xref: /openbmc/linux/kernel/time/hrtimer.c (revision 20e2fc42)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
4  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
5  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
6  *
7  *  High-resolution kernel timers
8  *
9  *  In contrast to the low-resolution timeout API, aka timer wheel,
10  *  hrtimers provide finer resolution and accuracy depending on system
11  *  configuration and capabilities.
12  *
13  *  Started by: Thomas Gleixner and Ingo Molnar
14  *
15  *  Credits:
16  *	Based on the original timer wheel code
17  *
18  *	Help, testing, suggestions, bugfixes, improvements were
19  *	provided by:
20  *
21  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22  *	et. al.
23  */
24 
25 #include <linux/cpu.h>
26 #include <linux/export.h>
27 #include <linux/percpu.h>
28 #include <linux/hrtimer.h>
29 #include <linux/notifier.h>
30 #include <linux/syscalls.h>
31 #include <linux/interrupt.h>
32 #include <linux/tick.h>
33 #include <linux/err.h>
34 #include <linux/debugobjects.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/deadline.h>
39 #include <linux/sched/nohz.h>
40 #include <linux/sched/debug.h>
41 #include <linux/timer.h>
42 #include <linux/freezer.h>
43 #include <linux/compat.h>
44 
45 #include <linux/uaccess.h>
46 
47 #include <trace/events/timer.h>
48 
49 #include "tick-internal.h"
50 
51 /*
52  * Masks for selecting the soft and hard context timers from
53  * cpu_base->active
54  */
55 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
56 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
57 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
58 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
59 
60 /*
61  * The timer bases:
62  *
63  * There are more clockids than hrtimer bases. Thus, we index
64  * into the timer bases by the hrtimer_base_type enum. When trying
65  * to reach a base using a clockid, hrtimer_clockid_to_base()
66  * is used to convert from clockid to the proper hrtimer_base_type.
67  */
68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
69 {
70 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 		{
94 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
95 			.clockid = CLOCK_MONOTONIC,
96 			.get_time = &ktime_get,
97 		},
98 		{
99 			.index = HRTIMER_BASE_REALTIME_SOFT,
100 			.clockid = CLOCK_REALTIME,
101 			.get_time = &ktime_get_real,
102 		},
103 		{
104 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
105 			.clockid = CLOCK_BOOTTIME,
106 			.get_time = &ktime_get_boottime,
107 		},
108 		{
109 			.index = HRTIMER_BASE_TAI_SOFT,
110 			.clockid = CLOCK_TAI,
111 			.get_time = &ktime_get_clocktai,
112 		},
113 	}
114 };
115 
116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
117 	/* Make sure we catch unsupported clockids */
118 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
119 
120 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
121 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
122 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
123 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
124 };
125 
126 /*
127  * Functions and macros which are different for UP/SMP systems are kept in a
128  * single place
129  */
130 #ifdef CONFIG_SMP
131 
132 /*
133  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
134  * such that hrtimer_callback_running() can unconditionally dereference
135  * timer->base->cpu_base
136  */
137 static struct hrtimer_cpu_base migration_cpu_base = {
138 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
139 };
140 
141 #define migration_base	migration_cpu_base.clock_base[0]
142 
143 static inline bool is_migration_base(struct hrtimer_clock_base *base)
144 {
145 	return base == &migration_base;
146 }
147 
148 /*
149  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
150  * means that all timers which are tied to this base via timer->base are
151  * locked, and the base itself is locked too.
152  *
153  * So __run_timers/migrate_timers can safely modify all timers which could
154  * be found on the lists/queues.
155  *
156  * When the timer's base is locked, and the timer removed from list, it is
157  * possible to set timer->base = &migration_base and drop the lock: the timer
158  * remains locked.
159  */
160 static
161 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
162 					     unsigned long *flags)
163 {
164 	struct hrtimer_clock_base *base;
165 
166 	for (;;) {
167 		base = READ_ONCE(timer->base);
168 		if (likely(base != &migration_base)) {
169 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
170 			if (likely(base == timer->base))
171 				return base;
172 			/* The timer has migrated to another CPU: */
173 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
174 		}
175 		cpu_relax();
176 	}
177 }
178 
179 /*
180  * We do not migrate the timer when it is expiring before the next
181  * event on the target cpu. When high resolution is enabled, we cannot
182  * reprogram the target cpu hardware and we would cause it to fire
183  * late. To keep it simple, we handle the high resolution enabled and
184  * disabled case similar.
185  *
186  * Called with cpu_base->lock of target cpu held.
187  */
188 static int
189 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
190 {
191 	ktime_t expires;
192 
193 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
194 	return expires < new_base->cpu_base->expires_next;
195 }
196 
197 static inline
198 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
199 					 int pinned)
200 {
201 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
202 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
203 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
204 #endif
205 	return base;
206 }
207 
208 /*
209  * We switch the timer base to a power-optimized selected CPU target,
210  * if:
211  *	- NO_HZ_COMMON is enabled
212  *	- timer migration is enabled
213  *	- the timer callback is not running
214  *	- the timer is not the first expiring timer on the new target
215  *
216  * If one of the above requirements is not fulfilled we move the timer
217  * to the current CPU or leave it on the previously assigned CPU if
218  * the timer callback is currently running.
219  */
220 static inline struct hrtimer_clock_base *
221 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
222 		    int pinned)
223 {
224 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
225 	struct hrtimer_clock_base *new_base;
226 	int basenum = base->index;
227 
228 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
229 	new_cpu_base = get_target_base(this_cpu_base, pinned);
230 again:
231 	new_base = &new_cpu_base->clock_base[basenum];
232 
233 	if (base != new_base) {
234 		/*
235 		 * We are trying to move timer to new_base.
236 		 * However we can't change timer's base while it is running,
237 		 * so we keep it on the same CPU. No hassle vs. reprogramming
238 		 * the event source in the high resolution case. The softirq
239 		 * code will take care of this when the timer function has
240 		 * completed. There is no conflict as we hold the lock until
241 		 * the timer is enqueued.
242 		 */
243 		if (unlikely(hrtimer_callback_running(timer)))
244 			return base;
245 
246 		/* See the comment in lock_hrtimer_base() */
247 		WRITE_ONCE(timer->base, &migration_base);
248 		raw_spin_unlock(&base->cpu_base->lock);
249 		raw_spin_lock(&new_base->cpu_base->lock);
250 
251 		if (new_cpu_base != this_cpu_base &&
252 		    hrtimer_check_target(timer, new_base)) {
253 			raw_spin_unlock(&new_base->cpu_base->lock);
254 			raw_spin_lock(&base->cpu_base->lock);
255 			new_cpu_base = this_cpu_base;
256 			WRITE_ONCE(timer->base, base);
257 			goto again;
258 		}
259 		WRITE_ONCE(timer->base, new_base);
260 	} else {
261 		if (new_cpu_base != this_cpu_base &&
262 		    hrtimer_check_target(timer, new_base)) {
263 			new_cpu_base = this_cpu_base;
264 			goto again;
265 		}
266 	}
267 	return new_base;
268 }
269 
270 #else /* CONFIG_SMP */
271 
272 static inline bool is_migration_base(struct hrtimer_clock_base *base)
273 {
274 	return false;
275 }
276 
277 static inline struct hrtimer_clock_base *
278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279 {
280 	struct hrtimer_clock_base *base = timer->base;
281 
282 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 
284 	return base;
285 }
286 
287 # define switch_hrtimer_base(t, b, p)	(b)
288 
289 #endif	/* !CONFIG_SMP */
290 
291 /*
292  * Functions for the union type storage format of ktime_t which are
293  * too large for inlining:
294  */
295 #if BITS_PER_LONG < 64
296 /*
297  * Divide a ktime value by a nanosecond value
298  */
299 s64 __ktime_divns(const ktime_t kt, s64 div)
300 {
301 	int sft = 0;
302 	s64 dclc;
303 	u64 tmp;
304 
305 	dclc = ktime_to_ns(kt);
306 	tmp = dclc < 0 ? -dclc : dclc;
307 
308 	/* Make sure the divisor is less than 2^32: */
309 	while (div >> 32) {
310 		sft++;
311 		div >>= 1;
312 	}
313 	tmp >>= sft;
314 	do_div(tmp, (unsigned long) div);
315 	return dclc < 0 ? -tmp : tmp;
316 }
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
319 
320 /*
321  * Add two ktime values and do a safety check for overflow:
322  */
323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324 {
325 	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 
327 	/*
328 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 	 * return to user space in a timespec:
330 	 */
331 	if (res < 0 || res < lhs || res < rhs)
332 		res = ktime_set(KTIME_SEC_MAX, 0);
333 
334 	return res;
335 }
336 
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
338 
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340 
341 static struct debug_obj_descr hrtimer_debug_descr;
342 
343 static void *hrtimer_debug_hint(void *addr)
344 {
345 	return ((struct hrtimer *) addr)->function;
346 }
347 
348 /*
349  * fixup_init is called when:
350  * - an active object is initialized
351  */
352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 {
354 	struct hrtimer *timer = addr;
355 
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		hrtimer_cancel(timer);
359 		debug_object_init(timer, &hrtimer_debug_descr);
360 		return true;
361 	default:
362 		return false;
363 	}
364 }
365 
366 /*
367  * fixup_activate is called when:
368  * - an active object is activated
369  * - an unknown non-static object is activated
370  */
371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 {
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		WARN_ON(1);
376 		/* fall through */
377 	default:
378 		return false;
379 	}
380 }
381 
382 /*
383  * fixup_free is called when:
384  * - an active object is freed
385  */
386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 {
388 	struct hrtimer *timer = addr;
389 
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		hrtimer_cancel(timer);
393 		debug_object_free(timer, &hrtimer_debug_descr);
394 		return true;
395 	default:
396 		return false;
397 	}
398 }
399 
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 	.name		= "hrtimer",
402 	.debug_hint	= hrtimer_debug_hint,
403 	.fixup_init	= hrtimer_fixup_init,
404 	.fixup_activate	= hrtimer_fixup_activate,
405 	.fixup_free	= hrtimer_fixup_free,
406 };
407 
408 static inline void debug_hrtimer_init(struct hrtimer *timer)
409 {
410 	debug_object_init(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 					  enum hrtimer_mode mode)
415 {
416 	debug_object_activate(timer, &hrtimer_debug_descr);
417 }
418 
419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420 {
421 	debug_object_deactivate(timer, &hrtimer_debug_descr);
422 }
423 
424 static inline void debug_hrtimer_free(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 			   enum hrtimer_mode mode);
431 
432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 			   enum hrtimer_mode mode)
434 {
435 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 	__hrtimer_init(timer, clock_id, mode);
437 }
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 
440 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
441 				   clockid_t clock_id, enum hrtimer_mode mode);
442 
443 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl,
444 				   clockid_t clock_id, enum hrtimer_mode mode)
445 {
446 	debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr);
447 	__hrtimer_init_sleeper(sl, clock_id, mode);
448 }
449 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack);
450 
451 void destroy_hrtimer_on_stack(struct hrtimer *timer)
452 {
453 	debug_object_free(timer, &hrtimer_debug_descr);
454 }
455 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
456 
457 #else
458 
459 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
460 static inline void debug_hrtimer_activate(struct hrtimer *timer,
461 					  enum hrtimer_mode mode) { }
462 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
463 #endif
464 
465 static inline void
466 debug_init(struct hrtimer *timer, clockid_t clockid,
467 	   enum hrtimer_mode mode)
468 {
469 	debug_hrtimer_init(timer);
470 	trace_hrtimer_init(timer, clockid, mode);
471 }
472 
473 static inline void debug_activate(struct hrtimer *timer,
474 				  enum hrtimer_mode mode)
475 {
476 	debug_hrtimer_activate(timer, mode);
477 	trace_hrtimer_start(timer, mode);
478 }
479 
480 static inline void debug_deactivate(struct hrtimer *timer)
481 {
482 	debug_hrtimer_deactivate(timer);
483 	trace_hrtimer_cancel(timer);
484 }
485 
486 static struct hrtimer_clock_base *
487 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
488 {
489 	unsigned int idx;
490 
491 	if (!*active)
492 		return NULL;
493 
494 	idx = __ffs(*active);
495 	*active &= ~(1U << idx);
496 
497 	return &cpu_base->clock_base[idx];
498 }
499 
500 #define for_each_active_base(base, cpu_base, active)	\
501 	while ((base = __next_base((cpu_base), &(active))))
502 
503 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
504 					 const struct hrtimer *exclude,
505 					 unsigned int active,
506 					 ktime_t expires_next)
507 {
508 	struct hrtimer_clock_base *base;
509 	ktime_t expires;
510 
511 	for_each_active_base(base, cpu_base, active) {
512 		struct timerqueue_node *next;
513 		struct hrtimer *timer;
514 
515 		next = timerqueue_getnext(&base->active);
516 		timer = container_of(next, struct hrtimer, node);
517 		if (timer == exclude) {
518 			/* Get to the next timer in the queue. */
519 			next = timerqueue_iterate_next(next);
520 			if (!next)
521 				continue;
522 
523 			timer = container_of(next, struct hrtimer, node);
524 		}
525 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
526 		if (expires < expires_next) {
527 			expires_next = expires;
528 
529 			/* Skip cpu_base update if a timer is being excluded. */
530 			if (exclude)
531 				continue;
532 
533 			if (timer->is_soft)
534 				cpu_base->softirq_next_timer = timer;
535 			else
536 				cpu_base->next_timer = timer;
537 		}
538 	}
539 	/*
540 	 * clock_was_set() might have changed base->offset of any of
541 	 * the clock bases so the result might be negative. Fix it up
542 	 * to prevent a false positive in clockevents_program_event().
543 	 */
544 	if (expires_next < 0)
545 		expires_next = 0;
546 	return expires_next;
547 }
548 
549 /*
550  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
551  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
552  *
553  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
554  * those timers will get run whenever the softirq gets handled, at the end of
555  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
556  *
557  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
558  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
559  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
560  *
561  * @active_mask must be one of:
562  *  - HRTIMER_ACTIVE_ALL,
563  *  - HRTIMER_ACTIVE_SOFT, or
564  *  - HRTIMER_ACTIVE_HARD.
565  */
566 static ktime_t
567 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
568 {
569 	unsigned int active;
570 	struct hrtimer *next_timer = NULL;
571 	ktime_t expires_next = KTIME_MAX;
572 
573 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
574 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
575 		cpu_base->softirq_next_timer = NULL;
576 		expires_next = __hrtimer_next_event_base(cpu_base, NULL,
577 							 active, KTIME_MAX);
578 
579 		next_timer = cpu_base->softirq_next_timer;
580 	}
581 
582 	if (active_mask & HRTIMER_ACTIVE_HARD) {
583 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
584 		cpu_base->next_timer = next_timer;
585 		expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
586 							 expires_next);
587 	}
588 
589 	return expires_next;
590 }
591 
592 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
593 {
594 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
595 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
596 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
597 
598 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
599 					    offs_real, offs_boot, offs_tai);
600 
601 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
602 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
603 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
604 
605 	return now;
606 }
607 
608 /*
609  * Is the high resolution mode active ?
610  */
611 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
612 {
613 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
614 		cpu_base->hres_active : 0;
615 }
616 
617 static inline int hrtimer_hres_active(void)
618 {
619 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
620 }
621 
622 /*
623  * Reprogram the event source with checking both queues for the
624  * next event
625  * Called with interrupts disabled and base->lock held
626  */
627 static void
628 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
629 {
630 	ktime_t expires_next;
631 
632 	/*
633 	 * Find the current next expiration time.
634 	 */
635 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
636 
637 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
638 		/*
639 		 * When the softirq is activated, hrtimer has to be
640 		 * programmed with the first hard hrtimer because soft
641 		 * timer interrupt could occur too late.
642 		 */
643 		if (cpu_base->softirq_activated)
644 			expires_next = __hrtimer_get_next_event(cpu_base,
645 								HRTIMER_ACTIVE_HARD);
646 		else
647 			cpu_base->softirq_expires_next = expires_next;
648 	}
649 
650 	if (skip_equal && expires_next == cpu_base->expires_next)
651 		return;
652 
653 	cpu_base->expires_next = expires_next;
654 
655 	/*
656 	 * If hres is not active, hardware does not have to be
657 	 * reprogrammed yet.
658 	 *
659 	 * If a hang was detected in the last timer interrupt then we
660 	 * leave the hang delay active in the hardware. We want the
661 	 * system to make progress. That also prevents the following
662 	 * scenario:
663 	 * T1 expires 50ms from now
664 	 * T2 expires 5s from now
665 	 *
666 	 * T1 is removed, so this code is called and would reprogram
667 	 * the hardware to 5s from now. Any hrtimer_start after that
668 	 * will not reprogram the hardware due to hang_detected being
669 	 * set. So we'd effectivly block all timers until the T2 event
670 	 * fires.
671 	 */
672 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
673 		return;
674 
675 	tick_program_event(cpu_base->expires_next, 1);
676 }
677 
678 /* High resolution timer related functions */
679 #ifdef CONFIG_HIGH_RES_TIMERS
680 
681 /*
682  * High resolution timer enabled ?
683  */
684 static bool hrtimer_hres_enabled __read_mostly  = true;
685 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
686 EXPORT_SYMBOL_GPL(hrtimer_resolution);
687 
688 /*
689  * Enable / Disable high resolution mode
690  */
691 static int __init setup_hrtimer_hres(char *str)
692 {
693 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
694 }
695 
696 __setup("highres=", setup_hrtimer_hres);
697 
698 /*
699  * hrtimer_high_res_enabled - query, if the highres mode is enabled
700  */
701 static inline int hrtimer_is_hres_enabled(void)
702 {
703 	return hrtimer_hres_enabled;
704 }
705 
706 /*
707  * Retrigger next event is called after clock was set
708  *
709  * Called with interrupts disabled via on_each_cpu()
710  */
711 static void retrigger_next_event(void *arg)
712 {
713 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
714 
715 	if (!__hrtimer_hres_active(base))
716 		return;
717 
718 	raw_spin_lock(&base->lock);
719 	hrtimer_update_base(base);
720 	hrtimer_force_reprogram(base, 0);
721 	raw_spin_unlock(&base->lock);
722 }
723 
724 /*
725  * Switch to high resolution mode
726  */
727 static void hrtimer_switch_to_hres(void)
728 {
729 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
730 
731 	if (tick_init_highres()) {
732 		pr_warn("Could not switch to high resolution mode on CPU %u\n",
733 			base->cpu);
734 		return;
735 	}
736 	base->hres_active = 1;
737 	hrtimer_resolution = HIGH_RES_NSEC;
738 
739 	tick_setup_sched_timer();
740 	/* "Retrigger" the interrupt to get things going */
741 	retrigger_next_event(NULL);
742 }
743 
744 static void clock_was_set_work(struct work_struct *work)
745 {
746 	clock_was_set();
747 }
748 
749 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
750 
751 /*
752  * Called from timekeeping and resume code to reprogram the hrtimer
753  * interrupt device on all cpus.
754  */
755 void clock_was_set_delayed(void)
756 {
757 	schedule_work(&hrtimer_work);
758 }
759 
760 #else
761 
762 static inline int hrtimer_is_hres_enabled(void) { return 0; }
763 static inline void hrtimer_switch_to_hres(void) { }
764 static inline void retrigger_next_event(void *arg) { }
765 
766 #endif /* CONFIG_HIGH_RES_TIMERS */
767 
768 /*
769  * When a timer is enqueued and expires earlier than the already enqueued
770  * timers, we have to check, whether it expires earlier than the timer for
771  * which the clock event device was armed.
772  *
773  * Called with interrupts disabled and base->cpu_base.lock held
774  */
775 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
776 {
777 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
778 	struct hrtimer_clock_base *base = timer->base;
779 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
780 
781 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
782 
783 	/*
784 	 * CLOCK_REALTIME timer might be requested with an absolute
785 	 * expiry time which is less than base->offset. Set it to 0.
786 	 */
787 	if (expires < 0)
788 		expires = 0;
789 
790 	if (timer->is_soft) {
791 		/*
792 		 * soft hrtimer could be started on a remote CPU. In this
793 		 * case softirq_expires_next needs to be updated on the
794 		 * remote CPU. The soft hrtimer will not expire before the
795 		 * first hard hrtimer on the remote CPU -
796 		 * hrtimer_check_target() prevents this case.
797 		 */
798 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
799 
800 		if (timer_cpu_base->softirq_activated)
801 			return;
802 
803 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
804 			return;
805 
806 		timer_cpu_base->softirq_next_timer = timer;
807 		timer_cpu_base->softirq_expires_next = expires;
808 
809 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
810 		    !reprogram)
811 			return;
812 	}
813 
814 	/*
815 	 * If the timer is not on the current cpu, we cannot reprogram
816 	 * the other cpus clock event device.
817 	 */
818 	if (base->cpu_base != cpu_base)
819 		return;
820 
821 	/*
822 	 * If the hrtimer interrupt is running, then it will
823 	 * reevaluate the clock bases and reprogram the clock event
824 	 * device. The callbacks are always executed in hard interrupt
825 	 * context so we don't need an extra check for a running
826 	 * callback.
827 	 */
828 	if (cpu_base->in_hrtirq)
829 		return;
830 
831 	if (expires >= cpu_base->expires_next)
832 		return;
833 
834 	/* Update the pointer to the next expiring timer */
835 	cpu_base->next_timer = timer;
836 	cpu_base->expires_next = expires;
837 
838 	/*
839 	 * If hres is not active, hardware does not have to be
840 	 * programmed yet.
841 	 *
842 	 * If a hang was detected in the last timer interrupt then we
843 	 * do not schedule a timer which is earlier than the expiry
844 	 * which we enforced in the hang detection. We want the system
845 	 * to make progress.
846 	 */
847 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
848 		return;
849 
850 	/*
851 	 * Program the timer hardware. We enforce the expiry for
852 	 * events which are already in the past.
853 	 */
854 	tick_program_event(expires, 1);
855 }
856 
857 /*
858  * Clock realtime was set
859  *
860  * Change the offset of the realtime clock vs. the monotonic
861  * clock.
862  *
863  * We might have to reprogram the high resolution timer interrupt. On
864  * SMP we call the architecture specific code to retrigger _all_ high
865  * resolution timer interrupts. On UP we just disable interrupts and
866  * call the high resolution interrupt code.
867  */
868 void clock_was_set(void)
869 {
870 #ifdef CONFIG_HIGH_RES_TIMERS
871 	/* Retrigger the CPU local events everywhere */
872 	on_each_cpu(retrigger_next_event, NULL, 1);
873 #endif
874 	timerfd_clock_was_set();
875 }
876 
877 /*
878  * During resume we might have to reprogram the high resolution timer
879  * interrupt on all online CPUs.  However, all other CPUs will be
880  * stopped with IRQs interrupts disabled so the clock_was_set() call
881  * must be deferred.
882  */
883 void hrtimers_resume(void)
884 {
885 	lockdep_assert_irqs_disabled();
886 	/* Retrigger on the local CPU */
887 	retrigger_next_event(NULL);
888 	/* And schedule a retrigger for all others */
889 	clock_was_set_delayed();
890 }
891 
892 /*
893  * Counterpart to lock_hrtimer_base above:
894  */
895 static inline
896 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
897 {
898 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
899 }
900 
901 /**
902  * hrtimer_forward - forward the timer expiry
903  * @timer:	hrtimer to forward
904  * @now:	forward past this time
905  * @interval:	the interval to forward
906  *
907  * Forward the timer expiry so it will expire in the future.
908  * Returns the number of overruns.
909  *
910  * Can be safely called from the callback function of @timer. If
911  * called from other contexts @timer must neither be enqueued nor
912  * running the callback and the caller needs to take care of
913  * serialization.
914  *
915  * Note: This only updates the timer expiry value and does not requeue
916  * the timer.
917  */
918 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
919 {
920 	u64 orun = 1;
921 	ktime_t delta;
922 
923 	delta = ktime_sub(now, hrtimer_get_expires(timer));
924 
925 	if (delta < 0)
926 		return 0;
927 
928 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
929 		return 0;
930 
931 	if (interval < hrtimer_resolution)
932 		interval = hrtimer_resolution;
933 
934 	if (unlikely(delta >= interval)) {
935 		s64 incr = ktime_to_ns(interval);
936 
937 		orun = ktime_divns(delta, incr);
938 		hrtimer_add_expires_ns(timer, incr * orun);
939 		if (hrtimer_get_expires_tv64(timer) > now)
940 			return orun;
941 		/*
942 		 * This (and the ktime_add() below) is the
943 		 * correction for exact:
944 		 */
945 		orun++;
946 	}
947 	hrtimer_add_expires(timer, interval);
948 
949 	return orun;
950 }
951 EXPORT_SYMBOL_GPL(hrtimer_forward);
952 
953 /*
954  * enqueue_hrtimer - internal function to (re)start a timer
955  *
956  * The timer is inserted in expiry order. Insertion into the
957  * red black tree is O(log(n)). Must hold the base lock.
958  *
959  * Returns 1 when the new timer is the leftmost timer in the tree.
960  */
961 static int enqueue_hrtimer(struct hrtimer *timer,
962 			   struct hrtimer_clock_base *base,
963 			   enum hrtimer_mode mode)
964 {
965 	debug_activate(timer, mode);
966 
967 	base->cpu_base->active_bases |= 1 << base->index;
968 
969 	timer->state = HRTIMER_STATE_ENQUEUED;
970 
971 	return timerqueue_add(&base->active, &timer->node);
972 }
973 
974 /*
975  * __remove_hrtimer - internal function to remove a timer
976  *
977  * Caller must hold the base lock.
978  *
979  * High resolution timer mode reprograms the clock event device when the
980  * timer is the one which expires next. The caller can disable this by setting
981  * reprogram to zero. This is useful, when the context does a reprogramming
982  * anyway (e.g. timer interrupt)
983  */
984 static void __remove_hrtimer(struct hrtimer *timer,
985 			     struct hrtimer_clock_base *base,
986 			     u8 newstate, int reprogram)
987 {
988 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
989 	u8 state = timer->state;
990 
991 	timer->state = newstate;
992 	if (!(state & HRTIMER_STATE_ENQUEUED))
993 		return;
994 
995 	if (!timerqueue_del(&base->active, &timer->node))
996 		cpu_base->active_bases &= ~(1 << base->index);
997 
998 	/*
999 	 * Note: If reprogram is false we do not update
1000 	 * cpu_base->next_timer. This happens when we remove the first
1001 	 * timer on a remote cpu. No harm as we never dereference
1002 	 * cpu_base->next_timer. So the worst thing what can happen is
1003 	 * an superflous call to hrtimer_force_reprogram() on the
1004 	 * remote cpu later on if the same timer gets enqueued again.
1005 	 */
1006 	if (reprogram && timer == cpu_base->next_timer)
1007 		hrtimer_force_reprogram(cpu_base, 1);
1008 }
1009 
1010 /*
1011  * remove hrtimer, called with base lock held
1012  */
1013 static inline int
1014 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
1015 {
1016 	if (hrtimer_is_queued(timer)) {
1017 		u8 state = timer->state;
1018 		int reprogram;
1019 
1020 		/*
1021 		 * Remove the timer and force reprogramming when high
1022 		 * resolution mode is active and the timer is on the current
1023 		 * CPU. If we remove a timer on another CPU, reprogramming is
1024 		 * skipped. The interrupt event on this CPU is fired and
1025 		 * reprogramming happens in the interrupt handler. This is a
1026 		 * rare case and less expensive than a smp call.
1027 		 */
1028 		debug_deactivate(timer);
1029 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1030 
1031 		if (!restart)
1032 			state = HRTIMER_STATE_INACTIVE;
1033 
1034 		__remove_hrtimer(timer, base, state, reprogram);
1035 		return 1;
1036 	}
1037 	return 0;
1038 }
1039 
1040 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1041 					    const enum hrtimer_mode mode)
1042 {
1043 #ifdef CONFIG_TIME_LOW_RES
1044 	/*
1045 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1046 	 * granular time values. For relative timers we add hrtimer_resolution
1047 	 * (i.e. one jiffie) to prevent short timeouts.
1048 	 */
1049 	timer->is_rel = mode & HRTIMER_MODE_REL;
1050 	if (timer->is_rel)
1051 		tim = ktime_add_safe(tim, hrtimer_resolution);
1052 #endif
1053 	return tim;
1054 }
1055 
1056 static void
1057 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1058 {
1059 	ktime_t expires;
1060 
1061 	/*
1062 	 * Find the next SOFT expiration.
1063 	 */
1064 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1065 
1066 	/*
1067 	 * reprogramming needs to be triggered, even if the next soft
1068 	 * hrtimer expires at the same time than the next hard
1069 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1070 	 */
1071 	if (expires == KTIME_MAX)
1072 		return;
1073 
1074 	/*
1075 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1076 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1077 	 */
1078 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1079 }
1080 
1081 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1082 				    u64 delta_ns, const enum hrtimer_mode mode,
1083 				    struct hrtimer_clock_base *base)
1084 {
1085 	struct hrtimer_clock_base *new_base;
1086 
1087 	/* Remove an active timer from the queue: */
1088 	remove_hrtimer(timer, base, true);
1089 
1090 	if (mode & HRTIMER_MODE_REL)
1091 		tim = ktime_add_safe(tim, base->get_time());
1092 
1093 	tim = hrtimer_update_lowres(timer, tim, mode);
1094 
1095 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1096 
1097 	/* Switch the timer base, if necessary: */
1098 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1099 
1100 	return enqueue_hrtimer(timer, new_base, mode);
1101 }
1102 
1103 /**
1104  * hrtimer_start_range_ns - (re)start an hrtimer
1105  * @timer:	the timer to be added
1106  * @tim:	expiry time
1107  * @delta_ns:	"slack" range for the timer
1108  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1109  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1110  *		softirq based mode is considered for debug purpose only!
1111  */
1112 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1113 			    u64 delta_ns, const enum hrtimer_mode mode)
1114 {
1115 	struct hrtimer_clock_base *base;
1116 	unsigned long flags;
1117 
1118 	/*
1119 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1120 	 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard
1121 	 * expiry mode because unmarked timers are moved to softirq expiry.
1122 	 */
1123 	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1124 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1125 	else
1126 		WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard);
1127 
1128 	base = lock_hrtimer_base(timer, &flags);
1129 
1130 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1131 		hrtimer_reprogram(timer, true);
1132 
1133 	unlock_hrtimer_base(timer, &flags);
1134 }
1135 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1136 
1137 /**
1138  * hrtimer_try_to_cancel - try to deactivate a timer
1139  * @timer:	hrtimer to stop
1140  *
1141  * Returns:
1142  *
1143  *  *  0 when the timer was not active
1144  *  *  1 when the timer was active
1145  *  * -1 when the timer is currently executing the callback function and
1146  *    cannot be stopped
1147  */
1148 int hrtimer_try_to_cancel(struct hrtimer *timer)
1149 {
1150 	struct hrtimer_clock_base *base;
1151 	unsigned long flags;
1152 	int ret = -1;
1153 
1154 	/*
1155 	 * Check lockless first. If the timer is not active (neither
1156 	 * enqueued nor running the callback, nothing to do here.  The
1157 	 * base lock does not serialize against a concurrent enqueue,
1158 	 * so we can avoid taking it.
1159 	 */
1160 	if (!hrtimer_active(timer))
1161 		return 0;
1162 
1163 	base = lock_hrtimer_base(timer, &flags);
1164 
1165 	if (!hrtimer_callback_running(timer))
1166 		ret = remove_hrtimer(timer, base, false);
1167 
1168 	unlock_hrtimer_base(timer, &flags);
1169 
1170 	return ret;
1171 
1172 }
1173 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1174 
1175 #ifdef CONFIG_PREEMPT_RT
1176 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base)
1177 {
1178 	spin_lock_init(&base->softirq_expiry_lock);
1179 }
1180 
1181 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base)
1182 {
1183 	spin_lock(&base->softirq_expiry_lock);
1184 }
1185 
1186 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base)
1187 {
1188 	spin_unlock(&base->softirq_expiry_lock);
1189 }
1190 
1191 /*
1192  * The counterpart to hrtimer_cancel_wait_running().
1193  *
1194  * If there is a waiter for cpu_base->expiry_lock, then it was waiting for
1195  * the timer callback to finish. Drop expiry_lock and reaquire it. That
1196  * allows the waiter to acquire the lock and make progress.
1197  */
1198 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base,
1199 				      unsigned long flags)
1200 {
1201 	if (atomic_read(&cpu_base->timer_waiters)) {
1202 		raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1203 		spin_unlock(&cpu_base->softirq_expiry_lock);
1204 		spin_lock(&cpu_base->softirq_expiry_lock);
1205 		raw_spin_lock_irq(&cpu_base->lock);
1206 	}
1207 }
1208 
1209 /*
1210  * This function is called on PREEMPT_RT kernels when the fast path
1211  * deletion of a timer failed because the timer callback function was
1212  * running.
1213  *
1214  * This prevents priority inversion: if the soft irq thread is preempted
1215  * in the middle of a timer callback, then calling del_timer_sync() can
1216  * lead to two issues:
1217  *
1218  *  - If the caller is on a remote CPU then it has to spin wait for the timer
1219  *    handler to complete. This can result in unbound priority inversion.
1220  *
1221  *  - If the caller originates from the task which preempted the timer
1222  *    handler on the same CPU, then spin waiting for the timer handler to
1223  *    complete is never going to end.
1224  */
1225 void hrtimer_cancel_wait_running(const struct hrtimer *timer)
1226 {
1227 	/* Lockless read. Prevent the compiler from reloading it below */
1228 	struct hrtimer_clock_base *base = READ_ONCE(timer->base);
1229 
1230 	/*
1231 	 * Just relax if the timer expires in hard interrupt context or if
1232 	 * it is currently on the migration base.
1233 	 */
1234 	if (!timer->is_soft || is_migration_base(base)) {
1235 		cpu_relax();
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * Mark the base as contended and grab the expiry lock, which is
1241 	 * held by the softirq across the timer callback. Drop the lock
1242 	 * immediately so the softirq can expire the next timer. In theory
1243 	 * the timer could already be running again, but that's more than
1244 	 * unlikely and just causes another wait loop.
1245 	 */
1246 	atomic_inc(&base->cpu_base->timer_waiters);
1247 	spin_lock_bh(&base->cpu_base->softirq_expiry_lock);
1248 	atomic_dec(&base->cpu_base->timer_waiters);
1249 	spin_unlock_bh(&base->cpu_base->softirq_expiry_lock);
1250 }
1251 #else
1252 static inline void
1253 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { }
1254 static inline void
1255 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { }
1256 static inline void
1257 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { }
1258 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base,
1259 					     unsigned long flags) { }
1260 #endif
1261 
1262 /**
1263  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1264  * @timer:	the timer to be cancelled
1265  *
1266  * Returns:
1267  *  0 when the timer was not active
1268  *  1 when the timer was active
1269  */
1270 int hrtimer_cancel(struct hrtimer *timer)
1271 {
1272 	int ret;
1273 
1274 	do {
1275 		ret = hrtimer_try_to_cancel(timer);
1276 
1277 		if (ret < 0)
1278 			hrtimer_cancel_wait_running(timer);
1279 	} while (ret < 0);
1280 	return ret;
1281 }
1282 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1283 
1284 /**
1285  * hrtimer_get_remaining - get remaining time for the timer
1286  * @timer:	the timer to read
1287  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1288  */
1289 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1290 {
1291 	unsigned long flags;
1292 	ktime_t rem;
1293 
1294 	lock_hrtimer_base(timer, &flags);
1295 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1296 		rem = hrtimer_expires_remaining_adjusted(timer);
1297 	else
1298 		rem = hrtimer_expires_remaining(timer);
1299 	unlock_hrtimer_base(timer, &flags);
1300 
1301 	return rem;
1302 }
1303 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1304 
1305 #ifdef CONFIG_NO_HZ_COMMON
1306 /**
1307  * hrtimer_get_next_event - get the time until next expiry event
1308  *
1309  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1310  */
1311 u64 hrtimer_get_next_event(void)
1312 {
1313 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1314 	u64 expires = KTIME_MAX;
1315 	unsigned long flags;
1316 
1317 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1318 
1319 	if (!__hrtimer_hres_active(cpu_base))
1320 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1321 
1322 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1323 
1324 	return expires;
1325 }
1326 
1327 /**
1328  * hrtimer_next_event_without - time until next expiry event w/o one timer
1329  * @exclude:	timer to exclude
1330  *
1331  * Returns the next expiry time over all timers except for the @exclude one or
1332  * KTIME_MAX if none of them is pending.
1333  */
1334 u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1335 {
1336 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1337 	u64 expires = KTIME_MAX;
1338 	unsigned long flags;
1339 
1340 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1341 
1342 	if (__hrtimer_hres_active(cpu_base)) {
1343 		unsigned int active;
1344 
1345 		if (!cpu_base->softirq_activated) {
1346 			active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1347 			expires = __hrtimer_next_event_base(cpu_base, exclude,
1348 							    active, KTIME_MAX);
1349 		}
1350 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1351 		expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1352 						    expires);
1353 	}
1354 
1355 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1356 
1357 	return expires;
1358 }
1359 #endif
1360 
1361 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1362 {
1363 	if (likely(clock_id < MAX_CLOCKS)) {
1364 		int base = hrtimer_clock_to_base_table[clock_id];
1365 
1366 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1367 			return base;
1368 	}
1369 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1370 	return HRTIMER_BASE_MONOTONIC;
1371 }
1372 
1373 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1374 			   enum hrtimer_mode mode)
1375 {
1376 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1377 	struct hrtimer_cpu_base *cpu_base;
1378 	int base;
1379 
1380 	/*
1381 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1382 	 * marked for hard interrupt expiry mode are moved into soft
1383 	 * interrupt context for latency reasons and because the callbacks
1384 	 * can invoke functions which might sleep on RT, e.g. spin_lock().
1385 	 */
1386 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD))
1387 		softtimer = true;
1388 
1389 	memset(timer, 0, sizeof(struct hrtimer));
1390 
1391 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1392 
1393 	/*
1394 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1395 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1396 	 * ensure POSIX compliance.
1397 	 */
1398 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1399 		clock_id = CLOCK_MONOTONIC;
1400 
1401 	base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1402 	base += hrtimer_clockid_to_base(clock_id);
1403 	timer->is_soft = softtimer;
1404 	timer->is_hard = !softtimer;
1405 	timer->base = &cpu_base->clock_base[base];
1406 	timerqueue_init(&timer->node);
1407 }
1408 
1409 /**
1410  * hrtimer_init - initialize a timer to the given clock
1411  * @timer:	the timer to be initialized
1412  * @clock_id:	the clock to be used
1413  * @mode:       The modes which are relevant for intitialization:
1414  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1415  *              HRTIMER_MODE_REL_SOFT
1416  *
1417  *              The PINNED variants of the above can be handed in,
1418  *              but the PINNED bit is ignored as pinning happens
1419  *              when the hrtimer is started
1420  */
1421 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1422 		  enum hrtimer_mode mode)
1423 {
1424 	debug_init(timer, clock_id, mode);
1425 	__hrtimer_init(timer, clock_id, mode);
1426 }
1427 EXPORT_SYMBOL_GPL(hrtimer_init);
1428 
1429 /*
1430  * A timer is active, when it is enqueued into the rbtree or the
1431  * callback function is running or it's in the state of being migrated
1432  * to another cpu.
1433  *
1434  * It is important for this function to not return a false negative.
1435  */
1436 bool hrtimer_active(const struct hrtimer *timer)
1437 {
1438 	struct hrtimer_clock_base *base;
1439 	unsigned int seq;
1440 
1441 	do {
1442 		base = READ_ONCE(timer->base);
1443 		seq = raw_read_seqcount_begin(&base->seq);
1444 
1445 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1446 		    base->running == timer)
1447 			return true;
1448 
1449 	} while (read_seqcount_retry(&base->seq, seq) ||
1450 		 base != READ_ONCE(timer->base));
1451 
1452 	return false;
1453 }
1454 EXPORT_SYMBOL_GPL(hrtimer_active);
1455 
1456 /*
1457  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1458  * distinct sections:
1459  *
1460  *  - queued:	the timer is queued
1461  *  - callback:	the timer is being ran
1462  *  - post:	the timer is inactive or (re)queued
1463  *
1464  * On the read side we ensure we observe timer->state and cpu_base->running
1465  * from the same section, if anything changed while we looked at it, we retry.
1466  * This includes timer->base changing because sequence numbers alone are
1467  * insufficient for that.
1468  *
1469  * The sequence numbers are required because otherwise we could still observe
1470  * a false negative if the read side got smeared over multiple consequtive
1471  * __run_hrtimer() invocations.
1472  */
1473 
1474 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1475 			  struct hrtimer_clock_base *base,
1476 			  struct hrtimer *timer, ktime_t *now,
1477 			  unsigned long flags)
1478 {
1479 	enum hrtimer_restart (*fn)(struct hrtimer *);
1480 	int restart;
1481 
1482 	lockdep_assert_held(&cpu_base->lock);
1483 
1484 	debug_deactivate(timer);
1485 	base->running = timer;
1486 
1487 	/*
1488 	 * Separate the ->running assignment from the ->state assignment.
1489 	 *
1490 	 * As with a regular write barrier, this ensures the read side in
1491 	 * hrtimer_active() cannot observe base->running == NULL &&
1492 	 * timer->state == INACTIVE.
1493 	 */
1494 	raw_write_seqcount_barrier(&base->seq);
1495 
1496 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1497 	fn = timer->function;
1498 
1499 	/*
1500 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1501 	 * timer is restarted with a period then it becomes an absolute
1502 	 * timer. If its not restarted it does not matter.
1503 	 */
1504 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1505 		timer->is_rel = false;
1506 
1507 	/*
1508 	 * The timer is marked as running in the CPU base, so it is
1509 	 * protected against migration to a different CPU even if the lock
1510 	 * is dropped.
1511 	 */
1512 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1513 	trace_hrtimer_expire_entry(timer, now);
1514 	restart = fn(timer);
1515 	trace_hrtimer_expire_exit(timer);
1516 	raw_spin_lock_irq(&cpu_base->lock);
1517 
1518 	/*
1519 	 * Note: We clear the running state after enqueue_hrtimer and
1520 	 * we do not reprogram the event hardware. Happens either in
1521 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1522 	 *
1523 	 * Note: Because we dropped the cpu_base->lock above,
1524 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1525 	 * for us already.
1526 	 */
1527 	if (restart != HRTIMER_NORESTART &&
1528 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1529 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1530 
1531 	/*
1532 	 * Separate the ->running assignment from the ->state assignment.
1533 	 *
1534 	 * As with a regular write barrier, this ensures the read side in
1535 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1536 	 * timer->state == INACTIVE.
1537 	 */
1538 	raw_write_seqcount_barrier(&base->seq);
1539 
1540 	WARN_ON_ONCE(base->running != timer);
1541 	base->running = NULL;
1542 }
1543 
1544 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1545 				 unsigned long flags, unsigned int active_mask)
1546 {
1547 	struct hrtimer_clock_base *base;
1548 	unsigned int active = cpu_base->active_bases & active_mask;
1549 
1550 	for_each_active_base(base, cpu_base, active) {
1551 		struct timerqueue_node *node;
1552 		ktime_t basenow;
1553 
1554 		basenow = ktime_add(now, base->offset);
1555 
1556 		while ((node = timerqueue_getnext(&base->active))) {
1557 			struct hrtimer *timer;
1558 
1559 			timer = container_of(node, struct hrtimer, node);
1560 
1561 			/*
1562 			 * The immediate goal for using the softexpires is
1563 			 * minimizing wakeups, not running timers at the
1564 			 * earliest interrupt after their soft expiration.
1565 			 * This allows us to avoid using a Priority Search
1566 			 * Tree, which can answer a stabbing querry for
1567 			 * overlapping intervals and instead use the simple
1568 			 * BST we already have.
1569 			 * We don't add extra wakeups by delaying timers that
1570 			 * are right-of a not yet expired timer, because that
1571 			 * timer will have to trigger a wakeup anyway.
1572 			 */
1573 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1574 				break;
1575 
1576 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1577 			if (active_mask == HRTIMER_ACTIVE_SOFT)
1578 				hrtimer_sync_wait_running(cpu_base, flags);
1579 		}
1580 	}
1581 }
1582 
1583 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1584 {
1585 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1586 	unsigned long flags;
1587 	ktime_t now;
1588 
1589 	hrtimer_cpu_base_lock_expiry(cpu_base);
1590 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1591 
1592 	now = hrtimer_update_base(cpu_base);
1593 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1594 
1595 	cpu_base->softirq_activated = 0;
1596 	hrtimer_update_softirq_timer(cpu_base, true);
1597 
1598 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1599 	hrtimer_cpu_base_unlock_expiry(cpu_base);
1600 }
1601 
1602 #ifdef CONFIG_HIGH_RES_TIMERS
1603 
1604 /*
1605  * High resolution timer interrupt
1606  * Called with interrupts disabled
1607  */
1608 void hrtimer_interrupt(struct clock_event_device *dev)
1609 {
1610 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1611 	ktime_t expires_next, now, entry_time, delta;
1612 	unsigned long flags;
1613 	int retries = 0;
1614 
1615 	BUG_ON(!cpu_base->hres_active);
1616 	cpu_base->nr_events++;
1617 	dev->next_event = KTIME_MAX;
1618 
1619 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1620 	entry_time = now = hrtimer_update_base(cpu_base);
1621 retry:
1622 	cpu_base->in_hrtirq = 1;
1623 	/*
1624 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1625 	 * held to prevent that a timer is enqueued in our queue via
1626 	 * the migration code. This does not affect enqueueing of
1627 	 * timers which run their callback and need to be requeued on
1628 	 * this CPU.
1629 	 */
1630 	cpu_base->expires_next = KTIME_MAX;
1631 
1632 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1633 		cpu_base->softirq_expires_next = KTIME_MAX;
1634 		cpu_base->softirq_activated = 1;
1635 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1636 	}
1637 
1638 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1639 
1640 	/* Reevaluate the clock bases for the next expiry */
1641 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1642 	/*
1643 	 * Store the new expiry value so the migration code can verify
1644 	 * against it.
1645 	 */
1646 	cpu_base->expires_next = expires_next;
1647 	cpu_base->in_hrtirq = 0;
1648 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1649 
1650 	/* Reprogramming necessary ? */
1651 	if (!tick_program_event(expires_next, 0)) {
1652 		cpu_base->hang_detected = 0;
1653 		return;
1654 	}
1655 
1656 	/*
1657 	 * The next timer was already expired due to:
1658 	 * - tracing
1659 	 * - long lasting callbacks
1660 	 * - being scheduled away when running in a VM
1661 	 *
1662 	 * We need to prevent that we loop forever in the hrtimer
1663 	 * interrupt routine. We give it 3 attempts to avoid
1664 	 * overreacting on some spurious event.
1665 	 *
1666 	 * Acquire base lock for updating the offsets and retrieving
1667 	 * the current time.
1668 	 */
1669 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1670 	now = hrtimer_update_base(cpu_base);
1671 	cpu_base->nr_retries++;
1672 	if (++retries < 3)
1673 		goto retry;
1674 	/*
1675 	 * Give the system a chance to do something else than looping
1676 	 * here. We stored the entry time, so we know exactly how long
1677 	 * we spent here. We schedule the next event this amount of
1678 	 * time away.
1679 	 */
1680 	cpu_base->nr_hangs++;
1681 	cpu_base->hang_detected = 1;
1682 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1683 
1684 	delta = ktime_sub(now, entry_time);
1685 	if ((unsigned int)delta > cpu_base->max_hang_time)
1686 		cpu_base->max_hang_time = (unsigned int) delta;
1687 	/*
1688 	 * Limit it to a sensible value as we enforce a longer
1689 	 * delay. Give the CPU at least 100ms to catch up.
1690 	 */
1691 	if (delta > 100 * NSEC_PER_MSEC)
1692 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1693 	else
1694 		expires_next = ktime_add(now, delta);
1695 	tick_program_event(expires_next, 1);
1696 	pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
1697 }
1698 
1699 /* called with interrupts disabled */
1700 static inline void __hrtimer_peek_ahead_timers(void)
1701 {
1702 	struct tick_device *td;
1703 
1704 	if (!hrtimer_hres_active())
1705 		return;
1706 
1707 	td = this_cpu_ptr(&tick_cpu_device);
1708 	if (td && td->evtdev)
1709 		hrtimer_interrupt(td->evtdev);
1710 }
1711 
1712 #else /* CONFIG_HIGH_RES_TIMERS */
1713 
1714 static inline void __hrtimer_peek_ahead_timers(void) { }
1715 
1716 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1717 
1718 /*
1719  * Called from run_local_timers in hardirq context every jiffy
1720  */
1721 void hrtimer_run_queues(void)
1722 {
1723 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1724 	unsigned long flags;
1725 	ktime_t now;
1726 
1727 	if (__hrtimer_hres_active(cpu_base))
1728 		return;
1729 
1730 	/*
1731 	 * This _is_ ugly: We have to check periodically, whether we
1732 	 * can switch to highres and / or nohz mode. The clocksource
1733 	 * switch happens with xtime_lock held. Notification from
1734 	 * there only sets the check bit in the tick_oneshot code,
1735 	 * otherwise we might deadlock vs. xtime_lock.
1736 	 */
1737 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1738 		hrtimer_switch_to_hres();
1739 		return;
1740 	}
1741 
1742 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1743 	now = hrtimer_update_base(cpu_base);
1744 
1745 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1746 		cpu_base->softirq_expires_next = KTIME_MAX;
1747 		cpu_base->softirq_activated = 1;
1748 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1749 	}
1750 
1751 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1752 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1753 }
1754 
1755 /*
1756  * Sleep related functions:
1757  */
1758 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1759 {
1760 	struct hrtimer_sleeper *t =
1761 		container_of(timer, struct hrtimer_sleeper, timer);
1762 	struct task_struct *task = t->task;
1763 
1764 	t->task = NULL;
1765 	if (task)
1766 		wake_up_process(task);
1767 
1768 	return HRTIMER_NORESTART;
1769 }
1770 
1771 /**
1772  * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer
1773  * @sl:		sleeper to be started
1774  * @mode:	timer mode abs/rel
1775  *
1776  * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers
1777  * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
1778  */
1779 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl,
1780 				   enum hrtimer_mode mode)
1781 {
1782 	/*
1783 	 * Make the enqueue delivery mode check work on RT. If the sleeper
1784 	 * was initialized for hard interrupt delivery, force the mode bit.
1785 	 * This is a special case for hrtimer_sleepers because
1786 	 * hrtimer_init_sleeper() determines the delivery mode on RT so the
1787 	 * fiddling with this decision is avoided at the call sites.
1788 	 */
1789 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard)
1790 		mode |= HRTIMER_MODE_HARD;
1791 
1792 	hrtimer_start_expires(&sl->timer, mode);
1793 }
1794 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires);
1795 
1796 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl,
1797 				   clockid_t clock_id, enum hrtimer_mode mode)
1798 {
1799 	/*
1800 	 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely
1801 	 * marked for hard interrupt expiry mode are moved into soft
1802 	 * interrupt context either for latency reasons or because the
1803 	 * hrtimer callback takes regular spinlocks or invokes other
1804 	 * functions which are not suitable for hard interrupt context on
1805 	 * PREEMPT_RT.
1806 	 *
1807 	 * The hrtimer_sleeper callback is RT compatible in hard interrupt
1808 	 * context, but there is a latency concern: Untrusted userspace can
1809 	 * spawn many threads which arm timers for the same expiry time on
1810 	 * the same CPU. That causes a latency spike due to the wakeup of
1811 	 * a gazillion threads.
1812 	 *
1813 	 * OTOH, priviledged real-time user space applications rely on the
1814 	 * low latency of hard interrupt wakeups. If the current task is in
1815 	 * a real-time scheduling class, mark the mode for hard interrupt
1816 	 * expiry.
1817 	 */
1818 	if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
1819 		if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT))
1820 			mode |= HRTIMER_MODE_HARD;
1821 	}
1822 
1823 	__hrtimer_init(&sl->timer, clock_id, mode);
1824 	sl->timer.function = hrtimer_wakeup;
1825 	sl->task = current;
1826 }
1827 
1828 /**
1829  * hrtimer_init_sleeper - initialize sleeper to the given clock
1830  * @sl:		sleeper to be initialized
1831  * @clock_id:	the clock to be used
1832  * @mode:	timer mode abs/rel
1833  */
1834 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id,
1835 			  enum hrtimer_mode mode)
1836 {
1837 	debug_init(&sl->timer, clock_id, mode);
1838 	__hrtimer_init_sleeper(sl, clock_id, mode);
1839 
1840 }
1841 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1842 
1843 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1844 {
1845 	switch(restart->nanosleep.type) {
1846 #ifdef CONFIG_COMPAT_32BIT_TIME
1847 	case TT_COMPAT:
1848 		if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
1849 			return -EFAULT;
1850 		break;
1851 #endif
1852 	case TT_NATIVE:
1853 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1854 			return -EFAULT;
1855 		break;
1856 	default:
1857 		BUG();
1858 	}
1859 	return -ERESTART_RESTARTBLOCK;
1860 }
1861 
1862 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1863 {
1864 	struct restart_block *restart;
1865 
1866 	do {
1867 		set_current_state(TASK_INTERRUPTIBLE);
1868 		hrtimer_sleeper_start_expires(t, mode);
1869 
1870 		if (likely(t->task))
1871 			freezable_schedule();
1872 
1873 		hrtimer_cancel(&t->timer);
1874 		mode = HRTIMER_MODE_ABS;
1875 
1876 	} while (t->task && !signal_pending(current));
1877 
1878 	__set_current_state(TASK_RUNNING);
1879 
1880 	if (!t->task)
1881 		return 0;
1882 
1883 	restart = &current->restart_block;
1884 	if (restart->nanosleep.type != TT_NONE) {
1885 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1886 		struct timespec64 rmt;
1887 
1888 		if (rem <= 0)
1889 			return 0;
1890 		rmt = ktime_to_timespec64(rem);
1891 
1892 		return nanosleep_copyout(restart, &rmt);
1893 	}
1894 	return -ERESTART_RESTARTBLOCK;
1895 }
1896 
1897 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1898 {
1899 	struct hrtimer_sleeper t;
1900 	int ret;
1901 
1902 	hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid,
1903 				      HRTIMER_MODE_ABS);
1904 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1905 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1906 	destroy_hrtimer_on_stack(&t.timer);
1907 	return ret;
1908 }
1909 
1910 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1911 		       const enum hrtimer_mode mode, const clockid_t clockid)
1912 {
1913 	struct restart_block *restart;
1914 	struct hrtimer_sleeper t;
1915 	int ret = 0;
1916 	u64 slack;
1917 
1918 	slack = current->timer_slack_ns;
1919 	if (dl_task(current) || rt_task(current))
1920 		slack = 0;
1921 
1922 	hrtimer_init_sleeper_on_stack(&t, clockid, mode);
1923 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1924 	ret = do_nanosleep(&t, mode);
1925 	if (ret != -ERESTART_RESTARTBLOCK)
1926 		goto out;
1927 
1928 	/* Absolute timers do not update the rmtp value and restart: */
1929 	if (mode == HRTIMER_MODE_ABS) {
1930 		ret = -ERESTARTNOHAND;
1931 		goto out;
1932 	}
1933 
1934 	restart = &current->restart_block;
1935 	restart->fn = hrtimer_nanosleep_restart;
1936 	restart->nanosleep.clockid = t.timer.base->clockid;
1937 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1938 out:
1939 	destroy_hrtimer_on_stack(&t.timer);
1940 	return ret;
1941 }
1942 
1943 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1944 
1945 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1946 		struct __kernel_timespec __user *, rmtp)
1947 {
1948 	struct timespec64 tu;
1949 
1950 	if (get_timespec64(&tu, rqtp))
1951 		return -EFAULT;
1952 
1953 	if (!timespec64_valid(&tu))
1954 		return -EINVAL;
1955 
1956 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1957 	current->restart_block.nanosleep.rmtp = rmtp;
1958 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1959 }
1960 
1961 #endif
1962 
1963 #ifdef CONFIG_COMPAT_32BIT_TIME
1964 
1965 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
1966 		       struct old_timespec32 __user *, rmtp)
1967 {
1968 	struct timespec64 tu;
1969 
1970 	if (get_old_timespec32(&tu, rqtp))
1971 		return -EFAULT;
1972 
1973 	if (!timespec64_valid(&tu))
1974 		return -EINVAL;
1975 
1976 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1977 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1978 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1979 }
1980 #endif
1981 
1982 /*
1983  * Functions related to boot-time initialization:
1984  */
1985 int hrtimers_prepare_cpu(unsigned int cpu)
1986 {
1987 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1988 	int i;
1989 
1990 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1991 		cpu_base->clock_base[i].cpu_base = cpu_base;
1992 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1993 	}
1994 
1995 	cpu_base->cpu = cpu;
1996 	cpu_base->active_bases = 0;
1997 	cpu_base->hres_active = 0;
1998 	cpu_base->hang_detected = 0;
1999 	cpu_base->next_timer = NULL;
2000 	cpu_base->softirq_next_timer = NULL;
2001 	cpu_base->expires_next = KTIME_MAX;
2002 	cpu_base->softirq_expires_next = KTIME_MAX;
2003 	hrtimer_cpu_base_init_expiry_lock(cpu_base);
2004 	return 0;
2005 }
2006 
2007 #ifdef CONFIG_HOTPLUG_CPU
2008 
2009 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
2010 				struct hrtimer_clock_base *new_base)
2011 {
2012 	struct hrtimer *timer;
2013 	struct timerqueue_node *node;
2014 
2015 	while ((node = timerqueue_getnext(&old_base->active))) {
2016 		timer = container_of(node, struct hrtimer, node);
2017 		BUG_ON(hrtimer_callback_running(timer));
2018 		debug_deactivate(timer);
2019 
2020 		/*
2021 		 * Mark it as ENQUEUED not INACTIVE otherwise the
2022 		 * timer could be seen as !active and just vanish away
2023 		 * under us on another CPU
2024 		 */
2025 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
2026 		timer->base = new_base;
2027 		/*
2028 		 * Enqueue the timers on the new cpu. This does not
2029 		 * reprogram the event device in case the timer
2030 		 * expires before the earliest on this CPU, but we run
2031 		 * hrtimer_interrupt after we migrated everything to
2032 		 * sort out already expired timers and reprogram the
2033 		 * event device.
2034 		 */
2035 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
2036 	}
2037 }
2038 
2039 int hrtimers_dead_cpu(unsigned int scpu)
2040 {
2041 	struct hrtimer_cpu_base *old_base, *new_base;
2042 	int i;
2043 
2044 	BUG_ON(cpu_online(scpu));
2045 	tick_cancel_sched_timer(scpu);
2046 
2047 	/*
2048 	 * this BH disable ensures that raise_softirq_irqoff() does
2049 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
2050 	 * holding the cpu_base lock
2051 	 */
2052 	local_bh_disable();
2053 	local_irq_disable();
2054 	old_base = &per_cpu(hrtimer_bases, scpu);
2055 	new_base = this_cpu_ptr(&hrtimer_bases);
2056 	/*
2057 	 * The caller is globally serialized and nobody else
2058 	 * takes two locks at once, deadlock is not possible.
2059 	 */
2060 	raw_spin_lock(&new_base->lock);
2061 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2062 
2063 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
2064 		migrate_hrtimer_list(&old_base->clock_base[i],
2065 				     &new_base->clock_base[i]);
2066 	}
2067 
2068 	/*
2069 	 * The migration might have changed the first expiring softirq
2070 	 * timer on this CPU. Update it.
2071 	 */
2072 	hrtimer_update_softirq_timer(new_base, false);
2073 
2074 	raw_spin_unlock(&old_base->lock);
2075 	raw_spin_unlock(&new_base->lock);
2076 
2077 	/* Check, if we got expired work to do */
2078 	__hrtimer_peek_ahead_timers();
2079 	local_irq_enable();
2080 	local_bh_enable();
2081 	return 0;
2082 }
2083 
2084 #endif /* CONFIG_HOTPLUG_CPU */
2085 
2086 void __init hrtimers_init(void)
2087 {
2088 	hrtimers_prepare_cpu(smp_processor_id());
2089 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
2090 }
2091 
2092 /**
2093  * schedule_hrtimeout_range_clock - sleep until timeout
2094  * @expires:	timeout value (ktime_t)
2095  * @delta:	slack in expires timeout (ktime_t)
2096  * @mode:	timer mode
2097  * @clock_id:	timer clock to be used
2098  */
2099 int __sched
2100 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
2101 			       const enum hrtimer_mode mode, clockid_t clock_id)
2102 {
2103 	struct hrtimer_sleeper t;
2104 
2105 	/*
2106 	 * Optimize when a zero timeout value is given. It does not
2107 	 * matter whether this is an absolute or a relative time.
2108 	 */
2109 	if (expires && *expires == 0) {
2110 		__set_current_state(TASK_RUNNING);
2111 		return 0;
2112 	}
2113 
2114 	/*
2115 	 * A NULL parameter means "infinite"
2116 	 */
2117 	if (!expires) {
2118 		schedule();
2119 		return -EINTR;
2120 	}
2121 
2122 	hrtimer_init_sleeper_on_stack(&t, clock_id, mode);
2123 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2124 	hrtimer_sleeper_start_expires(&t, mode);
2125 
2126 	if (likely(t.task))
2127 		schedule();
2128 
2129 	hrtimer_cancel(&t.timer);
2130 	destroy_hrtimer_on_stack(&t.timer);
2131 
2132 	__set_current_state(TASK_RUNNING);
2133 
2134 	return !t.task ? 0 : -EINTR;
2135 }
2136 
2137 /**
2138  * schedule_hrtimeout_range - sleep until timeout
2139  * @expires:	timeout value (ktime_t)
2140  * @delta:	slack in expires timeout (ktime_t)
2141  * @mode:	timer mode
2142  *
2143  * Make the current task sleep until the given expiry time has
2144  * elapsed. The routine will return immediately unless
2145  * the current task state has been set (see set_current_state()).
2146  *
2147  * The @delta argument gives the kernel the freedom to schedule the
2148  * actual wakeup to a time that is both power and performance friendly.
2149  * The kernel give the normal best effort behavior for "@expires+@delta",
2150  * but may decide to fire the timer earlier, but no earlier than @expires.
2151  *
2152  * You can set the task state as follows -
2153  *
2154  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2155  * pass before the routine returns unless the current task is explicitly
2156  * woken up, (e.g. by wake_up_process()).
2157  *
2158  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2159  * delivered to the current task or the current task is explicitly woken
2160  * up.
2161  *
2162  * The current task state is guaranteed to be TASK_RUNNING when this
2163  * routine returns.
2164  *
2165  * Returns 0 when the timer has expired. If the task was woken before the
2166  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2167  * by an explicit wakeup, it returns -EINTR.
2168  */
2169 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
2170 				     const enum hrtimer_mode mode)
2171 {
2172 	return schedule_hrtimeout_range_clock(expires, delta, mode,
2173 					      CLOCK_MONOTONIC);
2174 }
2175 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2176 
2177 /**
2178  * schedule_hrtimeout - sleep until timeout
2179  * @expires:	timeout value (ktime_t)
2180  * @mode:	timer mode
2181  *
2182  * Make the current task sleep until the given expiry time has
2183  * elapsed. The routine will return immediately unless
2184  * the current task state has been set (see set_current_state()).
2185  *
2186  * You can set the task state as follows -
2187  *
2188  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2189  * pass before the routine returns unless the current task is explicitly
2190  * woken up, (e.g. by wake_up_process()).
2191  *
2192  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2193  * delivered to the current task or the current task is explicitly woken
2194  * up.
2195  *
2196  * The current task state is guaranteed to be TASK_RUNNING when this
2197  * routine returns.
2198  *
2199  * Returns 0 when the timer has expired. If the task was woken before the
2200  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2201  * by an explicit wakeup, it returns -EINTR.
2202  */
2203 int __sched schedule_hrtimeout(ktime_t *expires,
2204 			       const enum hrtimer_mode mode)
2205 {
2206 	return schedule_hrtimeout_range(expires, 0, mode);
2207 }
2208 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
2209