1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 __acquires(&timer->base->lock) 168 { 169 struct hrtimer_clock_base *base; 170 171 for (;;) { 172 base = READ_ONCE(timer->base); 173 if (likely(base != &migration_base)) { 174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 175 if (likely(base == timer->base)) 176 return base; 177 /* The timer has migrated to another CPU: */ 178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 179 } 180 cpu_relax(); 181 } 182 } 183 184 /* 185 * We do not migrate the timer when it is expiring before the next 186 * event on the target cpu. When high resolution is enabled, we cannot 187 * reprogram the target cpu hardware and we would cause it to fire 188 * late. To keep it simple, we handle the high resolution enabled and 189 * disabled case similar. 190 * 191 * Called with cpu_base->lock of target cpu held. 192 */ 193 static int 194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 195 { 196 ktime_t expires; 197 198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 199 return expires < new_base->cpu_base->expires_next; 200 } 201 202 static inline 203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 204 int pinned) 205 { 206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 207 if (static_branch_likely(&timers_migration_enabled) && !pinned) 208 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 209 #endif 210 return base; 211 } 212 213 /* 214 * We switch the timer base to a power-optimized selected CPU target, 215 * if: 216 * - NO_HZ_COMMON is enabled 217 * - timer migration is enabled 218 * - the timer callback is not running 219 * - the timer is not the first expiring timer on the new target 220 * 221 * If one of the above requirements is not fulfilled we move the timer 222 * to the current CPU or leave it on the previously assigned CPU if 223 * the timer callback is currently running. 224 */ 225 static inline struct hrtimer_clock_base * 226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 227 int pinned) 228 { 229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 230 struct hrtimer_clock_base *new_base; 231 int basenum = base->index; 232 233 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 234 new_cpu_base = get_target_base(this_cpu_base, pinned); 235 again: 236 new_base = &new_cpu_base->clock_base[basenum]; 237 238 if (base != new_base) { 239 /* 240 * We are trying to move timer to new_base. 241 * However we can't change timer's base while it is running, 242 * so we keep it on the same CPU. No hassle vs. reprogramming 243 * the event source in the high resolution case. The softirq 244 * code will take care of this when the timer function has 245 * completed. There is no conflict as we hold the lock until 246 * the timer is enqueued. 247 */ 248 if (unlikely(hrtimer_callback_running(timer))) 249 return base; 250 251 /* See the comment in lock_hrtimer_base() */ 252 WRITE_ONCE(timer->base, &migration_base); 253 raw_spin_unlock(&base->cpu_base->lock); 254 raw_spin_lock(&new_base->cpu_base->lock); 255 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 raw_spin_unlock(&new_base->cpu_base->lock); 259 raw_spin_lock(&base->cpu_base->lock); 260 new_cpu_base = this_cpu_base; 261 WRITE_ONCE(timer->base, base); 262 goto again; 263 } 264 WRITE_ONCE(timer->base, new_base); 265 } else { 266 if (new_cpu_base != this_cpu_base && 267 hrtimer_check_target(timer, new_base)) { 268 new_cpu_base = this_cpu_base; 269 goto again; 270 } 271 } 272 return new_base; 273 } 274 275 #else /* CONFIG_SMP */ 276 277 static inline bool is_migration_base(struct hrtimer_clock_base *base) 278 { 279 return false; 280 } 281 282 static inline struct hrtimer_clock_base * 283 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 284 __acquires(&timer->base->cpu_base->lock) 285 { 286 struct hrtimer_clock_base *base = timer->base; 287 288 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 289 290 return base; 291 } 292 293 # define switch_hrtimer_base(t, b, p) (b) 294 295 #endif /* !CONFIG_SMP */ 296 297 /* 298 * Functions for the union type storage format of ktime_t which are 299 * too large for inlining: 300 */ 301 #if BITS_PER_LONG < 64 302 /* 303 * Divide a ktime value by a nanosecond value 304 */ 305 s64 __ktime_divns(const ktime_t kt, s64 div) 306 { 307 int sft = 0; 308 s64 dclc; 309 u64 tmp; 310 311 dclc = ktime_to_ns(kt); 312 tmp = dclc < 0 ? -dclc : dclc; 313 314 /* Make sure the divisor is less than 2^32: */ 315 while (div >> 32) { 316 sft++; 317 div >>= 1; 318 } 319 tmp >>= sft; 320 do_div(tmp, (u32) div); 321 return dclc < 0 ? -tmp : tmp; 322 } 323 EXPORT_SYMBOL_GPL(__ktime_divns); 324 #endif /* BITS_PER_LONG >= 64 */ 325 326 /* 327 * Add two ktime values and do a safety check for overflow: 328 */ 329 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 330 { 331 ktime_t res = ktime_add_unsafe(lhs, rhs); 332 333 /* 334 * We use KTIME_SEC_MAX here, the maximum timeout which we can 335 * return to user space in a timespec: 336 */ 337 if (res < 0 || res < lhs || res < rhs) 338 res = ktime_set(KTIME_SEC_MAX, 0); 339 340 return res; 341 } 342 343 EXPORT_SYMBOL_GPL(ktime_add_safe); 344 345 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 346 347 static const struct debug_obj_descr hrtimer_debug_descr; 348 349 static void *hrtimer_debug_hint(void *addr) 350 { 351 return ((struct hrtimer *) addr)->function; 352 } 353 354 /* 355 * fixup_init is called when: 356 * - an active object is initialized 357 */ 358 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 359 { 360 struct hrtimer *timer = addr; 361 362 switch (state) { 363 case ODEBUG_STATE_ACTIVE: 364 hrtimer_cancel(timer); 365 debug_object_init(timer, &hrtimer_debug_descr); 366 return true; 367 default: 368 return false; 369 } 370 } 371 372 /* 373 * fixup_activate is called when: 374 * - an active object is activated 375 * - an unknown non-static object is activated 376 */ 377 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 378 { 379 switch (state) { 380 case ODEBUG_STATE_ACTIVE: 381 WARN_ON(1); 382 fallthrough; 383 default: 384 return false; 385 } 386 } 387 388 /* 389 * fixup_free is called when: 390 * - an active object is freed 391 */ 392 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 393 { 394 struct hrtimer *timer = addr; 395 396 switch (state) { 397 case ODEBUG_STATE_ACTIVE: 398 hrtimer_cancel(timer); 399 debug_object_free(timer, &hrtimer_debug_descr); 400 return true; 401 default: 402 return false; 403 } 404 } 405 406 static const struct debug_obj_descr hrtimer_debug_descr = { 407 .name = "hrtimer", 408 .debug_hint = hrtimer_debug_hint, 409 .fixup_init = hrtimer_fixup_init, 410 .fixup_activate = hrtimer_fixup_activate, 411 .fixup_free = hrtimer_fixup_free, 412 }; 413 414 static inline void debug_hrtimer_init(struct hrtimer *timer) 415 { 416 debug_object_init(timer, &hrtimer_debug_descr); 417 } 418 419 static inline void debug_hrtimer_activate(struct hrtimer *timer, 420 enum hrtimer_mode mode) 421 { 422 debug_object_activate(timer, &hrtimer_debug_descr); 423 } 424 425 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 426 { 427 debug_object_deactivate(timer, &hrtimer_debug_descr); 428 } 429 430 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 431 enum hrtimer_mode mode); 432 433 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 434 enum hrtimer_mode mode) 435 { 436 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 437 __hrtimer_init(timer, clock_id, mode); 438 } 439 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 440 441 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 442 clockid_t clock_id, enum hrtimer_mode mode); 443 444 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 445 clockid_t clock_id, enum hrtimer_mode mode) 446 { 447 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 448 __hrtimer_init_sleeper(sl, clock_id, mode); 449 } 450 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 451 452 void destroy_hrtimer_on_stack(struct hrtimer *timer) 453 { 454 debug_object_free(timer, &hrtimer_debug_descr); 455 } 456 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 457 458 #else 459 460 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 461 static inline void debug_hrtimer_activate(struct hrtimer *timer, 462 enum hrtimer_mode mode) { } 463 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 464 #endif 465 466 static inline void 467 debug_init(struct hrtimer *timer, clockid_t clockid, 468 enum hrtimer_mode mode) 469 { 470 debug_hrtimer_init(timer); 471 trace_hrtimer_init(timer, clockid, mode); 472 } 473 474 static inline void debug_activate(struct hrtimer *timer, 475 enum hrtimer_mode mode) 476 { 477 debug_hrtimer_activate(timer, mode); 478 trace_hrtimer_start(timer, mode); 479 } 480 481 static inline void debug_deactivate(struct hrtimer *timer) 482 { 483 debug_hrtimer_deactivate(timer); 484 trace_hrtimer_cancel(timer); 485 } 486 487 static struct hrtimer_clock_base * 488 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 489 { 490 unsigned int idx; 491 492 if (!*active) 493 return NULL; 494 495 idx = __ffs(*active); 496 *active &= ~(1U << idx); 497 498 return &cpu_base->clock_base[idx]; 499 } 500 501 #define for_each_active_base(base, cpu_base, active) \ 502 while ((base = __next_base((cpu_base), &(active)))) 503 504 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 505 const struct hrtimer *exclude, 506 unsigned int active, 507 ktime_t expires_next) 508 { 509 struct hrtimer_clock_base *base; 510 ktime_t expires; 511 512 for_each_active_base(base, cpu_base, active) { 513 struct timerqueue_node *next; 514 struct hrtimer *timer; 515 516 next = timerqueue_getnext(&base->active); 517 timer = container_of(next, struct hrtimer, node); 518 if (timer == exclude) { 519 /* Get to the next timer in the queue. */ 520 next = timerqueue_iterate_next(next); 521 if (!next) 522 continue; 523 524 timer = container_of(next, struct hrtimer, node); 525 } 526 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 527 if (expires < expires_next) { 528 expires_next = expires; 529 530 /* Skip cpu_base update if a timer is being excluded. */ 531 if (exclude) 532 continue; 533 534 if (timer->is_soft) 535 cpu_base->softirq_next_timer = timer; 536 else 537 cpu_base->next_timer = timer; 538 } 539 } 540 /* 541 * clock_was_set() might have changed base->offset of any of 542 * the clock bases so the result might be negative. Fix it up 543 * to prevent a false positive in clockevents_program_event(). 544 */ 545 if (expires_next < 0) 546 expires_next = 0; 547 return expires_next; 548 } 549 550 /* 551 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 552 * but does not set cpu_base::*expires_next, that is done by 553 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 554 * cpu_base::*expires_next right away, reprogramming logic would no longer 555 * work. 556 * 557 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 558 * those timers will get run whenever the softirq gets handled, at the end of 559 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 560 * 561 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 562 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 563 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 564 * 565 * @active_mask must be one of: 566 * - HRTIMER_ACTIVE_ALL, 567 * - HRTIMER_ACTIVE_SOFT, or 568 * - HRTIMER_ACTIVE_HARD. 569 */ 570 static ktime_t 571 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 572 { 573 unsigned int active; 574 struct hrtimer *next_timer = NULL; 575 ktime_t expires_next = KTIME_MAX; 576 577 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 578 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 579 cpu_base->softirq_next_timer = NULL; 580 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 581 active, KTIME_MAX); 582 583 next_timer = cpu_base->softirq_next_timer; 584 } 585 586 if (active_mask & HRTIMER_ACTIVE_HARD) { 587 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 588 cpu_base->next_timer = next_timer; 589 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 590 expires_next); 591 } 592 593 return expires_next; 594 } 595 596 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 597 { 598 ktime_t expires_next, soft = KTIME_MAX; 599 600 /* 601 * If the soft interrupt has already been activated, ignore the 602 * soft bases. They will be handled in the already raised soft 603 * interrupt. 604 */ 605 if (!cpu_base->softirq_activated) { 606 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 607 /* 608 * Update the soft expiry time. clock_settime() might have 609 * affected it. 610 */ 611 cpu_base->softirq_expires_next = soft; 612 } 613 614 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 615 /* 616 * If a softirq timer is expiring first, update cpu_base->next_timer 617 * and program the hardware with the soft expiry time. 618 */ 619 if (expires_next > soft) { 620 cpu_base->next_timer = cpu_base->softirq_next_timer; 621 expires_next = soft; 622 } 623 624 return expires_next; 625 } 626 627 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 628 { 629 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 630 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 631 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 632 633 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 634 offs_real, offs_boot, offs_tai); 635 636 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 637 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 638 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 639 640 return now; 641 } 642 643 /* 644 * Is the high resolution mode active ? 645 */ 646 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 647 { 648 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 649 cpu_base->hres_active : 0; 650 } 651 652 static inline int hrtimer_hres_active(void) 653 { 654 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 655 } 656 657 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 658 struct hrtimer *next_timer, 659 ktime_t expires_next) 660 { 661 cpu_base->expires_next = expires_next; 662 663 /* 664 * If hres is not active, hardware does not have to be 665 * reprogrammed yet. 666 * 667 * If a hang was detected in the last timer interrupt then we 668 * leave the hang delay active in the hardware. We want the 669 * system to make progress. That also prevents the following 670 * scenario: 671 * T1 expires 50ms from now 672 * T2 expires 5s from now 673 * 674 * T1 is removed, so this code is called and would reprogram 675 * the hardware to 5s from now. Any hrtimer_start after that 676 * will not reprogram the hardware due to hang_detected being 677 * set. So we'd effectively block all timers until the T2 event 678 * fires. 679 */ 680 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 681 return; 682 683 tick_program_event(expires_next, 1); 684 } 685 686 /* 687 * Reprogram the event source with checking both queues for the 688 * next event 689 * Called with interrupts disabled and base->lock held 690 */ 691 static void 692 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 693 { 694 ktime_t expires_next; 695 696 expires_next = hrtimer_update_next_event(cpu_base); 697 698 if (skip_equal && expires_next == cpu_base->expires_next) 699 return; 700 701 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 702 } 703 704 /* High resolution timer related functions */ 705 #ifdef CONFIG_HIGH_RES_TIMERS 706 707 /* 708 * High resolution timer enabled ? 709 */ 710 static bool hrtimer_hres_enabled __read_mostly = true; 711 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 712 EXPORT_SYMBOL_GPL(hrtimer_resolution); 713 714 /* 715 * Enable / Disable high resolution mode 716 */ 717 static int __init setup_hrtimer_hres(char *str) 718 { 719 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 720 } 721 722 __setup("highres=", setup_hrtimer_hres); 723 724 /* 725 * hrtimer_high_res_enabled - query, if the highres mode is enabled 726 */ 727 static inline int hrtimer_is_hres_enabled(void) 728 { 729 return hrtimer_hres_enabled; 730 } 731 732 static void retrigger_next_event(void *arg); 733 734 /* 735 * Switch to high resolution mode 736 */ 737 static void hrtimer_switch_to_hres(void) 738 { 739 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 740 741 if (tick_init_highres()) { 742 pr_warn("Could not switch to high resolution mode on CPU %u\n", 743 base->cpu); 744 return; 745 } 746 base->hres_active = 1; 747 hrtimer_resolution = HIGH_RES_NSEC; 748 749 tick_setup_sched_timer(); 750 /* "Retrigger" the interrupt to get things going */ 751 retrigger_next_event(NULL); 752 } 753 754 #else 755 756 static inline int hrtimer_is_hres_enabled(void) { return 0; } 757 static inline void hrtimer_switch_to_hres(void) { } 758 759 #endif /* CONFIG_HIGH_RES_TIMERS */ 760 /* 761 * Retrigger next event is called after clock was set with interrupts 762 * disabled through an SMP function call or directly from low level 763 * resume code. 764 * 765 * This is only invoked when: 766 * - CONFIG_HIGH_RES_TIMERS is enabled. 767 * - CONFIG_NOHZ_COMMON is enabled 768 * 769 * For the other cases this function is empty and because the call sites 770 * are optimized out it vanishes as well, i.e. no need for lots of 771 * #ifdeffery. 772 */ 773 static void retrigger_next_event(void *arg) 774 { 775 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 776 777 /* 778 * When high resolution mode or nohz is active, then the offsets of 779 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 780 * next tick will take care of that. 781 * 782 * If high resolution mode is active then the next expiring timer 783 * must be reevaluated and the clock event device reprogrammed if 784 * necessary. 785 * 786 * In the NOHZ case the update of the offset and the reevaluation 787 * of the next expiring timer is enough. The return from the SMP 788 * function call will take care of the reprogramming in case the 789 * CPU was in a NOHZ idle sleep. 790 */ 791 if (!__hrtimer_hres_active(base) && !tick_nohz_active) 792 return; 793 794 raw_spin_lock(&base->lock); 795 hrtimer_update_base(base); 796 if (__hrtimer_hres_active(base)) 797 hrtimer_force_reprogram(base, 0); 798 else 799 hrtimer_update_next_event(base); 800 raw_spin_unlock(&base->lock); 801 } 802 803 /* 804 * When a timer is enqueued and expires earlier than the already enqueued 805 * timers, we have to check, whether it expires earlier than the timer for 806 * which the clock event device was armed. 807 * 808 * Called with interrupts disabled and base->cpu_base.lock held 809 */ 810 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 811 { 812 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 813 struct hrtimer_clock_base *base = timer->base; 814 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 815 816 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 817 818 /* 819 * CLOCK_REALTIME timer might be requested with an absolute 820 * expiry time which is less than base->offset. Set it to 0. 821 */ 822 if (expires < 0) 823 expires = 0; 824 825 if (timer->is_soft) { 826 /* 827 * soft hrtimer could be started on a remote CPU. In this 828 * case softirq_expires_next needs to be updated on the 829 * remote CPU. The soft hrtimer will not expire before the 830 * first hard hrtimer on the remote CPU - 831 * hrtimer_check_target() prevents this case. 832 */ 833 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 834 835 if (timer_cpu_base->softirq_activated) 836 return; 837 838 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 839 return; 840 841 timer_cpu_base->softirq_next_timer = timer; 842 timer_cpu_base->softirq_expires_next = expires; 843 844 if (!ktime_before(expires, timer_cpu_base->expires_next) || 845 !reprogram) 846 return; 847 } 848 849 /* 850 * If the timer is not on the current cpu, we cannot reprogram 851 * the other cpus clock event device. 852 */ 853 if (base->cpu_base != cpu_base) 854 return; 855 856 if (expires >= cpu_base->expires_next) 857 return; 858 859 /* 860 * If the hrtimer interrupt is running, then it will reevaluate the 861 * clock bases and reprogram the clock event device. 862 */ 863 if (cpu_base->in_hrtirq) 864 return; 865 866 cpu_base->next_timer = timer; 867 868 __hrtimer_reprogram(cpu_base, timer, expires); 869 } 870 871 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 872 unsigned int active) 873 { 874 struct hrtimer_clock_base *base; 875 unsigned int seq; 876 ktime_t expires; 877 878 /* 879 * Update the base offsets unconditionally so the following 880 * checks whether the SMP function call is required works. 881 * 882 * The update is safe even when the remote CPU is in the hrtimer 883 * interrupt or the hrtimer soft interrupt and expiring affected 884 * bases. Either it will see the update before handling a base or 885 * it will see it when it finishes the processing and reevaluates 886 * the next expiring timer. 887 */ 888 seq = cpu_base->clock_was_set_seq; 889 hrtimer_update_base(cpu_base); 890 891 /* 892 * If the sequence did not change over the update then the 893 * remote CPU already handled it. 894 */ 895 if (seq == cpu_base->clock_was_set_seq) 896 return false; 897 898 /* 899 * If the remote CPU is currently handling an hrtimer interrupt, it 900 * will reevaluate the first expiring timer of all clock bases 901 * before reprogramming. Nothing to do here. 902 */ 903 if (cpu_base->in_hrtirq) 904 return false; 905 906 /* 907 * Walk the affected clock bases and check whether the first expiring 908 * timer in a clock base is moving ahead of the first expiring timer of 909 * @cpu_base. If so, the IPI must be invoked because per CPU clock 910 * event devices cannot be remotely reprogrammed. 911 */ 912 active &= cpu_base->active_bases; 913 914 for_each_active_base(base, cpu_base, active) { 915 struct timerqueue_node *next; 916 917 next = timerqueue_getnext(&base->active); 918 expires = ktime_sub(next->expires, base->offset); 919 if (expires < cpu_base->expires_next) 920 return true; 921 922 /* Extra check for softirq clock bases */ 923 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 924 continue; 925 if (cpu_base->softirq_activated) 926 continue; 927 if (expires < cpu_base->softirq_expires_next) 928 return true; 929 } 930 return false; 931 } 932 933 /* 934 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 935 * CLOCK_BOOTTIME (for late sleep time injection). 936 * 937 * This requires to update the offsets for these clocks 938 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 939 * also requires to eventually reprogram the per CPU clock event devices 940 * when the change moves an affected timer ahead of the first expiring 941 * timer on that CPU. Obviously remote per CPU clock event devices cannot 942 * be reprogrammed. The other reason why an IPI has to be sent is when the 943 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 944 * in the tick, which obviously might be stopped, so this has to bring out 945 * the remote CPU which might sleep in idle to get this sorted. 946 */ 947 void clock_was_set(unsigned int bases) 948 { 949 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 950 cpumask_var_t mask; 951 int cpu; 952 953 if (!__hrtimer_hres_active(cpu_base) && !tick_nohz_active) 954 goto out_timerfd; 955 956 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 957 on_each_cpu(retrigger_next_event, NULL, 1); 958 goto out_timerfd; 959 } 960 961 /* Avoid interrupting CPUs if possible */ 962 cpus_read_lock(); 963 for_each_online_cpu(cpu) { 964 unsigned long flags; 965 966 cpu_base = &per_cpu(hrtimer_bases, cpu); 967 raw_spin_lock_irqsave(&cpu_base->lock, flags); 968 969 if (update_needs_ipi(cpu_base, bases)) 970 cpumask_set_cpu(cpu, mask); 971 972 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 973 } 974 975 preempt_disable(); 976 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 977 preempt_enable(); 978 cpus_read_unlock(); 979 free_cpumask_var(mask); 980 981 out_timerfd: 982 timerfd_clock_was_set(); 983 } 984 985 static void clock_was_set_work(struct work_struct *work) 986 { 987 clock_was_set(CLOCK_SET_WALL); 988 } 989 990 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 991 992 /* 993 * Called from timekeeping code to reprogram the hrtimer interrupt device 994 * on all cpus and to notify timerfd. 995 */ 996 void clock_was_set_delayed(void) 997 { 998 schedule_work(&hrtimer_work); 999 } 1000 1001 /* 1002 * Called during resume either directly from via timekeeping_resume() 1003 * or in the case of s2idle from tick_unfreeze() to ensure that the 1004 * hrtimers are up to date. 1005 */ 1006 void hrtimers_resume_local(void) 1007 { 1008 lockdep_assert_irqs_disabled(); 1009 /* Retrigger on the local CPU */ 1010 retrigger_next_event(NULL); 1011 } 1012 1013 /* 1014 * Counterpart to lock_hrtimer_base above: 1015 */ 1016 static inline 1017 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1018 __releases(&timer->base->cpu_base->lock) 1019 { 1020 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1021 } 1022 1023 /** 1024 * hrtimer_forward - forward the timer expiry 1025 * @timer: hrtimer to forward 1026 * @now: forward past this time 1027 * @interval: the interval to forward 1028 * 1029 * Forward the timer expiry so it will expire in the future. 1030 * Returns the number of overruns. 1031 * 1032 * Can be safely called from the callback function of @timer. If 1033 * called from other contexts @timer must neither be enqueued nor 1034 * running the callback and the caller needs to take care of 1035 * serialization. 1036 * 1037 * Note: This only updates the timer expiry value and does not requeue 1038 * the timer. 1039 */ 1040 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1041 { 1042 u64 orun = 1; 1043 ktime_t delta; 1044 1045 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1046 1047 if (delta < 0) 1048 return 0; 1049 1050 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1051 return 0; 1052 1053 if (interval < hrtimer_resolution) 1054 interval = hrtimer_resolution; 1055 1056 if (unlikely(delta >= interval)) { 1057 s64 incr = ktime_to_ns(interval); 1058 1059 orun = ktime_divns(delta, incr); 1060 hrtimer_add_expires_ns(timer, incr * orun); 1061 if (hrtimer_get_expires_tv64(timer) > now) 1062 return orun; 1063 /* 1064 * This (and the ktime_add() below) is the 1065 * correction for exact: 1066 */ 1067 orun++; 1068 } 1069 hrtimer_add_expires(timer, interval); 1070 1071 return orun; 1072 } 1073 EXPORT_SYMBOL_GPL(hrtimer_forward); 1074 1075 /* 1076 * enqueue_hrtimer - internal function to (re)start a timer 1077 * 1078 * The timer is inserted in expiry order. Insertion into the 1079 * red black tree is O(log(n)). Must hold the base lock. 1080 * 1081 * Returns 1 when the new timer is the leftmost timer in the tree. 1082 */ 1083 static int enqueue_hrtimer(struct hrtimer *timer, 1084 struct hrtimer_clock_base *base, 1085 enum hrtimer_mode mode) 1086 { 1087 debug_activate(timer, mode); 1088 WARN_ON_ONCE(!base->cpu_base->online); 1089 1090 base->cpu_base->active_bases |= 1 << base->index; 1091 1092 /* Pairs with the lockless read in hrtimer_is_queued() */ 1093 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1094 1095 return timerqueue_add(&base->active, &timer->node); 1096 } 1097 1098 /* 1099 * __remove_hrtimer - internal function to remove a timer 1100 * 1101 * Caller must hold the base lock. 1102 * 1103 * High resolution timer mode reprograms the clock event device when the 1104 * timer is the one which expires next. The caller can disable this by setting 1105 * reprogram to zero. This is useful, when the context does a reprogramming 1106 * anyway (e.g. timer interrupt) 1107 */ 1108 static void __remove_hrtimer(struct hrtimer *timer, 1109 struct hrtimer_clock_base *base, 1110 u8 newstate, int reprogram) 1111 { 1112 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1113 u8 state = timer->state; 1114 1115 /* Pairs with the lockless read in hrtimer_is_queued() */ 1116 WRITE_ONCE(timer->state, newstate); 1117 if (!(state & HRTIMER_STATE_ENQUEUED)) 1118 return; 1119 1120 if (!timerqueue_del(&base->active, &timer->node)) 1121 cpu_base->active_bases &= ~(1 << base->index); 1122 1123 /* 1124 * Note: If reprogram is false we do not update 1125 * cpu_base->next_timer. This happens when we remove the first 1126 * timer on a remote cpu. No harm as we never dereference 1127 * cpu_base->next_timer. So the worst thing what can happen is 1128 * an superfluous call to hrtimer_force_reprogram() on the 1129 * remote cpu later on if the same timer gets enqueued again. 1130 */ 1131 if (reprogram && timer == cpu_base->next_timer) 1132 hrtimer_force_reprogram(cpu_base, 1); 1133 } 1134 1135 /* 1136 * remove hrtimer, called with base lock held 1137 */ 1138 static inline int 1139 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1140 bool restart, bool keep_local) 1141 { 1142 u8 state = timer->state; 1143 1144 if (state & HRTIMER_STATE_ENQUEUED) { 1145 bool reprogram; 1146 1147 /* 1148 * Remove the timer and force reprogramming when high 1149 * resolution mode is active and the timer is on the current 1150 * CPU. If we remove a timer on another CPU, reprogramming is 1151 * skipped. The interrupt event on this CPU is fired and 1152 * reprogramming happens in the interrupt handler. This is a 1153 * rare case and less expensive than a smp call. 1154 */ 1155 debug_deactivate(timer); 1156 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1157 1158 /* 1159 * If the timer is not restarted then reprogramming is 1160 * required if the timer is local. If it is local and about 1161 * to be restarted, avoid programming it twice (on removal 1162 * and a moment later when it's requeued). 1163 */ 1164 if (!restart) 1165 state = HRTIMER_STATE_INACTIVE; 1166 else 1167 reprogram &= !keep_local; 1168 1169 __remove_hrtimer(timer, base, state, reprogram); 1170 return 1; 1171 } 1172 return 0; 1173 } 1174 1175 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1176 const enum hrtimer_mode mode) 1177 { 1178 #ifdef CONFIG_TIME_LOW_RES 1179 /* 1180 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1181 * granular time values. For relative timers we add hrtimer_resolution 1182 * (i.e. one jiffie) to prevent short timeouts. 1183 */ 1184 timer->is_rel = mode & HRTIMER_MODE_REL; 1185 if (timer->is_rel) 1186 tim = ktime_add_safe(tim, hrtimer_resolution); 1187 #endif 1188 return tim; 1189 } 1190 1191 static void 1192 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1193 { 1194 ktime_t expires; 1195 1196 /* 1197 * Find the next SOFT expiration. 1198 */ 1199 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1200 1201 /* 1202 * reprogramming needs to be triggered, even if the next soft 1203 * hrtimer expires at the same time than the next hard 1204 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1205 */ 1206 if (expires == KTIME_MAX) 1207 return; 1208 1209 /* 1210 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1211 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1212 */ 1213 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1214 } 1215 1216 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1217 u64 delta_ns, const enum hrtimer_mode mode, 1218 struct hrtimer_clock_base *base) 1219 { 1220 struct hrtimer_clock_base *new_base; 1221 bool force_local, first; 1222 1223 /* 1224 * If the timer is on the local cpu base and is the first expiring 1225 * timer then this might end up reprogramming the hardware twice 1226 * (on removal and on enqueue). To avoid that by prevent the 1227 * reprogram on removal, keep the timer local to the current CPU 1228 * and enforce reprogramming after it is queued no matter whether 1229 * it is the new first expiring timer again or not. 1230 */ 1231 force_local = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1232 force_local &= base->cpu_base->next_timer == timer; 1233 1234 /* 1235 * Remove an active timer from the queue. In case it is not queued 1236 * on the current CPU, make sure that remove_hrtimer() updates the 1237 * remote data correctly. 1238 * 1239 * If it's on the current CPU and the first expiring timer, then 1240 * skip reprogramming, keep the timer local and enforce 1241 * reprogramming later if it was the first expiring timer. This 1242 * avoids programming the underlying clock event twice (once at 1243 * removal and once after enqueue). 1244 */ 1245 remove_hrtimer(timer, base, true, force_local); 1246 1247 if (mode & HRTIMER_MODE_REL) 1248 tim = ktime_add_safe(tim, base->get_time()); 1249 1250 tim = hrtimer_update_lowres(timer, tim, mode); 1251 1252 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1253 1254 /* Switch the timer base, if necessary: */ 1255 if (!force_local) { 1256 new_base = switch_hrtimer_base(timer, base, 1257 mode & HRTIMER_MODE_PINNED); 1258 } else { 1259 new_base = base; 1260 } 1261 1262 first = enqueue_hrtimer(timer, new_base, mode); 1263 if (!force_local) 1264 return first; 1265 1266 /* 1267 * Timer was forced to stay on the current CPU to avoid 1268 * reprogramming on removal and enqueue. Force reprogram the 1269 * hardware by evaluating the new first expiring timer. 1270 */ 1271 hrtimer_force_reprogram(new_base->cpu_base, 1); 1272 return 0; 1273 } 1274 1275 /** 1276 * hrtimer_start_range_ns - (re)start an hrtimer 1277 * @timer: the timer to be added 1278 * @tim: expiry time 1279 * @delta_ns: "slack" range for the timer 1280 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1281 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1282 * softirq based mode is considered for debug purpose only! 1283 */ 1284 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1285 u64 delta_ns, const enum hrtimer_mode mode) 1286 { 1287 struct hrtimer_clock_base *base; 1288 unsigned long flags; 1289 1290 /* 1291 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1292 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1293 * expiry mode because unmarked timers are moved to softirq expiry. 1294 */ 1295 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1296 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1297 else 1298 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1299 1300 base = lock_hrtimer_base(timer, &flags); 1301 1302 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1303 hrtimer_reprogram(timer, true); 1304 1305 unlock_hrtimer_base(timer, &flags); 1306 } 1307 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1308 1309 /** 1310 * hrtimer_try_to_cancel - try to deactivate a timer 1311 * @timer: hrtimer to stop 1312 * 1313 * Returns: 1314 * 1315 * * 0 when the timer was not active 1316 * * 1 when the timer was active 1317 * * -1 when the timer is currently executing the callback function and 1318 * cannot be stopped 1319 */ 1320 int hrtimer_try_to_cancel(struct hrtimer *timer) 1321 { 1322 struct hrtimer_clock_base *base; 1323 unsigned long flags; 1324 int ret = -1; 1325 1326 /* 1327 * Check lockless first. If the timer is not active (neither 1328 * enqueued nor running the callback, nothing to do here. The 1329 * base lock does not serialize against a concurrent enqueue, 1330 * so we can avoid taking it. 1331 */ 1332 if (!hrtimer_active(timer)) 1333 return 0; 1334 1335 base = lock_hrtimer_base(timer, &flags); 1336 1337 if (!hrtimer_callback_running(timer)) 1338 ret = remove_hrtimer(timer, base, false, false); 1339 1340 unlock_hrtimer_base(timer, &flags); 1341 1342 return ret; 1343 1344 } 1345 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1346 1347 #ifdef CONFIG_PREEMPT_RT 1348 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1349 { 1350 spin_lock_init(&base->softirq_expiry_lock); 1351 } 1352 1353 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1354 { 1355 spin_lock(&base->softirq_expiry_lock); 1356 } 1357 1358 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1359 { 1360 spin_unlock(&base->softirq_expiry_lock); 1361 } 1362 1363 /* 1364 * The counterpart to hrtimer_cancel_wait_running(). 1365 * 1366 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1367 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1368 * allows the waiter to acquire the lock and make progress. 1369 */ 1370 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1371 unsigned long flags) 1372 { 1373 if (atomic_read(&cpu_base->timer_waiters)) { 1374 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1375 spin_unlock(&cpu_base->softirq_expiry_lock); 1376 spin_lock(&cpu_base->softirq_expiry_lock); 1377 raw_spin_lock_irq(&cpu_base->lock); 1378 } 1379 } 1380 1381 /* 1382 * This function is called on PREEMPT_RT kernels when the fast path 1383 * deletion of a timer failed because the timer callback function was 1384 * running. 1385 * 1386 * This prevents priority inversion: if the soft irq thread is preempted 1387 * in the middle of a timer callback, then calling del_timer_sync() can 1388 * lead to two issues: 1389 * 1390 * - If the caller is on a remote CPU then it has to spin wait for the timer 1391 * handler to complete. This can result in unbound priority inversion. 1392 * 1393 * - If the caller originates from the task which preempted the timer 1394 * handler on the same CPU, then spin waiting for the timer handler to 1395 * complete is never going to end. 1396 */ 1397 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1398 { 1399 /* Lockless read. Prevent the compiler from reloading it below */ 1400 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1401 1402 /* 1403 * Just relax if the timer expires in hard interrupt context or if 1404 * it is currently on the migration base. 1405 */ 1406 if (!timer->is_soft || is_migration_base(base)) { 1407 cpu_relax(); 1408 return; 1409 } 1410 1411 /* 1412 * Mark the base as contended and grab the expiry lock, which is 1413 * held by the softirq across the timer callback. Drop the lock 1414 * immediately so the softirq can expire the next timer. In theory 1415 * the timer could already be running again, but that's more than 1416 * unlikely and just causes another wait loop. 1417 */ 1418 atomic_inc(&base->cpu_base->timer_waiters); 1419 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1420 atomic_dec(&base->cpu_base->timer_waiters); 1421 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1422 } 1423 #else 1424 static inline void 1425 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1426 static inline void 1427 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1428 static inline void 1429 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1430 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1431 unsigned long flags) { } 1432 #endif 1433 1434 /** 1435 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1436 * @timer: the timer to be cancelled 1437 * 1438 * Returns: 1439 * 0 when the timer was not active 1440 * 1 when the timer was active 1441 */ 1442 int hrtimer_cancel(struct hrtimer *timer) 1443 { 1444 int ret; 1445 1446 do { 1447 ret = hrtimer_try_to_cancel(timer); 1448 1449 if (ret < 0) 1450 hrtimer_cancel_wait_running(timer); 1451 } while (ret < 0); 1452 return ret; 1453 } 1454 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1455 1456 /** 1457 * __hrtimer_get_remaining - get remaining time for the timer 1458 * @timer: the timer to read 1459 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1460 */ 1461 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1462 { 1463 unsigned long flags; 1464 ktime_t rem; 1465 1466 lock_hrtimer_base(timer, &flags); 1467 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1468 rem = hrtimer_expires_remaining_adjusted(timer); 1469 else 1470 rem = hrtimer_expires_remaining(timer); 1471 unlock_hrtimer_base(timer, &flags); 1472 1473 return rem; 1474 } 1475 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1476 1477 #ifdef CONFIG_NO_HZ_COMMON 1478 /** 1479 * hrtimer_get_next_event - get the time until next expiry event 1480 * 1481 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1482 */ 1483 u64 hrtimer_get_next_event(void) 1484 { 1485 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1486 u64 expires = KTIME_MAX; 1487 unsigned long flags; 1488 1489 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1490 1491 if (!__hrtimer_hres_active(cpu_base)) 1492 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1493 1494 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1495 1496 return expires; 1497 } 1498 1499 /** 1500 * hrtimer_next_event_without - time until next expiry event w/o one timer 1501 * @exclude: timer to exclude 1502 * 1503 * Returns the next expiry time over all timers except for the @exclude one or 1504 * KTIME_MAX if none of them is pending. 1505 */ 1506 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1507 { 1508 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1509 u64 expires = KTIME_MAX; 1510 unsigned long flags; 1511 1512 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1513 1514 if (__hrtimer_hres_active(cpu_base)) { 1515 unsigned int active; 1516 1517 if (!cpu_base->softirq_activated) { 1518 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1519 expires = __hrtimer_next_event_base(cpu_base, exclude, 1520 active, KTIME_MAX); 1521 } 1522 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1523 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1524 expires); 1525 } 1526 1527 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1528 1529 return expires; 1530 } 1531 #endif 1532 1533 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1534 { 1535 if (likely(clock_id < MAX_CLOCKS)) { 1536 int base = hrtimer_clock_to_base_table[clock_id]; 1537 1538 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1539 return base; 1540 } 1541 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1542 return HRTIMER_BASE_MONOTONIC; 1543 } 1544 1545 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1546 enum hrtimer_mode mode) 1547 { 1548 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1549 struct hrtimer_cpu_base *cpu_base; 1550 int base; 1551 1552 /* 1553 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1554 * marked for hard interrupt expiry mode are moved into soft 1555 * interrupt context for latency reasons and because the callbacks 1556 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1557 */ 1558 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1559 softtimer = true; 1560 1561 memset(timer, 0, sizeof(struct hrtimer)); 1562 1563 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1564 1565 /* 1566 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1567 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1568 * ensure POSIX compliance. 1569 */ 1570 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1571 clock_id = CLOCK_MONOTONIC; 1572 1573 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1574 base += hrtimer_clockid_to_base(clock_id); 1575 timer->is_soft = softtimer; 1576 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1577 timer->base = &cpu_base->clock_base[base]; 1578 timerqueue_init(&timer->node); 1579 } 1580 1581 /** 1582 * hrtimer_init - initialize a timer to the given clock 1583 * @timer: the timer to be initialized 1584 * @clock_id: the clock to be used 1585 * @mode: The modes which are relevant for initialization: 1586 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1587 * HRTIMER_MODE_REL_SOFT 1588 * 1589 * The PINNED variants of the above can be handed in, 1590 * but the PINNED bit is ignored as pinning happens 1591 * when the hrtimer is started 1592 */ 1593 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1594 enum hrtimer_mode mode) 1595 { 1596 debug_init(timer, clock_id, mode); 1597 __hrtimer_init(timer, clock_id, mode); 1598 } 1599 EXPORT_SYMBOL_GPL(hrtimer_init); 1600 1601 /* 1602 * A timer is active, when it is enqueued into the rbtree or the 1603 * callback function is running or it's in the state of being migrated 1604 * to another cpu. 1605 * 1606 * It is important for this function to not return a false negative. 1607 */ 1608 bool hrtimer_active(const struct hrtimer *timer) 1609 { 1610 struct hrtimer_clock_base *base; 1611 unsigned int seq; 1612 1613 do { 1614 base = READ_ONCE(timer->base); 1615 seq = raw_read_seqcount_begin(&base->seq); 1616 1617 if (timer->state != HRTIMER_STATE_INACTIVE || 1618 base->running == timer) 1619 return true; 1620 1621 } while (read_seqcount_retry(&base->seq, seq) || 1622 base != READ_ONCE(timer->base)); 1623 1624 return false; 1625 } 1626 EXPORT_SYMBOL_GPL(hrtimer_active); 1627 1628 /* 1629 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1630 * distinct sections: 1631 * 1632 * - queued: the timer is queued 1633 * - callback: the timer is being ran 1634 * - post: the timer is inactive or (re)queued 1635 * 1636 * On the read side we ensure we observe timer->state and cpu_base->running 1637 * from the same section, if anything changed while we looked at it, we retry. 1638 * This includes timer->base changing because sequence numbers alone are 1639 * insufficient for that. 1640 * 1641 * The sequence numbers are required because otherwise we could still observe 1642 * a false negative if the read side got smeared over multiple consecutive 1643 * __run_hrtimer() invocations. 1644 */ 1645 1646 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1647 struct hrtimer_clock_base *base, 1648 struct hrtimer *timer, ktime_t *now, 1649 unsigned long flags) __must_hold(&cpu_base->lock) 1650 { 1651 enum hrtimer_restart (*fn)(struct hrtimer *); 1652 bool expires_in_hardirq; 1653 int restart; 1654 1655 lockdep_assert_held(&cpu_base->lock); 1656 1657 debug_deactivate(timer); 1658 base->running = timer; 1659 1660 /* 1661 * Separate the ->running assignment from the ->state assignment. 1662 * 1663 * As with a regular write barrier, this ensures the read side in 1664 * hrtimer_active() cannot observe base->running == NULL && 1665 * timer->state == INACTIVE. 1666 */ 1667 raw_write_seqcount_barrier(&base->seq); 1668 1669 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1670 fn = timer->function; 1671 1672 /* 1673 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1674 * timer is restarted with a period then it becomes an absolute 1675 * timer. If its not restarted it does not matter. 1676 */ 1677 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1678 timer->is_rel = false; 1679 1680 /* 1681 * The timer is marked as running in the CPU base, so it is 1682 * protected against migration to a different CPU even if the lock 1683 * is dropped. 1684 */ 1685 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1686 trace_hrtimer_expire_entry(timer, now); 1687 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1688 1689 restart = fn(timer); 1690 1691 lockdep_hrtimer_exit(expires_in_hardirq); 1692 trace_hrtimer_expire_exit(timer); 1693 raw_spin_lock_irq(&cpu_base->lock); 1694 1695 /* 1696 * Note: We clear the running state after enqueue_hrtimer and 1697 * we do not reprogram the event hardware. Happens either in 1698 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1699 * 1700 * Note: Because we dropped the cpu_base->lock above, 1701 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1702 * for us already. 1703 */ 1704 if (restart != HRTIMER_NORESTART && 1705 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1706 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1707 1708 /* 1709 * Separate the ->running assignment from the ->state assignment. 1710 * 1711 * As with a regular write barrier, this ensures the read side in 1712 * hrtimer_active() cannot observe base->running.timer == NULL && 1713 * timer->state == INACTIVE. 1714 */ 1715 raw_write_seqcount_barrier(&base->seq); 1716 1717 WARN_ON_ONCE(base->running != timer); 1718 base->running = NULL; 1719 } 1720 1721 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1722 unsigned long flags, unsigned int active_mask) 1723 { 1724 struct hrtimer_clock_base *base; 1725 unsigned int active = cpu_base->active_bases & active_mask; 1726 1727 for_each_active_base(base, cpu_base, active) { 1728 struct timerqueue_node *node; 1729 ktime_t basenow; 1730 1731 basenow = ktime_add(now, base->offset); 1732 1733 while ((node = timerqueue_getnext(&base->active))) { 1734 struct hrtimer *timer; 1735 1736 timer = container_of(node, struct hrtimer, node); 1737 1738 /* 1739 * The immediate goal for using the softexpires is 1740 * minimizing wakeups, not running timers at the 1741 * earliest interrupt after their soft expiration. 1742 * This allows us to avoid using a Priority Search 1743 * Tree, which can answer a stabbing query for 1744 * overlapping intervals and instead use the simple 1745 * BST we already have. 1746 * We don't add extra wakeups by delaying timers that 1747 * are right-of a not yet expired timer, because that 1748 * timer will have to trigger a wakeup anyway. 1749 */ 1750 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1751 break; 1752 1753 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1754 if (active_mask == HRTIMER_ACTIVE_SOFT) 1755 hrtimer_sync_wait_running(cpu_base, flags); 1756 } 1757 } 1758 } 1759 1760 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1761 { 1762 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1763 unsigned long flags; 1764 ktime_t now; 1765 1766 hrtimer_cpu_base_lock_expiry(cpu_base); 1767 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1768 1769 now = hrtimer_update_base(cpu_base); 1770 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1771 1772 cpu_base->softirq_activated = 0; 1773 hrtimer_update_softirq_timer(cpu_base, true); 1774 1775 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1776 hrtimer_cpu_base_unlock_expiry(cpu_base); 1777 } 1778 1779 #ifdef CONFIG_HIGH_RES_TIMERS 1780 1781 /* 1782 * High resolution timer interrupt 1783 * Called with interrupts disabled 1784 */ 1785 void hrtimer_interrupt(struct clock_event_device *dev) 1786 { 1787 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1788 ktime_t expires_next, now, entry_time, delta; 1789 unsigned long flags; 1790 int retries = 0; 1791 1792 BUG_ON(!cpu_base->hres_active); 1793 cpu_base->nr_events++; 1794 dev->next_event = KTIME_MAX; 1795 1796 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1797 entry_time = now = hrtimer_update_base(cpu_base); 1798 retry: 1799 cpu_base->in_hrtirq = 1; 1800 /* 1801 * We set expires_next to KTIME_MAX here with cpu_base->lock 1802 * held to prevent that a timer is enqueued in our queue via 1803 * the migration code. This does not affect enqueueing of 1804 * timers which run their callback and need to be requeued on 1805 * this CPU. 1806 */ 1807 cpu_base->expires_next = KTIME_MAX; 1808 1809 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1810 cpu_base->softirq_expires_next = KTIME_MAX; 1811 cpu_base->softirq_activated = 1; 1812 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1813 } 1814 1815 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1816 1817 /* Reevaluate the clock bases for the [soft] next expiry */ 1818 expires_next = hrtimer_update_next_event(cpu_base); 1819 /* 1820 * Store the new expiry value so the migration code can verify 1821 * against it. 1822 */ 1823 cpu_base->expires_next = expires_next; 1824 cpu_base->in_hrtirq = 0; 1825 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1826 1827 /* Reprogramming necessary ? */ 1828 if (!tick_program_event(expires_next, 0)) { 1829 cpu_base->hang_detected = 0; 1830 return; 1831 } 1832 1833 /* 1834 * The next timer was already expired due to: 1835 * - tracing 1836 * - long lasting callbacks 1837 * - being scheduled away when running in a VM 1838 * 1839 * We need to prevent that we loop forever in the hrtimer 1840 * interrupt routine. We give it 3 attempts to avoid 1841 * overreacting on some spurious event. 1842 * 1843 * Acquire base lock for updating the offsets and retrieving 1844 * the current time. 1845 */ 1846 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1847 now = hrtimer_update_base(cpu_base); 1848 cpu_base->nr_retries++; 1849 if (++retries < 3) 1850 goto retry; 1851 /* 1852 * Give the system a chance to do something else than looping 1853 * here. We stored the entry time, so we know exactly how long 1854 * we spent here. We schedule the next event this amount of 1855 * time away. 1856 */ 1857 cpu_base->nr_hangs++; 1858 cpu_base->hang_detected = 1; 1859 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1860 1861 delta = ktime_sub(now, entry_time); 1862 if ((unsigned int)delta > cpu_base->max_hang_time) 1863 cpu_base->max_hang_time = (unsigned int) delta; 1864 /* 1865 * Limit it to a sensible value as we enforce a longer 1866 * delay. Give the CPU at least 100ms to catch up. 1867 */ 1868 if (delta > 100 * NSEC_PER_MSEC) 1869 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1870 else 1871 expires_next = ktime_add(now, delta); 1872 tick_program_event(expires_next, 1); 1873 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1874 } 1875 1876 /* called with interrupts disabled */ 1877 static inline void __hrtimer_peek_ahead_timers(void) 1878 { 1879 struct tick_device *td; 1880 1881 if (!hrtimer_hres_active()) 1882 return; 1883 1884 td = this_cpu_ptr(&tick_cpu_device); 1885 if (td && td->evtdev) 1886 hrtimer_interrupt(td->evtdev); 1887 } 1888 1889 #else /* CONFIG_HIGH_RES_TIMERS */ 1890 1891 static inline void __hrtimer_peek_ahead_timers(void) { } 1892 1893 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1894 1895 /* 1896 * Called from run_local_timers in hardirq context every jiffy 1897 */ 1898 void hrtimer_run_queues(void) 1899 { 1900 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1901 unsigned long flags; 1902 ktime_t now; 1903 1904 if (__hrtimer_hres_active(cpu_base)) 1905 return; 1906 1907 /* 1908 * This _is_ ugly: We have to check periodically, whether we 1909 * can switch to highres and / or nohz mode. The clocksource 1910 * switch happens with xtime_lock held. Notification from 1911 * there only sets the check bit in the tick_oneshot code, 1912 * otherwise we might deadlock vs. xtime_lock. 1913 */ 1914 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1915 hrtimer_switch_to_hres(); 1916 return; 1917 } 1918 1919 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1920 now = hrtimer_update_base(cpu_base); 1921 1922 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1923 cpu_base->softirq_expires_next = KTIME_MAX; 1924 cpu_base->softirq_activated = 1; 1925 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1926 } 1927 1928 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1929 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1930 } 1931 1932 /* 1933 * Sleep related functions: 1934 */ 1935 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1936 { 1937 struct hrtimer_sleeper *t = 1938 container_of(timer, struct hrtimer_sleeper, timer); 1939 struct task_struct *task = t->task; 1940 1941 t->task = NULL; 1942 if (task) 1943 wake_up_process(task); 1944 1945 return HRTIMER_NORESTART; 1946 } 1947 1948 /** 1949 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1950 * @sl: sleeper to be started 1951 * @mode: timer mode abs/rel 1952 * 1953 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1954 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1955 */ 1956 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1957 enum hrtimer_mode mode) 1958 { 1959 /* 1960 * Make the enqueue delivery mode check work on RT. If the sleeper 1961 * was initialized for hard interrupt delivery, force the mode bit. 1962 * This is a special case for hrtimer_sleepers because 1963 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1964 * fiddling with this decision is avoided at the call sites. 1965 */ 1966 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1967 mode |= HRTIMER_MODE_HARD; 1968 1969 hrtimer_start_expires(&sl->timer, mode); 1970 } 1971 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1972 1973 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1974 clockid_t clock_id, enum hrtimer_mode mode) 1975 { 1976 /* 1977 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1978 * marked for hard interrupt expiry mode are moved into soft 1979 * interrupt context either for latency reasons or because the 1980 * hrtimer callback takes regular spinlocks or invokes other 1981 * functions which are not suitable for hard interrupt context on 1982 * PREEMPT_RT. 1983 * 1984 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1985 * context, but there is a latency concern: Untrusted userspace can 1986 * spawn many threads which arm timers for the same expiry time on 1987 * the same CPU. That causes a latency spike due to the wakeup of 1988 * a gazillion threads. 1989 * 1990 * OTOH, privileged real-time user space applications rely on the 1991 * low latency of hard interrupt wakeups. If the current task is in 1992 * a real-time scheduling class, mark the mode for hard interrupt 1993 * expiry. 1994 */ 1995 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1996 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1997 mode |= HRTIMER_MODE_HARD; 1998 } 1999 2000 __hrtimer_init(&sl->timer, clock_id, mode); 2001 sl->timer.function = hrtimer_wakeup; 2002 sl->task = current; 2003 } 2004 2005 /** 2006 * hrtimer_init_sleeper - initialize sleeper to the given clock 2007 * @sl: sleeper to be initialized 2008 * @clock_id: the clock to be used 2009 * @mode: timer mode abs/rel 2010 */ 2011 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 2012 enum hrtimer_mode mode) 2013 { 2014 debug_init(&sl->timer, clock_id, mode); 2015 __hrtimer_init_sleeper(sl, clock_id, mode); 2016 2017 } 2018 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 2019 2020 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2021 { 2022 switch(restart->nanosleep.type) { 2023 #ifdef CONFIG_COMPAT_32BIT_TIME 2024 case TT_COMPAT: 2025 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2026 return -EFAULT; 2027 break; 2028 #endif 2029 case TT_NATIVE: 2030 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2031 return -EFAULT; 2032 break; 2033 default: 2034 BUG(); 2035 } 2036 return -ERESTART_RESTARTBLOCK; 2037 } 2038 2039 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2040 { 2041 struct restart_block *restart; 2042 2043 do { 2044 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2045 hrtimer_sleeper_start_expires(t, mode); 2046 2047 if (likely(t->task)) 2048 schedule(); 2049 2050 hrtimer_cancel(&t->timer); 2051 mode = HRTIMER_MODE_ABS; 2052 2053 } while (t->task && !signal_pending(current)); 2054 2055 __set_current_state(TASK_RUNNING); 2056 2057 if (!t->task) 2058 return 0; 2059 2060 restart = ¤t->restart_block; 2061 if (restart->nanosleep.type != TT_NONE) { 2062 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2063 struct timespec64 rmt; 2064 2065 if (rem <= 0) 2066 return 0; 2067 rmt = ktime_to_timespec64(rem); 2068 2069 return nanosleep_copyout(restart, &rmt); 2070 } 2071 return -ERESTART_RESTARTBLOCK; 2072 } 2073 2074 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2075 { 2076 struct hrtimer_sleeper t; 2077 int ret; 2078 2079 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 2080 HRTIMER_MODE_ABS); 2081 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2082 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2083 destroy_hrtimer_on_stack(&t.timer); 2084 return ret; 2085 } 2086 2087 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2088 const clockid_t clockid) 2089 { 2090 struct restart_block *restart; 2091 struct hrtimer_sleeper t; 2092 int ret = 0; 2093 u64 slack; 2094 2095 slack = current->timer_slack_ns; 2096 if (rt_task(current)) 2097 slack = 0; 2098 2099 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 2100 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 2101 ret = do_nanosleep(&t, mode); 2102 if (ret != -ERESTART_RESTARTBLOCK) 2103 goto out; 2104 2105 /* Absolute timers do not update the rmtp value and restart: */ 2106 if (mode == HRTIMER_MODE_ABS) { 2107 ret = -ERESTARTNOHAND; 2108 goto out; 2109 } 2110 2111 restart = ¤t->restart_block; 2112 restart->nanosleep.clockid = t.timer.base->clockid; 2113 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2114 set_restart_fn(restart, hrtimer_nanosleep_restart); 2115 out: 2116 destroy_hrtimer_on_stack(&t.timer); 2117 return ret; 2118 } 2119 2120 #ifdef CONFIG_64BIT 2121 2122 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2123 struct __kernel_timespec __user *, rmtp) 2124 { 2125 struct timespec64 tu; 2126 2127 if (get_timespec64(&tu, rqtp)) 2128 return -EFAULT; 2129 2130 if (!timespec64_valid(&tu)) 2131 return -EINVAL; 2132 2133 current->restart_block.fn = do_no_restart_syscall; 2134 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2135 current->restart_block.nanosleep.rmtp = rmtp; 2136 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2137 CLOCK_MONOTONIC); 2138 } 2139 2140 #endif 2141 2142 #ifdef CONFIG_COMPAT_32BIT_TIME 2143 2144 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2145 struct old_timespec32 __user *, rmtp) 2146 { 2147 struct timespec64 tu; 2148 2149 if (get_old_timespec32(&tu, rqtp)) 2150 return -EFAULT; 2151 2152 if (!timespec64_valid(&tu)) 2153 return -EINVAL; 2154 2155 current->restart_block.fn = do_no_restart_syscall; 2156 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2157 current->restart_block.nanosleep.compat_rmtp = rmtp; 2158 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2159 CLOCK_MONOTONIC); 2160 } 2161 #endif 2162 2163 /* 2164 * Functions related to boot-time initialization: 2165 */ 2166 int hrtimers_prepare_cpu(unsigned int cpu) 2167 { 2168 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2169 int i; 2170 2171 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2172 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2173 2174 clock_b->cpu_base = cpu_base; 2175 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2176 timerqueue_init_head(&clock_b->active); 2177 } 2178 2179 cpu_base->cpu = cpu; 2180 cpu_base->active_bases = 0; 2181 cpu_base->hres_active = 0; 2182 cpu_base->hang_detected = 0; 2183 cpu_base->next_timer = NULL; 2184 cpu_base->softirq_next_timer = NULL; 2185 cpu_base->expires_next = KTIME_MAX; 2186 cpu_base->softirq_expires_next = KTIME_MAX; 2187 cpu_base->online = 1; 2188 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2189 return 0; 2190 } 2191 2192 #ifdef CONFIG_HOTPLUG_CPU 2193 2194 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2195 struct hrtimer_clock_base *new_base) 2196 { 2197 struct hrtimer *timer; 2198 struct timerqueue_node *node; 2199 2200 while ((node = timerqueue_getnext(&old_base->active))) { 2201 timer = container_of(node, struct hrtimer, node); 2202 BUG_ON(hrtimer_callback_running(timer)); 2203 debug_deactivate(timer); 2204 2205 /* 2206 * Mark it as ENQUEUED not INACTIVE otherwise the 2207 * timer could be seen as !active and just vanish away 2208 * under us on another CPU 2209 */ 2210 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2211 timer->base = new_base; 2212 /* 2213 * Enqueue the timers on the new cpu. This does not 2214 * reprogram the event device in case the timer 2215 * expires before the earliest on this CPU, but we run 2216 * hrtimer_interrupt after we migrated everything to 2217 * sort out already expired timers and reprogram the 2218 * event device. 2219 */ 2220 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2221 } 2222 } 2223 2224 int hrtimers_cpu_dying(unsigned int dying_cpu) 2225 { 2226 struct hrtimer_cpu_base *old_base, *new_base; 2227 int i, ncpu = cpumask_first(cpu_active_mask); 2228 2229 tick_cancel_sched_timer(dying_cpu); 2230 2231 old_base = this_cpu_ptr(&hrtimer_bases); 2232 new_base = &per_cpu(hrtimer_bases, ncpu); 2233 2234 /* 2235 * The caller is globally serialized and nobody else 2236 * takes two locks at once, deadlock is not possible. 2237 */ 2238 raw_spin_lock(&old_base->lock); 2239 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2240 2241 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2242 migrate_hrtimer_list(&old_base->clock_base[i], 2243 &new_base->clock_base[i]); 2244 } 2245 2246 /* 2247 * The migration might have changed the first expiring softirq 2248 * timer on this CPU. Update it. 2249 */ 2250 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2251 /* Tell the other CPU to retrigger the next event */ 2252 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2253 2254 raw_spin_unlock(&new_base->lock); 2255 old_base->online = 0; 2256 raw_spin_unlock(&old_base->lock); 2257 2258 return 0; 2259 } 2260 2261 #endif /* CONFIG_HOTPLUG_CPU */ 2262 2263 void __init hrtimers_init(void) 2264 { 2265 hrtimers_prepare_cpu(smp_processor_id()); 2266 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2267 } 2268 2269 /** 2270 * schedule_hrtimeout_range_clock - sleep until timeout 2271 * @expires: timeout value (ktime_t) 2272 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2273 * @mode: timer mode 2274 * @clock_id: timer clock to be used 2275 */ 2276 int __sched 2277 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2278 const enum hrtimer_mode mode, clockid_t clock_id) 2279 { 2280 struct hrtimer_sleeper t; 2281 2282 /* 2283 * Optimize when a zero timeout value is given. It does not 2284 * matter whether this is an absolute or a relative time. 2285 */ 2286 if (expires && *expires == 0) { 2287 __set_current_state(TASK_RUNNING); 2288 return 0; 2289 } 2290 2291 /* 2292 * A NULL parameter means "infinite" 2293 */ 2294 if (!expires) { 2295 schedule(); 2296 return -EINTR; 2297 } 2298 2299 /* 2300 * Override any slack passed by the user if under 2301 * rt contraints. 2302 */ 2303 if (rt_task(current)) 2304 delta = 0; 2305 2306 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2307 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2308 hrtimer_sleeper_start_expires(&t, mode); 2309 2310 if (likely(t.task)) 2311 schedule(); 2312 2313 hrtimer_cancel(&t.timer); 2314 destroy_hrtimer_on_stack(&t.timer); 2315 2316 __set_current_state(TASK_RUNNING); 2317 2318 return !t.task ? 0 : -EINTR; 2319 } 2320 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range_clock); 2321 2322 /** 2323 * schedule_hrtimeout_range - sleep until timeout 2324 * @expires: timeout value (ktime_t) 2325 * @delta: slack in expires timeout (ktime_t) for SCHED_OTHER tasks 2326 * @mode: timer mode 2327 * 2328 * Make the current task sleep until the given expiry time has 2329 * elapsed. The routine will return immediately unless 2330 * the current task state has been set (see set_current_state()). 2331 * 2332 * The @delta argument gives the kernel the freedom to schedule the 2333 * actual wakeup to a time that is both power and performance friendly 2334 * for regular (non RT/DL) tasks. 2335 * The kernel give the normal best effort behavior for "@expires+@delta", 2336 * but may decide to fire the timer earlier, but no earlier than @expires. 2337 * 2338 * You can set the task state as follows - 2339 * 2340 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2341 * pass before the routine returns unless the current task is explicitly 2342 * woken up, (e.g. by wake_up_process()). 2343 * 2344 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2345 * delivered to the current task or the current task is explicitly woken 2346 * up. 2347 * 2348 * The current task state is guaranteed to be TASK_RUNNING when this 2349 * routine returns. 2350 * 2351 * Returns 0 when the timer has expired. If the task was woken before the 2352 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2353 * by an explicit wakeup, it returns -EINTR. 2354 */ 2355 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2356 const enum hrtimer_mode mode) 2357 { 2358 return schedule_hrtimeout_range_clock(expires, delta, mode, 2359 CLOCK_MONOTONIC); 2360 } 2361 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2362 2363 /** 2364 * schedule_hrtimeout - sleep until timeout 2365 * @expires: timeout value (ktime_t) 2366 * @mode: timer mode 2367 * 2368 * Make the current task sleep until the given expiry time has 2369 * elapsed. The routine will return immediately unless 2370 * the current task state has been set (see set_current_state()). 2371 * 2372 * You can set the task state as follows - 2373 * 2374 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2375 * pass before the routine returns unless the current task is explicitly 2376 * woken up, (e.g. by wake_up_process()). 2377 * 2378 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2379 * delivered to the current task or the current task is explicitly woken 2380 * up. 2381 * 2382 * The current task state is guaranteed to be TASK_RUNNING when this 2383 * routine returns. 2384 * 2385 * Returns 0 when the timer has expired. If the task was woken before the 2386 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2387 * by an explicit wakeup, it returns -EINTR. 2388 */ 2389 int __sched schedule_hrtimeout(ktime_t *expires, 2390 const enum hrtimer_mode mode) 2391 { 2392 return schedule_hrtimeout_range(expires, 0, mode); 2393 } 2394 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2395