xref: /openbmc/linux/kernel/time/hrtimer.c (revision 179dd8c0)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <asm/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids then hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
98 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
99 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
100 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
101 };
102 
103 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
104 {
105 	return hrtimer_clock_to_base_table[clock_id];
106 }
107 
108 /*
109  * Functions and macros which are different for UP/SMP systems are kept in a
110  * single place
111  */
112 #ifdef CONFIG_SMP
113 
114 /*
115  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
116  * such that hrtimer_callback_running() can unconditionally dereference
117  * timer->base->cpu_base
118  */
119 static struct hrtimer_cpu_base migration_cpu_base = {
120 	.seq = SEQCNT_ZERO(migration_cpu_base),
121 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
122 };
123 
124 #define migration_base	migration_cpu_base.clock_base[0]
125 
126 /*
127  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128  * means that all timers which are tied to this base via timer->base are
129  * locked, and the base itself is locked too.
130  *
131  * So __run_timers/migrate_timers can safely modify all timers which could
132  * be found on the lists/queues.
133  *
134  * When the timer's base is locked, and the timer removed from list, it is
135  * possible to set timer->base = &migration_base and drop the lock: the timer
136  * remains locked.
137  */
138 static
139 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 					     unsigned long *flags)
141 {
142 	struct hrtimer_clock_base *base;
143 
144 	for (;;) {
145 		base = timer->base;
146 		if (likely(base != &migration_base)) {
147 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 			if (likely(base == timer->base))
149 				return base;
150 			/* The timer has migrated to another CPU: */
151 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 		}
153 		cpu_relax();
154 	}
155 }
156 
157 /*
158  * With HIGHRES=y we do not migrate the timer when it is expiring
159  * before the next event on the target cpu because we cannot reprogram
160  * the target cpu hardware and we would cause it to fire late.
161  *
162  * Called with cpu_base->lock of target cpu held.
163  */
164 static int
165 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
166 {
167 #ifdef CONFIG_HIGH_RES_TIMERS
168 	ktime_t expires;
169 
170 	if (!new_base->cpu_base->hres_active)
171 		return 0;
172 
173 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
174 	return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
175 #else
176 	return 0;
177 #endif
178 }
179 
180 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
181 static inline
182 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
183 					 int pinned)
184 {
185 	if (pinned || !base->migration_enabled)
186 		return this_cpu_ptr(&hrtimer_bases);
187 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
188 }
189 #else
190 static inline
191 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
192 					 int pinned)
193 {
194 	return this_cpu_ptr(&hrtimer_bases);
195 }
196 #endif
197 
198 /*
199  * Switch the timer base to the current CPU when possible.
200  */
201 static inline struct hrtimer_clock_base *
202 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
203 		    int pinned)
204 {
205 	struct hrtimer_cpu_base *new_cpu_base, *this_base;
206 	struct hrtimer_clock_base *new_base;
207 	int basenum = base->index;
208 
209 	this_base = this_cpu_ptr(&hrtimer_bases);
210 	new_cpu_base = get_target_base(this_base, pinned);
211 again:
212 	new_base = &new_cpu_base->clock_base[basenum];
213 
214 	if (base != new_base) {
215 		/*
216 		 * We are trying to move timer to new_base.
217 		 * However we can't change timer's base while it is running,
218 		 * so we keep it on the same CPU. No hassle vs. reprogramming
219 		 * the event source in the high resolution case. The softirq
220 		 * code will take care of this when the timer function has
221 		 * completed. There is no conflict as we hold the lock until
222 		 * the timer is enqueued.
223 		 */
224 		if (unlikely(hrtimer_callback_running(timer)))
225 			return base;
226 
227 		/* See the comment in lock_hrtimer_base() */
228 		timer->base = &migration_base;
229 		raw_spin_unlock(&base->cpu_base->lock);
230 		raw_spin_lock(&new_base->cpu_base->lock);
231 
232 		if (new_cpu_base != this_base &&
233 		    hrtimer_check_target(timer, new_base)) {
234 			raw_spin_unlock(&new_base->cpu_base->lock);
235 			raw_spin_lock(&base->cpu_base->lock);
236 			new_cpu_base = this_base;
237 			timer->base = base;
238 			goto again;
239 		}
240 		timer->base = new_base;
241 	} else {
242 		if (new_cpu_base != this_base &&
243 		    hrtimer_check_target(timer, new_base)) {
244 			new_cpu_base = this_base;
245 			goto again;
246 		}
247 	}
248 	return new_base;
249 }
250 
251 #else /* CONFIG_SMP */
252 
253 static inline struct hrtimer_clock_base *
254 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
255 {
256 	struct hrtimer_clock_base *base = timer->base;
257 
258 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
259 
260 	return base;
261 }
262 
263 # define switch_hrtimer_base(t, b, p)	(b)
264 
265 #endif	/* !CONFIG_SMP */
266 
267 /*
268  * Functions for the union type storage format of ktime_t which are
269  * too large for inlining:
270  */
271 #if BITS_PER_LONG < 64
272 /*
273  * Divide a ktime value by a nanosecond value
274  */
275 s64 __ktime_divns(const ktime_t kt, s64 div)
276 {
277 	int sft = 0;
278 	s64 dclc;
279 	u64 tmp;
280 
281 	dclc = ktime_to_ns(kt);
282 	tmp = dclc < 0 ? -dclc : dclc;
283 
284 	/* Make sure the divisor is less than 2^32: */
285 	while (div >> 32) {
286 		sft++;
287 		div >>= 1;
288 	}
289 	tmp >>= sft;
290 	do_div(tmp, (unsigned long) div);
291 	return dclc < 0 ? -tmp : tmp;
292 }
293 EXPORT_SYMBOL_GPL(__ktime_divns);
294 #endif /* BITS_PER_LONG >= 64 */
295 
296 /*
297  * Add two ktime values and do a safety check for overflow:
298  */
299 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
300 {
301 	ktime_t res = ktime_add(lhs, rhs);
302 
303 	/*
304 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
305 	 * return to user space in a timespec:
306 	 */
307 	if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
308 		res = ktime_set(KTIME_SEC_MAX, 0);
309 
310 	return res;
311 }
312 
313 EXPORT_SYMBOL_GPL(ktime_add_safe);
314 
315 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
316 
317 static struct debug_obj_descr hrtimer_debug_descr;
318 
319 static void *hrtimer_debug_hint(void *addr)
320 {
321 	return ((struct hrtimer *) addr)->function;
322 }
323 
324 /*
325  * fixup_init is called when:
326  * - an active object is initialized
327  */
328 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
329 {
330 	struct hrtimer *timer = addr;
331 
332 	switch (state) {
333 	case ODEBUG_STATE_ACTIVE:
334 		hrtimer_cancel(timer);
335 		debug_object_init(timer, &hrtimer_debug_descr);
336 		return 1;
337 	default:
338 		return 0;
339 	}
340 }
341 
342 /*
343  * fixup_activate is called when:
344  * - an active object is activated
345  * - an unknown object is activated (might be a statically initialized object)
346  */
347 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
348 {
349 	switch (state) {
350 
351 	case ODEBUG_STATE_NOTAVAILABLE:
352 		WARN_ON_ONCE(1);
353 		return 0;
354 
355 	case ODEBUG_STATE_ACTIVE:
356 		WARN_ON(1);
357 
358 	default:
359 		return 0;
360 	}
361 }
362 
363 /*
364  * fixup_free is called when:
365  * - an active object is freed
366  */
367 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
368 {
369 	struct hrtimer *timer = addr;
370 
371 	switch (state) {
372 	case ODEBUG_STATE_ACTIVE:
373 		hrtimer_cancel(timer);
374 		debug_object_free(timer, &hrtimer_debug_descr);
375 		return 1;
376 	default:
377 		return 0;
378 	}
379 }
380 
381 static struct debug_obj_descr hrtimer_debug_descr = {
382 	.name		= "hrtimer",
383 	.debug_hint	= hrtimer_debug_hint,
384 	.fixup_init	= hrtimer_fixup_init,
385 	.fixup_activate	= hrtimer_fixup_activate,
386 	.fixup_free	= hrtimer_fixup_free,
387 };
388 
389 static inline void debug_hrtimer_init(struct hrtimer *timer)
390 {
391 	debug_object_init(timer, &hrtimer_debug_descr);
392 }
393 
394 static inline void debug_hrtimer_activate(struct hrtimer *timer)
395 {
396 	debug_object_activate(timer, &hrtimer_debug_descr);
397 }
398 
399 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
400 {
401 	debug_object_deactivate(timer, &hrtimer_debug_descr);
402 }
403 
404 static inline void debug_hrtimer_free(struct hrtimer *timer)
405 {
406 	debug_object_free(timer, &hrtimer_debug_descr);
407 }
408 
409 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
410 			   enum hrtimer_mode mode);
411 
412 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
413 			   enum hrtimer_mode mode)
414 {
415 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
416 	__hrtimer_init(timer, clock_id, mode);
417 }
418 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
419 
420 void destroy_hrtimer_on_stack(struct hrtimer *timer)
421 {
422 	debug_object_free(timer, &hrtimer_debug_descr);
423 }
424 
425 #else
426 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
427 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
428 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
429 #endif
430 
431 static inline void
432 debug_init(struct hrtimer *timer, clockid_t clockid,
433 	   enum hrtimer_mode mode)
434 {
435 	debug_hrtimer_init(timer);
436 	trace_hrtimer_init(timer, clockid, mode);
437 }
438 
439 static inline void debug_activate(struct hrtimer *timer)
440 {
441 	debug_hrtimer_activate(timer);
442 	trace_hrtimer_start(timer);
443 }
444 
445 static inline void debug_deactivate(struct hrtimer *timer)
446 {
447 	debug_hrtimer_deactivate(timer);
448 	trace_hrtimer_cancel(timer);
449 }
450 
451 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
452 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
453 					     struct hrtimer *timer)
454 {
455 #ifdef CONFIG_HIGH_RES_TIMERS
456 	cpu_base->next_timer = timer;
457 #endif
458 }
459 
460 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
461 {
462 	struct hrtimer_clock_base *base = cpu_base->clock_base;
463 	ktime_t expires, expires_next = { .tv64 = KTIME_MAX };
464 	unsigned int active = cpu_base->active_bases;
465 
466 	hrtimer_update_next_timer(cpu_base, NULL);
467 	for (; active; base++, active >>= 1) {
468 		struct timerqueue_node *next;
469 		struct hrtimer *timer;
470 
471 		if (!(active & 0x01))
472 			continue;
473 
474 		next = timerqueue_getnext(&base->active);
475 		timer = container_of(next, struct hrtimer, node);
476 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
477 		if (expires.tv64 < expires_next.tv64) {
478 			expires_next = expires;
479 			hrtimer_update_next_timer(cpu_base, timer);
480 		}
481 	}
482 	/*
483 	 * clock_was_set() might have changed base->offset of any of
484 	 * the clock bases so the result might be negative. Fix it up
485 	 * to prevent a false positive in clockevents_program_event().
486 	 */
487 	if (expires_next.tv64 < 0)
488 		expires_next.tv64 = 0;
489 	return expires_next;
490 }
491 #endif
492 
493 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
494 {
495 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
496 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
497 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
498 
499 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
500 					    offs_real, offs_boot, offs_tai);
501 }
502 
503 /* High resolution timer related functions */
504 #ifdef CONFIG_HIGH_RES_TIMERS
505 
506 /*
507  * High resolution timer enabled ?
508  */
509 static int hrtimer_hres_enabled __read_mostly  = 1;
510 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
511 EXPORT_SYMBOL_GPL(hrtimer_resolution);
512 
513 /*
514  * Enable / Disable high resolution mode
515  */
516 static int __init setup_hrtimer_hres(char *str)
517 {
518 	if (!strcmp(str, "off"))
519 		hrtimer_hres_enabled = 0;
520 	else if (!strcmp(str, "on"))
521 		hrtimer_hres_enabled = 1;
522 	else
523 		return 0;
524 	return 1;
525 }
526 
527 __setup("highres=", setup_hrtimer_hres);
528 
529 /*
530  * hrtimer_high_res_enabled - query, if the highres mode is enabled
531  */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 	return hrtimer_hres_enabled;
535 }
536 
537 /*
538  * Is the high resolution mode active ?
539  */
540 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
541 {
542 	return cpu_base->hres_active;
543 }
544 
545 static inline int hrtimer_hres_active(void)
546 {
547 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
548 }
549 
550 /*
551  * Reprogram the event source with checking both queues for the
552  * next event
553  * Called with interrupts disabled and base->lock held
554  */
555 static void
556 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
557 {
558 	ktime_t expires_next;
559 
560 	if (!cpu_base->hres_active)
561 		return;
562 
563 	expires_next = __hrtimer_get_next_event(cpu_base);
564 
565 	if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
566 		return;
567 
568 	cpu_base->expires_next.tv64 = expires_next.tv64;
569 
570 	/*
571 	 * If a hang was detected in the last timer interrupt then we
572 	 * leave the hang delay active in the hardware. We want the
573 	 * system to make progress. That also prevents the following
574 	 * scenario:
575 	 * T1 expires 50ms from now
576 	 * T2 expires 5s from now
577 	 *
578 	 * T1 is removed, so this code is called and would reprogram
579 	 * the hardware to 5s from now. Any hrtimer_start after that
580 	 * will not reprogram the hardware due to hang_detected being
581 	 * set. So we'd effectivly block all timers until the T2 event
582 	 * fires.
583 	 */
584 	if (cpu_base->hang_detected)
585 		return;
586 
587 	tick_program_event(cpu_base->expires_next, 1);
588 }
589 
590 /*
591  * When a timer is enqueued and expires earlier than the already enqueued
592  * timers, we have to check, whether it expires earlier than the timer for
593  * which the clock event device was armed.
594  *
595  * Called with interrupts disabled and base->cpu_base.lock held
596  */
597 static void hrtimer_reprogram(struct hrtimer *timer,
598 			      struct hrtimer_clock_base *base)
599 {
600 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
601 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 
603 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
604 
605 	/*
606 	 * If the timer is not on the current cpu, we cannot reprogram
607 	 * the other cpus clock event device.
608 	 */
609 	if (base->cpu_base != cpu_base)
610 		return;
611 
612 	/*
613 	 * If the hrtimer interrupt is running, then it will
614 	 * reevaluate the clock bases and reprogram the clock event
615 	 * device. The callbacks are always executed in hard interrupt
616 	 * context so we don't need an extra check for a running
617 	 * callback.
618 	 */
619 	if (cpu_base->in_hrtirq)
620 		return;
621 
622 	/*
623 	 * CLOCK_REALTIME timer might be requested with an absolute
624 	 * expiry time which is less than base->offset. Set it to 0.
625 	 */
626 	if (expires.tv64 < 0)
627 		expires.tv64 = 0;
628 
629 	if (expires.tv64 >= cpu_base->expires_next.tv64)
630 		return;
631 
632 	/* Update the pointer to the next expiring timer */
633 	cpu_base->next_timer = timer;
634 
635 	/*
636 	 * If a hang was detected in the last timer interrupt then we
637 	 * do not schedule a timer which is earlier than the expiry
638 	 * which we enforced in the hang detection. We want the system
639 	 * to make progress.
640 	 */
641 	if (cpu_base->hang_detected)
642 		return;
643 
644 	/*
645 	 * Program the timer hardware. We enforce the expiry for
646 	 * events which are already in the past.
647 	 */
648 	cpu_base->expires_next = expires;
649 	tick_program_event(expires, 1);
650 }
651 
652 /*
653  * Initialize the high resolution related parts of cpu_base
654  */
655 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
656 {
657 	base->expires_next.tv64 = KTIME_MAX;
658 	base->hres_active = 0;
659 }
660 
661 /*
662  * Retrigger next event is called after clock was set
663  *
664  * Called with interrupts disabled via on_each_cpu()
665  */
666 static void retrigger_next_event(void *arg)
667 {
668 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
669 
670 	if (!base->hres_active)
671 		return;
672 
673 	raw_spin_lock(&base->lock);
674 	hrtimer_update_base(base);
675 	hrtimer_force_reprogram(base, 0);
676 	raw_spin_unlock(&base->lock);
677 }
678 
679 /*
680  * Switch to high resolution mode
681  */
682 static int hrtimer_switch_to_hres(void)
683 {
684 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
685 
686 	if (tick_init_highres()) {
687 		printk(KERN_WARNING "Could not switch to high resolution "
688 				    "mode on CPU %d\n", base->cpu);
689 		return 0;
690 	}
691 	base->hres_active = 1;
692 	hrtimer_resolution = HIGH_RES_NSEC;
693 
694 	tick_setup_sched_timer();
695 	/* "Retrigger" the interrupt to get things going */
696 	retrigger_next_event(NULL);
697 	return 1;
698 }
699 
700 static void clock_was_set_work(struct work_struct *work)
701 {
702 	clock_was_set();
703 }
704 
705 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
706 
707 /*
708  * Called from timekeeping and resume code to reprogramm the hrtimer
709  * interrupt device on all cpus.
710  */
711 void clock_was_set_delayed(void)
712 {
713 	schedule_work(&hrtimer_work);
714 }
715 
716 #else
717 
718 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
719 static inline int hrtimer_hres_active(void) { return 0; }
720 static inline int hrtimer_is_hres_enabled(void) { return 0; }
721 static inline int hrtimer_switch_to_hres(void) { return 0; }
722 static inline void
723 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
724 static inline int hrtimer_reprogram(struct hrtimer *timer,
725 				    struct hrtimer_clock_base *base)
726 {
727 	return 0;
728 }
729 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
730 static inline void retrigger_next_event(void *arg) { }
731 
732 #endif /* CONFIG_HIGH_RES_TIMERS */
733 
734 /*
735  * Clock realtime was set
736  *
737  * Change the offset of the realtime clock vs. the monotonic
738  * clock.
739  *
740  * We might have to reprogram the high resolution timer interrupt. On
741  * SMP we call the architecture specific code to retrigger _all_ high
742  * resolution timer interrupts. On UP we just disable interrupts and
743  * call the high resolution interrupt code.
744  */
745 void clock_was_set(void)
746 {
747 #ifdef CONFIG_HIGH_RES_TIMERS
748 	/* Retrigger the CPU local events everywhere */
749 	on_each_cpu(retrigger_next_event, NULL, 1);
750 #endif
751 	timerfd_clock_was_set();
752 }
753 
754 /*
755  * During resume we might have to reprogram the high resolution timer
756  * interrupt on all online CPUs.  However, all other CPUs will be
757  * stopped with IRQs interrupts disabled so the clock_was_set() call
758  * must be deferred.
759  */
760 void hrtimers_resume(void)
761 {
762 	WARN_ONCE(!irqs_disabled(),
763 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
764 
765 	/* Retrigger on the local CPU */
766 	retrigger_next_event(NULL);
767 	/* And schedule a retrigger for all others */
768 	clock_was_set_delayed();
769 }
770 
771 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
772 {
773 #ifdef CONFIG_TIMER_STATS
774 	if (timer->start_site)
775 		return;
776 	timer->start_site = __builtin_return_address(0);
777 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778 	timer->start_pid = current->pid;
779 #endif
780 }
781 
782 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
783 {
784 #ifdef CONFIG_TIMER_STATS
785 	timer->start_site = NULL;
786 #endif
787 }
788 
789 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
790 {
791 #ifdef CONFIG_TIMER_STATS
792 	if (likely(!timer_stats_active))
793 		return;
794 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
795 				 timer->function, timer->start_comm, 0);
796 #endif
797 }
798 
799 /*
800  * Counterpart to lock_hrtimer_base above:
801  */
802 static inline
803 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
804 {
805 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
806 }
807 
808 /**
809  * hrtimer_forward - forward the timer expiry
810  * @timer:	hrtimer to forward
811  * @now:	forward past this time
812  * @interval:	the interval to forward
813  *
814  * Forward the timer expiry so it will expire in the future.
815  * Returns the number of overruns.
816  *
817  * Can be safely called from the callback function of @timer. If
818  * called from other contexts @timer must neither be enqueued nor
819  * running the callback and the caller needs to take care of
820  * serialization.
821  *
822  * Note: This only updates the timer expiry value and does not requeue
823  * the timer.
824  */
825 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
826 {
827 	u64 orun = 1;
828 	ktime_t delta;
829 
830 	delta = ktime_sub(now, hrtimer_get_expires(timer));
831 
832 	if (delta.tv64 < 0)
833 		return 0;
834 
835 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
836 		return 0;
837 
838 	if (interval.tv64 < hrtimer_resolution)
839 		interval.tv64 = hrtimer_resolution;
840 
841 	if (unlikely(delta.tv64 >= interval.tv64)) {
842 		s64 incr = ktime_to_ns(interval);
843 
844 		orun = ktime_divns(delta, incr);
845 		hrtimer_add_expires_ns(timer, incr * orun);
846 		if (hrtimer_get_expires_tv64(timer) > now.tv64)
847 			return orun;
848 		/*
849 		 * This (and the ktime_add() below) is the
850 		 * correction for exact:
851 		 */
852 		orun++;
853 	}
854 	hrtimer_add_expires(timer, interval);
855 
856 	return orun;
857 }
858 EXPORT_SYMBOL_GPL(hrtimer_forward);
859 
860 /*
861  * enqueue_hrtimer - internal function to (re)start a timer
862  *
863  * The timer is inserted in expiry order. Insertion into the
864  * red black tree is O(log(n)). Must hold the base lock.
865  *
866  * Returns 1 when the new timer is the leftmost timer in the tree.
867  */
868 static int enqueue_hrtimer(struct hrtimer *timer,
869 			   struct hrtimer_clock_base *base)
870 {
871 	debug_activate(timer);
872 
873 	base->cpu_base->active_bases |= 1 << base->index;
874 
875 	timer->state = HRTIMER_STATE_ENQUEUED;
876 
877 	return timerqueue_add(&base->active, &timer->node);
878 }
879 
880 /*
881  * __remove_hrtimer - internal function to remove a timer
882  *
883  * Caller must hold the base lock.
884  *
885  * High resolution timer mode reprograms the clock event device when the
886  * timer is the one which expires next. The caller can disable this by setting
887  * reprogram to zero. This is useful, when the context does a reprogramming
888  * anyway (e.g. timer interrupt)
889  */
890 static void __remove_hrtimer(struct hrtimer *timer,
891 			     struct hrtimer_clock_base *base,
892 			     unsigned long newstate, int reprogram)
893 {
894 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
895 	unsigned int state = timer->state;
896 
897 	timer->state = newstate;
898 	if (!(state & HRTIMER_STATE_ENQUEUED))
899 		return;
900 
901 	if (!timerqueue_del(&base->active, &timer->node))
902 		cpu_base->active_bases &= ~(1 << base->index);
903 
904 #ifdef CONFIG_HIGH_RES_TIMERS
905 	/*
906 	 * Note: If reprogram is false we do not update
907 	 * cpu_base->next_timer. This happens when we remove the first
908 	 * timer on a remote cpu. No harm as we never dereference
909 	 * cpu_base->next_timer. So the worst thing what can happen is
910 	 * an superflous call to hrtimer_force_reprogram() on the
911 	 * remote cpu later on if the same timer gets enqueued again.
912 	 */
913 	if (reprogram && timer == cpu_base->next_timer)
914 		hrtimer_force_reprogram(cpu_base, 1);
915 #endif
916 }
917 
918 /*
919  * remove hrtimer, called with base lock held
920  */
921 static inline int
922 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
923 {
924 	if (hrtimer_is_queued(timer)) {
925 		unsigned long state = timer->state;
926 		int reprogram;
927 
928 		/*
929 		 * Remove the timer and force reprogramming when high
930 		 * resolution mode is active and the timer is on the current
931 		 * CPU. If we remove a timer on another CPU, reprogramming is
932 		 * skipped. The interrupt event on this CPU is fired and
933 		 * reprogramming happens in the interrupt handler. This is a
934 		 * rare case and less expensive than a smp call.
935 		 */
936 		debug_deactivate(timer);
937 		timer_stats_hrtimer_clear_start_info(timer);
938 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
939 
940 		if (!restart)
941 			state = HRTIMER_STATE_INACTIVE;
942 
943 		__remove_hrtimer(timer, base, state, reprogram);
944 		return 1;
945 	}
946 	return 0;
947 }
948 
949 /**
950  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
951  * @timer:	the timer to be added
952  * @tim:	expiry time
953  * @delta_ns:	"slack" range for the timer
954  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
955  *		relative (HRTIMER_MODE_REL)
956  */
957 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
958 			    unsigned long delta_ns, const enum hrtimer_mode mode)
959 {
960 	struct hrtimer_clock_base *base, *new_base;
961 	unsigned long flags;
962 	int leftmost;
963 
964 	base = lock_hrtimer_base(timer, &flags);
965 
966 	/* Remove an active timer from the queue: */
967 	remove_hrtimer(timer, base, true);
968 
969 	if (mode & HRTIMER_MODE_REL) {
970 		tim = ktime_add_safe(tim, base->get_time());
971 		/*
972 		 * CONFIG_TIME_LOW_RES is a temporary way for architectures
973 		 * to signal that they simply return xtime in
974 		 * do_gettimeoffset(). In this case we want to round up by
975 		 * resolution when starting a relative timer, to avoid short
976 		 * timeouts. This will go away with the GTOD framework.
977 		 */
978 #ifdef CONFIG_TIME_LOW_RES
979 		tim = ktime_add_safe(tim, ktime_set(0, hrtimer_resolution));
980 #endif
981 	}
982 
983 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
984 
985 	/* Switch the timer base, if necessary: */
986 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
987 
988 	timer_stats_hrtimer_set_start_info(timer);
989 
990 	leftmost = enqueue_hrtimer(timer, new_base);
991 	if (!leftmost)
992 		goto unlock;
993 
994 	if (!hrtimer_is_hres_active(timer)) {
995 		/*
996 		 * Kick to reschedule the next tick to handle the new timer
997 		 * on dynticks target.
998 		 */
999 		if (new_base->cpu_base->nohz_active)
1000 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
1001 	} else {
1002 		hrtimer_reprogram(timer, new_base);
1003 	}
1004 unlock:
1005 	unlock_hrtimer_base(timer, &flags);
1006 }
1007 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1008 
1009 /**
1010  * hrtimer_try_to_cancel - try to deactivate a timer
1011  * @timer:	hrtimer to stop
1012  *
1013  * Returns:
1014  *  0 when the timer was not active
1015  *  1 when the timer was active
1016  * -1 when the timer is currently excuting the callback function and
1017  *    cannot be stopped
1018  */
1019 int hrtimer_try_to_cancel(struct hrtimer *timer)
1020 {
1021 	struct hrtimer_clock_base *base;
1022 	unsigned long flags;
1023 	int ret = -1;
1024 
1025 	/*
1026 	 * Check lockless first. If the timer is not active (neither
1027 	 * enqueued nor running the callback, nothing to do here.  The
1028 	 * base lock does not serialize against a concurrent enqueue,
1029 	 * so we can avoid taking it.
1030 	 */
1031 	if (!hrtimer_active(timer))
1032 		return 0;
1033 
1034 	base = lock_hrtimer_base(timer, &flags);
1035 
1036 	if (!hrtimer_callback_running(timer))
1037 		ret = remove_hrtimer(timer, base, false);
1038 
1039 	unlock_hrtimer_base(timer, &flags);
1040 
1041 	return ret;
1042 
1043 }
1044 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1045 
1046 /**
1047  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1048  * @timer:	the timer to be cancelled
1049  *
1050  * Returns:
1051  *  0 when the timer was not active
1052  *  1 when the timer was active
1053  */
1054 int hrtimer_cancel(struct hrtimer *timer)
1055 {
1056 	for (;;) {
1057 		int ret = hrtimer_try_to_cancel(timer);
1058 
1059 		if (ret >= 0)
1060 			return ret;
1061 		cpu_relax();
1062 	}
1063 }
1064 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1065 
1066 /**
1067  * hrtimer_get_remaining - get remaining time for the timer
1068  * @timer:	the timer to read
1069  */
1070 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1071 {
1072 	unsigned long flags;
1073 	ktime_t rem;
1074 
1075 	lock_hrtimer_base(timer, &flags);
1076 	rem = hrtimer_expires_remaining(timer);
1077 	unlock_hrtimer_base(timer, &flags);
1078 
1079 	return rem;
1080 }
1081 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1082 
1083 #ifdef CONFIG_NO_HZ_COMMON
1084 /**
1085  * hrtimer_get_next_event - get the time until next expiry event
1086  *
1087  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1088  */
1089 u64 hrtimer_get_next_event(void)
1090 {
1091 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1092 	u64 expires = KTIME_MAX;
1093 	unsigned long flags;
1094 
1095 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1096 
1097 	if (!__hrtimer_hres_active(cpu_base))
1098 		expires = __hrtimer_get_next_event(cpu_base).tv64;
1099 
1100 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1101 
1102 	return expires;
1103 }
1104 #endif
1105 
1106 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1107 			   enum hrtimer_mode mode)
1108 {
1109 	struct hrtimer_cpu_base *cpu_base;
1110 	int base;
1111 
1112 	memset(timer, 0, sizeof(struct hrtimer));
1113 
1114 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1115 
1116 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1117 		clock_id = CLOCK_MONOTONIC;
1118 
1119 	base = hrtimer_clockid_to_base(clock_id);
1120 	timer->base = &cpu_base->clock_base[base];
1121 	timerqueue_init(&timer->node);
1122 
1123 #ifdef CONFIG_TIMER_STATS
1124 	timer->start_site = NULL;
1125 	timer->start_pid = -1;
1126 	memset(timer->start_comm, 0, TASK_COMM_LEN);
1127 #endif
1128 }
1129 
1130 /**
1131  * hrtimer_init - initialize a timer to the given clock
1132  * @timer:	the timer to be initialized
1133  * @clock_id:	the clock to be used
1134  * @mode:	timer mode abs/rel
1135  */
1136 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1137 		  enum hrtimer_mode mode)
1138 {
1139 	debug_init(timer, clock_id, mode);
1140 	__hrtimer_init(timer, clock_id, mode);
1141 }
1142 EXPORT_SYMBOL_GPL(hrtimer_init);
1143 
1144 /*
1145  * A timer is active, when it is enqueued into the rbtree or the
1146  * callback function is running or it's in the state of being migrated
1147  * to another cpu.
1148  *
1149  * It is important for this function to not return a false negative.
1150  */
1151 bool hrtimer_active(const struct hrtimer *timer)
1152 {
1153 	struct hrtimer_cpu_base *cpu_base;
1154 	unsigned int seq;
1155 
1156 	do {
1157 		cpu_base = READ_ONCE(timer->base->cpu_base);
1158 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1159 
1160 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1161 		    cpu_base->running == timer)
1162 			return true;
1163 
1164 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1165 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1166 
1167 	return false;
1168 }
1169 EXPORT_SYMBOL_GPL(hrtimer_active);
1170 
1171 /*
1172  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1173  * distinct sections:
1174  *
1175  *  - queued:	the timer is queued
1176  *  - callback:	the timer is being ran
1177  *  - post:	the timer is inactive or (re)queued
1178  *
1179  * On the read side we ensure we observe timer->state and cpu_base->running
1180  * from the same section, if anything changed while we looked at it, we retry.
1181  * This includes timer->base changing because sequence numbers alone are
1182  * insufficient for that.
1183  *
1184  * The sequence numbers are required because otherwise we could still observe
1185  * a false negative if the read side got smeared over multiple consequtive
1186  * __run_hrtimer() invocations.
1187  */
1188 
1189 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1190 			  struct hrtimer_clock_base *base,
1191 			  struct hrtimer *timer, ktime_t *now)
1192 {
1193 	enum hrtimer_restart (*fn)(struct hrtimer *);
1194 	int restart;
1195 
1196 	lockdep_assert_held(&cpu_base->lock);
1197 
1198 	debug_deactivate(timer);
1199 	cpu_base->running = timer;
1200 
1201 	/*
1202 	 * Separate the ->running assignment from the ->state assignment.
1203 	 *
1204 	 * As with a regular write barrier, this ensures the read side in
1205 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1206 	 * timer->state == INACTIVE.
1207 	 */
1208 	raw_write_seqcount_barrier(&cpu_base->seq);
1209 
1210 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1211 	timer_stats_account_hrtimer(timer);
1212 	fn = timer->function;
1213 
1214 	/*
1215 	 * Because we run timers from hardirq context, there is no chance
1216 	 * they get migrated to another cpu, therefore its safe to unlock
1217 	 * the timer base.
1218 	 */
1219 	raw_spin_unlock(&cpu_base->lock);
1220 	trace_hrtimer_expire_entry(timer, now);
1221 	restart = fn(timer);
1222 	trace_hrtimer_expire_exit(timer);
1223 	raw_spin_lock(&cpu_base->lock);
1224 
1225 	/*
1226 	 * Note: We clear the running state after enqueue_hrtimer and
1227 	 * we do not reprogramm the event hardware. Happens either in
1228 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1229 	 *
1230 	 * Note: Because we dropped the cpu_base->lock above,
1231 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1232 	 * for us already.
1233 	 */
1234 	if (restart != HRTIMER_NORESTART &&
1235 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1236 		enqueue_hrtimer(timer, base);
1237 
1238 	/*
1239 	 * Separate the ->running assignment from the ->state assignment.
1240 	 *
1241 	 * As with a regular write barrier, this ensures the read side in
1242 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1243 	 * timer->state == INACTIVE.
1244 	 */
1245 	raw_write_seqcount_barrier(&cpu_base->seq);
1246 
1247 	WARN_ON_ONCE(cpu_base->running != timer);
1248 	cpu_base->running = NULL;
1249 }
1250 
1251 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1252 {
1253 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1254 	unsigned int active = cpu_base->active_bases;
1255 
1256 	for (; active; base++, active >>= 1) {
1257 		struct timerqueue_node *node;
1258 		ktime_t basenow;
1259 
1260 		if (!(active & 0x01))
1261 			continue;
1262 
1263 		basenow = ktime_add(now, base->offset);
1264 
1265 		while ((node = timerqueue_getnext(&base->active))) {
1266 			struct hrtimer *timer;
1267 
1268 			timer = container_of(node, struct hrtimer, node);
1269 
1270 			/*
1271 			 * The immediate goal for using the softexpires is
1272 			 * minimizing wakeups, not running timers at the
1273 			 * earliest interrupt after their soft expiration.
1274 			 * This allows us to avoid using a Priority Search
1275 			 * Tree, which can answer a stabbing querry for
1276 			 * overlapping intervals and instead use the simple
1277 			 * BST we already have.
1278 			 * We don't add extra wakeups by delaying timers that
1279 			 * are right-of a not yet expired timer, because that
1280 			 * timer will have to trigger a wakeup anyway.
1281 			 */
1282 			if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer))
1283 				break;
1284 
1285 			__run_hrtimer(cpu_base, base, timer, &basenow);
1286 		}
1287 	}
1288 }
1289 
1290 #ifdef CONFIG_HIGH_RES_TIMERS
1291 
1292 /*
1293  * High resolution timer interrupt
1294  * Called with interrupts disabled
1295  */
1296 void hrtimer_interrupt(struct clock_event_device *dev)
1297 {
1298 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1299 	ktime_t expires_next, now, entry_time, delta;
1300 	int retries = 0;
1301 
1302 	BUG_ON(!cpu_base->hres_active);
1303 	cpu_base->nr_events++;
1304 	dev->next_event.tv64 = KTIME_MAX;
1305 
1306 	raw_spin_lock(&cpu_base->lock);
1307 	entry_time = now = hrtimer_update_base(cpu_base);
1308 retry:
1309 	cpu_base->in_hrtirq = 1;
1310 	/*
1311 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1312 	 * held to prevent that a timer is enqueued in our queue via
1313 	 * the migration code. This does not affect enqueueing of
1314 	 * timers which run their callback and need to be requeued on
1315 	 * this CPU.
1316 	 */
1317 	cpu_base->expires_next.tv64 = KTIME_MAX;
1318 
1319 	__hrtimer_run_queues(cpu_base, now);
1320 
1321 	/* Reevaluate the clock bases for the next expiry */
1322 	expires_next = __hrtimer_get_next_event(cpu_base);
1323 	/*
1324 	 * Store the new expiry value so the migration code can verify
1325 	 * against it.
1326 	 */
1327 	cpu_base->expires_next = expires_next;
1328 	cpu_base->in_hrtirq = 0;
1329 	raw_spin_unlock(&cpu_base->lock);
1330 
1331 	/* Reprogramming necessary ? */
1332 	if (!tick_program_event(expires_next, 0)) {
1333 		cpu_base->hang_detected = 0;
1334 		return;
1335 	}
1336 
1337 	/*
1338 	 * The next timer was already expired due to:
1339 	 * - tracing
1340 	 * - long lasting callbacks
1341 	 * - being scheduled away when running in a VM
1342 	 *
1343 	 * We need to prevent that we loop forever in the hrtimer
1344 	 * interrupt routine. We give it 3 attempts to avoid
1345 	 * overreacting on some spurious event.
1346 	 *
1347 	 * Acquire base lock for updating the offsets and retrieving
1348 	 * the current time.
1349 	 */
1350 	raw_spin_lock(&cpu_base->lock);
1351 	now = hrtimer_update_base(cpu_base);
1352 	cpu_base->nr_retries++;
1353 	if (++retries < 3)
1354 		goto retry;
1355 	/*
1356 	 * Give the system a chance to do something else than looping
1357 	 * here. We stored the entry time, so we know exactly how long
1358 	 * we spent here. We schedule the next event this amount of
1359 	 * time away.
1360 	 */
1361 	cpu_base->nr_hangs++;
1362 	cpu_base->hang_detected = 1;
1363 	raw_spin_unlock(&cpu_base->lock);
1364 	delta = ktime_sub(now, entry_time);
1365 	if ((unsigned int)delta.tv64 > cpu_base->max_hang_time)
1366 		cpu_base->max_hang_time = (unsigned int) delta.tv64;
1367 	/*
1368 	 * Limit it to a sensible value as we enforce a longer
1369 	 * delay. Give the CPU at least 100ms to catch up.
1370 	 */
1371 	if (delta.tv64 > 100 * NSEC_PER_MSEC)
1372 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1373 	else
1374 		expires_next = ktime_add(now, delta);
1375 	tick_program_event(expires_next, 1);
1376 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1377 		    ktime_to_ns(delta));
1378 }
1379 
1380 /*
1381  * local version of hrtimer_peek_ahead_timers() called with interrupts
1382  * disabled.
1383  */
1384 static inline void __hrtimer_peek_ahead_timers(void)
1385 {
1386 	struct tick_device *td;
1387 
1388 	if (!hrtimer_hres_active())
1389 		return;
1390 
1391 	td = this_cpu_ptr(&tick_cpu_device);
1392 	if (td && td->evtdev)
1393 		hrtimer_interrupt(td->evtdev);
1394 }
1395 
1396 #else /* CONFIG_HIGH_RES_TIMERS */
1397 
1398 static inline void __hrtimer_peek_ahead_timers(void) { }
1399 
1400 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1401 
1402 /*
1403  * Called from run_local_timers in hardirq context every jiffy
1404  */
1405 void hrtimer_run_queues(void)
1406 {
1407 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1408 	ktime_t now;
1409 
1410 	if (__hrtimer_hres_active(cpu_base))
1411 		return;
1412 
1413 	/*
1414 	 * This _is_ ugly: We have to check periodically, whether we
1415 	 * can switch to highres and / or nohz mode. The clocksource
1416 	 * switch happens with xtime_lock held. Notification from
1417 	 * there only sets the check bit in the tick_oneshot code,
1418 	 * otherwise we might deadlock vs. xtime_lock.
1419 	 */
1420 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1421 		hrtimer_switch_to_hres();
1422 		return;
1423 	}
1424 
1425 	raw_spin_lock(&cpu_base->lock);
1426 	now = hrtimer_update_base(cpu_base);
1427 	__hrtimer_run_queues(cpu_base, now);
1428 	raw_spin_unlock(&cpu_base->lock);
1429 }
1430 
1431 /*
1432  * Sleep related functions:
1433  */
1434 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1435 {
1436 	struct hrtimer_sleeper *t =
1437 		container_of(timer, struct hrtimer_sleeper, timer);
1438 	struct task_struct *task = t->task;
1439 
1440 	t->task = NULL;
1441 	if (task)
1442 		wake_up_process(task);
1443 
1444 	return HRTIMER_NORESTART;
1445 }
1446 
1447 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1448 {
1449 	sl->timer.function = hrtimer_wakeup;
1450 	sl->task = task;
1451 }
1452 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1453 
1454 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1455 {
1456 	hrtimer_init_sleeper(t, current);
1457 
1458 	do {
1459 		set_current_state(TASK_INTERRUPTIBLE);
1460 		hrtimer_start_expires(&t->timer, mode);
1461 
1462 		if (likely(t->task))
1463 			freezable_schedule();
1464 
1465 		hrtimer_cancel(&t->timer);
1466 		mode = HRTIMER_MODE_ABS;
1467 
1468 	} while (t->task && !signal_pending(current));
1469 
1470 	__set_current_state(TASK_RUNNING);
1471 
1472 	return t->task == NULL;
1473 }
1474 
1475 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1476 {
1477 	struct timespec rmt;
1478 	ktime_t rem;
1479 
1480 	rem = hrtimer_expires_remaining(timer);
1481 	if (rem.tv64 <= 0)
1482 		return 0;
1483 	rmt = ktime_to_timespec(rem);
1484 
1485 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1486 		return -EFAULT;
1487 
1488 	return 1;
1489 }
1490 
1491 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1492 {
1493 	struct hrtimer_sleeper t;
1494 	struct timespec __user  *rmtp;
1495 	int ret = 0;
1496 
1497 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1498 				HRTIMER_MODE_ABS);
1499 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1500 
1501 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1502 		goto out;
1503 
1504 	rmtp = restart->nanosleep.rmtp;
1505 	if (rmtp) {
1506 		ret = update_rmtp(&t.timer, rmtp);
1507 		if (ret <= 0)
1508 			goto out;
1509 	}
1510 
1511 	/* The other values in restart are already filled in */
1512 	ret = -ERESTART_RESTARTBLOCK;
1513 out:
1514 	destroy_hrtimer_on_stack(&t.timer);
1515 	return ret;
1516 }
1517 
1518 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1519 		       const enum hrtimer_mode mode, const clockid_t clockid)
1520 {
1521 	struct restart_block *restart;
1522 	struct hrtimer_sleeper t;
1523 	int ret = 0;
1524 	unsigned long slack;
1525 
1526 	slack = current->timer_slack_ns;
1527 	if (dl_task(current) || rt_task(current))
1528 		slack = 0;
1529 
1530 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1531 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1532 	if (do_nanosleep(&t, mode))
1533 		goto out;
1534 
1535 	/* Absolute timers do not update the rmtp value and restart: */
1536 	if (mode == HRTIMER_MODE_ABS) {
1537 		ret = -ERESTARTNOHAND;
1538 		goto out;
1539 	}
1540 
1541 	if (rmtp) {
1542 		ret = update_rmtp(&t.timer, rmtp);
1543 		if (ret <= 0)
1544 			goto out;
1545 	}
1546 
1547 	restart = &current->restart_block;
1548 	restart->fn = hrtimer_nanosleep_restart;
1549 	restart->nanosleep.clockid = t.timer.base->clockid;
1550 	restart->nanosleep.rmtp = rmtp;
1551 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1552 
1553 	ret = -ERESTART_RESTARTBLOCK;
1554 out:
1555 	destroy_hrtimer_on_stack(&t.timer);
1556 	return ret;
1557 }
1558 
1559 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1560 		struct timespec __user *, rmtp)
1561 {
1562 	struct timespec tu;
1563 
1564 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1565 		return -EFAULT;
1566 
1567 	if (!timespec_valid(&tu))
1568 		return -EINVAL;
1569 
1570 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1571 }
1572 
1573 /*
1574  * Functions related to boot-time initialization:
1575  */
1576 static void init_hrtimers_cpu(int cpu)
1577 {
1578 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1579 	int i;
1580 
1581 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1582 		cpu_base->clock_base[i].cpu_base = cpu_base;
1583 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1584 	}
1585 
1586 	cpu_base->cpu = cpu;
1587 	hrtimer_init_hres(cpu_base);
1588 }
1589 
1590 #ifdef CONFIG_HOTPLUG_CPU
1591 
1592 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1593 				struct hrtimer_clock_base *new_base)
1594 {
1595 	struct hrtimer *timer;
1596 	struct timerqueue_node *node;
1597 
1598 	while ((node = timerqueue_getnext(&old_base->active))) {
1599 		timer = container_of(node, struct hrtimer, node);
1600 		BUG_ON(hrtimer_callback_running(timer));
1601 		debug_deactivate(timer);
1602 
1603 		/*
1604 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1605 		 * timer could be seen as !active and just vanish away
1606 		 * under us on another CPU
1607 		 */
1608 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1609 		timer->base = new_base;
1610 		/*
1611 		 * Enqueue the timers on the new cpu. This does not
1612 		 * reprogram the event device in case the timer
1613 		 * expires before the earliest on this CPU, but we run
1614 		 * hrtimer_interrupt after we migrated everything to
1615 		 * sort out already expired timers and reprogram the
1616 		 * event device.
1617 		 */
1618 		enqueue_hrtimer(timer, new_base);
1619 	}
1620 }
1621 
1622 static void migrate_hrtimers(int scpu)
1623 {
1624 	struct hrtimer_cpu_base *old_base, *new_base;
1625 	int i;
1626 
1627 	BUG_ON(cpu_online(scpu));
1628 	tick_cancel_sched_timer(scpu);
1629 
1630 	local_irq_disable();
1631 	old_base = &per_cpu(hrtimer_bases, scpu);
1632 	new_base = this_cpu_ptr(&hrtimer_bases);
1633 	/*
1634 	 * The caller is globally serialized and nobody else
1635 	 * takes two locks at once, deadlock is not possible.
1636 	 */
1637 	raw_spin_lock(&new_base->lock);
1638 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1639 
1640 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1641 		migrate_hrtimer_list(&old_base->clock_base[i],
1642 				     &new_base->clock_base[i]);
1643 	}
1644 
1645 	raw_spin_unlock(&old_base->lock);
1646 	raw_spin_unlock(&new_base->lock);
1647 
1648 	/* Check, if we got expired work to do */
1649 	__hrtimer_peek_ahead_timers();
1650 	local_irq_enable();
1651 }
1652 
1653 #endif /* CONFIG_HOTPLUG_CPU */
1654 
1655 static int hrtimer_cpu_notify(struct notifier_block *self,
1656 					unsigned long action, void *hcpu)
1657 {
1658 	int scpu = (long)hcpu;
1659 
1660 	switch (action) {
1661 
1662 	case CPU_UP_PREPARE:
1663 	case CPU_UP_PREPARE_FROZEN:
1664 		init_hrtimers_cpu(scpu);
1665 		break;
1666 
1667 #ifdef CONFIG_HOTPLUG_CPU
1668 	case CPU_DEAD:
1669 	case CPU_DEAD_FROZEN:
1670 		migrate_hrtimers(scpu);
1671 		break;
1672 #endif
1673 
1674 	default:
1675 		break;
1676 	}
1677 
1678 	return NOTIFY_OK;
1679 }
1680 
1681 static struct notifier_block hrtimers_nb = {
1682 	.notifier_call = hrtimer_cpu_notify,
1683 };
1684 
1685 void __init hrtimers_init(void)
1686 {
1687 	hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1688 			  (void *)(long)smp_processor_id());
1689 	register_cpu_notifier(&hrtimers_nb);
1690 }
1691 
1692 /**
1693  * schedule_hrtimeout_range_clock - sleep until timeout
1694  * @expires:	timeout value (ktime_t)
1695  * @delta:	slack in expires timeout (ktime_t)
1696  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1697  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1698  */
1699 int __sched
1700 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1701 			       const enum hrtimer_mode mode, int clock)
1702 {
1703 	struct hrtimer_sleeper t;
1704 
1705 	/*
1706 	 * Optimize when a zero timeout value is given. It does not
1707 	 * matter whether this is an absolute or a relative time.
1708 	 */
1709 	if (expires && !expires->tv64) {
1710 		__set_current_state(TASK_RUNNING);
1711 		return 0;
1712 	}
1713 
1714 	/*
1715 	 * A NULL parameter means "infinite"
1716 	 */
1717 	if (!expires) {
1718 		schedule();
1719 		return -EINTR;
1720 	}
1721 
1722 	hrtimer_init_on_stack(&t.timer, clock, mode);
1723 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1724 
1725 	hrtimer_init_sleeper(&t, current);
1726 
1727 	hrtimer_start_expires(&t.timer, mode);
1728 
1729 	if (likely(t.task))
1730 		schedule();
1731 
1732 	hrtimer_cancel(&t.timer);
1733 	destroy_hrtimer_on_stack(&t.timer);
1734 
1735 	__set_current_state(TASK_RUNNING);
1736 
1737 	return !t.task ? 0 : -EINTR;
1738 }
1739 
1740 /**
1741  * schedule_hrtimeout_range - sleep until timeout
1742  * @expires:	timeout value (ktime_t)
1743  * @delta:	slack in expires timeout (ktime_t)
1744  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1745  *
1746  * Make the current task sleep until the given expiry time has
1747  * elapsed. The routine will return immediately unless
1748  * the current task state has been set (see set_current_state()).
1749  *
1750  * The @delta argument gives the kernel the freedom to schedule the
1751  * actual wakeup to a time that is both power and performance friendly.
1752  * The kernel give the normal best effort behavior for "@expires+@delta",
1753  * but may decide to fire the timer earlier, but no earlier than @expires.
1754  *
1755  * You can set the task state as follows -
1756  *
1757  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1758  * pass before the routine returns.
1759  *
1760  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1761  * delivered to the current task.
1762  *
1763  * The current task state is guaranteed to be TASK_RUNNING when this
1764  * routine returns.
1765  *
1766  * Returns 0 when the timer has expired otherwise -EINTR
1767  */
1768 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1769 				     const enum hrtimer_mode mode)
1770 {
1771 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1772 					      CLOCK_MONOTONIC);
1773 }
1774 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1775 
1776 /**
1777  * schedule_hrtimeout - sleep until timeout
1778  * @expires:	timeout value (ktime_t)
1779  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1780  *
1781  * Make the current task sleep until the given expiry time has
1782  * elapsed. The routine will return immediately unless
1783  * the current task state has been set (see set_current_state()).
1784  *
1785  * You can set the task state as follows -
1786  *
1787  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1788  * pass before the routine returns.
1789  *
1790  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1791  * delivered to the current task.
1792  *
1793  * The current task state is guaranteed to be TASK_RUNNING when this
1794  * routine returns.
1795  *
1796  * Returns 0 when the timer has expired otherwise -EINTR
1797  */
1798 int __sched schedule_hrtimeout(ktime_t *expires,
1799 			       const enum hrtimer_mode mode)
1800 {
1801 	return schedule_hrtimeout_range(expires, 0, mode);
1802 }
1803 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1804