xref: /openbmc/linux/kernel/time/hrtimer.c (revision 174cd4b1)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched/signal.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52 
53 #include <linux/uaccess.h>
54 
55 #include <trace/events/timer.h>
56 
57 #include "tick-internal.h"
58 
59 /*
60  * The timer bases:
61  *
62  * There are more clockids than hrtimer bases. Thus, we index
63  * into the timer bases by the hrtimer_base_type enum. When trying
64  * to reach a base using a clockid, hrtimer_clockid_to_base()
65  * is used to convert from clockid to the proper hrtimer_base_type.
66  */
67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
68 {
69 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
70 	.seq = SEQCNT_ZERO(hrtimer_bases.seq),
71 	.clock_base =
72 	{
73 		{
74 			.index = HRTIMER_BASE_MONOTONIC,
75 			.clockid = CLOCK_MONOTONIC,
76 			.get_time = &ktime_get,
77 		},
78 		{
79 			.index = HRTIMER_BASE_REALTIME,
80 			.clockid = CLOCK_REALTIME,
81 			.get_time = &ktime_get_real,
82 		},
83 		{
84 			.index = HRTIMER_BASE_BOOTTIME,
85 			.clockid = CLOCK_BOOTTIME,
86 			.get_time = &ktime_get_boottime,
87 		},
88 		{
89 			.index = HRTIMER_BASE_TAI,
90 			.clockid = CLOCK_TAI,
91 			.get_time = &ktime_get_clocktai,
92 		},
93 	}
94 };
95 
96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
97 	/* Make sure we catch unsupported clockids */
98 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
99 
100 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
101 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
102 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
103 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
104 };
105 
106 /*
107  * Functions and macros which are different for UP/SMP systems are kept in a
108  * single place
109  */
110 #ifdef CONFIG_SMP
111 
112 /*
113  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
114  * such that hrtimer_callback_running() can unconditionally dereference
115  * timer->base->cpu_base
116  */
117 static struct hrtimer_cpu_base migration_cpu_base = {
118 	.seq = SEQCNT_ZERO(migration_cpu_base),
119 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
120 };
121 
122 #define migration_base	migration_cpu_base.clock_base[0]
123 
124 /*
125  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
126  * means that all timers which are tied to this base via timer->base are
127  * locked, and the base itself is locked too.
128  *
129  * So __run_timers/migrate_timers can safely modify all timers which could
130  * be found on the lists/queues.
131  *
132  * When the timer's base is locked, and the timer removed from list, it is
133  * possible to set timer->base = &migration_base and drop the lock: the timer
134  * remains locked.
135  */
136 static
137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
138 					     unsigned long *flags)
139 {
140 	struct hrtimer_clock_base *base;
141 
142 	for (;;) {
143 		base = timer->base;
144 		if (likely(base != &migration_base)) {
145 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
146 			if (likely(base == timer->base))
147 				return base;
148 			/* The timer has migrated to another CPU: */
149 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
150 		}
151 		cpu_relax();
152 	}
153 }
154 
155 /*
156  * With HIGHRES=y we do not migrate the timer when it is expiring
157  * before the next event on the target cpu because we cannot reprogram
158  * the target cpu hardware and we would cause it to fire late.
159  *
160  * Called with cpu_base->lock of target cpu held.
161  */
162 static int
163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164 {
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 	ktime_t expires;
167 
168 	if (!new_base->cpu_base->hres_active)
169 		return 0;
170 
171 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 	return expires <= new_base->cpu_base->expires_next;
173 #else
174 	return 0;
175 #endif
176 }
177 
178 #ifdef CONFIG_NO_HZ_COMMON
179 static inline
180 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
181 					 int pinned)
182 {
183 	if (pinned || !base->migration_enabled)
184 		return base;
185 	return &per_cpu(hrtimer_bases, get_nohz_timer_target());
186 }
187 #else
188 static inline
189 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
190 					 int pinned)
191 {
192 	return base;
193 }
194 #endif
195 
196 /*
197  * We switch the timer base to a power-optimized selected CPU target,
198  * if:
199  *	- NO_HZ_COMMON is enabled
200  *	- timer migration is enabled
201  *	- the timer callback is not running
202  *	- the timer is not the first expiring timer on the new target
203  *
204  * If one of the above requirements is not fulfilled we move the timer
205  * to the current CPU or leave it on the previously assigned CPU if
206  * the timer callback is currently running.
207  */
208 static inline struct hrtimer_clock_base *
209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
210 		    int pinned)
211 {
212 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
213 	struct hrtimer_clock_base *new_base;
214 	int basenum = base->index;
215 
216 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
217 	new_cpu_base = get_target_base(this_cpu_base, pinned);
218 again:
219 	new_base = &new_cpu_base->clock_base[basenum];
220 
221 	if (base != new_base) {
222 		/*
223 		 * We are trying to move timer to new_base.
224 		 * However we can't change timer's base while it is running,
225 		 * so we keep it on the same CPU. No hassle vs. reprogramming
226 		 * the event source in the high resolution case. The softirq
227 		 * code will take care of this when the timer function has
228 		 * completed. There is no conflict as we hold the lock until
229 		 * the timer is enqueued.
230 		 */
231 		if (unlikely(hrtimer_callback_running(timer)))
232 			return base;
233 
234 		/* See the comment in lock_hrtimer_base() */
235 		timer->base = &migration_base;
236 		raw_spin_unlock(&base->cpu_base->lock);
237 		raw_spin_lock(&new_base->cpu_base->lock);
238 
239 		if (new_cpu_base != this_cpu_base &&
240 		    hrtimer_check_target(timer, new_base)) {
241 			raw_spin_unlock(&new_base->cpu_base->lock);
242 			raw_spin_lock(&base->cpu_base->lock);
243 			new_cpu_base = this_cpu_base;
244 			timer->base = base;
245 			goto again;
246 		}
247 		timer->base = new_base;
248 	} else {
249 		if (new_cpu_base != this_cpu_base &&
250 		    hrtimer_check_target(timer, new_base)) {
251 			new_cpu_base = this_cpu_base;
252 			goto again;
253 		}
254 	}
255 	return new_base;
256 }
257 
258 #else /* CONFIG_SMP */
259 
260 static inline struct hrtimer_clock_base *
261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
262 {
263 	struct hrtimer_clock_base *base = timer->base;
264 
265 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
266 
267 	return base;
268 }
269 
270 # define switch_hrtimer_base(t, b, p)	(b)
271 
272 #endif	/* !CONFIG_SMP */
273 
274 /*
275  * Functions for the union type storage format of ktime_t which are
276  * too large for inlining:
277  */
278 #if BITS_PER_LONG < 64
279 /*
280  * Divide a ktime value by a nanosecond value
281  */
282 s64 __ktime_divns(const ktime_t kt, s64 div)
283 {
284 	int sft = 0;
285 	s64 dclc;
286 	u64 tmp;
287 
288 	dclc = ktime_to_ns(kt);
289 	tmp = dclc < 0 ? -dclc : dclc;
290 
291 	/* Make sure the divisor is less than 2^32: */
292 	while (div >> 32) {
293 		sft++;
294 		div >>= 1;
295 	}
296 	tmp >>= sft;
297 	do_div(tmp, (unsigned long) div);
298 	return dclc < 0 ? -tmp : tmp;
299 }
300 EXPORT_SYMBOL_GPL(__ktime_divns);
301 #endif /* BITS_PER_LONG >= 64 */
302 
303 /*
304  * Add two ktime values and do a safety check for overflow:
305  */
306 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
307 {
308 	ktime_t res = ktime_add_unsafe(lhs, rhs);
309 
310 	/*
311 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
312 	 * return to user space in a timespec:
313 	 */
314 	if (res < 0 || res < lhs || res < rhs)
315 		res = ktime_set(KTIME_SEC_MAX, 0);
316 
317 	return res;
318 }
319 
320 EXPORT_SYMBOL_GPL(ktime_add_safe);
321 
322 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
323 
324 static struct debug_obj_descr hrtimer_debug_descr;
325 
326 static void *hrtimer_debug_hint(void *addr)
327 {
328 	return ((struct hrtimer *) addr)->function;
329 }
330 
331 /*
332  * fixup_init is called when:
333  * - an active object is initialized
334  */
335 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
336 {
337 	struct hrtimer *timer = addr;
338 
339 	switch (state) {
340 	case ODEBUG_STATE_ACTIVE:
341 		hrtimer_cancel(timer);
342 		debug_object_init(timer, &hrtimer_debug_descr);
343 		return true;
344 	default:
345 		return false;
346 	}
347 }
348 
349 /*
350  * fixup_activate is called when:
351  * - an active object is activated
352  * - an unknown non-static object is activated
353  */
354 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
355 {
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		WARN_ON(1);
359 
360 	default:
361 		return false;
362 	}
363 }
364 
365 /*
366  * fixup_free is called when:
367  * - an active object is freed
368  */
369 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
370 {
371 	struct hrtimer *timer = addr;
372 
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		hrtimer_cancel(timer);
376 		debug_object_free(timer, &hrtimer_debug_descr);
377 		return true;
378 	default:
379 		return false;
380 	}
381 }
382 
383 static struct debug_obj_descr hrtimer_debug_descr = {
384 	.name		= "hrtimer",
385 	.debug_hint	= hrtimer_debug_hint,
386 	.fixup_init	= hrtimer_fixup_init,
387 	.fixup_activate	= hrtimer_fixup_activate,
388 	.fixup_free	= hrtimer_fixup_free,
389 };
390 
391 static inline void debug_hrtimer_init(struct hrtimer *timer)
392 {
393 	debug_object_init(timer, &hrtimer_debug_descr);
394 }
395 
396 static inline void debug_hrtimer_activate(struct hrtimer *timer)
397 {
398 	debug_object_activate(timer, &hrtimer_debug_descr);
399 }
400 
401 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
402 {
403 	debug_object_deactivate(timer, &hrtimer_debug_descr);
404 }
405 
406 static inline void debug_hrtimer_free(struct hrtimer *timer)
407 {
408 	debug_object_free(timer, &hrtimer_debug_descr);
409 }
410 
411 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
412 			   enum hrtimer_mode mode);
413 
414 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
415 			   enum hrtimer_mode mode)
416 {
417 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
418 	__hrtimer_init(timer, clock_id, mode);
419 }
420 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
421 
422 void destroy_hrtimer_on_stack(struct hrtimer *timer)
423 {
424 	debug_object_free(timer, &hrtimer_debug_descr);
425 }
426 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
427 
428 #else
429 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
430 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
431 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
432 #endif
433 
434 static inline void
435 debug_init(struct hrtimer *timer, clockid_t clockid,
436 	   enum hrtimer_mode mode)
437 {
438 	debug_hrtimer_init(timer);
439 	trace_hrtimer_init(timer, clockid, mode);
440 }
441 
442 static inline void debug_activate(struct hrtimer *timer)
443 {
444 	debug_hrtimer_activate(timer);
445 	trace_hrtimer_start(timer);
446 }
447 
448 static inline void debug_deactivate(struct hrtimer *timer)
449 {
450 	debug_hrtimer_deactivate(timer);
451 	trace_hrtimer_cancel(timer);
452 }
453 
454 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
455 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base,
456 					     struct hrtimer *timer)
457 {
458 #ifdef CONFIG_HIGH_RES_TIMERS
459 	cpu_base->next_timer = timer;
460 #endif
461 }
462 
463 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base)
464 {
465 	struct hrtimer_clock_base *base = cpu_base->clock_base;
466 	unsigned int active = cpu_base->active_bases;
467 	ktime_t expires, expires_next = KTIME_MAX;
468 
469 	hrtimer_update_next_timer(cpu_base, NULL);
470 	for (; active; base++, active >>= 1) {
471 		struct timerqueue_node *next;
472 		struct hrtimer *timer;
473 
474 		if (!(active & 0x01))
475 			continue;
476 
477 		next = timerqueue_getnext(&base->active);
478 		timer = container_of(next, struct hrtimer, node);
479 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
480 		if (expires < expires_next) {
481 			expires_next = expires;
482 			hrtimer_update_next_timer(cpu_base, timer);
483 		}
484 	}
485 	/*
486 	 * clock_was_set() might have changed base->offset of any of
487 	 * the clock bases so the result might be negative. Fix it up
488 	 * to prevent a false positive in clockevents_program_event().
489 	 */
490 	if (expires_next < 0)
491 		expires_next = 0;
492 	return expires_next;
493 }
494 #endif
495 
496 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
497 {
498 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
499 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
500 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
501 
502 	return ktime_get_update_offsets_now(&base->clock_was_set_seq,
503 					    offs_real, offs_boot, offs_tai);
504 }
505 
506 /* High resolution timer related functions */
507 #ifdef CONFIG_HIGH_RES_TIMERS
508 
509 /*
510  * High resolution timer enabled ?
511  */
512 static bool hrtimer_hres_enabled __read_mostly  = true;
513 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
514 EXPORT_SYMBOL_GPL(hrtimer_resolution);
515 
516 /*
517  * Enable / Disable high resolution mode
518  */
519 static int __init setup_hrtimer_hres(char *str)
520 {
521 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
522 }
523 
524 __setup("highres=", setup_hrtimer_hres);
525 
526 /*
527  * hrtimer_high_res_enabled - query, if the highres mode is enabled
528  */
529 static inline int hrtimer_is_hres_enabled(void)
530 {
531 	return hrtimer_hres_enabled;
532 }
533 
534 /*
535  * Is the high resolution mode active ?
536  */
537 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
538 {
539 	return cpu_base->hres_active;
540 }
541 
542 static inline int hrtimer_hres_active(void)
543 {
544 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
545 }
546 
547 /*
548  * Reprogram the event source with checking both queues for the
549  * next event
550  * Called with interrupts disabled and base->lock held
551  */
552 static void
553 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
554 {
555 	ktime_t expires_next;
556 
557 	if (!cpu_base->hres_active)
558 		return;
559 
560 	expires_next = __hrtimer_get_next_event(cpu_base);
561 
562 	if (skip_equal && expires_next == cpu_base->expires_next)
563 		return;
564 
565 	cpu_base->expires_next = expires_next;
566 
567 	/*
568 	 * If a hang was detected in the last timer interrupt then we
569 	 * leave the hang delay active in the hardware. We want the
570 	 * system to make progress. That also prevents the following
571 	 * scenario:
572 	 * T1 expires 50ms from now
573 	 * T2 expires 5s from now
574 	 *
575 	 * T1 is removed, so this code is called and would reprogram
576 	 * the hardware to 5s from now. Any hrtimer_start after that
577 	 * will not reprogram the hardware due to hang_detected being
578 	 * set. So we'd effectivly block all timers until the T2 event
579 	 * fires.
580 	 */
581 	if (cpu_base->hang_detected)
582 		return;
583 
584 	tick_program_event(cpu_base->expires_next, 1);
585 }
586 
587 /*
588  * When a timer is enqueued and expires earlier than the already enqueued
589  * timers, we have to check, whether it expires earlier than the timer for
590  * which the clock event device was armed.
591  *
592  * Called with interrupts disabled and base->cpu_base.lock held
593  */
594 static void hrtimer_reprogram(struct hrtimer *timer,
595 			      struct hrtimer_clock_base *base)
596 {
597 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
598 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
599 
600 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
601 
602 	/*
603 	 * If the timer is not on the current cpu, we cannot reprogram
604 	 * the other cpus clock event device.
605 	 */
606 	if (base->cpu_base != cpu_base)
607 		return;
608 
609 	/*
610 	 * If the hrtimer interrupt is running, then it will
611 	 * reevaluate the clock bases and reprogram the clock event
612 	 * device. The callbacks are always executed in hard interrupt
613 	 * context so we don't need an extra check for a running
614 	 * callback.
615 	 */
616 	if (cpu_base->in_hrtirq)
617 		return;
618 
619 	/*
620 	 * CLOCK_REALTIME timer might be requested with an absolute
621 	 * expiry time which is less than base->offset. Set it to 0.
622 	 */
623 	if (expires < 0)
624 		expires = 0;
625 
626 	if (expires >= cpu_base->expires_next)
627 		return;
628 
629 	/* Update the pointer to the next expiring timer */
630 	cpu_base->next_timer = timer;
631 
632 	/*
633 	 * If a hang was detected in the last timer interrupt then we
634 	 * do not schedule a timer which is earlier than the expiry
635 	 * which we enforced in the hang detection. We want the system
636 	 * to make progress.
637 	 */
638 	if (cpu_base->hang_detected)
639 		return;
640 
641 	/*
642 	 * Program the timer hardware. We enforce the expiry for
643 	 * events which are already in the past.
644 	 */
645 	cpu_base->expires_next = expires;
646 	tick_program_event(expires, 1);
647 }
648 
649 /*
650  * Initialize the high resolution related parts of cpu_base
651  */
652 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
653 {
654 	base->expires_next = KTIME_MAX;
655 	base->hres_active = 0;
656 }
657 
658 /*
659  * Retrigger next event is called after clock was set
660  *
661  * Called with interrupts disabled via on_each_cpu()
662  */
663 static void retrigger_next_event(void *arg)
664 {
665 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
666 
667 	if (!base->hres_active)
668 		return;
669 
670 	raw_spin_lock(&base->lock);
671 	hrtimer_update_base(base);
672 	hrtimer_force_reprogram(base, 0);
673 	raw_spin_unlock(&base->lock);
674 }
675 
676 /*
677  * Switch to high resolution mode
678  */
679 static void hrtimer_switch_to_hres(void)
680 {
681 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
682 
683 	if (tick_init_highres()) {
684 		printk(KERN_WARNING "Could not switch to high resolution "
685 				    "mode on CPU %d\n", base->cpu);
686 		return;
687 	}
688 	base->hres_active = 1;
689 	hrtimer_resolution = HIGH_RES_NSEC;
690 
691 	tick_setup_sched_timer();
692 	/* "Retrigger" the interrupt to get things going */
693 	retrigger_next_event(NULL);
694 }
695 
696 static void clock_was_set_work(struct work_struct *work)
697 {
698 	clock_was_set();
699 }
700 
701 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
702 
703 /*
704  * Called from timekeeping and resume code to reprogram the hrtimer
705  * interrupt device on all cpus.
706  */
707 void clock_was_set_delayed(void)
708 {
709 	schedule_work(&hrtimer_work);
710 }
711 
712 #else
713 
714 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; }
715 static inline int hrtimer_hres_active(void) { return 0; }
716 static inline int hrtimer_is_hres_enabled(void) { return 0; }
717 static inline void hrtimer_switch_to_hres(void) { }
718 static inline void
719 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
720 static inline int hrtimer_reprogram(struct hrtimer *timer,
721 				    struct hrtimer_clock_base *base)
722 {
723 	return 0;
724 }
725 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
726 static inline void retrigger_next_event(void *arg) { }
727 
728 #endif /* CONFIG_HIGH_RES_TIMERS */
729 
730 /*
731  * Clock realtime was set
732  *
733  * Change the offset of the realtime clock vs. the monotonic
734  * clock.
735  *
736  * We might have to reprogram the high resolution timer interrupt. On
737  * SMP we call the architecture specific code to retrigger _all_ high
738  * resolution timer interrupts. On UP we just disable interrupts and
739  * call the high resolution interrupt code.
740  */
741 void clock_was_set(void)
742 {
743 #ifdef CONFIG_HIGH_RES_TIMERS
744 	/* Retrigger the CPU local events everywhere */
745 	on_each_cpu(retrigger_next_event, NULL, 1);
746 #endif
747 	timerfd_clock_was_set();
748 }
749 
750 /*
751  * During resume we might have to reprogram the high resolution timer
752  * interrupt on all online CPUs.  However, all other CPUs will be
753  * stopped with IRQs interrupts disabled so the clock_was_set() call
754  * must be deferred.
755  */
756 void hrtimers_resume(void)
757 {
758 	WARN_ONCE(!irqs_disabled(),
759 		  KERN_INFO "hrtimers_resume() called with IRQs enabled!");
760 
761 	/* Retrigger on the local CPU */
762 	retrigger_next_event(NULL);
763 	/* And schedule a retrigger for all others */
764 	clock_was_set_delayed();
765 }
766 
767 /*
768  * Counterpart to lock_hrtimer_base above:
769  */
770 static inline
771 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
772 {
773 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
774 }
775 
776 /**
777  * hrtimer_forward - forward the timer expiry
778  * @timer:	hrtimer to forward
779  * @now:	forward past this time
780  * @interval:	the interval to forward
781  *
782  * Forward the timer expiry so it will expire in the future.
783  * Returns the number of overruns.
784  *
785  * Can be safely called from the callback function of @timer. If
786  * called from other contexts @timer must neither be enqueued nor
787  * running the callback and the caller needs to take care of
788  * serialization.
789  *
790  * Note: This only updates the timer expiry value and does not requeue
791  * the timer.
792  */
793 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
794 {
795 	u64 orun = 1;
796 	ktime_t delta;
797 
798 	delta = ktime_sub(now, hrtimer_get_expires(timer));
799 
800 	if (delta < 0)
801 		return 0;
802 
803 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
804 		return 0;
805 
806 	if (interval < hrtimer_resolution)
807 		interval = hrtimer_resolution;
808 
809 	if (unlikely(delta >= interval)) {
810 		s64 incr = ktime_to_ns(interval);
811 
812 		orun = ktime_divns(delta, incr);
813 		hrtimer_add_expires_ns(timer, incr * orun);
814 		if (hrtimer_get_expires_tv64(timer) > now)
815 			return orun;
816 		/*
817 		 * This (and the ktime_add() below) is the
818 		 * correction for exact:
819 		 */
820 		orun++;
821 	}
822 	hrtimer_add_expires(timer, interval);
823 
824 	return orun;
825 }
826 EXPORT_SYMBOL_GPL(hrtimer_forward);
827 
828 /*
829  * enqueue_hrtimer - internal function to (re)start a timer
830  *
831  * The timer is inserted in expiry order. Insertion into the
832  * red black tree is O(log(n)). Must hold the base lock.
833  *
834  * Returns 1 when the new timer is the leftmost timer in the tree.
835  */
836 static int enqueue_hrtimer(struct hrtimer *timer,
837 			   struct hrtimer_clock_base *base)
838 {
839 	debug_activate(timer);
840 
841 	base->cpu_base->active_bases |= 1 << base->index;
842 
843 	timer->state = HRTIMER_STATE_ENQUEUED;
844 
845 	return timerqueue_add(&base->active, &timer->node);
846 }
847 
848 /*
849  * __remove_hrtimer - internal function to remove a timer
850  *
851  * Caller must hold the base lock.
852  *
853  * High resolution timer mode reprograms the clock event device when the
854  * timer is the one which expires next. The caller can disable this by setting
855  * reprogram to zero. This is useful, when the context does a reprogramming
856  * anyway (e.g. timer interrupt)
857  */
858 static void __remove_hrtimer(struct hrtimer *timer,
859 			     struct hrtimer_clock_base *base,
860 			     u8 newstate, int reprogram)
861 {
862 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
863 	u8 state = timer->state;
864 
865 	timer->state = newstate;
866 	if (!(state & HRTIMER_STATE_ENQUEUED))
867 		return;
868 
869 	if (!timerqueue_del(&base->active, &timer->node))
870 		cpu_base->active_bases &= ~(1 << base->index);
871 
872 #ifdef CONFIG_HIGH_RES_TIMERS
873 	/*
874 	 * Note: If reprogram is false we do not update
875 	 * cpu_base->next_timer. This happens when we remove the first
876 	 * timer on a remote cpu. No harm as we never dereference
877 	 * cpu_base->next_timer. So the worst thing what can happen is
878 	 * an superflous call to hrtimer_force_reprogram() on the
879 	 * remote cpu later on if the same timer gets enqueued again.
880 	 */
881 	if (reprogram && timer == cpu_base->next_timer)
882 		hrtimer_force_reprogram(cpu_base, 1);
883 #endif
884 }
885 
886 /*
887  * remove hrtimer, called with base lock held
888  */
889 static inline int
890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
891 {
892 	if (hrtimer_is_queued(timer)) {
893 		u8 state = timer->state;
894 		int reprogram;
895 
896 		/*
897 		 * Remove the timer and force reprogramming when high
898 		 * resolution mode is active and the timer is on the current
899 		 * CPU. If we remove a timer on another CPU, reprogramming is
900 		 * skipped. The interrupt event on this CPU is fired and
901 		 * reprogramming happens in the interrupt handler. This is a
902 		 * rare case and less expensive than a smp call.
903 		 */
904 		debug_deactivate(timer);
905 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
906 
907 		if (!restart)
908 			state = HRTIMER_STATE_INACTIVE;
909 
910 		__remove_hrtimer(timer, base, state, reprogram);
911 		return 1;
912 	}
913 	return 0;
914 }
915 
916 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
917 					    const enum hrtimer_mode mode)
918 {
919 #ifdef CONFIG_TIME_LOW_RES
920 	/*
921 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
922 	 * granular time values. For relative timers we add hrtimer_resolution
923 	 * (i.e. one jiffie) to prevent short timeouts.
924 	 */
925 	timer->is_rel = mode & HRTIMER_MODE_REL;
926 	if (timer->is_rel)
927 		tim = ktime_add_safe(tim, hrtimer_resolution);
928 #endif
929 	return tim;
930 }
931 
932 /**
933  * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
934  * @timer:	the timer to be added
935  * @tim:	expiry time
936  * @delta_ns:	"slack" range for the timer
937  * @mode:	expiry mode: absolute (HRTIMER_MODE_ABS) or
938  *		relative (HRTIMER_MODE_REL)
939  */
940 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
941 			    u64 delta_ns, const enum hrtimer_mode mode)
942 {
943 	struct hrtimer_clock_base *base, *new_base;
944 	unsigned long flags;
945 	int leftmost;
946 
947 	base = lock_hrtimer_base(timer, &flags);
948 
949 	/* Remove an active timer from the queue: */
950 	remove_hrtimer(timer, base, true);
951 
952 	if (mode & HRTIMER_MODE_REL)
953 		tim = ktime_add_safe(tim, base->get_time());
954 
955 	tim = hrtimer_update_lowres(timer, tim, mode);
956 
957 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
958 
959 	/* Switch the timer base, if necessary: */
960 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
961 
962 	leftmost = enqueue_hrtimer(timer, new_base);
963 	if (!leftmost)
964 		goto unlock;
965 
966 	if (!hrtimer_is_hres_active(timer)) {
967 		/*
968 		 * Kick to reschedule the next tick to handle the new timer
969 		 * on dynticks target.
970 		 */
971 		if (new_base->cpu_base->nohz_active)
972 			wake_up_nohz_cpu(new_base->cpu_base->cpu);
973 	} else {
974 		hrtimer_reprogram(timer, new_base);
975 	}
976 unlock:
977 	unlock_hrtimer_base(timer, &flags);
978 }
979 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
980 
981 /**
982  * hrtimer_try_to_cancel - try to deactivate a timer
983  * @timer:	hrtimer to stop
984  *
985  * Returns:
986  *  0 when the timer was not active
987  *  1 when the timer was active
988  * -1 when the timer is currently excuting the callback function and
989  *    cannot be stopped
990  */
991 int hrtimer_try_to_cancel(struct hrtimer *timer)
992 {
993 	struct hrtimer_clock_base *base;
994 	unsigned long flags;
995 	int ret = -1;
996 
997 	/*
998 	 * Check lockless first. If the timer is not active (neither
999 	 * enqueued nor running the callback, nothing to do here.  The
1000 	 * base lock does not serialize against a concurrent enqueue,
1001 	 * so we can avoid taking it.
1002 	 */
1003 	if (!hrtimer_active(timer))
1004 		return 0;
1005 
1006 	base = lock_hrtimer_base(timer, &flags);
1007 
1008 	if (!hrtimer_callback_running(timer))
1009 		ret = remove_hrtimer(timer, base, false);
1010 
1011 	unlock_hrtimer_base(timer, &flags);
1012 
1013 	return ret;
1014 
1015 }
1016 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1017 
1018 /**
1019  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1020  * @timer:	the timer to be cancelled
1021  *
1022  * Returns:
1023  *  0 when the timer was not active
1024  *  1 when the timer was active
1025  */
1026 int hrtimer_cancel(struct hrtimer *timer)
1027 {
1028 	for (;;) {
1029 		int ret = hrtimer_try_to_cancel(timer);
1030 
1031 		if (ret >= 0)
1032 			return ret;
1033 		cpu_relax();
1034 	}
1035 }
1036 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1037 
1038 /**
1039  * hrtimer_get_remaining - get remaining time for the timer
1040  * @timer:	the timer to read
1041  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1042  */
1043 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1044 {
1045 	unsigned long flags;
1046 	ktime_t rem;
1047 
1048 	lock_hrtimer_base(timer, &flags);
1049 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1050 		rem = hrtimer_expires_remaining_adjusted(timer);
1051 	else
1052 		rem = hrtimer_expires_remaining(timer);
1053 	unlock_hrtimer_base(timer, &flags);
1054 
1055 	return rem;
1056 }
1057 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1058 
1059 #ifdef CONFIG_NO_HZ_COMMON
1060 /**
1061  * hrtimer_get_next_event - get the time until next expiry event
1062  *
1063  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1064  */
1065 u64 hrtimer_get_next_event(void)
1066 {
1067 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1068 	u64 expires = KTIME_MAX;
1069 	unsigned long flags;
1070 
1071 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1072 
1073 	if (!__hrtimer_hres_active(cpu_base))
1074 		expires = __hrtimer_get_next_event(cpu_base);
1075 
1076 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1077 
1078 	return expires;
1079 }
1080 #endif
1081 
1082 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1083 {
1084 	if (likely(clock_id < MAX_CLOCKS)) {
1085 		int base = hrtimer_clock_to_base_table[clock_id];
1086 
1087 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1088 			return base;
1089 	}
1090 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1091 	return HRTIMER_BASE_MONOTONIC;
1092 }
1093 
1094 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1095 			   enum hrtimer_mode mode)
1096 {
1097 	struct hrtimer_cpu_base *cpu_base;
1098 	int base;
1099 
1100 	memset(timer, 0, sizeof(struct hrtimer));
1101 
1102 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1103 
1104 	if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1105 		clock_id = CLOCK_MONOTONIC;
1106 
1107 	base = hrtimer_clockid_to_base(clock_id);
1108 	timer->base = &cpu_base->clock_base[base];
1109 	timerqueue_init(&timer->node);
1110 }
1111 
1112 /**
1113  * hrtimer_init - initialize a timer to the given clock
1114  * @timer:	the timer to be initialized
1115  * @clock_id:	the clock to be used
1116  * @mode:	timer mode abs/rel
1117  */
1118 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1119 		  enum hrtimer_mode mode)
1120 {
1121 	debug_init(timer, clock_id, mode);
1122 	__hrtimer_init(timer, clock_id, mode);
1123 }
1124 EXPORT_SYMBOL_GPL(hrtimer_init);
1125 
1126 /*
1127  * A timer is active, when it is enqueued into the rbtree or the
1128  * callback function is running or it's in the state of being migrated
1129  * to another cpu.
1130  *
1131  * It is important for this function to not return a false negative.
1132  */
1133 bool hrtimer_active(const struct hrtimer *timer)
1134 {
1135 	struct hrtimer_cpu_base *cpu_base;
1136 	unsigned int seq;
1137 
1138 	do {
1139 		cpu_base = READ_ONCE(timer->base->cpu_base);
1140 		seq = raw_read_seqcount_begin(&cpu_base->seq);
1141 
1142 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1143 		    cpu_base->running == timer)
1144 			return true;
1145 
1146 	} while (read_seqcount_retry(&cpu_base->seq, seq) ||
1147 		 cpu_base != READ_ONCE(timer->base->cpu_base));
1148 
1149 	return false;
1150 }
1151 EXPORT_SYMBOL_GPL(hrtimer_active);
1152 
1153 /*
1154  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1155  * distinct sections:
1156  *
1157  *  - queued:	the timer is queued
1158  *  - callback:	the timer is being ran
1159  *  - post:	the timer is inactive or (re)queued
1160  *
1161  * On the read side we ensure we observe timer->state and cpu_base->running
1162  * from the same section, if anything changed while we looked at it, we retry.
1163  * This includes timer->base changing because sequence numbers alone are
1164  * insufficient for that.
1165  *
1166  * The sequence numbers are required because otherwise we could still observe
1167  * a false negative if the read side got smeared over multiple consequtive
1168  * __run_hrtimer() invocations.
1169  */
1170 
1171 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1172 			  struct hrtimer_clock_base *base,
1173 			  struct hrtimer *timer, ktime_t *now)
1174 {
1175 	enum hrtimer_restart (*fn)(struct hrtimer *);
1176 	int restart;
1177 
1178 	lockdep_assert_held(&cpu_base->lock);
1179 
1180 	debug_deactivate(timer);
1181 	cpu_base->running = timer;
1182 
1183 	/*
1184 	 * Separate the ->running assignment from the ->state assignment.
1185 	 *
1186 	 * As with a regular write barrier, this ensures the read side in
1187 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1188 	 * timer->state == INACTIVE.
1189 	 */
1190 	raw_write_seqcount_barrier(&cpu_base->seq);
1191 
1192 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1193 	fn = timer->function;
1194 
1195 	/*
1196 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1197 	 * timer is restarted with a period then it becomes an absolute
1198 	 * timer. If its not restarted it does not matter.
1199 	 */
1200 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1201 		timer->is_rel = false;
1202 
1203 	/*
1204 	 * Because we run timers from hardirq context, there is no chance
1205 	 * they get migrated to another cpu, therefore its safe to unlock
1206 	 * the timer base.
1207 	 */
1208 	raw_spin_unlock(&cpu_base->lock);
1209 	trace_hrtimer_expire_entry(timer, now);
1210 	restart = fn(timer);
1211 	trace_hrtimer_expire_exit(timer);
1212 	raw_spin_lock(&cpu_base->lock);
1213 
1214 	/*
1215 	 * Note: We clear the running state after enqueue_hrtimer and
1216 	 * we do not reprogram the event hardware. Happens either in
1217 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1218 	 *
1219 	 * Note: Because we dropped the cpu_base->lock above,
1220 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1221 	 * for us already.
1222 	 */
1223 	if (restart != HRTIMER_NORESTART &&
1224 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1225 		enqueue_hrtimer(timer, base);
1226 
1227 	/*
1228 	 * Separate the ->running assignment from the ->state assignment.
1229 	 *
1230 	 * As with a regular write barrier, this ensures the read side in
1231 	 * hrtimer_active() cannot observe cpu_base->running == NULL &&
1232 	 * timer->state == INACTIVE.
1233 	 */
1234 	raw_write_seqcount_barrier(&cpu_base->seq);
1235 
1236 	WARN_ON_ONCE(cpu_base->running != timer);
1237 	cpu_base->running = NULL;
1238 }
1239 
1240 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now)
1241 {
1242 	struct hrtimer_clock_base *base = cpu_base->clock_base;
1243 	unsigned int active = cpu_base->active_bases;
1244 
1245 	for (; active; base++, active >>= 1) {
1246 		struct timerqueue_node *node;
1247 		ktime_t basenow;
1248 
1249 		if (!(active & 0x01))
1250 			continue;
1251 
1252 		basenow = ktime_add(now, base->offset);
1253 
1254 		while ((node = timerqueue_getnext(&base->active))) {
1255 			struct hrtimer *timer;
1256 
1257 			timer = container_of(node, struct hrtimer, node);
1258 
1259 			/*
1260 			 * The immediate goal for using the softexpires is
1261 			 * minimizing wakeups, not running timers at the
1262 			 * earliest interrupt after their soft expiration.
1263 			 * This allows us to avoid using a Priority Search
1264 			 * Tree, which can answer a stabbing querry for
1265 			 * overlapping intervals and instead use the simple
1266 			 * BST we already have.
1267 			 * We don't add extra wakeups by delaying timers that
1268 			 * are right-of a not yet expired timer, because that
1269 			 * timer will have to trigger a wakeup anyway.
1270 			 */
1271 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1272 				break;
1273 
1274 			__run_hrtimer(cpu_base, base, timer, &basenow);
1275 		}
1276 	}
1277 }
1278 
1279 #ifdef CONFIG_HIGH_RES_TIMERS
1280 
1281 /*
1282  * High resolution timer interrupt
1283  * Called with interrupts disabled
1284  */
1285 void hrtimer_interrupt(struct clock_event_device *dev)
1286 {
1287 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1288 	ktime_t expires_next, now, entry_time, delta;
1289 	int retries = 0;
1290 
1291 	BUG_ON(!cpu_base->hres_active);
1292 	cpu_base->nr_events++;
1293 	dev->next_event = KTIME_MAX;
1294 
1295 	raw_spin_lock(&cpu_base->lock);
1296 	entry_time = now = hrtimer_update_base(cpu_base);
1297 retry:
1298 	cpu_base->in_hrtirq = 1;
1299 	/*
1300 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1301 	 * held to prevent that a timer is enqueued in our queue via
1302 	 * the migration code. This does not affect enqueueing of
1303 	 * timers which run their callback and need to be requeued on
1304 	 * this CPU.
1305 	 */
1306 	cpu_base->expires_next = KTIME_MAX;
1307 
1308 	__hrtimer_run_queues(cpu_base, now);
1309 
1310 	/* Reevaluate the clock bases for the next expiry */
1311 	expires_next = __hrtimer_get_next_event(cpu_base);
1312 	/*
1313 	 * Store the new expiry value so the migration code can verify
1314 	 * against it.
1315 	 */
1316 	cpu_base->expires_next = expires_next;
1317 	cpu_base->in_hrtirq = 0;
1318 	raw_spin_unlock(&cpu_base->lock);
1319 
1320 	/* Reprogramming necessary ? */
1321 	if (!tick_program_event(expires_next, 0)) {
1322 		cpu_base->hang_detected = 0;
1323 		return;
1324 	}
1325 
1326 	/*
1327 	 * The next timer was already expired due to:
1328 	 * - tracing
1329 	 * - long lasting callbacks
1330 	 * - being scheduled away when running in a VM
1331 	 *
1332 	 * We need to prevent that we loop forever in the hrtimer
1333 	 * interrupt routine. We give it 3 attempts to avoid
1334 	 * overreacting on some spurious event.
1335 	 *
1336 	 * Acquire base lock for updating the offsets and retrieving
1337 	 * the current time.
1338 	 */
1339 	raw_spin_lock(&cpu_base->lock);
1340 	now = hrtimer_update_base(cpu_base);
1341 	cpu_base->nr_retries++;
1342 	if (++retries < 3)
1343 		goto retry;
1344 	/*
1345 	 * Give the system a chance to do something else than looping
1346 	 * here. We stored the entry time, so we know exactly how long
1347 	 * we spent here. We schedule the next event this amount of
1348 	 * time away.
1349 	 */
1350 	cpu_base->nr_hangs++;
1351 	cpu_base->hang_detected = 1;
1352 	raw_spin_unlock(&cpu_base->lock);
1353 	delta = ktime_sub(now, entry_time);
1354 	if ((unsigned int)delta > cpu_base->max_hang_time)
1355 		cpu_base->max_hang_time = (unsigned int) delta;
1356 	/*
1357 	 * Limit it to a sensible value as we enforce a longer
1358 	 * delay. Give the CPU at least 100ms to catch up.
1359 	 */
1360 	if (delta > 100 * NSEC_PER_MSEC)
1361 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1362 	else
1363 		expires_next = ktime_add(now, delta);
1364 	tick_program_event(expires_next, 1);
1365 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1366 		    ktime_to_ns(delta));
1367 }
1368 
1369 /*
1370  * local version of hrtimer_peek_ahead_timers() called with interrupts
1371  * disabled.
1372  */
1373 static inline void __hrtimer_peek_ahead_timers(void)
1374 {
1375 	struct tick_device *td;
1376 
1377 	if (!hrtimer_hres_active())
1378 		return;
1379 
1380 	td = this_cpu_ptr(&tick_cpu_device);
1381 	if (td && td->evtdev)
1382 		hrtimer_interrupt(td->evtdev);
1383 }
1384 
1385 #else /* CONFIG_HIGH_RES_TIMERS */
1386 
1387 static inline void __hrtimer_peek_ahead_timers(void) { }
1388 
1389 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1390 
1391 /*
1392  * Called from run_local_timers in hardirq context every jiffy
1393  */
1394 void hrtimer_run_queues(void)
1395 {
1396 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1397 	ktime_t now;
1398 
1399 	if (__hrtimer_hres_active(cpu_base))
1400 		return;
1401 
1402 	/*
1403 	 * This _is_ ugly: We have to check periodically, whether we
1404 	 * can switch to highres and / or nohz mode. The clocksource
1405 	 * switch happens with xtime_lock held. Notification from
1406 	 * there only sets the check bit in the tick_oneshot code,
1407 	 * otherwise we might deadlock vs. xtime_lock.
1408 	 */
1409 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1410 		hrtimer_switch_to_hres();
1411 		return;
1412 	}
1413 
1414 	raw_spin_lock(&cpu_base->lock);
1415 	now = hrtimer_update_base(cpu_base);
1416 	__hrtimer_run_queues(cpu_base, now);
1417 	raw_spin_unlock(&cpu_base->lock);
1418 }
1419 
1420 /*
1421  * Sleep related functions:
1422  */
1423 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1424 {
1425 	struct hrtimer_sleeper *t =
1426 		container_of(timer, struct hrtimer_sleeper, timer);
1427 	struct task_struct *task = t->task;
1428 
1429 	t->task = NULL;
1430 	if (task)
1431 		wake_up_process(task);
1432 
1433 	return HRTIMER_NORESTART;
1434 }
1435 
1436 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1437 {
1438 	sl->timer.function = hrtimer_wakeup;
1439 	sl->task = task;
1440 }
1441 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1442 
1443 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1444 {
1445 	hrtimer_init_sleeper(t, current);
1446 
1447 	do {
1448 		set_current_state(TASK_INTERRUPTIBLE);
1449 		hrtimer_start_expires(&t->timer, mode);
1450 
1451 		if (likely(t->task))
1452 			freezable_schedule();
1453 
1454 		hrtimer_cancel(&t->timer);
1455 		mode = HRTIMER_MODE_ABS;
1456 
1457 	} while (t->task && !signal_pending(current));
1458 
1459 	__set_current_state(TASK_RUNNING);
1460 
1461 	return t->task == NULL;
1462 }
1463 
1464 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1465 {
1466 	struct timespec rmt;
1467 	ktime_t rem;
1468 
1469 	rem = hrtimer_expires_remaining(timer);
1470 	if (rem <= 0)
1471 		return 0;
1472 	rmt = ktime_to_timespec(rem);
1473 
1474 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1475 		return -EFAULT;
1476 
1477 	return 1;
1478 }
1479 
1480 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1481 {
1482 	struct hrtimer_sleeper t;
1483 	struct timespec __user  *rmtp;
1484 	int ret = 0;
1485 
1486 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1487 				HRTIMER_MODE_ABS);
1488 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1489 
1490 	if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1491 		goto out;
1492 
1493 	rmtp = restart->nanosleep.rmtp;
1494 	if (rmtp) {
1495 		ret = update_rmtp(&t.timer, rmtp);
1496 		if (ret <= 0)
1497 			goto out;
1498 	}
1499 
1500 	/* The other values in restart are already filled in */
1501 	ret = -ERESTART_RESTARTBLOCK;
1502 out:
1503 	destroy_hrtimer_on_stack(&t.timer);
1504 	return ret;
1505 }
1506 
1507 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1508 		       const enum hrtimer_mode mode, const clockid_t clockid)
1509 {
1510 	struct restart_block *restart;
1511 	struct hrtimer_sleeper t;
1512 	int ret = 0;
1513 	u64 slack;
1514 
1515 	slack = current->timer_slack_ns;
1516 	if (dl_task(current) || rt_task(current))
1517 		slack = 0;
1518 
1519 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1520 	hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1521 	if (do_nanosleep(&t, mode))
1522 		goto out;
1523 
1524 	/* Absolute timers do not update the rmtp value and restart: */
1525 	if (mode == HRTIMER_MODE_ABS) {
1526 		ret = -ERESTARTNOHAND;
1527 		goto out;
1528 	}
1529 
1530 	if (rmtp) {
1531 		ret = update_rmtp(&t.timer, rmtp);
1532 		if (ret <= 0)
1533 			goto out;
1534 	}
1535 
1536 	restart = &current->restart_block;
1537 	restart->fn = hrtimer_nanosleep_restart;
1538 	restart->nanosleep.clockid = t.timer.base->clockid;
1539 	restart->nanosleep.rmtp = rmtp;
1540 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1541 
1542 	ret = -ERESTART_RESTARTBLOCK;
1543 out:
1544 	destroy_hrtimer_on_stack(&t.timer);
1545 	return ret;
1546 }
1547 
1548 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1549 		struct timespec __user *, rmtp)
1550 {
1551 	struct timespec tu;
1552 
1553 	if (copy_from_user(&tu, rqtp, sizeof(tu)))
1554 		return -EFAULT;
1555 
1556 	if (!timespec_valid(&tu))
1557 		return -EINVAL;
1558 
1559 	return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1560 }
1561 
1562 /*
1563  * Functions related to boot-time initialization:
1564  */
1565 int hrtimers_prepare_cpu(unsigned int cpu)
1566 {
1567 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1568 	int i;
1569 
1570 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1571 		cpu_base->clock_base[i].cpu_base = cpu_base;
1572 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1573 	}
1574 
1575 	cpu_base->cpu = cpu;
1576 	hrtimer_init_hres(cpu_base);
1577 	return 0;
1578 }
1579 
1580 #ifdef CONFIG_HOTPLUG_CPU
1581 
1582 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1583 				struct hrtimer_clock_base *new_base)
1584 {
1585 	struct hrtimer *timer;
1586 	struct timerqueue_node *node;
1587 
1588 	while ((node = timerqueue_getnext(&old_base->active))) {
1589 		timer = container_of(node, struct hrtimer, node);
1590 		BUG_ON(hrtimer_callback_running(timer));
1591 		debug_deactivate(timer);
1592 
1593 		/*
1594 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1595 		 * timer could be seen as !active and just vanish away
1596 		 * under us on another CPU
1597 		 */
1598 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1599 		timer->base = new_base;
1600 		/*
1601 		 * Enqueue the timers on the new cpu. This does not
1602 		 * reprogram the event device in case the timer
1603 		 * expires before the earliest on this CPU, but we run
1604 		 * hrtimer_interrupt after we migrated everything to
1605 		 * sort out already expired timers and reprogram the
1606 		 * event device.
1607 		 */
1608 		enqueue_hrtimer(timer, new_base);
1609 	}
1610 }
1611 
1612 int hrtimers_dead_cpu(unsigned int scpu)
1613 {
1614 	struct hrtimer_cpu_base *old_base, *new_base;
1615 	int i;
1616 
1617 	BUG_ON(cpu_online(scpu));
1618 	tick_cancel_sched_timer(scpu);
1619 
1620 	local_irq_disable();
1621 	old_base = &per_cpu(hrtimer_bases, scpu);
1622 	new_base = this_cpu_ptr(&hrtimer_bases);
1623 	/*
1624 	 * The caller is globally serialized and nobody else
1625 	 * takes two locks at once, deadlock is not possible.
1626 	 */
1627 	raw_spin_lock(&new_base->lock);
1628 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1629 
1630 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1631 		migrate_hrtimer_list(&old_base->clock_base[i],
1632 				     &new_base->clock_base[i]);
1633 	}
1634 
1635 	raw_spin_unlock(&old_base->lock);
1636 	raw_spin_unlock(&new_base->lock);
1637 
1638 	/* Check, if we got expired work to do */
1639 	__hrtimer_peek_ahead_timers();
1640 	local_irq_enable();
1641 	return 0;
1642 }
1643 
1644 #endif /* CONFIG_HOTPLUG_CPU */
1645 
1646 void __init hrtimers_init(void)
1647 {
1648 	hrtimers_prepare_cpu(smp_processor_id());
1649 }
1650 
1651 /**
1652  * schedule_hrtimeout_range_clock - sleep until timeout
1653  * @expires:	timeout value (ktime_t)
1654  * @delta:	slack in expires timeout (ktime_t)
1655  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1656  * @clock:	timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1657  */
1658 int __sched
1659 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1660 			       const enum hrtimer_mode mode, int clock)
1661 {
1662 	struct hrtimer_sleeper t;
1663 
1664 	/*
1665 	 * Optimize when a zero timeout value is given. It does not
1666 	 * matter whether this is an absolute or a relative time.
1667 	 */
1668 	if (expires && *expires == 0) {
1669 		__set_current_state(TASK_RUNNING);
1670 		return 0;
1671 	}
1672 
1673 	/*
1674 	 * A NULL parameter means "infinite"
1675 	 */
1676 	if (!expires) {
1677 		schedule();
1678 		return -EINTR;
1679 	}
1680 
1681 	hrtimer_init_on_stack(&t.timer, clock, mode);
1682 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1683 
1684 	hrtimer_init_sleeper(&t, current);
1685 
1686 	hrtimer_start_expires(&t.timer, mode);
1687 
1688 	if (likely(t.task))
1689 		schedule();
1690 
1691 	hrtimer_cancel(&t.timer);
1692 	destroy_hrtimer_on_stack(&t.timer);
1693 
1694 	__set_current_state(TASK_RUNNING);
1695 
1696 	return !t.task ? 0 : -EINTR;
1697 }
1698 
1699 /**
1700  * schedule_hrtimeout_range - sleep until timeout
1701  * @expires:	timeout value (ktime_t)
1702  * @delta:	slack in expires timeout (ktime_t)
1703  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1704  *
1705  * Make the current task sleep until the given expiry time has
1706  * elapsed. The routine will return immediately unless
1707  * the current task state has been set (see set_current_state()).
1708  *
1709  * The @delta argument gives the kernel the freedom to schedule the
1710  * actual wakeup to a time that is both power and performance friendly.
1711  * The kernel give the normal best effort behavior for "@expires+@delta",
1712  * but may decide to fire the timer earlier, but no earlier than @expires.
1713  *
1714  * You can set the task state as follows -
1715  *
1716  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1717  * pass before the routine returns unless the current task is explicitly
1718  * woken up, (e.g. by wake_up_process()).
1719  *
1720  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1721  * delivered to the current task or the current task is explicitly woken
1722  * up.
1723  *
1724  * The current task state is guaranteed to be TASK_RUNNING when this
1725  * routine returns.
1726  *
1727  * Returns 0 when the timer has expired. If the task was woken before the
1728  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1729  * by an explicit wakeup, it returns -EINTR.
1730  */
1731 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1732 				     const enum hrtimer_mode mode)
1733 {
1734 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1735 					      CLOCK_MONOTONIC);
1736 }
1737 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1738 
1739 /**
1740  * schedule_hrtimeout - sleep until timeout
1741  * @expires:	timeout value (ktime_t)
1742  * @mode:	timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1743  *
1744  * Make the current task sleep until the given expiry time has
1745  * elapsed. The routine will return immediately unless
1746  * the current task state has been set (see set_current_state()).
1747  *
1748  * You can set the task state as follows -
1749  *
1750  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1751  * pass before the routine returns unless the current task is explicitly
1752  * woken up, (e.g. by wake_up_process()).
1753  *
1754  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1755  * delivered to the current task or the current task is explicitly woken
1756  * up.
1757  *
1758  * The current task state is guaranteed to be TASK_RUNNING when this
1759  * routine returns.
1760  *
1761  * Returns 0 when the timer has expired. If the task was woken before the
1762  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1763  * by an explicit wakeup, it returns -EINTR.
1764  */
1765 int __sched schedule_hrtimeout(ktime_t *expires,
1766 			       const enum hrtimer_mode mode)
1767 {
1768 	return schedule_hrtimeout_range(expires, 0, mode);
1769 }
1770 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1771