_force_reprogram(base->cpu_base, 1); 877 } 878 #endif 879 } 880 if (!timerqueue_getnext(&base->active)) 881 base->cpu_base->active_bases &= ~(1 << base->index); 882 out: 883 timer->state = newstate; 884 } 885 886 /* 887 * remove hrtimer, called with base lock held 888 */ 889 static inline int 890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) 891 { 892 if (hrtimer_is_queued(timer)) { 893 unsigned long state; 894 int reprogram; 895 896 /* 897 * Remove the timer and force reprogramming when high 898 * resolution mode is active and the timer is on the current 899 * CPU. If we remove a timer on another CPU, reprogramming is 900 * skipped. The interrupt event on this CPU is fired and 901 * reprogramming happens in the interrupt handler. This is a 902 * rare case and less expensive than a smp call. 903 */ 904 debug_deactivate(timer); 905 timer_stats_hrtimer_clear_start_info(timer); 906 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); 907 /* 908 * We must preserve the CALLBACK state flag here, 909 * otherwise we could move the timer base in 910 * switch_hrtimer_base. 911 */ 912 state = timer->state & HRTIMER_STATE_CALLBACK; 913 __remove_hrtimer(timer, base, state, reprogram); 914 return 1; 915 } 916 return 0; 917 } 918 919 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 920 unsigned long delta_ns, const enum hrtimer_mode mode, 921 int wakeup) 922 { 923 struct hrtimer_clock_base *base, *new_base; 924 unsigned long flags; 925 int ret, leftmost; 926 927 base = lock_hrtimer_base(timer, &flags); 928 929 /* Remove an active timer from the queue: */ 930 ret = remove_hrtimer(timer, base); 931 932 if (mode & HRTIMER_MODE_REL) { 933 tim = ktime_add_safe(tim, base->get_time()); 934 /* 935 * CONFIG_TIME_LOW_RES is a temporary way for architectures 936 * to signal that they simply return xtime in 937 * do_gettimeoffset(). In this case we want to round up by 938 * resolution when starting a relative timer, to avoid short 939 * timeouts. This will go away with the GTOD framework. 940 */ 941 #ifdef CONFIG_TIME_LOW_RES 942 tim = ktime_add_safe(tim, base->resolution); 943 #endif 944 } 945 946 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 947 948 /* Switch the timer base, if necessary: */ 949 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 950 951 timer_stats_hrtimer_set_start_info(timer); 952 953 leftmost = enqueue_hrtimer(timer, new_base); 954 955 if (!leftmost) { 956 unlock_hrtimer_base(timer, &flags); 957 return ret; 958 } 959 960 if (!hrtimer_is_hres_active(timer)) { 961 /* 962 * Kick to reschedule the next tick to handle the new timer 963 * on dynticks target. 964 */ 965 wake_up_nohz_cpu(new_base->cpu_base->cpu); 966 } else if (new_base->cpu_base == &__get_cpu_var(hrtimer_bases) && 967 hrtimer_reprogram(timer, new_base)) { 968 /* 969 * Only allow reprogramming if the new base is on this CPU. 970 * (it might still be on another CPU if the timer was pending) 971 * 972 * XXX send_remote_softirq() ? 973 */ 974 if (wakeup) { 975 /* 976 * We need to drop cpu_base->lock to avoid a 977 * lock ordering issue vs. rq->lock. 978 */ 979 raw_spin_unlock(&new_base->cpu_base->lock); 980 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 981 local_irq_restore(flags); 982 return ret; 983 } else { 984 __raise_softirq_irqoff(HRTIMER_SOFTIRQ); 985 } 986 } 987 988 unlock_hrtimer_base(timer, &flags); 989 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(__hrtimer_start_range_ns); 993 994 /** 995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 996 * @timer: the timer to be added 997 * @tim: expiry time 998 * @delta_ns: "slack" range for the timer 999 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1000 * relative (HRTIMER_MODE_REL) 1001 * 1002 * Returns: 1003 * 0 on success 1004 * 1 when the timer was active 1005 */ 1006 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1007 unsigned long delta_ns, const enum hrtimer_mode mode) 1008 { 1009 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); 1010 } 1011 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1012 1013 /** 1014 * hrtimer_start - (re)start an hrtimer on the current CPU 1015 * @timer: the timer to be added 1016 * @tim: expiry time 1017 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 1018 * relative (HRTIMER_MODE_REL) 1019 * 1020 * Returns: 1021 * 0 on success 1022 * 1 when the timer was active 1023 */ 1024 int 1025 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) 1026 { 1027 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); 1028 } 1029 EXPORT_SYMBOL_GPL(hrtimer_start); 1030 1031 1032 /** 1033 * hrtimer_try_to_cancel - try to deactivate a timer 1034 * @timer: hrtimer to stop 1035 * 1036 * Returns: 1037 * 0 when the timer was not active 1038 * 1 when the timer was active 1039 * -1 when the timer is currently excuting the callback function and 1040 * cannot be stopped 1041 */ 1042 int hrtimer_try_to_cancel(struct hrtimer *timer) 1043 { 1044 struct hrtimer_clock_base *base; 1045 unsigned long flags; 1046 int ret = -1; 1047 1048 base = lock_hrtimer_base(timer, &flags); 1049 1050 if (!hrtimer_callback_running(timer)) 1051 ret = remove_hrtimer(timer, base); 1052 1053 unlock_hrtimer_base(timer, &flags); 1054 1055 return ret; 1056 1057 } 1058 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1059 1060 /** 1061 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1062 * @timer: the timer to be cancelled 1063 * 1064 * Returns: 1065 * 0 when the timer was not active 1066 * 1 when the timer was active 1067 */ 1068 int hrtimer_cancel(struct hrtimer *timer) 1069 { 1070 for (;;) { 1071 int ret = hrtimer_try_to_cancel(timer); 1072 1073 if (ret >= 0) 1074 return ret; 1075 cpu_relax(); 1076 } 1077 } 1078 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1079 1080 /** 1081 * hrtimer_get_remaining - get remaining time for the timer 1082 * @timer: the timer to read 1083 */ 1084 ktime_t hrtimer_get_remaining(const struct hrtimer *timer) 1085 { 1086 unsigned long flags; 1087 ktime_t rem; 1088 1089 lock_hrtimer_base(timer, &flags); 1090 rem = hrtimer_expires_remaining(timer); 1091 unlock_hrtimer_base(timer, &flags); 1092 1093 return rem; 1094 } 1095 EXPORT_SYMBOL_GPL(hrtimer_get_remaining); 1096 1097 #ifdef CONFIG_NO_HZ_COMMON 1098 /** 1099 * hrtimer_get_next_event - get the time until next expiry event 1100 * 1101 * Returns the delta to the next expiry event or KTIME_MAX if no timer 1102 * is pending. 1103 */ 1104 ktime_t hrtimer_get_next_event(void) 1105 { 1106 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1107 struct hrtimer_clock_base *base = cpu_base->clock_base; 1108 ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; 1109 unsigned long flags; 1110 int i; 1111 1112 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1113 1114 if (!hrtimer_hres_active()) { 1115 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { 1116 struct hrtimer *timer; 1117 struct timerqueue_node *next; 1118 1119 next = timerqueue_getnext(&base->active); 1120 if (!next) 1121 continue; 1122 1123 timer = container_of(next, struct hrtimer, node); 1124 delta.tv64 = hrtimer_get_expires_tv64(timer); 1125 delta = ktime_sub(delta, base->get_time()); 1126 if (delta.tv64 < mindelta.tv64) 1127 mindelta.tv64 = delta.tv64; 1128 } 1129 } 1130 1131 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1132 1133 if (mindelta.tv64 < 0) 1134 mindelta.tv64 = 0; 1135 return mindelta; 1136 } 1137 #endif 1138 1139 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1140 enum hrtimer_mode mode) 1141 { 1142 struct hrtimer_cpu_base *cpu_base; 1143 int base; 1144 1145 memset(timer, 0, sizeof(struct hrtimer)); 1146 1147 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1148 1149 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1150 clock_id = CLOCK_MONOTONIC; 1151 1152 base = hrtimer_clockid_to_base(clock_id); 1153 timer->base = &cpu_base->clock_base[base]; 1154 timerqueue_init(&timer->node); 1155 1156 #ifdef CONFIG_TIMER_STATS 1157 timer->start_site = NULL; 1158 timer->start_pid = -1; 1159 memset(timer->start_comm, 0, TASK_COMM_LEN); 1160 #endif 1161 } 1162 1163 /** 1164 * hrtimer_init - initialize a timer to the given clock 1165 * @timer: the timer to be initialized 1166 * @clock_id: the clock to be used 1167 * @mode: timer mode abs/rel 1168 */ 1169 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1170 enum hrtimer_mode mode) 1171 { 1172 debug_init(timer, clock_id, mode); 1173 __hrtimer_init(timer, clock_id, mode); 1174 } 1175 EXPORT_SYMBOL_GPL(hrtimer_init); 1176 1177 /** 1178 * hrtimer_get_res - get the timer resolution for a clock 1179 * @which_clock: which clock to query 1180 * @tp: pointer to timespec variable to store the resolution 1181 * 1182 * Store the resolution of the clock selected by @which_clock in the 1183 * variable pointed to by @tp. 1184 */ 1185 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) 1186 { 1187 struct hrtimer_cpu_base *cpu_base; 1188 int base = hrtimer_clockid_to_base(which_clock); 1189 1190 cpu_base = &__raw_get_cpu_var(hrtimer_bases); 1191 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); 1192 1193 return 0; 1194 } 1195 EXPORT_SYMBOL_GPL(hrtimer_get_res); 1196 1197 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) 1198 { 1199 struct hrtimer_clock_base *base = timer->base; 1200 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1201 enum hrtimer_restart (*fn)(struct hrtimer *); 1202 int restart; 1203 1204 WARN_ON(!irqs_disabled()); 1205 1206 debug_deactivate(timer); 1207 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); 1208 timer_stats_account_hrtimer(timer); 1209 fn = timer->function; 1210 1211 /* 1212 * Because we run timers from hardirq context, there is no chance 1213 * they get migrated to another cpu, therefore its safe to unlock 1214 * the timer base. 1215 */ 1216 raw_spin_unlock(&cpu_base->lock); 1217 trace_hrtimer_expire_entry(timer, now); 1218 restart = fn(timer); 1219 trace_hrtimer_expire_exit(timer); 1220 raw_spin_lock(&cpu_base->lock); 1221 1222 /* 1223 * Note: We clear the CALLBACK bit after enqueue_hrtimer and 1224 * we do not reprogramm the event hardware. Happens either in 1225 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1226 */ 1227 if (restart != HRTIMER_NORESTART) { 1228 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); 1229 enqueue_hrtimer(timer, base); 1230 } 1231 1232 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); 1233 1234 timer->state &= ~HRTIMER_STATE_CALLBACK; 1235 } 1236 1237 #ifdef CONFIG_HIGH_RES_TIMERS 1238 1239 /* 1240 * High resolution timer interrupt 1241 * Called with interrupts disabled 1242 */ 1243 void hrtimer_interrupt(struct clock_event_device *dev) 1244 { 1245 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1246 ktime_t expires_next, now, entry_time, delta; 1247 int i, retries = 0; 1248 1249 BUG_ON(!cpu_base->hres_active); 1250 cpu_base->nr_events++; 1251 dev->next_event.tv64 = KTIME_MAX; 1252 1253 raw_spin_lock(&cpu_base->lock); 1254 entry_time = now = hrtimer_update_base(cpu_base); 1255 retry: 1256 expires_next.tv64 = KTIME_MAX; 1257 /* 1258 * We set expires_next to KTIME_MAX here with cpu_base->lock 1259 * held to prevent that a timer is enqueued in our queue via 1260 * the migration code. This does not affect enqueueing of 1261 * timers which run their callback and need to be requeued on 1262 * this CPU. 1263 */ 1264 cpu_base->expires_next.tv64 = KTIME_MAX; 1265 1266 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1267 struct hrtimer_clock_base *base; 1268 struct timerqueue_node *node; 1269 ktime_t basenow; 1270 1271 if (!(cpu_base->active_bases & (1 << i))) 1272 continue; 1273 1274 base = cpu_base->clock_base + i; 1275 basenow = ktime_add(now, base->offset); 1276 1277 while ((node = timerqueue_getnext(&base->active))) { 1278 struct hrtimer *timer; 1279 1280 timer = container_of(node, struct hrtimer, node); 1281 1282 /* 1283 * The immediate goal for using the softexpires is 1284 * minimizing wakeups, not running timers at the 1285 * earliest interrupt after their soft expiration. 1286 * This allows us to avoid using a Priority Search 1287 * Tree, which can answer a stabbing querry for 1288 * overlapping intervals and instead use the simple 1289 * BST we already have. 1290 * We don't add extra wakeups by delaying timers that 1291 * are right-of a not yet expired timer, because that 1292 * timer will have to trigger a wakeup anyway. 1293 */ 1294 1295 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { 1296 ktime_t expires; 1297 1298 expires = ktime_sub(hrtimer_get_expires(timer), 1299 base->offset); 1300 if (expires.tv64 < 0) 1301 expires.tv64 = KTIME_MAX; 1302 if (expires.tv64 < expires_next.tv64) 1303 expires_next = expires; 1304 break; 1305 } 1306 1307 __run_hrtimer(timer, &basenow); 1308 } 1309 } 1310 1311 /* 1312 * Store the new expiry value so the migration code can verify 1313 * against it. 1314 */ 1315 cpu_base->expires_next = expires_next; 1316 raw_spin_unlock(&cpu_base->lock); 1317 1318 /* Reprogramming necessary ? */ 1319 if (expires_next.tv64 == KTIME_MAX || 1320 !tick_program_event(expires_next, 0)) { 1321 cpu_base->hang_detected = 0; 1322 return; 1323 } 1324 1325 /* 1326 * The next timer was already expired due to: 1327 * - tracing 1328 * - long lasting callbacks 1329 * - being scheduled away when running in a VM 1330 * 1331 * We need to prevent that we loop forever in the hrtimer 1332 * interrupt routine. We give it 3 attempts to avoid 1333 * overreacting on some spurious event. 1334 * 1335 * Acquire base lock for updating the offsets and retrieving 1336 * the current time. 1337 */ 1338 raw_spin_lock(&cpu_base->lock); 1339 now = hrtimer_update_base(cpu_base); 1340 cpu_base->nr_retries++; 1341 if (++retries < 3) 1342 goto retry; 1343 /* 1344 * Give the system a chance to do something else than looping 1345 * here. We stored the entry time, so we know exactly how long 1346 * we spent here. We schedule the next event this amount of 1347 * time away. 1348 */ 1349 cpu_base->nr_hangs++; 1350 cpu_base->hang_detected = 1; 1351 raw_spin_unlock(&cpu_base->lock); 1352 delta = ktime_sub(now, entry_time); 1353 if (delta.tv64 > cpu_base->max_hang_time.tv64) 1354 cpu_base->max_hang_time = delta; 1355 /* 1356 * Limit it to a sensible value as we enforce a longer 1357 * delay. Give the CPU at least 100ms to catch up. 1358 */ 1359 if (delta.tv64 > 100 * NSEC_PER_MSEC) 1360 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1361 else 1362 expires_next = ktime_add(now, delta); 1363 tick_program_event(expires_next, 1); 1364 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1365 ktime_to_ns(delta)); 1366 } 1367 1368 /* 1369 * local version of hrtimer_peek_ahead_timers() called with interrupts 1370 * disabled. 1371 */ 1372 static void __hrtimer_peek_ahead_timers(void) 1373 { 1374 struct tick_device *td; 1375 1376 if (!hrtimer_hres_active()) 1377 return; 1378 1379 td = &__get_cpu_var(tick_cpu_device); 1380 if (td && td->evtdev) 1381 hrtimer_interrupt(td->evtdev); 1382 } 1383 1384 /** 1385 * hrtimer_peek_ahead_timers -- run soft-expired timers now 1386 * 1387 * hrtimer_peek_ahead_timers will peek at the timer queue of 1388 * the current cpu and check if there are any timers for which 1389 * the soft expires time has passed. If any such timers exist, 1390 * they are run immediately and then removed from the timer queue. 1391 * 1392 */ 1393 void hrtimer_peek_ahead_timers(void) 1394 { 1395 unsigned long flags; 1396 1397 local_irq_save(flags); 1398 __hrtimer_peek_ahead_timers(); 1399 local_irq_restore(flags); 1400 } 1401 1402 static void run_hrtimer_softirq(struct softirq_action *h) 1403 { 1404 hrtimer_peek_ahead_timers(); 1405 } 1406 1407 #else /* CONFIG_HIGH_RES_TIMERS */ 1408 1409 static inline void __hrtimer_peek_ahead_timers(void) { } 1410 1411 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1412 1413 /* 1414 * Called from timer softirq every jiffy, expire hrtimers: 1415 * 1416 * For HRT its the fall back code to run the softirq in the timer 1417 * softirq context in case the hrtimer initialization failed or has 1418 * not been done yet. 1419 */ 1420 void hrtimer_run_pending(void) 1421 { 1422 if (hrtimer_hres_active()) 1423 return; 1424 1425 /* 1426 * This _is_ ugly: We have to check in the softirq context, 1427 * whether we can switch to highres and / or nohz mode. The 1428 * clocksource switch happens in the timer interrupt with 1429 * xtime_lock held. Notification from there only sets the 1430 * check bit in the tick_oneshot code, otherwise we might 1431 * deadlock vs. xtime_lock. 1432 */ 1433 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) 1434 hrtimer_switch_to_hres(); 1435 } 1436 1437 /* 1438 * Called from hardirq context every jiffy 1439 */ 1440 void hrtimer_run_queues(void) 1441 { 1442 struct timerqueue_node *node; 1443 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); 1444 struct hrtimer_clock_base *base; 1445 int index, gettime = 1; 1446 1447 if (hrtimer_hres_active()) 1448 return; 1449 1450 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { 1451 base = &cpu_base->clock_base[index]; 1452 if (!timerqueue_getnext(&base->active)) 1453 continue; 1454 1455 if (gettime) { 1456 hrtimer_get_softirq_time(cpu_base); 1457 gettime = 0; 1458 } 1459 1460 raw_spin_lock(&cpu_base->lock); 1461 1462 while ((node = timerqueue_getnext(&base->active))) { 1463 struct hrtimer *timer; 1464 1465 timer = container_of(node, struct hrtimer, node); 1466 if (base->softirq_time.tv64 <= 1467 hrtimer_get_expires_tv64(timer)) 1468 break; 1469 1470 __run_hrtimer(timer, &base->softirq_time); 1471 } 1472 raw_spin_unlock(&cpu_base->lock); 1473 } 1474 } 1475 1476 /* 1477 * Sleep related functions: 1478 */ 1479 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1480 { 1481 struct hrtimer_sleeper *t = 1482 container_of(timer, struct hrtimer_sleeper, timer); 1483 struct task_struct *task = t->task; 1484 1485 t->task = NULL; 1486 if (task) 1487 wake_up_process(task); 1488 1489 return HRTIMER_NORESTART; 1490 } 1491 1492 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1493 { 1494 sl->timer.function = hrtimer_wakeup; 1495 sl->task = task; 1496 } 1497 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1498 1499 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1500 { 1501 hrtimer_init_sleeper(t, current); 1502 1503 do { 1504 set_current_state(TASK_INTERRUPTIBLE); 1505 hrtimer_start_expires(&t->timer, mode); 1506 if (!hrtimer_active(&t->timer)) 1507 t->task = NULL; 1508 1509 if (likely(t->task)) 1510 freezable_schedule(); 1511 1512 hrtimer_cancel(&t->timer); 1513 mode = HRTIMER_MODE_ABS; 1514 1515 } while (t->task && !signal_pending(current)); 1516 1517 __set_current_state(TASK_RUNNING); 1518 1519 return t->task == NULL; 1520 } 1521 1522 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1523 { 1524 struct timespec rmt; 1525 ktime_t rem; 1526 1527 rem = hrtimer_expires_remaining(timer); 1528 if (rem.tv64 <= 0) 1529 return 0; 1530 rmt = ktime_to_timespec(rem); 1531 1532 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1533 return -EFAULT; 1534 1535 return 1; 1536 } 1537 1538 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1539 { 1540 struct hrtimer_sleeper t; 1541 struct timespec __user *rmtp; 1542 int ret = 0; 1543 1544 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1545 HRTIMER_MODE_ABS); 1546 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1547 1548 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1549 goto out; 1550 1551 rmtp = restart->nanosleep.rmtp; 1552 if (rmtp) { 1553 ret = update_rmtp(&t.timer, rmtp); 1554 if (ret <= 0) 1555 goto out; 1556 } 1557 1558 /* The other values in restart are already filled in */ 1559 ret = -ERESTART_RESTARTBLOCK; 1560 out: 1561 destroy_hrtimer_on_stack(&t.timer); 1562 return ret; 1563 } 1564 1565 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1566 const enum hrtimer_mode mode, const clockid_t clockid) 1567 { 1568 struct restart_block *restart; 1569 struct hrtimer_sleeper t; 1570 int ret = 0; 1571 unsigned long slack; 1572 1573 slack = current->timer_slack_ns; 1574 if (dl_task(current) || rt_task(current)) 1575 slack = 0; 1576 1577 hrtimer_init_on_stack(&t.timer, clockid, mode); 1578 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1579 if (do_nanosleep(&t, mode)) 1580 goto out; 1581 1582 /* Absolute timers do not update the rmtp value and restart: */ 1583 if (mode == HRTIMER_MODE_ABS) { 1584 ret = -ERESTARTNOHAND; 1585 goto out; 1586 } 1587 1588 if (rmtp) { 1589 ret = update_rmtp(&t.timer, rmtp); 1590 if (ret <= 0) 1591 goto out; 1592 } 1593 1594 restart = ¤t_thread_info()->restart_block; 1595 restart->fn = hrtimer_nanosleep_restart; 1596 restart->nanosleep.clockid = t.timer.base->clockid; 1597 restart->nanosleep.rmtp = rmtp; 1598 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1599 1600 ret = -ERESTART_RESTARTBLOCK; 1601 out: 1602 destroy_hrtimer_on_stack(&t.timer); 1603 return ret; 1604 } 1605 1606 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1607 struct timespec __user *, rmtp) 1608 { 1609 struct timespec tu; 1610 1611 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1612 return -EFAULT; 1613 1614 if (!timespec_valid(&tu)) 1615 return -EINVAL; 1616 1617 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1618 } 1619 1620 /* 1621 * Functions related to boot-time initialization: 1622 */ 1623 static void init_hrtimers_cpu(int cpu) 1624 { 1625 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1626 int i; 1627 1628 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1629 cpu_base->clock_base[i].cpu_base = cpu_base; 1630 timerqueue_init_head(&cpu_base->clock_base[i].active); 1631 } 1632 1633 cpu_base->cpu = cpu; 1634 hrtimer_init_hres(cpu_base); 1635 } 1636 1637 #ifdef CONFIG_HOTPLUG_CPU 1638 1639 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1640 struct hrtimer_clock_base *new_base) 1641 { 1642 struct hrtimer *timer; 1643 struct timerqueue_node *node; 1644 1645 while ((node = timerqueue_getnext(&old_base->active))) { 1646 timer = container_of(node, struct hrtimer, node); 1647 BUG_ON(hrtimer_callback_running(timer)); 1648 debug_deactivate(timer); 1649 1650 /* 1651 * Mark it as STATE_MIGRATE not INACTIVE otherwise the 1652 * timer could be seen as !active and just vanish away 1653 * under us on another CPU 1654 */ 1655 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); 1656 timer->base = new_base; 1657 /* 1658 * Enqueue the timers on the new cpu. This does not 1659 * reprogram the event device in case the timer 1660 * expires before the earliest on this CPU, but we run 1661 * hrtimer_interrupt after we migrated everything to 1662 * sort out already expired timers and reprogram the 1663 * event device. 1664 */ 1665 enqueue_hrtimer(timer, new_base); 1666 1667 /* Clear the migration state bit */ 1668 timer->state &= ~HRTIMER_STATE_MIGRATE; 1669 } 1670 } 1671 1672 static void migrate_hrtimers(int scpu) 1673 { 1674 struct hrtimer_cpu_base *old_base, *new_base; 1675 int i; 1676 1677 BUG_ON(cpu_online(scpu)); 1678 tick_cancel_sched_timer(scpu); 1679 1680 local_irq_disable(); 1681 old_base = &per_cpu(hrtimer_bases, scpu); 1682 new_base = &__get_cpu_var(hrtimer_bases); 1683 /* 1684 * The caller is globally serialized and nobody else 1685 * takes two locks at once, deadlock is not possible. 1686 */ 1687 raw_spin_lock(&new_base->lock); 1688 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1689 1690 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1691 migrate_hrtimer_list(&old_base->clock_base[i], 1692 &new_base->clock_base[i]); 1693 } 1694 1695 raw_spin_unlock(&old_base->lock); 1696 raw_spin_unlock(&new_base->lock); 1697 1698 /* Check, if we got expired work to do */ 1699 __hrtimer_peek_ahead_timers(); 1700 local_irq_enable(); 1701 } 1702 1703 #endif /* CONFIG_HOTPLUG_CPU */ 1704 1705 static int hrtimer_cpu_notify(struct notifier_block *self, 1706 unsigned long action, void *hcpu) 1707 { 1708 int scpu = (long)hcpu; 1709 1710 switch (action) { 1711 1712 case CPU_UP_PREPARE: 1713 case CPU_UP_PREPARE_FROZEN: 1714 init_hrtimers_cpu(scpu); 1715 break; 1716 1717 #ifdef CONFIG_HOTPLUG_CPU 1718 case CPU_DYING: 1719 case CPU_DYING_FROZEN: 1720 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); 1721 break; 1722 case CPU_DEAD: 1723 case CPU_DEAD_FROZEN: 1724 { 1725 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); 1726 migrate_hrtimers(scpu); 1727 break; 1728 } 1729 #endif 1730 1731 default: 1732 break; 1733 } 1734 1735 return NOTIFY_OK; 1736 } 1737 1738 static struct notifier_block hrtimers_nb = { 1739 .notifier_call = hrtimer_cpu_notify, 1740 }; 1741 1742 void __init hrtimers_init(void) 1743 { 1744 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, 1745 (void *)(long)smp_processor_id()); 1746 register_cpu_notifier(&hrtimers_nb); 1747 #ifdef CONFIG_HIGH_RES_TIMERS 1748 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); 1749 #endif 1750 } 1751 1752 /** 1753 * schedule_hrtimeout_range_clock - sleep until timeout 1754 * @expires: timeout value (ktime_t) 1755 * @delta: slack in expires timeout (ktime_t) 1756 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1757 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1758 */ 1759 int __sched 1760 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, 1761 const enum hrtimer_mode mode, int clock) 1762 { 1763 struct hrtimer_sleeper t; 1764 1765 /* 1766 * Optimize when a zero timeout value is given. It does not 1767 * matter whether this is an absolute or a relative time. 1768 */ 1769 if (expires && !expires->tv64) { 1770 __set_current_state(TASK_RUNNING); 1771 return 0; 1772 } 1773 1774 /* 1775 * A NULL parameter means "infinite" 1776 */ 1777 if (!expires) { 1778 schedule(); 1779 __set_current_state(TASK_RUNNING); 1780 return -EINTR; 1781 } 1782 1783 hrtimer_init_on_stack(&t.timer, clock, mode); 1784 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1785 1786 hrtimer_init_sleeper(&t, current); 1787 1788 hrtimer_start_expires(&t.timer, mode); 1789 if (!hrtimer_active(&t.timer)) 1790 t.task = NULL; 1791 1792 if (likely(t.task)) 1793 schedule(); 1794 1795 hrtimer_cancel(&t.timer); 1796 destroy_hrtimer_on_stack(&t.timer); 1797 1798 __set_current_state(TASK_RUNNING); 1799 1800 return !t.task ? 0 : -EINTR; 1801 } 1802 1803 /** 1804 * schedule_hrtimeout_range - sleep until timeout 1805 * @expires: timeout value (ktime_t) 1806 * @delta: slack in expires timeout (ktime_t) 1807 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1808 * 1809 * Make the current task sleep until the given expiry time has 1810 * elapsed. The routine will return immediately unless 1811 * the current task state has been set (see set_current_state()). 1812 * 1813 * The @delta argument gives the kernel the freedom to schedule the 1814 * actual wakeup to a time that is both power and performance friendly. 1815 * The kernel give the normal best effort behavior for "@expires+@delta", 1816 * but may decide to fire the timer earlier, but no earlier than @expires. 1817 * 1818 * You can set the task state as follows - 1819 * 1820 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1821 * pass before the routine returns. 1822 * 1823 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1824 * delivered to the current task. 1825 * 1826 * The current task state is guaranteed to be TASK_RUNNING when this 1827 * routine returns. 1828 * 1829 * Returns 0 when the timer has expired otherwise -EINTR 1830 */ 1831 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, 1832 const enum hrtimer_mode mode) 1833 { 1834 return schedule_hrtimeout_range_clock(expires, delta, mode, 1835 CLOCK_MONOTONIC); 1836 } 1837 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1838 1839 /** 1840 * schedule_hrtimeout - sleep until timeout 1841 * @expires: timeout value (ktime_t) 1842 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1843 * 1844 * Make the current task sleep until the given expiry time has 1845 * elapsed. The routine will return immediately unless 1846 * the current task state has been set (see set_current_state()). 1847 * 1848 * You can set the task state as follows - 1849 * 1850 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1851 * pass before the routine returns. 1852 * 1853 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1854 * delivered to the current task. 1855 * 1856 * The current task state is guaranteed to be TASK_RUNNING when this 1857 * routine returns. 1858 * 1859 * Returns 0 when the timer has expired otherwise -EINTR 1860 */ 1861 int __sched schedule_hrtimeout(ktime_t *expires, 1862 const enum hrtimer_mode mode) 1863 { 1864 return schedule_hrtimeout_range(expires, 0, mode); 1865 } 1866 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1867