1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/tick.h> 43 #include <linux/seq_file.h> 44 #include <linux/err.h> 45 #include <linux/debugobjects.h> 46 #include <linux/sched/signal.h> 47 #include <linux/sched/sysctl.h> 48 #include <linux/sched/rt.h> 49 #include <linux/sched/deadline.h> 50 #include <linux/timer.h> 51 #include <linux/freezer.h> 52 53 #include <linux/uaccess.h> 54 55 #include <trace/events/timer.h> 56 57 #include "tick-internal.h" 58 59 /* 60 * The timer bases: 61 * 62 * There are more clockids than hrtimer bases. Thus, we index 63 * into the timer bases by the hrtimer_base_type enum. When trying 64 * to reach a base using a clockid, hrtimer_clockid_to_base() 65 * is used to convert from clockid to the proper hrtimer_base_type. 66 */ 67 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 68 { 69 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 70 .seq = SEQCNT_ZERO(hrtimer_bases.seq), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 } 94 }; 95 96 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 97 /* Make sure we catch unsupported clockids */ 98 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 99 100 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 101 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 102 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 103 [CLOCK_TAI] = HRTIMER_BASE_TAI, 104 }; 105 106 /* 107 * Functions and macros which are different for UP/SMP systems are kept in a 108 * single place 109 */ 110 #ifdef CONFIG_SMP 111 112 /* 113 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 114 * such that hrtimer_callback_running() can unconditionally dereference 115 * timer->base->cpu_base 116 */ 117 static struct hrtimer_cpu_base migration_cpu_base = { 118 .seq = SEQCNT_ZERO(migration_cpu_base), 119 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 120 }; 121 122 #define migration_base migration_cpu_base.clock_base[0] 123 124 /* 125 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 126 * means that all timers which are tied to this base via timer->base are 127 * locked, and the base itself is locked too. 128 * 129 * So __run_timers/migrate_timers can safely modify all timers which could 130 * be found on the lists/queues. 131 * 132 * When the timer's base is locked, and the timer removed from list, it is 133 * possible to set timer->base = &migration_base and drop the lock: the timer 134 * remains locked. 135 */ 136 static 137 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 138 unsigned long *flags) 139 { 140 struct hrtimer_clock_base *base; 141 142 for (;;) { 143 base = timer->base; 144 if (likely(base != &migration_base)) { 145 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 146 if (likely(base == timer->base)) 147 return base; 148 /* The timer has migrated to another CPU: */ 149 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 150 } 151 cpu_relax(); 152 } 153 } 154 155 /* 156 * With HIGHRES=y we do not migrate the timer when it is expiring 157 * before the next event on the target cpu because we cannot reprogram 158 * the target cpu hardware and we would cause it to fire late. 159 * 160 * Called with cpu_base->lock of target cpu held. 161 */ 162 static int 163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 164 { 165 #ifdef CONFIG_HIGH_RES_TIMERS 166 ktime_t expires; 167 168 if (!new_base->cpu_base->hres_active) 169 return 0; 170 171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 172 return expires <= new_base->cpu_base->expires_next; 173 #else 174 return 0; 175 #endif 176 } 177 178 #ifdef CONFIG_NO_HZ_COMMON 179 static inline 180 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 181 int pinned) 182 { 183 if (pinned || !base->migration_enabled) 184 return base; 185 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 186 } 187 #else 188 static inline 189 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 190 int pinned) 191 { 192 return base; 193 } 194 #endif 195 196 /* 197 * We switch the timer base to a power-optimized selected CPU target, 198 * if: 199 * - NO_HZ_COMMON is enabled 200 * - timer migration is enabled 201 * - the timer callback is not running 202 * - the timer is not the first expiring timer on the new target 203 * 204 * If one of the above requirements is not fulfilled we move the timer 205 * to the current CPU or leave it on the previously assigned CPU if 206 * the timer callback is currently running. 207 */ 208 static inline struct hrtimer_clock_base * 209 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 210 int pinned) 211 { 212 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 213 struct hrtimer_clock_base *new_base; 214 int basenum = base->index; 215 216 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 217 new_cpu_base = get_target_base(this_cpu_base, pinned); 218 again: 219 new_base = &new_cpu_base->clock_base[basenum]; 220 221 if (base != new_base) { 222 /* 223 * We are trying to move timer to new_base. 224 * However we can't change timer's base while it is running, 225 * so we keep it on the same CPU. No hassle vs. reprogramming 226 * the event source in the high resolution case. The softirq 227 * code will take care of this when the timer function has 228 * completed. There is no conflict as we hold the lock until 229 * the timer is enqueued. 230 */ 231 if (unlikely(hrtimer_callback_running(timer))) 232 return base; 233 234 /* See the comment in lock_hrtimer_base() */ 235 timer->base = &migration_base; 236 raw_spin_unlock(&base->cpu_base->lock); 237 raw_spin_lock(&new_base->cpu_base->lock); 238 239 if (new_cpu_base != this_cpu_base && 240 hrtimer_check_target(timer, new_base)) { 241 raw_spin_unlock(&new_base->cpu_base->lock); 242 raw_spin_lock(&base->cpu_base->lock); 243 new_cpu_base = this_cpu_base; 244 timer->base = base; 245 goto again; 246 } 247 timer->base = new_base; 248 } else { 249 if (new_cpu_base != this_cpu_base && 250 hrtimer_check_target(timer, new_base)) { 251 new_cpu_base = this_cpu_base; 252 goto again; 253 } 254 } 255 return new_base; 256 } 257 258 #else /* CONFIG_SMP */ 259 260 static inline struct hrtimer_clock_base * 261 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 262 { 263 struct hrtimer_clock_base *base = timer->base; 264 265 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 266 267 return base; 268 } 269 270 # define switch_hrtimer_base(t, b, p) (b) 271 272 #endif /* !CONFIG_SMP */ 273 274 /* 275 * Functions for the union type storage format of ktime_t which are 276 * too large for inlining: 277 */ 278 #if BITS_PER_LONG < 64 279 /* 280 * Divide a ktime value by a nanosecond value 281 */ 282 s64 __ktime_divns(const ktime_t kt, s64 div) 283 { 284 int sft = 0; 285 s64 dclc; 286 u64 tmp; 287 288 dclc = ktime_to_ns(kt); 289 tmp = dclc < 0 ? -dclc : dclc; 290 291 /* Make sure the divisor is less than 2^32: */ 292 while (div >> 32) { 293 sft++; 294 div >>= 1; 295 } 296 tmp >>= sft; 297 do_div(tmp, (unsigned long) div); 298 return dclc < 0 ? -tmp : tmp; 299 } 300 EXPORT_SYMBOL_GPL(__ktime_divns); 301 #endif /* BITS_PER_LONG >= 64 */ 302 303 /* 304 * Add two ktime values and do a safety check for overflow: 305 */ 306 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 307 { 308 ktime_t res = ktime_add_unsafe(lhs, rhs); 309 310 /* 311 * We use KTIME_SEC_MAX here, the maximum timeout which we can 312 * return to user space in a timespec: 313 */ 314 if (res < 0 || res < lhs || res < rhs) 315 res = ktime_set(KTIME_SEC_MAX, 0); 316 317 return res; 318 } 319 320 EXPORT_SYMBOL_GPL(ktime_add_safe); 321 322 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 323 324 static struct debug_obj_descr hrtimer_debug_descr; 325 326 static void *hrtimer_debug_hint(void *addr) 327 { 328 return ((struct hrtimer *) addr)->function; 329 } 330 331 /* 332 * fixup_init is called when: 333 * - an active object is initialized 334 */ 335 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 336 { 337 struct hrtimer *timer = addr; 338 339 switch (state) { 340 case ODEBUG_STATE_ACTIVE: 341 hrtimer_cancel(timer); 342 debug_object_init(timer, &hrtimer_debug_descr); 343 return true; 344 default: 345 return false; 346 } 347 } 348 349 /* 350 * fixup_activate is called when: 351 * - an active object is activated 352 * - an unknown non-static object is activated 353 */ 354 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 355 { 356 switch (state) { 357 case ODEBUG_STATE_ACTIVE: 358 WARN_ON(1); 359 360 default: 361 return false; 362 } 363 } 364 365 /* 366 * fixup_free is called when: 367 * - an active object is freed 368 */ 369 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 370 { 371 struct hrtimer *timer = addr; 372 373 switch (state) { 374 case ODEBUG_STATE_ACTIVE: 375 hrtimer_cancel(timer); 376 debug_object_free(timer, &hrtimer_debug_descr); 377 return true; 378 default: 379 return false; 380 } 381 } 382 383 static struct debug_obj_descr hrtimer_debug_descr = { 384 .name = "hrtimer", 385 .debug_hint = hrtimer_debug_hint, 386 .fixup_init = hrtimer_fixup_init, 387 .fixup_activate = hrtimer_fixup_activate, 388 .fixup_free = hrtimer_fixup_free, 389 }; 390 391 static inline void debug_hrtimer_init(struct hrtimer *timer) 392 { 393 debug_object_init(timer, &hrtimer_debug_descr); 394 } 395 396 static inline void debug_hrtimer_activate(struct hrtimer *timer) 397 { 398 debug_object_activate(timer, &hrtimer_debug_descr); 399 } 400 401 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 402 { 403 debug_object_deactivate(timer, &hrtimer_debug_descr); 404 } 405 406 static inline void debug_hrtimer_free(struct hrtimer *timer) 407 { 408 debug_object_free(timer, &hrtimer_debug_descr); 409 } 410 411 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 412 enum hrtimer_mode mode); 413 414 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 415 enum hrtimer_mode mode) 416 { 417 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 418 __hrtimer_init(timer, clock_id, mode); 419 } 420 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 421 422 void destroy_hrtimer_on_stack(struct hrtimer *timer) 423 { 424 debug_object_free(timer, &hrtimer_debug_descr); 425 } 426 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 427 428 #else 429 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 430 static inline void debug_hrtimer_activate(struct hrtimer *timer) { } 431 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 432 #endif 433 434 static inline void 435 debug_init(struct hrtimer *timer, clockid_t clockid, 436 enum hrtimer_mode mode) 437 { 438 debug_hrtimer_init(timer); 439 trace_hrtimer_init(timer, clockid, mode); 440 } 441 442 static inline void debug_activate(struct hrtimer *timer) 443 { 444 debug_hrtimer_activate(timer); 445 trace_hrtimer_start(timer); 446 } 447 448 static inline void debug_deactivate(struct hrtimer *timer) 449 { 450 debug_hrtimer_deactivate(timer); 451 trace_hrtimer_cancel(timer); 452 } 453 454 #if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS) 455 static inline void hrtimer_update_next_timer(struct hrtimer_cpu_base *cpu_base, 456 struct hrtimer *timer) 457 { 458 #ifdef CONFIG_HIGH_RES_TIMERS 459 cpu_base->next_timer = timer; 460 #endif 461 } 462 463 static ktime_t __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base) 464 { 465 struct hrtimer_clock_base *base = cpu_base->clock_base; 466 unsigned int active = cpu_base->active_bases; 467 ktime_t expires, expires_next = KTIME_MAX; 468 469 hrtimer_update_next_timer(cpu_base, NULL); 470 for (; active; base++, active >>= 1) { 471 struct timerqueue_node *next; 472 struct hrtimer *timer; 473 474 if (!(active & 0x01)) 475 continue; 476 477 next = timerqueue_getnext(&base->active); 478 timer = container_of(next, struct hrtimer, node); 479 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 480 if (expires < expires_next) { 481 expires_next = expires; 482 hrtimer_update_next_timer(cpu_base, timer); 483 } 484 } 485 /* 486 * clock_was_set() might have changed base->offset of any of 487 * the clock bases so the result might be negative. Fix it up 488 * to prevent a false positive in clockevents_program_event(). 489 */ 490 if (expires_next < 0) 491 expires_next = 0; 492 return expires_next; 493 } 494 #endif 495 496 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 497 { 498 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 499 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 500 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 501 502 return ktime_get_update_offsets_now(&base->clock_was_set_seq, 503 offs_real, offs_boot, offs_tai); 504 } 505 506 /* High resolution timer related functions */ 507 #ifdef CONFIG_HIGH_RES_TIMERS 508 509 /* 510 * High resolution timer enabled ? 511 */ 512 static bool hrtimer_hres_enabled __read_mostly = true; 513 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 514 EXPORT_SYMBOL_GPL(hrtimer_resolution); 515 516 /* 517 * Enable / Disable high resolution mode 518 */ 519 static int __init setup_hrtimer_hres(char *str) 520 { 521 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 522 } 523 524 __setup("highres=", setup_hrtimer_hres); 525 526 /* 527 * hrtimer_high_res_enabled - query, if the highres mode is enabled 528 */ 529 static inline int hrtimer_is_hres_enabled(void) 530 { 531 return hrtimer_hres_enabled; 532 } 533 534 /* 535 * Is the high resolution mode active ? 536 */ 537 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 538 { 539 return cpu_base->hres_active; 540 } 541 542 static inline int hrtimer_hres_active(void) 543 { 544 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 545 } 546 547 /* 548 * Reprogram the event source with checking both queues for the 549 * next event 550 * Called with interrupts disabled and base->lock held 551 */ 552 static void 553 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 554 { 555 ktime_t expires_next; 556 557 if (!cpu_base->hres_active) 558 return; 559 560 expires_next = __hrtimer_get_next_event(cpu_base); 561 562 if (skip_equal && expires_next == cpu_base->expires_next) 563 return; 564 565 cpu_base->expires_next = expires_next; 566 567 /* 568 * If a hang was detected in the last timer interrupt then we 569 * leave the hang delay active in the hardware. We want the 570 * system to make progress. That also prevents the following 571 * scenario: 572 * T1 expires 50ms from now 573 * T2 expires 5s from now 574 * 575 * T1 is removed, so this code is called and would reprogram 576 * the hardware to 5s from now. Any hrtimer_start after that 577 * will not reprogram the hardware due to hang_detected being 578 * set. So we'd effectivly block all timers until the T2 event 579 * fires. 580 */ 581 if (cpu_base->hang_detected) 582 return; 583 584 tick_program_event(cpu_base->expires_next, 1); 585 } 586 587 /* 588 * When a timer is enqueued and expires earlier than the already enqueued 589 * timers, we have to check, whether it expires earlier than the timer for 590 * which the clock event device was armed. 591 * 592 * Called with interrupts disabled and base->cpu_base.lock held 593 */ 594 static void hrtimer_reprogram(struct hrtimer *timer, 595 struct hrtimer_clock_base *base) 596 { 597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 598 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 599 600 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 601 602 /* 603 * If the timer is not on the current cpu, we cannot reprogram 604 * the other cpus clock event device. 605 */ 606 if (base->cpu_base != cpu_base) 607 return; 608 609 /* 610 * If the hrtimer interrupt is running, then it will 611 * reevaluate the clock bases and reprogram the clock event 612 * device. The callbacks are always executed in hard interrupt 613 * context so we don't need an extra check for a running 614 * callback. 615 */ 616 if (cpu_base->in_hrtirq) 617 return; 618 619 /* 620 * CLOCK_REALTIME timer might be requested with an absolute 621 * expiry time which is less than base->offset. Set it to 0. 622 */ 623 if (expires < 0) 624 expires = 0; 625 626 if (expires >= cpu_base->expires_next) 627 return; 628 629 /* Update the pointer to the next expiring timer */ 630 cpu_base->next_timer = timer; 631 632 /* 633 * If a hang was detected in the last timer interrupt then we 634 * do not schedule a timer which is earlier than the expiry 635 * which we enforced in the hang detection. We want the system 636 * to make progress. 637 */ 638 if (cpu_base->hang_detected) 639 return; 640 641 /* 642 * Program the timer hardware. We enforce the expiry for 643 * events which are already in the past. 644 */ 645 cpu_base->expires_next = expires; 646 tick_program_event(expires, 1); 647 } 648 649 /* 650 * Initialize the high resolution related parts of cpu_base 651 */ 652 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) 653 { 654 base->expires_next = KTIME_MAX; 655 base->hres_active = 0; 656 } 657 658 /* 659 * Retrigger next event is called after clock was set 660 * 661 * Called with interrupts disabled via on_each_cpu() 662 */ 663 static void retrigger_next_event(void *arg) 664 { 665 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 666 667 if (!base->hres_active) 668 return; 669 670 raw_spin_lock(&base->lock); 671 hrtimer_update_base(base); 672 hrtimer_force_reprogram(base, 0); 673 raw_spin_unlock(&base->lock); 674 } 675 676 /* 677 * Switch to high resolution mode 678 */ 679 static void hrtimer_switch_to_hres(void) 680 { 681 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 682 683 if (tick_init_highres()) { 684 printk(KERN_WARNING "Could not switch to high resolution " 685 "mode on CPU %d\n", base->cpu); 686 return; 687 } 688 base->hres_active = 1; 689 hrtimer_resolution = HIGH_RES_NSEC; 690 691 tick_setup_sched_timer(); 692 /* "Retrigger" the interrupt to get things going */ 693 retrigger_next_event(NULL); 694 } 695 696 static void clock_was_set_work(struct work_struct *work) 697 { 698 clock_was_set(); 699 } 700 701 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 702 703 /* 704 * Called from timekeeping and resume code to reprogram the hrtimer 705 * interrupt device on all cpus. 706 */ 707 void clock_was_set_delayed(void) 708 { 709 schedule_work(&hrtimer_work); 710 } 711 712 #else 713 714 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *b) { return 0; } 715 static inline int hrtimer_hres_active(void) { return 0; } 716 static inline int hrtimer_is_hres_enabled(void) { return 0; } 717 static inline void hrtimer_switch_to_hres(void) { } 718 static inline void 719 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } 720 static inline int hrtimer_reprogram(struct hrtimer *timer, 721 struct hrtimer_clock_base *base) 722 { 723 return 0; 724 } 725 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } 726 static inline void retrigger_next_event(void *arg) { } 727 728 #endif /* CONFIG_HIGH_RES_TIMERS */ 729 730 /* 731 * Clock realtime was set 732 * 733 * Change the offset of the realtime clock vs. the monotonic 734 * clock. 735 * 736 * We might have to reprogram the high resolution timer interrupt. On 737 * SMP we call the architecture specific code to retrigger _all_ high 738 * resolution timer interrupts. On UP we just disable interrupts and 739 * call the high resolution interrupt code. 740 */ 741 void clock_was_set(void) 742 { 743 #ifdef CONFIG_HIGH_RES_TIMERS 744 /* Retrigger the CPU local events everywhere */ 745 on_each_cpu(retrigger_next_event, NULL, 1); 746 #endif 747 timerfd_clock_was_set(); 748 } 749 750 /* 751 * During resume we might have to reprogram the high resolution timer 752 * interrupt on all online CPUs. However, all other CPUs will be 753 * stopped with IRQs interrupts disabled so the clock_was_set() call 754 * must be deferred. 755 */ 756 void hrtimers_resume(void) 757 { 758 WARN_ONCE(!irqs_disabled(), 759 KERN_INFO "hrtimers_resume() called with IRQs enabled!"); 760 761 /* Retrigger on the local CPU */ 762 retrigger_next_event(NULL); 763 /* And schedule a retrigger for all others */ 764 clock_was_set_delayed(); 765 } 766 767 /* 768 * Counterpart to lock_hrtimer_base above: 769 */ 770 static inline 771 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 772 { 773 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 774 } 775 776 /** 777 * hrtimer_forward - forward the timer expiry 778 * @timer: hrtimer to forward 779 * @now: forward past this time 780 * @interval: the interval to forward 781 * 782 * Forward the timer expiry so it will expire in the future. 783 * Returns the number of overruns. 784 * 785 * Can be safely called from the callback function of @timer. If 786 * called from other contexts @timer must neither be enqueued nor 787 * running the callback and the caller needs to take care of 788 * serialization. 789 * 790 * Note: This only updates the timer expiry value and does not requeue 791 * the timer. 792 */ 793 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 794 { 795 u64 orun = 1; 796 ktime_t delta; 797 798 delta = ktime_sub(now, hrtimer_get_expires(timer)); 799 800 if (delta < 0) 801 return 0; 802 803 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 804 return 0; 805 806 if (interval < hrtimer_resolution) 807 interval = hrtimer_resolution; 808 809 if (unlikely(delta >= interval)) { 810 s64 incr = ktime_to_ns(interval); 811 812 orun = ktime_divns(delta, incr); 813 hrtimer_add_expires_ns(timer, incr * orun); 814 if (hrtimer_get_expires_tv64(timer) > now) 815 return orun; 816 /* 817 * This (and the ktime_add() below) is the 818 * correction for exact: 819 */ 820 orun++; 821 } 822 hrtimer_add_expires(timer, interval); 823 824 return orun; 825 } 826 EXPORT_SYMBOL_GPL(hrtimer_forward); 827 828 /* 829 * enqueue_hrtimer - internal function to (re)start a timer 830 * 831 * The timer is inserted in expiry order. Insertion into the 832 * red black tree is O(log(n)). Must hold the base lock. 833 * 834 * Returns 1 when the new timer is the leftmost timer in the tree. 835 */ 836 static int enqueue_hrtimer(struct hrtimer *timer, 837 struct hrtimer_clock_base *base) 838 { 839 debug_activate(timer); 840 841 base->cpu_base->active_bases |= 1 << base->index; 842 843 timer->state = HRTIMER_STATE_ENQUEUED; 844 845 return timerqueue_add(&base->active, &timer->node); 846 } 847 848 /* 849 * __remove_hrtimer - internal function to remove a timer 850 * 851 * Caller must hold the base lock. 852 * 853 * High resolution timer mode reprograms the clock event device when the 854 * timer is the one which expires next. The caller can disable this by setting 855 * reprogram to zero. This is useful, when the context does a reprogramming 856 * anyway (e.g. timer interrupt) 857 */ 858 static void __remove_hrtimer(struct hrtimer *timer, 859 struct hrtimer_clock_base *base, 860 u8 newstate, int reprogram) 861 { 862 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 863 u8 state = timer->state; 864 865 timer->state = newstate; 866 if (!(state & HRTIMER_STATE_ENQUEUED)) 867 return; 868 869 if (!timerqueue_del(&base->active, &timer->node)) 870 cpu_base->active_bases &= ~(1 << base->index); 871 872 #ifdef CONFIG_HIGH_RES_TIMERS 873 /* 874 * Note: If reprogram is false we do not update 875 * cpu_base->next_timer. This happens when we remove the first 876 * timer on a remote cpu. No harm as we never dereference 877 * cpu_base->next_timer. So the worst thing what can happen is 878 * an superflous call to hrtimer_force_reprogram() on the 879 * remote cpu later on if the same timer gets enqueued again. 880 */ 881 if (reprogram && timer == cpu_base->next_timer) 882 hrtimer_force_reprogram(cpu_base, 1); 883 #endif 884 } 885 886 /* 887 * remove hrtimer, called with base lock held 888 */ 889 static inline int 890 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 891 { 892 if (hrtimer_is_queued(timer)) { 893 u8 state = timer->state; 894 int reprogram; 895 896 /* 897 * Remove the timer and force reprogramming when high 898 * resolution mode is active and the timer is on the current 899 * CPU. If we remove a timer on another CPU, reprogramming is 900 * skipped. The interrupt event on this CPU is fired and 901 * reprogramming happens in the interrupt handler. This is a 902 * rare case and less expensive than a smp call. 903 */ 904 debug_deactivate(timer); 905 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 906 907 if (!restart) 908 state = HRTIMER_STATE_INACTIVE; 909 910 __remove_hrtimer(timer, base, state, reprogram); 911 return 1; 912 } 913 return 0; 914 } 915 916 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 917 const enum hrtimer_mode mode) 918 { 919 #ifdef CONFIG_TIME_LOW_RES 920 /* 921 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 922 * granular time values. For relative timers we add hrtimer_resolution 923 * (i.e. one jiffie) to prevent short timeouts. 924 */ 925 timer->is_rel = mode & HRTIMER_MODE_REL; 926 if (timer->is_rel) 927 tim = ktime_add_safe(tim, hrtimer_resolution); 928 #endif 929 return tim; 930 } 931 932 /** 933 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU 934 * @timer: the timer to be added 935 * @tim: expiry time 936 * @delta_ns: "slack" range for the timer 937 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or 938 * relative (HRTIMER_MODE_REL) 939 */ 940 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 941 u64 delta_ns, const enum hrtimer_mode mode) 942 { 943 struct hrtimer_clock_base *base, *new_base; 944 unsigned long flags; 945 int leftmost; 946 947 base = lock_hrtimer_base(timer, &flags); 948 949 /* Remove an active timer from the queue: */ 950 remove_hrtimer(timer, base, true); 951 952 if (mode & HRTIMER_MODE_REL) 953 tim = ktime_add_safe(tim, base->get_time()); 954 955 tim = hrtimer_update_lowres(timer, tim, mode); 956 957 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 958 959 /* Switch the timer base, if necessary: */ 960 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 961 962 leftmost = enqueue_hrtimer(timer, new_base); 963 if (!leftmost) 964 goto unlock; 965 966 if (!hrtimer_is_hres_active(timer)) { 967 /* 968 * Kick to reschedule the next tick to handle the new timer 969 * on dynticks target. 970 */ 971 if (new_base->cpu_base->nohz_active) 972 wake_up_nohz_cpu(new_base->cpu_base->cpu); 973 } else { 974 hrtimer_reprogram(timer, new_base); 975 } 976 unlock: 977 unlock_hrtimer_base(timer, &flags); 978 } 979 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 980 981 /** 982 * hrtimer_try_to_cancel - try to deactivate a timer 983 * @timer: hrtimer to stop 984 * 985 * Returns: 986 * 0 when the timer was not active 987 * 1 when the timer was active 988 * -1 when the timer is currently excuting the callback function and 989 * cannot be stopped 990 */ 991 int hrtimer_try_to_cancel(struct hrtimer *timer) 992 { 993 struct hrtimer_clock_base *base; 994 unsigned long flags; 995 int ret = -1; 996 997 /* 998 * Check lockless first. If the timer is not active (neither 999 * enqueued nor running the callback, nothing to do here. The 1000 * base lock does not serialize against a concurrent enqueue, 1001 * so we can avoid taking it. 1002 */ 1003 if (!hrtimer_active(timer)) 1004 return 0; 1005 1006 base = lock_hrtimer_base(timer, &flags); 1007 1008 if (!hrtimer_callback_running(timer)) 1009 ret = remove_hrtimer(timer, base, false); 1010 1011 unlock_hrtimer_base(timer, &flags); 1012 1013 return ret; 1014 1015 } 1016 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1017 1018 /** 1019 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1020 * @timer: the timer to be cancelled 1021 * 1022 * Returns: 1023 * 0 when the timer was not active 1024 * 1 when the timer was active 1025 */ 1026 int hrtimer_cancel(struct hrtimer *timer) 1027 { 1028 for (;;) { 1029 int ret = hrtimer_try_to_cancel(timer); 1030 1031 if (ret >= 0) 1032 return ret; 1033 cpu_relax(); 1034 } 1035 } 1036 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1037 1038 /** 1039 * hrtimer_get_remaining - get remaining time for the timer 1040 * @timer: the timer to read 1041 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1042 */ 1043 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1044 { 1045 unsigned long flags; 1046 ktime_t rem; 1047 1048 lock_hrtimer_base(timer, &flags); 1049 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1050 rem = hrtimer_expires_remaining_adjusted(timer); 1051 else 1052 rem = hrtimer_expires_remaining(timer); 1053 unlock_hrtimer_base(timer, &flags); 1054 1055 return rem; 1056 } 1057 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1058 1059 #ifdef CONFIG_NO_HZ_COMMON 1060 /** 1061 * hrtimer_get_next_event - get the time until next expiry event 1062 * 1063 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1064 */ 1065 u64 hrtimer_get_next_event(void) 1066 { 1067 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1068 u64 expires = KTIME_MAX; 1069 unsigned long flags; 1070 1071 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1072 1073 if (!__hrtimer_hres_active(cpu_base)) 1074 expires = __hrtimer_get_next_event(cpu_base); 1075 1076 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1077 1078 return expires; 1079 } 1080 #endif 1081 1082 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1083 { 1084 if (likely(clock_id < MAX_CLOCKS)) { 1085 int base = hrtimer_clock_to_base_table[clock_id]; 1086 1087 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1088 return base; 1089 } 1090 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1091 return HRTIMER_BASE_MONOTONIC; 1092 } 1093 1094 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1095 enum hrtimer_mode mode) 1096 { 1097 struct hrtimer_cpu_base *cpu_base; 1098 int base; 1099 1100 memset(timer, 0, sizeof(struct hrtimer)); 1101 1102 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1103 1104 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) 1105 clock_id = CLOCK_MONOTONIC; 1106 1107 base = hrtimer_clockid_to_base(clock_id); 1108 timer->base = &cpu_base->clock_base[base]; 1109 timerqueue_init(&timer->node); 1110 } 1111 1112 /** 1113 * hrtimer_init - initialize a timer to the given clock 1114 * @timer: the timer to be initialized 1115 * @clock_id: the clock to be used 1116 * @mode: timer mode abs/rel 1117 */ 1118 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1119 enum hrtimer_mode mode) 1120 { 1121 debug_init(timer, clock_id, mode); 1122 __hrtimer_init(timer, clock_id, mode); 1123 } 1124 EXPORT_SYMBOL_GPL(hrtimer_init); 1125 1126 /* 1127 * A timer is active, when it is enqueued into the rbtree or the 1128 * callback function is running or it's in the state of being migrated 1129 * to another cpu. 1130 * 1131 * It is important for this function to not return a false negative. 1132 */ 1133 bool hrtimer_active(const struct hrtimer *timer) 1134 { 1135 struct hrtimer_cpu_base *cpu_base; 1136 unsigned int seq; 1137 1138 do { 1139 cpu_base = READ_ONCE(timer->base->cpu_base); 1140 seq = raw_read_seqcount_begin(&cpu_base->seq); 1141 1142 if (timer->state != HRTIMER_STATE_INACTIVE || 1143 cpu_base->running == timer) 1144 return true; 1145 1146 } while (read_seqcount_retry(&cpu_base->seq, seq) || 1147 cpu_base != READ_ONCE(timer->base->cpu_base)); 1148 1149 return false; 1150 } 1151 EXPORT_SYMBOL_GPL(hrtimer_active); 1152 1153 /* 1154 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1155 * distinct sections: 1156 * 1157 * - queued: the timer is queued 1158 * - callback: the timer is being ran 1159 * - post: the timer is inactive or (re)queued 1160 * 1161 * On the read side we ensure we observe timer->state and cpu_base->running 1162 * from the same section, if anything changed while we looked at it, we retry. 1163 * This includes timer->base changing because sequence numbers alone are 1164 * insufficient for that. 1165 * 1166 * The sequence numbers are required because otherwise we could still observe 1167 * a false negative if the read side got smeared over multiple consequtive 1168 * __run_hrtimer() invocations. 1169 */ 1170 1171 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1172 struct hrtimer_clock_base *base, 1173 struct hrtimer *timer, ktime_t *now) 1174 { 1175 enum hrtimer_restart (*fn)(struct hrtimer *); 1176 int restart; 1177 1178 lockdep_assert_held(&cpu_base->lock); 1179 1180 debug_deactivate(timer); 1181 cpu_base->running = timer; 1182 1183 /* 1184 * Separate the ->running assignment from the ->state assignment. 1185 * 1186 * As with a regular write barrier, this ensures the read side in 1187 * hrtimer_active() cannot observe cpu_base->running == NULL && 1188 * timer->state == INACTIVE. 1189 */ 1190 raw_write_seqcount_barrier(&cpu_base->seq); 1191 1192 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1193 fn = timer->function; 1194 1195 /* 1196 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1197 * timer is restarted with a period then it becomes an absolute 1198 * timer. If its not restarted it does not matter. 1199 */ 1200 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1201 timer->is_rel = false; 1202 1203 /* 1204 * Because we run timers from hardirq context, there is no chance 1205 * they get migrated to another cpu, therefore its safe to unlock 1206 * the timer base. 1207 */ 1208 raw_spin_unlock(&cpu_base->lock); 1209 trace_hrtimer_expire_entry(timer, now); 1210 restart = fn(timer); 1211 trace_hrtimer_expire_exit(timer); 1212 raw_spin_lock(&cpu_base->lock); 1213 1214 /* 1215 * Note: We clear the running state after enqueue_hrtimer and 1216 * we do not reprogram the event hardware. Happens either in 1217 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1218 * 1219 * Note: Because we dropped the cpu_base->lock above, 1220 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1221 * for us already. 1222 */ 1223 if (restart != HRTIMER_NORESTART && 1224 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1225 enqueue_hrtimer(timer, base); 1226 1227 /* 1228 * Separate the ->running assignment from the ->state assignment. 1229 * 1230 * As with a regular write barrier, this ensures the read side in 1231 * hrtimer_active() cannot observe cpu_base->running == NULL && 1232 * timer->state == INACTIVE. 1233 */ 1234 raw_write_seqcount_barrier(&cpu_base->seq); 1235 1236 WARN_ON_ONCE(cpu_base->running != timer); 1237 cpu_base->running = NULL; 1238 } 1239 1240 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now) 1241 { 1242 struct hrtimer_clock_base *base = cpu_base->clock_base; 1243 unsigned int active = cpu_base->active_bases; 1244 1245 for (; active; base++, active >>= 1) { 1246 struct timerqueue_node *node; 1247 ktime_t basenow; 1248 1249 if (!(active & 0x01)) 1250 continue; 1251 1252 basenow = ktime_add(now, base->offset); 1253 1254 while ((node = timerqueue_getnext(&base->active))) { 1255 struct hrtimer *timer; 1256 1257 timer = container_of(node, struct hrtimer, node); 1258 1259 /* 1260 * The immediate goal for using the softexpires is 1261 * minimizing wakeups, not running timers at the 1262 * earliest interrupt after their soft expiration. 1263 * This allows us to avoid using a Priority Search 1264 * Tree, which can answer a stabbing querry for 1265 * overlapping intervals and instead use the simple 1266 * BST we already have. 1267 * We don't add extra wakeups by delaying timers that 1268 * are right-of a not yet expired timer, because that 1269 * timer will have to trigger a wakeup anyway. 1270 */ 1271 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1272 break; 1273 1274 __run_hrtimer(cpu_base, base, timer, &basenow); 1275 } 1276 } 1277 } 1278 1279 #ifdef CONFIG_HIGH_RES_TIMERS 1280 1281 /* 1282 * High resolution timer interrupt 1283 * Called with interrupts disabled 1284 */ 1285 void hrtimer_interrupt(struct clock_event_device *dev) 1286 { 1287 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1288 ktime_t expires_next, now, entry_time, delta; 1289 int retries = 0; 1290 1291 BUG_ON(!cpu_base->hres_active); 1292 cpu_base->nr_events++; 1293 dev->next_event = KTIME_MAX; 1294 1295 raw_spin_lock(&cpu_base->lock); 1296 entry_time = now = hrtimer_update_base(cpu_base); 1297 retry: 1298 cpu_base->in_hrtirq = 1; 1299 /* 1300 * We set expires_next to KTIME_MAX here with cpu_base->lock 1301 * held to prevent that a timer is enqueued in our queue via 1302 * the migration code. This does not affect enqueueing of 1303 * timers which run their callback and need to be requeued on 1304 * this CPU. 1305 */ 1306 cpu_base->expires_next = KTIME_MAX; 1307 1308 __hrtimer_run_queues(cpu_base, now); 1309 1310 /* Reevaluate the clock bases for the next expiry */ 1311 expires_next = __hrtimer_get_next_event(cpu_base); 1312 /* 1313 * Store the new expiry value so the migration code can verify 1314 * against it. 1315 */ 1316 cpu_base->expires_next = expires_next; 1317 cpu_base->in_hrtirq = 0; 1318 raw_spin_unlock(&cpu_base->lock); 1319 1320 /* Reprogramming necessary ? */ 1321 if (!tick_program_event(expires_next, 0)) { 1322 cpu_base->hang_detected = 0; 1323 return; 1324 } 1325 1326 /* 1327 * The next timer was already expired due to: 1328 * - tracing 1329 * - long lasting callbacks 1330 * - being scheduled away when running in a VM 1331 * 1332 * We need to prevent that we loop forever in the hrtimer 1333 * interrupt routine. We give it 3 attempts to avoid 1334 * overreacting on some spurious event. 1335 * 1336 * Acquire base lock for updating the offsets and retrieving 1337 * the current time. 1338 */ 1339 raw_spin_lock(&cpu_base->lock); 1340 now = hrtimer_update_base(cpu_base); 1341 cpu_base->nr_retries++; 1342 if (++retries < 3) 1343 goto retry; 1344 /* 1345 * Give the system a chance to do something else than looping 1346 * here. We stored the entry time, so we know exactly how long 1347 * we spent here. We schedule the next event this amount of 1348 * time away. 1349 */ 1350 cpu_base->nr_hangs++; 1351 cpu_base->hang_detected = 1; 1352 raw_spin_unlock(&cpu_base->lock); 1353 delta = ktime_sub(now, entry_time); 1354 if ((unsigned int)delta > cpu_base->max_hang_time) 1355 cpu_base->max_hang_time = (unsigned int) delta; 1356 /* 1357 * Limit it to a sensible value as we enforce a longer 1358 * delay. Give the CPU at least 100ms to catch up. 1359 */ 1360 if (delta > 100 * NSEC_PER_MSEC) 1361 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1362 else 1363 expires_next = ktime_add(now, delta); 1364 tick_program_event(expires_next, 1); 1365 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", 1366 ktime_to_ns(delta)); 1367 } 1368 1369 /* 1370 * local version of hrtimer_peek_ahead_timers() called with interrupts 1371 * disabled. 1372 */ 1373 static inline void __hrtimer_peek_ahead_timers(void) 1374 { 1375 struct tick_device *td; 1376 1377 if (!hrtimer_hres_active()) 1378 return; 1379 1380 td = this_cpu_ptr(&tick_cpu_device); 1381 if (td && td->evtdev) 1382 hrtimer_interrupt(td->evtdev); 1383 } 1384 1385 #else /* CONFIG_HIGH_RES_TIMERS */ 1386 1387 static inline void __hrtimer_peek_ahead_timers(void) { } 1388 1389 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1390 1391 /* 1392 * Called from run_local_timers in hardirq context every jiffy 1393 */ 1394 void hrtimer_run_queues(void) 1395 { 1396 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1397 ktime_t now; 1398 1399 if (__hrtimer_hres_active(cpu_base)) 1400 return; 1401 1402 /* 1403 * This _is_ ugly: We have to check periodically, whether we 1404 * can switch to highres and / or nohz mode. The clocksource 1405 * switch happens with xtime_lock held. Notification from 1406 * there only sets the check bit in the tick_oneshot code, 1407 * otherwise we might deadlock vs. xtime_lock. 1408 */ 1409 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1410 hrtimer_switch_to_hres(); 1411 return; 1412 } 1413 1414 raw_spin_lock(&cpu_base->lock); 1415 now = hrtimer_update_base(cpu_base); 1416 __hrtimer_run_queues(cpu_base, now); 1417 raw_spin_unlock(&cpu_base->lock); 1418 } 1419 1420 /* 1421 * Sleep related functions: 1422 */ 1423 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1424 { 1425 struct hrtimer_sleeper *t = 1426 container_of(timer, struct hrtimer_sleeper, timer); 1427 struct task_struct *task = t->task; 1428 1429 t->task = NULL; 1430 if (task) 1431 wake_up_process(task); 1432 1433 return HRTIMER_NORESTART; 1434 } 1435 1436 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1437 { 1438 sl->timer.function = hrtimer_wakeup; 1439 sl->task = task; 1440 } 1441 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1442 1443 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1444 { 1445 hrtimer_init_sleeper(t, current); 1446 1447 do { 1448 set_current_state(TASK_INTERRUPTIBLE); 1449 hrtimer_start_expires(&t->timer, mode); 1450 1451 if (likely(t->task)) 1452 freezable_schedule(); 1453 1454 hrtimer_cancel(&t->timer); 1455 mode = HRTIMER_MODE_ABS; 1456 1457 } while (t->task && !signal_pending(current)); 1458 1459 __set_current_state(TASK_RUNNING); 1460 1461 return t->task == NULL; 1462 } 1463 1464 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) 1465 { 1466 struct timespec rmt; 1467 ktime_t rem; 1468 1469 rem = hrtimer_expires_remaining(timer); 1470 if (rem <= 0) 1471 return 0; 1472 rmt = ktime_to_timespec(rem); 1473 1474 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 1475 return -EFAULT; 1476 1477 return 1; 1478 } 1479 1480 long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1481 { 1482 struct hrtimer_sleeper t; 1483 struct timespec __user *rmtp; 1484 int ret = 0; 1485 1486 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1487 HRTIMER_MODE_ABS); 1488 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1489 1490 if (do_nanosleep(&t, HRTIMER_MODE_ABS)) 1491 goto out; 1492 1493 rmtp = restart->nanosleep.rmtp; 1494 if (rmtp) { 1495 ret = update_rmtp(&t.timer, rmtp); 1496 if (ret <= 0) 1497 goto out; 1498 } 1499 1500 /* The other values in restart are already filled in */ 1501 ret = -ERESTART_RESTARTBLOCK; 1502 out: 1503 destroy_hrtimer_on_stack(&t.timer); 1504 return ret; 1505 } 1506 1507 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, 1508 const enum hrtimer_mode mode, const clockid_t clockid) 1509 { 1510 struct restart_block *restart; 1511 struct hrtimer_sleeper t; 1512 int ret = 0; 1513 u64 slack; 1514 1515 slack = current->timer_slack_ns; 1516 if (dl_task(current) || rt_task(current)) 1517 slack = 0; 1518 1519 hrtimer_init_on_stack(&t.timer, clockid, mode); 1520 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); 1521 if (do_nanosleep(&t, mode)) 1522 goto out; 1523 1524 /* Absolute timers do not update the rmtp value and restart: */ 1525 if (mode == HRTIMER_MODE_ABS) { 1526 ret = -ERESTARTNOHAND; 1527 goto out; 1528 } 1529 1530 if (rmtp) { 1531 ret = update_rmtp(&t.timer, rmtp); 1532 if (ret <= 0) 1533 goto out; 1534 } 1535 1536 restart = ¤t->restart_block; 1537 restart->fn = hrtimer_nanosleep_restart; 1538 restart->nanosleep.clockid = t.timer.base->clockid; 1539 restart->nanosleep.rmtp = rmtp; 1540 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1541 1542 ret = -ERESTART_RESTARTBLOCK; 1543 out: 1544 destroy_hrtimer_on_stack(&t.timer); 1545 return ret; 1546 } 1547 1548 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, 1549 struct timespec __user *, rmtp) 1550 { 1551 struct timespec tu; 1552 1553 if (copy_from_user(&tu, rqtp, sizeof(tu))) 1554 return -EFAULT; 1555 1556 if (!timespec_valid(&tu)) 1557 return -EINVAL; 1558 1559 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1560 } 1561 1562 /* 1563 * Functions related to boot-time initialization: 1564 */ 1565 int hrtimers_prepare_cpu(unsigned int cpu) 1566 { 1567 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1568 int i; 1569 1570 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1571 cpu_base->clock_base[i].cpu_base = cpu_base; 1572 timerqueue_init_head(&cpu_base->clock_base[i].active); 1573 } 1574 1575 cpu_base->cpu = cpu; 1576 hrtimer_init_hres(cpu_base); 1577 return 0; 1578 } 1579 1580 #ifdef CONFIG_HOTPLUG_CPU 1581 1582 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1583 struct hrtimer_clock_base *new_base) 1584 { 1585 struct hrtimer *timer; 1586 struct timerqueue_node *node; 1587 1588 while ((node = timerqueue_getnext(&old_base->active))) { 1589 timer = container_of(node, struct hrtimer, node); 1590 BUG_ON(hrtimer_callback_running(timer)); 1591 debug_deactivate(timer); 1592 1593 /* 1594 * Mark it as ENQUEUED not INACTIVE otherwise the 1595 * timer could be seen as !active and just vanish away 1596 * under us on another CPU 1597 */ 1598 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1599 timer->base = new_base; 1600 /* 1601 * Enqueue the timers on the new cpu. This does not 1602 * reprogram the event device in case the timer 1603 * expires before the earliest on this CPU, but we run 1604 * hrtimer_interrupt after we migrated everything to 1605 * sort out already expired timers and reprogram the 1606 * event device. 1607 */ 1608 enqueue_hrtimer(timer, new_base); 1609 } 1610 } 1611 1612 int hrtimers_dead_cpu(unsigned int scpu) 1613 { 1614 struct hrtimer_cpu_base *old_base, *new_base; 1615 int i; 1616 1617 BUG_ON(cpu_online(scpu)); 1618 tick_cancel_sched_timer(scpu); 1619 1620 local_irq_disable(); 1621 old_base = &per_cpu(hrtimer_bases, scpu); 1622 new_base = this_cpu_ptr(&hrtimer_bases); 1623 /* 1624 * The caller is globally serialized and nobody else 1625 * takes two locks at once, deadlock is not possible. 1626 */ 1627 raw_spin_lock(&new_base->lock); 1628 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1629 1630 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1631 migrate_hrtimer_list(&old_base->clock_base[i], 1632 &new_base->clock_base[i]); 1633 } 1634 1635 raw_spin_unlock(&old_base->lock); 1636 raw_spin_unlock(&new_base->lock); 1637 1638 /* Check, if we got expired work to do */ 1639 __hrtimer_peek_ahead_timers(); 1640 local_irq_enable(); 1641 return 0; 1642 } 1643 1644 #endif /* CONFIG_HOTPLUG_CPU */ 1645 1646 void __init hrtimers_init(void) 1647 { 1648 hrtimers_prepare_cpu(smp_processor_id()); 1649 } 1650 1651 /** 1652 * schedule_hrtimeout_range_clock - sleep until timeout 1653 * @expires: timeout value (ktime_t) 1654 * @delta: slack in expires timeout (ktime_t) 1655 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1656 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME 1657 */ 1658 int __sched 1659 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1660 const enum hrtimer_mode mode, int clock) 1661 { 1662 struct hrtimer_sleeper t; 1663 1664 /* 1665 * Optimize when a zero timeout value is given. It does not 1666 * matter whether this is an absolute or a relative time. 1667 */ 1668 if (expires && *expires == 0) { 1669 __set_current_state(TASK_RUNNING); 1670 return 0; 1671 } 1672 1673 /* 1674 * A NULL parameter means "infinite" 1675 */ 1676 if (!expires) { 1677 schedule(); 1678 return -EINTR; 1679 } 1680 1681 hrtimer_init_on_stack(&t.timer, clock, mode); 1682 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1683 1684 hrtimer_init_sleeper(&t, current); 1685 1686 hrtimer_start_expires(&t.timer, mode); 1687 1688 if (likely(t.task)) 1689 schedule(); 1690 1691 hrtimer_cancel(&t.timer); 1692 destroy_hrtimer_on_stack(&t.timer); 1693 1694 __set_current_state(TASK_RUNNING); 1695 1696 return !t.task ? 0 : -EINTR; 1697 } 1698 1699 /** 1700 * schedule_hrtimeout_range - sleep until timeout 1701 * @expires: timeout value (ktime_t) 1702 * @delta: slack in expires timeout (ktime_t) 1703 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1704 * 1705 * Make the current task sleep until the given expiry time has 1706 * elapsed. The routine will return immediately unless 1707 * the current task state has been set (see set_current_state()). 1708 * 1709 * The @delta argument gives the kernel the freedom to schedule the 1710 * actual wakeup to a time that is both power and performance friendly. 1711 * The kernel give the normal best effort behavior for "@expires+@delta", 1712 * but may decide to fire the timer earlier, but no earlier than @expires. 1713 * 1714 * You can set the task state as follows - 1715 * 1716 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1717 * pass before the routine returns unless the current task is explicitly 1718 * woken up, (e.g. by wake_up_process()). 1719 * 1720 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1721 * delivered to the current task or the current task is explicitly woken 1722 * up. 1723 * 1724 * The current task state is guaranteed to be TASK_RUNNING when this 1725 * routine returns. 1726 * 1727 * Returns 0 when the timer has expired. If the task was woken before the 1728 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1729 * by an explicit wakeup, it returns -EINTR. 1730 */ 1731 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1732 const enum hrtimer_mode mode) 1733 { 1734 return schedule_hrtimeout_range_clock(expires, delta, mode, 1735 CLOCK_MONOTONIC); 1736 } 1737 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1738 1739 /** 1740 * schedule_hrtimeout - sleep until timeout 1741 * @expires: timeout value (ktime_t) 1742 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL 1743 * 1744 * Make the current task sleep until the given expiry time has 1745 * elapsed. The routine will return immediately unless 1746 * the current task state has been set (see set_current_state()). 1747 * 1748 * You can set the task state as follows - 1749 * 1750 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1751 * pass before the routine returns unless the current task is explicitly 1752 * woken up, (e.g. by wake_up_process()). 1753 * 1754 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1755 * delivered to the current task or the current task is explicitly woken 1756 * up. 1757 * 1758 * The current task state is guaranteed to be TASK_RUNNING when this 1759 * routine returns. 1760 * 1761 * Returns 0 when the timer has expired. If the task was woken before the 1762 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1763 * by an explicit wakeup, it returns -EINTR. 1764 */ 1765 int __sched schedule_hrtimeout(ktime_t *expires, 1766 const enum hrtimer_mode mode) 1767 { 1768 return schedule_hrtimeout_range(expires, 0, mode); 1769 } 1770 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 1771