1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/interrupt.h> 41 #include <linux/tick.h> 42 #include <linux/seq_file.h> 43 #include <linux/err.h> 44 #include <linux/debugobjects.h> 45 #include <linux/sched/signal.h> 46 #include <linux/sched/sysctl.h> 47 #include <linux/sched/rt.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/nohz.h> 50 #include <linux/sched/debug.h> 51 #include <linux/timer.h> 52 #include <linux/freezer.h> 53 #include <linux/compat.h> 54 55 #include <linux/uaccess.h> 56 57 #include <trace/events/timer.h> 58 59 #include "tick-internal.h" 60 61 /* 62 * Masks for selecting the soft and hard context timers from 63 * cpu_base->active 64 */ 65 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 66 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 67 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 68 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 69 70 /* 71 * The timer bases: 72 * 73 * There are more clockids than hrtimer bases. Thus, we index 74 * into the timer bases by the hrtimer_base_type enum. When trying 75 * to reach a base using a clockid, hrtimer_clockid_to_base() 76 * is used to convert from clockid to the proper hrtimer_base_type. 77 */ 78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 79 { 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 81 .clock_base = 82 { 83 { 84 .index = HRTIMER_BASE_MONOTONIC, 85 .clockid = CLOCK_MONOTONIC, 86 .get_time = &ktime_get, 87 }, 88 { 89 .index = HRTIMER_BASE_REALTIME, 90 .clockid = CLOCK_REALTIME, 91 .get_time = &ktime_get_real, 92 }, 93 { 94 .index = HRTIMER_BASE_TAI, 95 .clockid = CLOCK_TAI, 96 .get_time = &ktime_get_clocktai, 97 }, 98 { 99 .index = HRTIMER_BASE_MONOTONIC_SOFT, 100 .clockid = CLOCK_MONOTONIC, 101 .get_time = &ktime_get, 102 }, 103 { 104 .index = HRTIMER_BASE_REALTIME_SOFT, 105 .clockid = CLOCK_REALTIME, 106 .get_time = &ktime_get_real, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_MONOTONIC, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 139 }; 140 141 #define migration_base migration_cpu_base.clock_base[0] 142 143 /* 144 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 145 * means that all timers which are tied to this base via timer->base are 146 * locked, and the base itself is locked too. 147 * 148 * So __run_timers/migrate_timers can safely modify all timers which could 149 * be found on the lists/queues. 150 * 151 * When the timer's base is locked, and the timer removed from list, it is 152 * possible to set timer->base = &migration_base and drop the lock: the timer 153 * remains locked. 154 */ 155 static 156 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 157 unsigned long *flags) 158 { 159 struct hrtimer_clock_base *base; 160 161 for (;;) { 162 base = timer->base; 163 if (likely(base != &migration_base)) { 164 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 165 if (likely(base == timer->base)) 166 return base; 167 /* The timer has migrated to another CPU: */ 168 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 169 } 170 cpu_relax(); 171 } 172 } 173 174 /* 175 * We do not migrate the timer when it is expiring before the next 176 * event on the target cpu. When high resolution is enabled, we cannot 177 * reprogram the target cpu hardware and we would cause it to fire 178 * late. To keep it simple, we handle the high resolution enabled and 179 * disabled case similar. 180 * 181 * Called with cpu_base->lock of target cpu held. 182 */ 183 static int 184 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 185 { 186 ktime_t expires; 187 188 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 189 return expires < new_base->cpu_base->expires_next; 190 } 191 192 static inline 193 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 194 int pinned) 195 { 196 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 197 if (static_branch_likely(&timers_migration_enabled) && !pinned) 198 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 199 #endif 200 return base; 201 } 202 203 /* 204 * We switch the timer base to a power-optimized selected CPU target, 205 * if: 206 * - NO_HZ_COMMON is enabled 207 * - timer migration is enabled 208 * - the timer callback is not running 209 * - the timer is not the first expiring timer on the new target 210 * 211 * If one of the above requirements is not fulfilled we move the timer 212 * to the current CPU or leave it on the previously assigned CPU if 213 * the timer callback is currently running. 214 */ 215 static inline struct hrtimer_clock_base * 216 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 217 int pinned) 218 { 219 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 220 struct hrtimer_clock_base *new_base; 221 int basenum = base->index; 222 223 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 224 new_cpu_base = get_target_base(this_cpu_base, pinned); 225 again: 226 new_base = &new_cpu_base->clock_base[basenum]; 227 228 if (base != new_base) { 229 /* 230 * We are trying to move timer to new_base. 231 * However we can't change timer's base while it is running, 232 * so we keep it on the same CPU. No hassle vs. reprogramming 233 * the event source in the high resolution case. The softirq 234 * code will take care of this when the timer function has 235 * completed. There is no conflict as we hold the lock until 236 * the timer is enqueued. 237 */ 238 if (unlikely(hrtimer_callback_running(timer))) 239 return base; 240 241 /* See the comment in lock_hrtimer_base() */ 242 timer->base = &migration_base; 243 raw_spin_unlock(&base->cpu_base->lock); 244 raw_spin_lock(&new_base->cpu_base->lock); 245 246 if (new_cpu_base != this_cpu_base && 247 hrtimer_check_target(timer, new_base)) { 248 raw_spin_unlock(&new_base->cpu_base->lock); 249 raw_spin_lock(&base->cpu_base->lock); 250 new_cpu_base = this_cpu_base; 251 timer->base = base; 252 goto again; 253 } 254 timer->base = new_base; 255 } else { 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 new_cpu_base = this_cpu_base; 259 goto again; 260 } 261 } 262 return new_base; 263 } 264 265 #else /* CONFIG_SMP */ 266 267 static inline struct hrtimer_clock_base * 268 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 269 { 270 struct hrtimer_clock_base *base = timer->base; 271 272 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 273 274 return base; 275 } 276 277 # define switch_hrtimer_base(t, b, p) (b) 278 279 #endif /* !CONFIG_SMP */ 280 281 /* 282 * Functions for the union type storage format of ktime_t which are 283 * too large for inlining: 284 */ 285 #if BITS_PER_LONG < 64 286 /* 287 * Divide a ktime value by a nanosecond value 288 */ 289 s64 __ktime_divns(const ktime_t kt, s64 div) 290 { 291 int sft = 0; 292 s64 dclc; 293 u64 tmp; 294 295 dclc = ktime_to_ns(kt); 296 tmp = dclc < 0 ? -dclc : dclc; 297 298 /* Make sure the divisor is less than 2^32: */ 299 while (div >> 32) { 300 sft++; 301 div >>= 1; 302 } 303 tmp >>= sft; 304 do_div(tmp, (unsigned long) div); 305 return dclc < 0 ? -tmp : tmp; 306 } 307 EXPORT_SYMBOL_GPL(__ktime_divns); 308 #endif /* BITS_PER_LONG >= 64 */ 309 310 /* 311 * Add two ktime values and do a safety check for overflow: 312 */ 313 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 314 { 315 ktime_t res = ktime_add_unsafe(lhs, rhs); 316 317 /* 318 * We use KTIME_SEC_MAX here, the maximum timeout which we can 319 * return to user space in a timespec: 320 */ 321 if (res < 0 || res < lhs || res < rhs) 322 res = ktime_set(KTIME_SEC_MAX, 0); 323 324 return res; 325 } 326 327 EXPORT_SYMBOL_GPL(ktime_add_safe); 328 329 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 330 331 static struct debug_obj_descr hrtimer_debug_descr; 332 333 static void *hrtimer_debug_hint(void *addr) 334 { 335 return ((struct hrtimer *) addr)->function; 336 } 337 338 /* 339 * fixup_init is called when: 340 * - an active object is initialized 341 */ 342 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 343 { 344 struct hrtimer *timer = addr; 345 346 switch (state) { 347 case ODEBUG_STATE_ACTIVE: 348 hrtimer_cancel(timer); 349 debug_object_init(timer, &hrtimer_debug_descr); 350 return true; 351 default: 352 return false; 353 } 354 } 355 356 /* 357 * fixup_activate is called when: 358 * - an active object is activated 359 * - an unknown non-static object is activated 360 */ 361 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 362 { 363 switch (state) { 364 case ODEBUG_STATE_ACTIVE: 365 WARN_ON(1); 366 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_free is called when: 374 * - an active object is freed 375 */ 376 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_free(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 static struct debug_obj_descr hrtimer_debug_descr = { 391 .name = "hrtimer", 392 .debug_hint = hrtimer_debug_hint, 393 .fixup_init = hrtimer_fixup_init, 394 .fixup_activate = hrtimer_fixup_activate, 395 .fixup_free = hrtimer_fixup_free, 396 }; 397 398 static inline void debug_hrtimer_init(struct hrtimer *timer) 399 { 400 debug_object_init(timer, &hrtimer_debug_descr); 401 } 402 403 static inline void debug_hrtimer_activate(struct hrtimer *timer, 404 enum hrtimer_mode mode) 405 { 406 debug_object_activate(timer, &hrtimer_debug_descr); 407 } 408 409 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 410 { 411 debug_object_deactivate(timer, &hrtimer_debug_descr); 412 } 413 414 static inline void debug_hrtimer_free(struct hrtimer *timer) 415 { 416 debug_object_free(timer, &hrtimer_debug_descr); 417 } 418 419 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 420 enum hrtimer_mode mode); 421 422 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 423 enum hrtimer_mode mode) 424 { 425 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 426 __hrtimer_init(timer, clock_id, mode); 427 } 428 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 429 430 void destroy_hrtimer_on_stack(struct hrtimer *timer) 431 { 432 debug_object_free(timer, &hrtimer_debug_descr); 433 } 434 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 435 436 #else 437 438 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 439 static inline void debug_hrtimer_activate(struct hrtimer *timer, 440 enum hrtimer_mode mode) { } 441 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 442 #endif 443 444 static inline void 445 debug_init(struct hrtimer *timer, clockid_t clockid, 446 enum hrtimer_mode mode) 447 { 448 debug_hrtimer_init(timer); 449 trace_hrtimer_init(timer, clockid, mode); 450 } 451 452 static inline void debug_activate(struct hrtimer *timer, 453 enum hrtimer_mode mode) 454 { 455 debug_hrtimer_activate(timer, mode); 456 trace_hrtimer_start(timer, mode); 457 } 458 459 static inline void debug_deactivate(struct hrtimer *timer) 460 { 461 debug_hrtimer_deactivate(timer); 462 trace_hrtimer_cancel(timer); 463 } 464 465 static struct hrtimer_clock_base * 466 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 467 { 468 unsigned int idx; 469 470 if (!*active) 471 return NULL; 472 473 idx = __ffs(*active); 474 *active &= ~(1U << idx); 475 476 return &cpu_base->clock_base[idx]; 477 } 478 479 #define for_each_active_base(base, cpu_base, active) \ 480 while ((base = __next_base((cpu_base), &(active)))) 481 482 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 483 const struct hrtimer *exclude, 484 unsigned int active, 485 ktime_t expires_next) 486 { 487 struct hrtimer_clock_base *base; 488 ktime_t expires; 489 490 for_each_active_base(base, cpu_base, active) { 491 struct timerqueue_node *next; 492 struct hrtimer *timer; 493 494 next = timerqueue_getnext(&base->active); 495 timer = container_of(next, struct hrtimer, node); 496 if (timer == exclude) { 497 /* Get to the next timer in the queue. */ 498 next = timerqueue_iterate_next(next); 499 if (!next) 500 continue; 501 502 timer = container_of(next, struct hrtimer, node); 503 } 504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 505 if (expires < expires_next) { 506 expires_next = expires; 507 508 /* Skip cpu_base update if a timer is being excluded. */ 509 if (exclude) 510 continue; 511 512 if (timer->is_soft) 513 cpu_base->softirq_next_timer = timer; 514 else 515 cpu_base->next_timer = timer; 516 } 517 } 518 /* 519 * clock_was_set() might have changed base->offset of any of 520 * the clock bases so the result might be negative. Fix it up 521 * to prevent a false positive in clockevents_program_event(). 522 */ 523 if (expires_next < 0) 524 expires_next = 0; 525 return expires_next; 526 } 527 528 /* 529 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 530 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 531 * 532 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 533 * those timers will get run whenever the softirq gets handled, at the end of 534 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 535 * 536 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 537 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 538 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 539 * 540 * @active_mask must be one of: 541 * - HRTIMER_ACTIVE_ALL, 542 * - HRTIMER_ACTIVE_SOFT, or 543 * - HRTIMER_ACTIVE_HARD. 544 */ 545 static ktime_t 546 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 547 { 548 unsigned int active; 549 struct hrtimer *next_timer = NULL; 550 ktime_t expires_next = KTIME_MAX; 551 552 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 553 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 554 cpu_base->softirq_next_timer = NULL; 555 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 556 active, KTIME_MAX); 557 558 next_timer = cpu_base->softirq_next_timer; 559 } 560 561 if (active_mask & HRTIMER_ACTIVE_HARD) { 562 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 563 cpu_base->next_timer = next_timer; 564 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 565 expires_next); 566 } 567 568 return expires_next; 569 } 570 571 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 572 { 573 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 574 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 575 576 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 577 offs_real, offs_tai); 578 579 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 580 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 581 582 return now; 583 } 584 585 /* 586 * Is the high resolution mode active ? 587 */ 588 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 589 { 590 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 591 cpu_base->hres_active : 0; 592 } 593 594 static inline int hrtimer_hres_active(void) 595 { 596 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 597 } 598 599 /* 600 * Reprogram the event source with checking both queues for the 601 * next event 602 * Called with interrupts disabled and base->lock held 603 */ 604 static void 605 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 606 { 607 ktime_t expires_next; 608 609 /* 610 * Find the current next expiration time. 611 */ 612 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 613 614 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 615 /* 616 * When the softirq is activated, hrtimer has to be 617 * programmed with the first hard hrtimer because soft 618 * timer interrupt could occur too late. 619 */ 620 if (cpu_base->softirq_activated) 621 expires_next = __hrtimer_get_next_event(cpu_base, 622 HRTIMER_ACTIVE_HARD); 623 else 624 cpu_base->softirq_expires_next = expires_next; 625 } 626 627 if (skip_equal && expires_next == cpu_base->expires_next) 628 return; 629 630 cpu_base->expires_next = expires_next; 631 632 /* 633 * If hres is not active, hardware does not have to be 634 * reprogrammed yet. 635 * 636 * If a hang was detected in the last timer interrupt then we 637 * leave the hang delay active in the hardware. We want the 638 * system to make progress. That also prevents the following 639 * scenario: 640 * T1 expires 50ms from now 641 * T2 expires 5s from now 642 * 643 * T1 is removed, so this code is called and would reprogram 644 * the hardware to 5s from now. Any hrtimer_start after that 645 * will not reprogram the hardware due to hang_detected being 646 * set. So we'd effectivly block all timers until the T2 event 647 * fires. 648 */ 649 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 650 return; 651 652 tick_program_event(cpu_base->expires_next, 1); 653 } 654 655 /* High resolution timer related functions */ 656 #ifdef CONFIG_HIGH_RES_TIMERS 657 658 /* 659 * High resolution timer enabled ? 660 */ 661 static bool hrtimer_hres_enabled __read_mostly = true; 662 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 663 EXPORT_SYMBOL_GPL(hrtimer_resolution); 664 665 /* 666 * Enable / Disable high resolution mode 667 */ 668 static int __init setup_hrtimer_hres(char *str) 669 { 670 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 671 } 672 673 __setup("highres=", setup_hrtimer_hres); 674 675 /* 676 * hrtimer_high_res_enabled - query, if the highres mode is enabled 677 */ 678 static inline int hrtimer_is_hres_enabled(void) 679 { 680 return hrtimer_hres_enabled; 681 } 682 683 /* 684 * Retrigger next event is called after clock was set 685 * 686 * Called with interrupts disabled via on_each_cpu() 687 */ 688 static void retrigger_next_event(void *arg) 689 { 690 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 691 692 if (!__hrtimer_hres_active(base)) 693 return; 694 695 raw_spin_lock(&base->lock); 696 hrtimer_update_base(base); 697 hrtimer_force_reprogram(base, 0); 698 raw_spin_unlock(&base->lock); 699 } 700 701 /* 702 * Switch to high resolution mode 703 */ 704 static void hrtimer_switch_to_hres(void) 705 { 706 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 707 708 if (tick_init_highres()) { 709 printk(KERN_WARNING "Could not switch to high resolution " 710 "mode on CPU %d\n", base->cpu); 711 return; 712 } 713 base->hres_active = 1; 714 hrtimer_resolution = HIGH_RES_NSEC; 715 716 tick_setup_sched_timer(); 717 /* "Retrigger" the interrupt to get things going */ 718 retrigger_next_event(NULL); 719 } 720 721 static void clock_was_set_work(struct work_struct *work) 722 { 723 clock_was_set(); 724 } 725 726 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 727 728 /* 729 * Called from timekeeping and resume code to reprogram the hrtimer 730 * interrupt device on all cpus. 731 */ 732 void clock_was_set_delayed(void) 733 { 734 schedule_work(&hrtimer_work); 735 } 736 737 #else 738 739 static inline int hrtimer_is_hres_enabled(void) { return 0; } 740 static inline void hrtimer_switch_to_hres(void) { } 741 static inline void retrigger_next_event(void *arg) { } 742 743 #endif /* CONFIG_HIGH_RES_TIMERS */ 744 745 /* 746 * When a timer is enqueued and expires earlier than the already enqueued 747 * timers, we have to check, whether it expires earlier than the timer for 748 * which the clock event device was armed. 749 * 750 * Called with interrupts disabled and base->cpu_base.lock held 751 */ 752 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 753 { 754 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 755 struct hrtimer_clock_base *base = timer->base; 756 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 757 758 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 759 760 /* 761 * CLOCK_REALTIME timer might be requested with an absolute 762 * expiry time which is less than base->offset. Set it to 0. 763 */ 764 if (expires < 0) 765 expires = 0; 766 767 if (timer->is_soft) { 768 /* 769 * soft hrtimer could be started on a remote CPU. In this 770 * case softirq_expires_next needs to be updated on the 771 * remote CPU. The soft hrtimer will not expire before the 772 * first hard hrtimer on the remote CPU - 773 * hrtimer_check_target() prevents this case. 774 */ 775 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 776 777 if (timer_cpu_base->softirq_activated) 778 return; 779 780 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 781 return; 782 783 timer_cpu_base->softirq_next_timer = timer; 784 timer_cpu_base->softirq_expires_next = expires; 785 786 if (!ktime_before(expires, timer_cpu_base->expires_next) || 787 !reprogram) 788 return; 789 } 790 791 /* 792 * If the timer is not on the current cpu, we cannot reprogram 793 * the other cpus clock event device. 794 */ 795 if (base->cpu_base != cpu_base) 796 return; 797 798 /* 799 * If the hrtimer interrupt is running, then it will 800 * reevaluate the clock bases and reprogram the clock event 801 * device. The callbacks are always executed in hard interrupt 802 * context so we don't need an extra check for a running 803 * callback. 804 */ 805 if (cpu_base->in_hrtirq) 806 return; 807 808 if (expires >= cpu_base->expires_next) 809 return; 810 811 /* Update the pointer to the next expiring timer */ 812 cpu_base->next_timer = timer; 813 cpu_base->expires_next = expires; 814 815 /* 816 * If hres is not active, hardware does not have to be 817 * programmed yet. 818 * 819 * If a hang was detected in the last timer interrupt then we 820 * do not schedule a timer which is earlier than the expiry 821 * which we enforced in the hang detection. We want the system 822 * to make progress. 823 */ 824 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 825 return; 826 827 /* 828 * Program the timer hardware. We enforce the expiry for 829 * events which are already in the past. 830 */ 831 tick_program_event(expires, 1); 832 } 833 834 /* 835 * Clock realtime was set 836 * 837 * Change the offset of the realtime clock vs. the monotonic 838 * clock. 839 * 840 * We might have to reprogram the high resolution timer interrupt. On 841 * SMP we call the architecture specific code to retrigger _all_ high 842 * resolution timer interrupts. On UP we just disable interrupts and 843 * call the high resolution interrupt code. 844 */ 845 void clock_was_set(void) 846 { 847 #ifdef CONFIG_HIGH_RES_TIMERS 848 /* Retrigger the CPU local events everywhere */ 849 on_each_cpu(retrigger_next_event, NULL, 1); 850 #endif 851 timerfd_clock_was_set(); 852 } 853 854 /* 855 * During resume we might have to reprogram the high resolution timer 856 * interrupt on all online CPUs. However, all other CPUs will be 857 * stopped with IRQs interrupts disabled so the clock_was_set() call 858 * must be deferred. 859 */ 860 void hrtimers_resume(void) 861 { 862 lockdep_assert_irqs_disabled(); 863 /* Retrigger on the local CPU */ 864 retrigger_next_event(NULL); 865 /* And schedule a retrigger for all others */ 866 clock_was_set_delayed(); 867 } 868 869 /* 870 * Counterpart to lock_hrtimer_base above: 871 */ 872 static inline 873 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 874 { 875 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 876 } 877 878 /** 879 * hrtimer_forward - forward the timer expiry 880 * @timer: hrtimer to forward 881 * @now: forward past this time 882 * @interval: the interval to forward 883 * 884 * Forward the timer expiry so it will expire in the future. 885 * Returns the number of overruns. 886 * 887 * Can be safely called from the callback function of @timer. If 888 * called from other contexts @timer must neither be enqueued nor 889 * running the callback and the caller needs to take care of 890 * serialization. 891 * 892 * Note: This only updates the timer expiry value and does not requeue 893 * the timer. 894 */ 895 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 896 { 897 u64 orun = 1; 898 ktime_t delta; 899 900 delta = ktime_sub(now, hrtimer_get_expires(timer)); 901 902 if (delta < 0) 903 return 0; 904 905 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 906 return 0; 907 908 if (interval < hrtimer_resolution) 909 interval = hrtimer_resolution; 910 911 if (unlikely(delta >= interval)) { 912 s64 incr = ktime_to_ns(interval); 913 914 orun = ktime_divns(delta, incr); 915 hrtimer_add_expires_ns(timer, incr * orun); 916 if (hrtimer_get_expires_tv64(timer) > now) 917 return orun; 918 /* 919 * This (and the ktime_add() below) is the 920 * correction for exact: 921 */ 922 orun++; 923 } 924 hrtimer_add_expires(timer, interval); 925 926 return orun; 927 } 928 EXPORT_SYMBOL_GPL(hrtimer_forward); 929 930 /* 931 * enqueue_hrtimer - internal function to (re)start a timer 932 * 933 * The timer is inserted in expiry order. Insertion into the 934 * red black tree is O(log(n)). Must hold the base lock. 935 * 936 * Returns 1 when the new timer is the leftmost timer in the tree. 937 */ 938 static int enqueue_hrtimer(struct hrtimer *timer, 939 struct hrtimer_clock_base *base, 940 enum hrtimer_mode mode) 941 { 942 debug_activate(timer, mode); 943 944 base->cpu_base->active_bases |= 1 << base->index; 945 946 timer->state = HRTIMER_STATE_ENQUEUED; 947 948 return timerqueue_add(&base->active, &timer->node); 949 } 950 951 /* 952 * __remove_hrtimer - internal function to remove a timer 953 * 954 * Caller must hold the base lock. 955 * 956 * High resolution timer mode reprograms the clock event device when the 957 * timer is the one which expires next. The caller can disable this by setting 958 * reprogram to zero. This is useful, when the context does a reprogramming 959 * anyway (e.g. timer interrupt) 960 */ 961 static void __remove_hrtimer(struct hrtimer *timer, 962 struct hrtimer_clock_base *base, 963 u8 newstate, int reprogram) 964 { 965 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 966 u8 state = timer->state; 967 968 timer->state = newstate; 969 if (!(state & HRTIMER_STATE_ENQUEUED)) 970 return; 971 972 if (!timerqueue_del(&base->active, &timer->node)) 973 cpu_base->active_bases &= ~(1 << base->index); 974 975 /* 976 * Note: If reprogram is false we do not update 977 * cpu_base->next_timer. This happens when we remove the first 978 * timer on a remote cpu. No harm as we never dereference 979 * cpu_base->next_timer. So the worst thing what can happen is 980 * an superflous call to hrtimer_force_reprogram() on the 981 * remote cpu later on if the same timer gets enqueued again. 982 */ 983 if (reprogram && timer == cpu_base->next_timer) 984 hrtimer_force_reprogram(cpu_base, 1); 985 } 986 987 /* 988 * remove hrtimer, called with base lock held 989 */ 990 static inline int 991 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 992 { 993 if (hrtimer_is_queued(timer)) { 994 u8 state = timer->state; 995 int reprogram; 996 997 /* 998 * Remove the timer and force reprogramming when high 999 * resolution mode is active and the timer is on the current 1000 * CPU. If we remove a timer on another CPU, reprogramming is 1001 * skipped. The interrupt event on this CPU is fired and 1002 * reprogramming happens in the interrupt handler. This is a 1003 * rare case and less expensive than a smp call. 1004 */ 1005 debug_deactivate(timer); 1006 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1007 1008 if (!restart) 1009 state = HRTIMER_STATE_INACTIVE; 1010 1011 __remove_hrtimer(timer, base, state, reprogram); 1012 return 1; 1013 } 1014 return 0; 1015 } 1016 1017 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1018 const enum hrtimer_mode mode) 1019 { 1020 #ifdef CONFIG_TIME_LOW_RES 1021 /* 1022 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1023 * granular time values. For relative timers we add hrtimer_resolution 1024 * (i.e. one jiffie) to prevent short timeouts. 1025 */ 1026 timer->is_rel = mode & HRTIMER_MODE_REL; 1027 if (timer->is_rel) 1028 tim = ktime_add_safe(tim, hrtimer_resolution); 1029 #endif 1030 return tim; 1031 } 1032 1033 static void 1034 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1035 { 1036 ktime_t expires; 1037 1038 /* 1039 * Find the next SOFT expiration. 1040 */ 1041 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1042 1043 /* 1044 * reprogramming needs to be triggered, even if the next soft 1045 * hrtimer expires at the same time than the next hard 1046 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1047 */ 1048 if (expires == KTIME_MAX) 1049 return; 1050 1051 /* 1052 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1053 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1054 */ 1055 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1056 } 1057 1058 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1059 u64 delta_ns, const enum hrtimer_mode mode, 1060 struct hrtimer_clock_base *base) 1061 { 1062 struct hrtimer_clock_base *new_base; 1063 1064 /* Remove an active timer from the queue: */ 1065 remove_hrtimer(timer, base, true); 1066 1067 if (mode & HRTIMER_MODE_REL) 1068 tim = ktime_add_safe(tim, base->get_time()); 1069 1070 tim = hrtimer_update_lowres(timer, tim, mode); 1071 1072 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1073 1074 /* Switch the timer base, if necessary: */ 1075 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1076 1077 return enqueue_hrtimer(timer, new_base, mode); 1078 } 1079 1080 /** 1081 * hrtimer_start_range_ns - (re)start an hrtimer 1082 * @timer: the timer to be added 1083 * @tim: expiry time 1084 * @delta_ns: "slack" range for the timer 1085 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1086 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1087 * softirq based mode is considered for debug purpose only! 1088 */ 1089 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1090 u64 delta_ns, const enum hrtimer_mode mode) 1091 { 1092 struct hrtimer_clock_base *base; 1093 unsigned long flags; 1094 1095 /* 1096 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1097 * match. 1098 */ 1099 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1100 1101 base = lock_hrtimer_base(timer, &flags); 1102 1103 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1104 hrtimer_reprogram(timer, true); 1105 1106 unlock_hrtimer_base(timer, &flags); 1107 } 1108 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1109 1110 /** 1111 * hrtimer_try_to_cancel - try to deactivate a timer 1112 * @timer: hrtimer to stop 1113 * 1114 * Returns: 1115 * 0 when the timer was not active 1116 * 1 when the timer was active 1117 * -1 when the timer is currently executing the callback function and 1118 * cannot be stopped 1119 */ 1120 int hrtimer_try_to_cancel(struct hrtimer *timer) 1121 { 1122 struct hrtimer_clock_base *base; 1123 unsigned long flags; 1124 int ret = -1; 1125 1126 /* 1127 * Check lockless first. If the timer is not active (neither 1128 * enqueued nor running the callback, nothing to do here. The 1129 * base lock does not serialize against a concurrent enqueue, 1130 * so we can avoid taking it. 1131 */ 1132 if (!hrtimer_active(timer)) 1133 return 0; 1134 1135 base = lock_hrtimer_base(timer, &flags); 1136 1137 if (!hrtimer_callback_running(timer)) 1138 ret = remove_hrtimer(timer, base, false); 1139 1140 unlock_hrtimer_base(timer, &flags); 1141 1142 return ret; 1143 1144 } 1145 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1146 1147 /** 1148 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1149 * @timer: the timer to be cancelled 1150 * 1151 * Returns: 1152 * 0 when the timer was not active 1153 * 1 when the timer was active 1154 */ 1155 int hrtimer_cancel(struct hrtimer *timer) 1156 { 1157 for (;;) { 1158 int ret = hrtimer_try_to_cancel(timer); 1159 1160 if (ret >= 0) 1161 return ret; 1162 cpu_relax(); 1163 } 1164 } 1165 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1166 1167 /** 1168 * hrtimer_get_remaining - get remaining time for the timer 1169 * @timer: the timer to read 1170 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1171 */ 1172 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1173 { 1174 unsigned long flags; 1175 ktime_t rem; 1176 1177 lock_hrtimer_base(timer, &flags); 1178 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1179 rem = hrtimer_expires_remaining_adjusted(timer); 1180 else 1181 rem = hrtimer_expires_remaining(timer); 1182 unlock_hrtimer_base(timer, &flags); 1183 1184 return rem; 1185 } 1186 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1187 1188 #ifdef CONFIG_NO_HZ_COMMON 1189 /** 1190 * hrtimer_get_next_event - get the time until next expiry event 1191 * 1192 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1193 */ 1194 u64 hrtimer_get_next_event(void) 1195 { 1196 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1197 u64 expires = KTIME_MAX; 1198 unsigned long flags; 1199 1200 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1201 1202 if (!__hrtimer_hres_active(cpu_base)) 1203 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1204 1205 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1206 1207 return expires; 1208 } 1209 1210 /** 1211 * hrtimer_next_event_without - time until next expiry event w/o one timer 1212 * @exclude: timer to exclude 1213 * 1214 * Returns the next expiry time over all timers except for the @exclude one or 1215 * KTIME_MAX if none of them is pending. 1216 */ 1217 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1218 { 1219 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1220 u64 expires = KTIME_MAX; 1221 unsigned long flags; 1222 1223 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1224 1225 if (__hrtimer_hres_active(cpu_base)) { 1226 unsigned int active; 1227 1228 if (!cpu_base->softirq_activated) { 1229 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1230 expires = __hrtimer_next_event_base(cpu_base, exclude, 1231 active, KTIME_MAX); 1232 } 1233 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1234 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1235 expires); 1236 } 1237 1238 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1239 1240 return expires; 1241 } 1242 #endif 1243 1244 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1245 { 1246 if (likely(clock_id < MAX_CLOCKS)) { 1247 int base = hrtimer_clock_to_base_table[clock_id]; 1248 1249 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1250 return base; 1251 } 1252 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1253 return HRTIMER_BASE_MONOTONIC; 1254 } 1255 1256 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1257 enum hrtimer_mode mode) 1258 { 1259 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1260 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1261 struct hrtimer_cpu_base *cpu_base; 1262 1263 memset(timer, 0, sizeof(struct hrtimer)); 1264 1265 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1266 1267 /* 1268 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1269 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1270 * ensure POSIX compliance. 1271 */ 1272 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1273 clock_id = CLOCK_MONOTONIC; 1274 1275 base += hrtimer_clockid_to_base(clock_id); 1276 timer->is_soft = softtimer; 1277 timer->base = &cpu_base->clock_base[base]; 1278 timerqueue_init(&timer->node); 1279 } 1280 1281 /** 1282 * hrtimer_init - initialize a timer to the given clock 1283 * @timer: the timer to be initialized 1284 * @clock_id: the clock to be used 1285 * @mode: The modes which are relevant for intitialization: 1286 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1287 * HRTIMER_MODE_REL_SOFT 1288 * 1289 * The PINNED variants of the above can be handed in, 1290 * but the PINNED bit is ignored as pinning happens 1291 * when the hrtimer is started 1292 */ 1293 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1294 enum hrtimer_mode mode) 1295 { 1296 debug_init(timer, clock_id, mode); 1297 __hrtimer_init(timer, clock_id, mode); 1298 } 1299 EXPORT_SYMBOL_GPL(hrtimer_init); 1300 1301 /* 1302 * A timer is active, when it is enqueued into the rbtree or the 1303 * callback function is running or it's in the state of being migrated 1304 * to another cpu. 1305 * 1306 * It is important for this function to not return a false negative. 1307 */ 1308 bool hrtimer_active(const struct hrtimer *timer) 1309 { 1310 struct hrtimer_clock_base *base; 1311 unsigned int seq; 1312 1313 do { 1314 base = READ_ONCE(timer->base); 1315 seq = raw_read_seqcount_begin(&base->seq); 1316 1317 if (timer->state != HRTIMER_STATE_INACTIVE || 1318 base->running == timer) 1319 return true; 1320 1321 } while (read_seqcount_retry(&base->seq, seq) || 1322 base != READ_ONCE(timer->base)); 1323 1324 return false; 1325 } 1326 EXPORT_SYMBOL_GPL(hrtimer_active); 1327 1328 /* 1329 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1330 * distinct sections: 1331 * 1332 * - queued: the timer is queued 1333 * - callback: the timer is being ran 1334 * - post: the timer is inactive or (re)queued 1335 * 1336 * On the read side we ensure we observe timer->state and cpu_base->running 1337 * from the same section, if anything changed while we looked at it, we retry. 1338 * This includes timer->base changing because sequence numbers alone are 1339 * insufficient for that. 1340 * 1341 * The sequence numbers are required because otherwise we could still observe 1342 * a false negative if the read side got smeared over multiple consequtive 1343 * __run_hrtimer() invocations. 1344 */ 1345 1346 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1347 struct hrtimer_clock_base *base, 1348 struct hrtimer *timer, ktime_t *now, 1349 unsigned long flags) 1350 { 1351 enum hrtimer_restart (*fn)(struct hrtimer *); 1352 int restart; 1353 1354 lockdep_assert_held(&cpu_base->lock); 1355 1356 debug_deactivate(timer); 1357 base->running = timer; 1358 1359 /* 1360 * Separate the ->running assignment from the ->state assignment. 1361 * 1362 * As with a regular write barrier, this ensures the read side in 1363 * hrtimer_active() cannot observe base->running == NULL && 1364 * timer->state == INACTIVE. 1365 */ 1366 raw_write_seqcount_barrier(&base->seq); 1367 1368 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1369 fn = timer->function; 1370 1371 /* 1372 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1373 * timer is restarted with a period then it becomes an absolute 1374 * timer. If its not restarted it does not matter. 1375 */ 1376 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1377 timer->is_rel = false; 1378 1379 /* 1380 * The timer is marked as running in the CPU base, so it is 1381 * protected against migration to a different CPU even if the lock 1382 * is dropped. 1383 */ 1384 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1385 trace_hrtimer_expire_entry(timer, now); 1386 restart = fn(timer); 1387 trace_hrtimer_expire_exit(timer); 1388 raw_spin_lock_irq(&cpu_base->lock); 1389 1390 /* 1391 * Note: We clear the running state after enqueue_hrtimer and 1392 * we do not reprogram the event hardware. Happens either in 1393 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1394 * 1395 * Note: Because we dropped the cpu_base->lock above, 1396 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1397 * for us already. 1398 */ 1399 if (restart != HRTIMER_NORESTART && 1400 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1401 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1402 1403 /* 1404 * Separate the ->running assignment from the ->state assignment. 1405 * 1406 * As with a regular write barrier, this ensures the read side in 1407 * hrtimer_active() cannot observe base->running.timer == NULL && 1408 * timer->state == INACTIVE. 1409 */ 1410 raw_write_seqcount_barrier(&base->seq); 1411 1412 WARN_ON_ONCE(base->running != timer); 1413 base->running = NULL; 1414 } 1415 1416 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1417 unsigned long flags, unsigned int active_mask) 1418 { 1419 struct hrtimer_clock_base *base; 1420 unsigned int active = cpu_base->active_bases & active_mask; 1421 1422 for_each_active_base(base, cpu_base, active) { 1423 struct timerqueue_node *node; 1424 ktime_t basenow; 1425 1426 basenow = ktime_add(now, base->offset); 1427 1428 while ((node = timerqueue_getnext(&base->active))) { 1429 struct hrtimer *timer; 1430 1431 timer = container_of(node, struct hrtimer, node); 1432 1433 /* 1434 * The immediate goal for using the softexpires is 1435 * minimizing wakeups, not running timers at the 1436 * earliest interrupt after their soft expiration. 1437 * This allows us to avoid using a Priority Search 1438 * Tree, which can answer a stabbing querry for 1439 * overlapping intervals and instead use the simple 1440 * BST we already have. 1441 * We don't add extra wakeups by delaying timers that 1442 * are right-of a not yet expired timer, because that 1443 * timer will have to trigger a wakeup anyway. 1444 */ 1445 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1446 break; 1447 1448 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1449 } 1450 } 1451 } 1452 1453 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1454 { 1455 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1456 unsigned long flags; 1457 ktime_t now; 1458 1459 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1460 1461 now = hrtimer_update_base(cpu_base); 1462 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1463 1464 cpu_base->softirq_activated = 0; 1465 hrtimer_update_softirq_timer(cpu_base, true); 1466 1467 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1468 } 1469 1470 #ifdef CONFIG_HIGH_RES_TIMERS 1471 1472 /* 1473 * High resolution timer interrupt 1474 * Called with interrupts disabled 1475 */ 1476 void hrtimer_interrupt(struct clock_event_device *dev) 1477 { 1478 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1479 ktime_t expires_next, now, entry_time, delta; 1480 unsigned long flags; 1481 int retries = 0; 1482 1483 BUG_ON(!cpu_base->hres_active); 1484 cpu_base->nr_events++; 1485 dev->next_event = KTIME_MAX; 1486 1487 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1488 entry_time = now = hrtimer_update_base(cpu_base); 1489 retry: 1490 cpu_base->in_hrtirq = 1; 1491 /* 1492 * We set expires_next to KTIME_MAX here with cpu_base->lock 1493 * held to prevent that a timer is enqueued in our queue via 1494 * the migration code. This does not affect enqueueing of 1495 * timers which run their callback and need to be requeued on 1496 * this CPU. 1497 */ 1498 cpu_base->expires_next = KTIME_MAX; 1499 1500 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1501 cpu_base->softirq_expires_next = KTIME_MAX; 1502 cpu_base->softirq_activated = 1; 1503 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1504 } 1505 1506 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1507 1508 /* Reevaluate the clock bases for the next expiry */ 1509 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1510 /* 1511 * Store the new expiry value so the migration code can verify 1512 * against it. 1513 */ 1514 cpu_base->expires_next = expires_next; 1515 cpu_base->in_hrtirq = 0; 1516 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1517 1518 /* Reprogramming necessary ? */ 1519 if (!tick_program_event(expires_next, 0)) { 1520 cpu_base->hang_detected = 0; 1521 return; 1522 } 1523 1524 /* 1525 * The next timer was already expired due to: 1526 * - tracing 1527 * - long lasting callbacks 1528 * - being scheduled away when running in a VM 1529 * 1530 * We need to prevent that we loop forever in the hrtimer 1531 * interrupt routine. We give it 3 attempts to avoid 1532 * overreacting on some spurious event. 1533 * 1534 * Acquire base lock for updating the offsets and retrieving 1535 * the current time. 1536 */ 1537 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1538 now = hrtimer_update_base(cpu_base); 1539 cpu_base->nr_retries++; 1540 if (++retries < 3) 1541 goto retry; 1542 /* 1543 * Give the system a chance to do something else than looping 1544 * here. We stored the entry time, so we know exactly how long 1545 * we spent here. We schedule the next event this amount of 1546 * time away. 1547 */ 1548 cpu_base->nr_hangs++; 1549 cpu_base->hang_detected = 1; 1550 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1551 1552 delta = ktime_sub(now, entry_time); 1553 if ((unsigned int)delta > cpu_base->max_hang_time) 1554 cpu_base->max_hang_time = (unsigned int) delta; 1555 /* 1556 * Limit it to a sensible value as we enforce a longer 1557 * delay. Give the CPU at least 100ms to catch up. 1558 */ 1559 if (delta > 100 * NSEC_PER_MSEC) 1560 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1561 else 1562 expires_next = ktime_add(now, delta); 1563 tick_program_event(expires_next, 1); 1564 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1565 ktime_to_ns(delta)); 1566 } 1567 1568 /* called with interrupts disabled */ 1569 static inline void __hrtimer_peek_ahead_timers(void) 1570 { 1571 struct tick_device *td; 1572 1573 if (!hrtimer_hres_active()) 1574 return; 1575 1576 td = this_cpu_ptr(&tick_cpu_device); 1577 if (td && td->evtdev) 1578 hrtimer_interrupt(td->evtdev); 1579 } 1580 1581 #else /* CONFIG_HIGH_RES_TIMERS */ 1582 1583 static inline void __hrtimer_peek_ahead_timers(void) { } 1584 1585 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1586 1587 /* 1588 * Called from run_local_timers in hardirq context every jiffy 1589 */ 1590 void hrtimer_run_queues(void) 1591 { 1592 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1593 unsigned long flags; 1594 ktime_t now; 1595 1596 if (__hrtimer_hres_active(cpu_base)) 1597 return; 1598 1599 /* 1600 * This _is_ ugly: We have to check periodically, whether we 1601 * can switch to highres and / or nohz mode. The clocksource 1602 * switch happens with xtime_lock held. Notification from 1603 * there only sets the check bit in the tick_oneshot code, 1604 * otherwise we might deadlock vs. xtime_lock. 1605 */ 1606 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1607 hrtimer_switch_to_hres(); 1608 return; 1609 } 1610 1611 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1612 now = hrtimer_update_base(cpu_base); 1613 1614 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1615 cpu_base->softirq_expires_next = KTIME_MAX; 1616 cpu_base->softirq_activated = 1; 1617 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1618 } 1619 1620 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1621 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1622 } 1623 1624 /* 1625 * Sleep related functions: 1626 */ 1627 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1628 { 1629 struct hrtimer_sleeper *t = 1630 container_of(timer, struct hrtimer_sleeper, timer); 1631 struct task_struct *task = t->task; 1632 1633 t->task = NULL; 1634 if (task) 1635 wake_up_process(task); 1636 1637 return HRTIMER_NORESTART; 1638 } 1639 1640 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1641 { 1642 sl->timer.function = hrtimer_wakeup; 1643 sl->task = task; 1644 } 1645 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1646 1647 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1648 { 1649 switch(restart->nanosleep.type) { 1650 #ifdef CONFIG_COMPAT 1651 case TT_COMPAT: 1652 if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp)) 1653 return -EFAULT; 1654 break; 1655 #endif 1656 case TT_NATIVE: 1657 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1658 return -EFAULT; 1659 break; 1660 default: 1661 BUG(); 1662 } 1663 return -ERESTART_RESTARTBLOCK; 1664 } 1665 1666 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1667 { 1668 struct restart_block *restart; 1669 1670 hrtimer_init_sleeper(t, current); 1671 1672 do { 1673 set_current_state(TASK_INTERRUPTIBLE); 1674 hrtimer_start_expires(&t->timer, mode); 1675 1676 if (likely(t->task)) 1677 freezable_schedule(); 1678 1679 hrtimer_cancel(&t->timer); 1680 mode = HRTIMER_MODE_ABS; 1681 1682 } while (t->task && !signal_pending(current)); 1683 1684 __set_current_state(TASK_RUNNING); 1685 1686 if (!t->task) 1687 return 0; 1688 1689 restart = ¤t->restart_block; 1690 if (restart->nanosleep.type != TT_NONE) { 1691 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1692 struct timespec64 rmt; 1693 1694 if (rem <= 0) 1695 return 0; 1696 rmt = ktime_to_timespec64(rem); 1697 1698 return nanosleep_copyout(restart, &rmt); 1699 } 1700 return -ERESTART_RESTARTBLOCK; 1701 } 1702 1703 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1704 { 1705 struct hrtimer_sleeper t; 1706 int ret; 1707 1708 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1709 HRTIMER_MODE_ABS); 1710 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1711 1712 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1713 destroy_hrtimer_on_stack(&t.timer); 1714 return ret; 1715 } 1716 1717 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1718 const enum hrtimer_mode mode, const clockid_t clockid) 1719 { 1720 struct restart_block *restart; 1721 struct hrtimer_sleeper t; 1722 int ret = 0; 1723 u64 slack; 1724 1725 slack = current->timer_slack_ns; 1726 if (dl_task(current) || rt_task(current)) 1727 slack = 0; 1728 1729 hrtimer_init_on_stack(&t.timer, clockid, mode); 1730 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1731 ret = do_nanosleep(&t, mode); 1732 if (ret != -ERESTART_RESTARTBLOCK) 1733 goto out; 1734 1735 /* Absolute timers do not update the rmtp value and restart: */ 1736 if (mode == HRTIMER_MODE_ABS) { 1737 ret = -ERESTARTNOHAND; 1738 goto out; 1739 } 1740 1741 restart = ¤t->restart_block; 1742 restart->fn = hrtimer_nanosleep_restart; 1743 restart->nanosleep.clockid = t.timer.base->clockid; 1744 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1745 out: 1746 destroy_hrtimer_on_stack(&t.timer); 1747 return ret; 1748 } 1749 1750 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1751 struct timespec __user *, rmtp) 1752 { 1753 struct timespec64 tu; 1754 1755 if (get_timespec64(&tu, rqtp)) 1756 return -EFAULT; 1757 1758 if (!timespec64_valid(&tu)) 1759 return -EINVAL; 1760 1761 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1762 current->restart_block.nanosleep.rmtp = rmtp; 1763 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1764 } 1765 1766 #ifdef CONFIG_COMPAT 1767 1768 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp, 1769 struct compat_timespec __user *, rmtp) 1770 { 1771 struct timespec64 tu; 1772 1773 if (compat_get_timespec64(&tu, rqtp)) 1774 return -EFAULT; 1775 1776 if (!timespec64_valid(&tu)) 1777 return -EINVAL; 1778 1779 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1780 current->restart_block.nanosleep.compat_rmtp = rmtp; 1781 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1782 } 1783 #endif 1784 1785 /* 1786 * Functions related to boot-time initialization: 1787 */ 1788 int hrtimers_prepare_cpu(unsigned int cpu) 1789 { 1790 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1791 int i; 1792 1793 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1794 cpu_base->clock_base[i].cpu_base = cpu_base; 1795 timerqueue_init_head(&cpu_base->clock_base[i].active); 1796 } 1797 1798 cpu_base->cpu = cpu; 1799 cpu_base->active_bases = 0; 1800 cpu_base->hres_active = 0; 1801 cpu_base->hang_detected = 0; 1802 cpu_base->next_timer = NULL; 1803 cpu_base->softirq_next_timer = NULL; 1804 cpu_base->expires_next = KTIME_MAX; 1805 cpu_base->softirq_expires_next = KTIME_MAX; 1806 return 0; 1807 } 1808 1809 #ifdef CONFIG_HOTPLUG_CPU 1810 1811 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1812 struct hrtimer_clock_base *new_base) 1813 { 1814 struct hrtimer *timer; 1815 struct timerqueue_node *node; 1816 1817 while ((node = timerqueue_getnext(&old_base->active))) { 1818 timer = container_of(node, struct hrtimer, node); 1819 BUG_ON(hrtimer_callback_running(timer)); 1820 debug_deactivate(timer); 1821 1822 /* 1823 * Mark it as ENQUEUED not INACTIVE otherwise the 1824 * timer could be seen as !active and just vanish away 1825 * under us on another CPU 1826 */ 1827 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1828 timer->base = new_base; 1829 /* 1830 * Enqueue the timers on the new cpu. This does not 1831 * reprogram the event device in case the timer 1832 * expires before the earliest on this CPU, but we run 1833 * hrtimer_interrupt after we migrated everything to 1834 * sort out already expired timers and reprogram the 1835 * event device. 1836 */ 1837 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1838 } 1839 } 1840 1841 int hrtimers_dead_cpu(unsigned int scpu) 1842 { 1843 struct hrtimer_cpu_base *old_base, *new_base; 1844 int i; 1845 1846 BUG_ON(cpu_online(scpu)); 1847 tick_cancel_sched_timer(scpu); 1848 1849 /* 1850 * this BH disable ensures that raise_softirq_irqoff() does 1851 * not wakeup ksoftirqd (and acquire the pi-lock) while 1852 * holding the cpu_base lock 1853 */ 1854 local_bh_disable(); 1855 local_irq_disable(); 1856 old_base = &per_cpu(hrtimer_bases, scpu); 1857 new_base = this_cpu_ptr(&hrtimer_bases); 1858 /* 1859 * The caller is globally serialized and nobody else 1860 * takes two locks at once, deadlock is not possible. 1861 */ 1862 raw_spin_lock(&new_base->lock); 1863 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1864 1865 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1866 migrate_hrtimer_list(&old_base->clock_base[i], 1867 &new_base->clock_base[i]); 1868 } 1869 1870 /* 1871 * The migration might have changed the first expiring softirq 1872 * timer on this CPU. Update it. 1873 */ 1874 hrtimer_update_softirq_timer(new_base, false); 1875 1876 raw_spin_unlock(&old_base->lock); 1877 raw_spin_unlock(&new_base->lock); 1878 1879 /* Check, if we got expired work to do */ 1880 __hrtimer_peek_ahead_timers(); 1881 local_irq_enable(); 1882 local_bh_enable(); 1883 return 0; 1884 } 1885 1886 #endif /* CONFIG_HOTPLUG_CPU */ 1887 1888 void __init hrtimers_init(void) 1889 { 1890 hrtimers_prepare_cpu(smp_processor_id()); 1891 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1892 } 1893 1894 /** 1895 * schedule_hrtimeout_range_clock - sleep until timeout 1896 * @expires: timeout value (ktime_t) 1897 * @delta: slack in expires timeout (ktime_t) 1898 * @mode: timer mode 1899 * @clock_id: timer clock to be used 1900 */ 1901 int __sched 1902 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1903 const enum hrtimer_mode mode, clockid_t clock_id) 1904 { 1905 struct hrtimer_sleeper t; 1906 1907 /* 1908 * Optimize when a zero timeout value is given. It does not 1909 * matter whether this is an absolute or a relative time. 1910 */ 1911 if (expires && *expires == 0) { 1912 __set_current_state(TASK_RUNNING); 1913 return 0; 1914 } 1915 1916 /* 1917 * A NULL parameter means "infinite" 1918 */ 1919 if (!expires) { 1920 schedule(); 1921 return -EINTR; 1922 } 1923 1924 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1925 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1926 1927 hrtimer_init_sleeper(&t, current); 1928 1929 hrtimer_start_expires(&t.timer, mode); 1930 1931 if (likely(t.task)) 1932 schedule(); 1933 1934 hrtimer_cancel(&t.timer); 1935 destroy_hrtimer_on_stack(&t.timer); 1936 1937 __set_current_state(TASK_RUNNING); 1938 1939 return !t.task ? 0 : -EINTR; 1940 } 1941 1942 /** 1943 * schedule_hrtimeout_range - sleep until timeout 1944 * @expires: timeout value (ktime_t) 1945 * @delta: slack in expires timeout (ktime_t) 1946 * @mode: timer mode 1947 * 1948 * Make the current task sleep until the given expiry time has 1949 * elapsed. The routine will return immediately unless 1950 * the current task state has been set (see set_current_state()). 1951 * 1952 * The @delta argument gives the kernel the freedom to schedule the 1953 * actual wakeup to a time that is both power and performance friendly. 1954 * The kernel give the normal best effort behavior for "@expires+@delta", 1955 * but may decide to fire the timer earlier, but no earlier than @expires. 1956 * 1957 * You can set the task state as follows - 1958 * 1959 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1960 * pass before the routine returns unless the current task is explicitly 1961 * woken up, (e.g. by wake_up_process()). 1962 * 1963 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1964 * delivered to the current task or the current task is explicitly woken 1965 * up. 1966 * 1967 * The current task state is guaranteed to be TASK_RUNNING when this 1968 * routine returns. 1969 * 1970 * Returns 0 when the timer has expired. If the task was woken before the 1971 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1972 * by an explicit wakeup, it returns -EINTR. 1973 */ 1974 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1975 const enum hrtimer_mode mode) 1976 { 1977 return schedule_hrtimeout_range_clock(expires, delta, mode, 1978 CLOCK_MONOTONIC); 1979 } 1980 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1981 1982 /** 1983 * schedule_hrtimeout - sleep until timeout 1984 * @expires: timeout value (ktime_t) 1985 * @mode: timer mode 1986 * 1987 * Make the current task sleep until the given expiry time has 1988 * elapsed. The routine will return immediately unless 1989 * the current task state has been set (see set_current_state()). 1990 * 1991 * You can set the task state as follows - 1992 * 1993 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1994 * pass before the routine returns unless the current task is explicitly 1995 * woken up, (e.g. by wake_up_process()). 1996 * 1997 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1998 * delivered to the current task or the current task is explicitly woken 1999 * up. 2000 * 2001 * The current task state is guaranteed to be TASK_RUNNING when this 2002 * routine returns. 2003 * 2004 * Returns 0 when the timer has expired. If the task was woken before the 2005 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2006 * by an explicit wakeup, it returns -EINTR. 2007 */ 2008 int __sched schedule_hrtimeout(ktime_t *expires, 2009 const enum hrtimer_mode mode) 2010 { 2011 return schedule_hrtimeout_range(expires, 0, mode); 2012 } 2013 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2014