1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/timer.h> 42 #include <linux/freezer.h> 43 #include <linux/compat.h> 44 45 #include <linux/uaccess.h> 46 47 #include <trace/events/timer.h> 48 49 #include "tick-internal.h" 50 51 /* 52 * Masks for selecting the soft and hard context timers from 53 * cpu_base->active 54 */ 55 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 56 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 57 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 58 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 59 60 /* 61 * The timer bases: 62 * 63 * There are more clockids than hrtimer bases. Thus, we index 64 * into the timer bases by the hrtimer_base_type enum. When trying 65 * to reach a base using a clockid, hrtimer_clockid_to_base() 66 * is used to convert from clockid to the proper hrtimer_base_type. 67 */ 68 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 69 { 70 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 71 .clock_base = 72 { 73 { 74 .index = HRTIMER_BASE_MONOTONIC, 75 .clockid = CLOCK_MONOTONIC, 76 .get_time = &ktime_get, 77 }, 78 { 79 .index = HRTIMER_BASE_REALTIME, 80 .clockid = CLOCK_REALTIME, 81 .get_time = &ktime_get_real, 82 }, 83 { 84 .index = HRTIMER_BASE_BOOTTIME, 85 .clockid = CLOCK_BOOTTIME, 86 .get_time = &ktime_get_boottime, 87 }, 88 { 89 .index = HRTIMER_BASE_TAI, 90 .clockid = CLOCK_TAI, 91 .get_time = &ktime_get_clocktai, 92 }, 93 { 94 .index = HRTIMER_BASE_MONOTONIC_SOFT, 95 .clockid = CLOCK_MONOTONIC, 96 .get_time = &ktime_get, 97 }, 98 { 99 .index = HRTIMER_BASE_REALTIME_SOFT, 100 .clockid = CLOCK_REALTIME, 101 .get_time = &ktime_get_real, 102 }, 103 { 104 .index = HRTIMER_BASE_BOOTTIME_SOFT, 105 .clockid = CLOCK_BOOTTIME, 106 .get_time = &ktime_get_boottime, 107 }, 108 { 109 .index = HRTIMER_BASE_TAI_SOFT, 110 .clockid = CLOCK_TAI, 111 .get_time = &ktime_get_clocktai, 112 }, 113 } 114 }; 115 116 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 117 /* Make sure we catch unsupported clockids */ 118 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 119 120 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 121 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 122 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 123 [CLOCK_TAI] = HRTIMER_BASE_TAI, 124 }; 125 126 /* 127 * Functions and macros which are different for UP/SMP systems are kept in a 128 * single place 129 */ 130 #ifdef CONFIG_SMP 131 132 /* 133 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 134 * such that hrtimer_callback_running() can unconditionally dereference 135 * timer->base->cpu_base 136 */ 137 static struct hrtimer_cpu_base migration_cpu_base = { 138 .clock_base = { { 139 .cpu_base = &migration_cpu_base, 140 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 141 &migration_cpu_base.lock), 142 }, }, 143 }; 144 145 #define migration_base migration_cpu_base.clock_base[0] 146 147 static inline bool is_migration_base(struct hrtimer_clock_base *base) 148 { 149 return base == &migration_base; 150 } 151 152 /* 153 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 154 * means that all timers which are tied to this base via timer->base are 155 * locked, and the base itself is locked too. 156 * 157 * So __run_timers/migrate_timers can safely modify all timers which could 158 * be found on the lists/queues. 159 * 160 * When the timer's base is locked, and the timer removed from list, it is 161 * possible to set timer->base = &migration_base and drop the lock: the timer 162 * remains locked. 163 */ 164 static 165 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 166 unsigned long *flags) 167 { 168 struct hrtimer_clock_base *base; 169 170 for (;;) { 171 base = READ_ONCE(timer->base); 172 if (likely(base != &migration_base)) { 173 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 174 if (likely(base == timer->base)) 175 return base; 176 /* The timer has migrated to another CPU: */ 177 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 178 } 179 cpu_relax(); 180 } 181 } 182 183 /* 184 * We do not migrate the timer when it is expiring before the next 185 * event on the target cpu. When high resolution is enabled, we cannot 186 * reprogram the target cpu hardware and we would cause it to fire 187 * late. To keep it simple, we handle the high resolution enabled and 188 * disabled case similar. 189 * 190 * Called with cpu_base->lock of target cpu held. 191 */ 192 static int 193 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 194 { 195 ktime_t expires; 196 197 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 198 return expires < new_base->cpu_base->expires_next; 199 } 200 201 static inline 202 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 203 int pinned) 204 { 205 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 206 if (static_branch_likely(&timers_migration_enabled) && !pinned) 207 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 208 #endif 209 return base; 210 } 211 212 /* 213 * We switch the timer base to a power-optimized selected CPU target, 214 * if: 215 * - NO_HZ_COMMON is enabled 216 * - timer migration is enabled 217 * - the timer callback is not running 218 * - the timer is not the first expiring timer on the new target 219 * 220 * If one of the above requirements is not fulfilled we move the timer 221 * to the current CPU or leave it on the previously assigned CPU if 222 * the timer callback is currently running. 223 */ 224 static inline struct hrtimer_clock_base * 225 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 226 int pinned) 227 { 228 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 229 struct hrtimer_clock_base *new_base; 230 int basenum = base->index; 231 232 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 233 new_cpu_base = get_target_base(this_cpu_base, pinned); 234 again: 235 new_base = &new_cpu_base->clock_base[basenum]; 236 237 if (base != new_base) { 238 /* 239 * We are trying to move timer to new_base. 240 * However we can't change timer's base while it is running, 241 * so we keep it on the same CPU. No hassle vs. reprogramming 242 * the event source in the high resolution case. The softirq 243 * code will take care of this when the timer function has 244 * completed. There is no conflict as we hold the lock until 245 * the timer is enqueued. 246 */ 247 if (unlikely(hrtimer_callback_running(timer))) 248 return base; 249 250 /* See the comment in lock_hrtimer_base() */ 251 WRITE_ONCE(timer->base, &migration_base); 252 raw_spin_unlock(&base->cpu_base->lock); 253 raw_spin_lock(&new_base->cpu_base->lock); 254 255 if (new_cpu_base != this_cpu_base && 256 hrtimer_check_target(timer, new_base)) { 257 raw_spin_unlock(&new_base->cpu_base->lock); 258 raw_spin_lock(&base->cpu_base->lock); 259 new_cpu_base = this_cpu_base; 260 WRITE_ONCE(timer->base, base); 261 goto again; 262 } 263 WRITE_ONCE(timer->base, new_base); 264 } else { 265 if (new_cpu_base != this_cpu_base && 266 hrtimer_check_target(timer, new_base)) { 267 new_cpu_base = this_cpu_base; 268 goto again; 269 } 270 } 271 return new_base; 272 } 273 274 #else /* CONFIG_SMP */ 275 276 static inline bool is_migration_base(struct hrtimer_clock_base *base) 277 { 278 return false; 279 } 280 281 static inline struct hrtimer_clock_base * 282 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 283 { 284 struct hrtimer_clock_base *base = timer->base; 285 286 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 287 288 return base; 289 } 290 291 # define switch_hrtimer_base(t, b, p) (b) 292 293 #endif /* !CONFIG_SMP */ 294 295 /* 296 * Functions for the union type storage format of ktime_t which are 297 * too large for inlining: 298 */ 299 #if BITS_PER_LONG < 64 300 /* 301 * Divide a ktime value by a nanosecond value 302 */ 303 s64 __ktime_divns(const ktime_t kt, s64 div) 304 { 305 int sft = 0; 306 s64 dclc; 307 u64 tmp; 308 309 dclc = ktime_to_ns(kt); 310 tmp = dclc < 0 ? -dclc : dclc; 311 312 /* Make sure the divisor is less than 2^32: */ 313 while (div >> 32) { 314 sft++; 315 div >>= 1; 316 } 317 tmp >>= sft; 318 do_div(tmp, (u32) div); 319 return dclc < 0 ? -tmp : tmp; 320 } 321 EXPORT_SYMBOL_GPL(__ktime_divns); 322 #endif /* BITS_PER_LONG >= 64 */ 323 324 /* 325 * Add two ktime values and do a safety check for overflow: 326 */ 327 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 328 { 329 ktime_t res = ktime_add_unsafe(lhs, rhs); 330 331 /* 332 * We use KTIME_SEC_MAX here, the maximum timeout which we can 333 * return to user space in a timespec: 334 */ 335 if (res < 0 || res < lhs || res < rhs) 336 res = ktime_set(KTIME_SEC_MAX, 0); 337 338 return res; 339 } 340 341 EXPORT_SYMBOL_GPL(ktime_add_safe); 342 343 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 344 345 static struct debug_obj_descr hrtimer_debug_descr; 346 347 static void *hrtimer_debug_hint(void *addr) 348 { 349 return ((struct hrtimer *) addr)->function; 350 } 351 352 /* 353 * fixup_init is called when: 354 * - an active object is initialized 355 */ 356 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 357 { 358 struct hrtimer *timer = addr; 359 360 switch (state) { 361 case ODEBUG_STATE_ACTIVE: 362 hrtimer_cancel(timer); 363 debug_object_init(timer, &hrtimer_debug_descr); 364 return true; 365 default: 366 return false; 367 } 368 } 369 370 /* 371 * fixup_activate is called when: 372 * - an active object is activated 373 * - an unknown non-static object is activated 374 */ 375 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 376 { 377 switch (state) { 378 case ODEBUG_STATE_ACTIVE: 379 WARN_ON(1); 380 /* fall through */ 381 default: 382 return false; 383 } 384 } 385 386 /* 387 * fixup_free is called when: 388 * - an active object is freed 389 */ 390 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 391 { 392 struct hrtimer *timer = addr; 393 394 switch (state) { 395 case ODEBUG_STATE_ACTIVE: 396 hrtimer_cancel(timer); 397 debug_object_free(timer, &hrtimer_debug_descr); 398 return true; 399 default: 400 return false; 401 } 402 } 403 404 static struct debug_obj_descr hrtimer_debug_descr = { 405 .name = "hrtimer", 406 .debug_hint = hrtimer_debug_hint, 407 .fixup_init = hrtimer_fixup_init, 408 .fixup_activate = hrtimer_fixup_activate, 409 .fixup_free = hrtimer_fixup_free, 410 }; 411 412 static inline void debug_hrtimer_init(struct hrtimer *timer) 413 { 414 debug_object_init(timer, &hrtimer_debug_descr); 415 } 416 417 static inline void debug_hrtimer_activate(struct hrtimer *timer, 418 enum hrtimer_mode mode) 419 { 420 debug_object_activate(timer, &hrtimer_debug_descr); 421 } 422 423 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 424 { 425 debug_object_deactivate(timer, &hrtimer_debug_descr); 426 } 427 428 static inline void debug_hrtimer_free(struct hrtimer *timer) 429 { 430 debug_object_free(timer, &hrtimer_debug_descr); 431 } 432 433 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 434 enum hrtimer_mode mode); 435 436 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 437 enum hrtimer_mode mode) 438 { 439 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 440 __hrtimer_init(timer, clock_id, mode); 441 } 442 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 443 444 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 445 clockid_t clock_id, enum hrtimer_mode mode); 446 447 void hrtimer_init_sleeper_on_stack(struct hrtimer_sleeper *sl, 448 clockid_t clock_id, enum hrtimer_mode mode) 449 { 450 debug_object_init_on_stack(&sl->timer, &hrtimer_debug_descr); 451 __hrtimer_init_sleeper(sl, clock_id, mode); 452 } 453 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper_on_stack); 454 455 void destroy_hrtimer_on_stack(struct hrtimer *timer) 456 { 457 debug_object_free(timer, &hrtimer_debug_descr); 458 } 459 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 460 461 #else 462 463 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 464 static inline void debug_hrtimer_activate(struct hrtimer *timer, 465 enum hrtimer_mode mode) { } 466 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 467 #endif 468 469 static inline void 470 debug_init(struct hrtimer *timer, clockid_t clockid, 471 enum hrtimer_mode mode) 472 { 473 debug_hrtimer_init(timer); 474 trace_hrtimer_init(timer, clockid, mode); 475 } 476 477 static inline void debug_activate(struct hrtimer *timer, 478 enum hrtimer_mode mode) 479 { 480 debug_hrtimer_activate(timer, mode); 481 trace_hrtimer_start(timer, mode); 482 } 483 484 static inline void debug_deactivate(struct hrtimer *timer) 485 { 486 debug_hrtimer_deactivate(timer); 487 trace_hrtimer_cancel(timer); 488 } 489 490 static struct hrtimer_clock_base * 491 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 492 { 493 unsigned int idx; 494 495 if (!*active) 496 return NULL; 497 498 idx = __ffs(*active); 499 *active &= ~(1U << idx); 500 501 return &cpu_base->clock_base[idx]; 502 } 503 504 #define for_each_active_base(base, cpu_base, active) \ 505 while ((base = __next_base((cpu_base), &(active)))) 506 507 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 508 const struct hrtimer *exclude, 509 unsigned int active, 510 ktime_t expires_next) 511 { 512 struct hrtimer_clock_base *base; 513 ktime_t expires; 514 515 for_each_active_base(base, cpu_base, active) { 516 struct timerqueue_node *next; 517 struct hrtimer *timer; 518 519 next = timerqueue_getnext(&base->active); 520 timer = container_of(next, struct hrtimer, node); 521 if (timer == exclude) { 522 /* Get to the next timer in the queue. */ 523 next = timerqueue_iterate_next(next); 524 if (!next) 525 continue; 526 527 timer = container_of(next, struct hrtimer, node); 528 } 529 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 530 if (expires < expires_next) { 531 expires_next = expires; 532 533 /* Skip cpu_base update if a timer is being excluded. */ 534 if (exclude) 535 continue; 536 537 if (timer->is_soft) 538 cpu_base->softirq_next_timer = timer; 539 else 540 cpu_base->next_timer = timer; 541 } 542 } 543 /* 544 * clock_was_set() might have changed base->offset of any of 545 * the clock bases so the result might be negative. Fix it up 546 * to prevent a false positive in clockevents_program_event(). 547 */ 548 if (expires_next < 0) 549 expires_next = 0; 550 return expires_next; 551 } 552 553 /* 554 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 555 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 556 * 557 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 558 * those timers will get run whenever the softirq gets handled, at the end of 559 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 560 * 561 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 562 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 563 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 564 * 565 * @active_mask must be one of: 566 * - HRTIMER_ACTIVE_ALL, 567 * - HRTIMER_ACTIVE_SOFT, or 568 * - HRTIMER_ACTIVE_HARD. 569 */ 570 static ktime_t 571 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 572 { 573 unsigned int active; 574 struct hrtimer *next_timer = NULL; 575 ktime_t expires_next = KTIME_MAX; 576 577 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 578 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 579 cpu_base->softirq_next_timer = NULL; 580 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 581 active, KTIME_MAX); 582 583 next_timer = cpu_base->softirq_next_timer; 584 } 585 586 if (active_mask & HRTIMER_ACTIVE_HARD) { 587 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 588 cpu_base->next_timer = next_timer; 589 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 590 expires_next); 591 } 592 593 return expires_next; 594 } 595 596 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 597 { 598 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 599 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 600 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 601 602 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 603 offs_real, offs_boot, offs_tai); 604 605 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 606 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 607 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 608 609 return now; 610 } 611 612 /* 613 * Is the high resolution mode active ? 614 */ 615 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 616 { 617 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 618 cpu_base->hres_active : 0; 619 } 620 621 static inline int hrtimer_hres_active(void) 622 { 623 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 624 } 625 626 /* 627 * Reprogram the event source with checking both queues for the 628 * next event 629 * Called with interrupts disabled and base->lock held 630 */ 631 static void 632 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 633 { 634 ktime_t expires_next; 635 636 /* 637 * Find the current next expiration time. 638 */ 639 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 640 641 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 642 /* 643 * When the softirq is activated, hrtimer has to be 644 * programmed with the first hard hrtimer because soft 645 * timer interrupt could occur too late. 646 */ 647 if (cpu_base->softirq_activated) 648 expires_next = __hrtimer_get_next_event(cpu_base, 649 HRTIMER_ACTIVE_HARD); 650 else 651 cpu_base->softirq_expires_next = expires_next; 652 } 653 654 if (skip_equal && expires_next == cpu_base->expires_next) 655 return; 656 657 cpu_base->expires_next = expires_next; 658 659 /* 660 * If hres is not active, hardware does not have to be 661 * reprogrammed yet. 662 * 663 * If a hang was detected in the last timer interrupt then we 664 * leave the hang delay active in the hardware. We want the 665 * system to make progress. That also prevents the following 666 * scenario: 667 * T1 expires 50ms from now 668 * T2 expires 5s from now 669 * 670 * T1 is removed, so this code is called and would reprogram 671 * the hardware to 5s from now. Any hrtimer_start after that 672 * will not reprogram the hardware due to hang_detected being 673 * set. So we'd effectivly block all timers until the T2 event 674 * fires. 675 */ 676 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 677 return; 678 679 tick_program_event(cpu_base->expires_next, 1); 680 } 681 682 /* High resolution timer related functions */ 683 #ifdef CONFIG_HIGH_RES_TIMERS 684 685 /* 686 * High resolution timer enabled ? 687 */ 688 static bool hrtimer_hres_enabled __read_mostly = true; 689 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 690 EXPORT_SYMBOL_GPL(hrtimer_resolution); 691 692 /* 693 * Enable / Disable high resolution mode 694 */ 695 static int __init setup_hrtimer_hres(char *str) 696 { 697 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 698 } 699 700 __setup("highres=", setup_hrtimer_hres); 701 702 /* 703 * hrtimer_high_res_enabled - query, if the highres mode is enabled 704 */ 705 static inline int hrtimer_is_hres_enabled(void) 706 { 707 return hrtimer_hres_enabled; 708 } 709 710 /* 711 * Retrigger next event is called after clock was set 712 * 713 * Called with interrupts disabled via on_each_cpu() 714 */ 715 static void retrigger_next_event(void *arg) 716 { 717 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 718 719 if (!__hrtimer_hres_active(base)) 720 return; 721 722 raw_spin_lock(&base->lock); 723 hrtimer_update_base(base); 724 hrtimer_force_reprogram(base, 0); 725 raw_spin_unlock(&base->lock); 726 } 727 728 /* 729 * Switch to high resolution mode 730 */ 731 static void hrtimer_switch_to_hres(void) 732 { 733 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 734 735 if (tick_init_highres()) { 736 pr_warn("Could not switch to high resolution mode on CPU %u\n", 737 base->cpu); 738 return; 739 } 740 base->hres_active = 1; 741 hrtimer_resolution = HIGH_RES_NSEC; 742 743 tick_setup_sched_timer(); 744 /* "Retrigger" the interrupt to get things going */ 745 retrigger_next_event(NULL); 746 } 747 748 static void clock_was_set_work(struct work_struct *work) 749 { 750 clock_was_set(); 751 } 752 753 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 754 755 /* 756 * Called from timekeeping and resume code to reprogram the hrtimer 757 * interrupt device on all cpus. 758 */ 759 void clock_was_set_delayed(void) 760 { 761 schedule_work(&hrtimer_work); 762 } 763 764 #else 765 766 static inline int hrtimer_is_hres_enabled(void) { return 0; } 767 static inline void hrtimer_switch_to_hres(void) { } 768 static inline void retrigger_next_event(void *arg) { } 769 770 #endif /* CONFIG_HIGH_RES_TIMERS */ 771 772 /* 773 * When a timer is enqueued and expires earlier than the already enqueued 774 * timers, we have to check, whether it expires earlier than the timer for 775 * which the clock event device was armed. 776 * 777 * Called with interrupts disabled and base->cpu_base.lock held 778 */ 779 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 780 { 781 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 782 struct hrtimer_clock_base *base = timer->base; 783 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 784 785 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 786 787 /* 788 * CLOCK_REALTIME timer might be requested with an absolute 789 * expiry time which is less than base->offset. Set it to 0. 790 */ 791 if (expires < 0) 792 expires = 0; 793 794 if (timer->is_soft) { 795 /* 796 * soft hrtimer could be started on a remote CPU. In this 797 * case softirq_expires_next needs to be updated on the 798 * remote CPU. The soft hrtimer will not expire before the 799 * first hard hrtimer on the remote CPU - 800 * hrtimer_check_target() prevents this case. 801 */ 802 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 803 804 if (timer_cpu_base->softirq_activated) 805 return; 806 807 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 808 return; 809 810 timer_cpu_base->softirq_next_timer = timer; 811 timer_cpu_base->softirq_expires_next = expires; 812 813 if (!ktime_before(expires, timer_cpu_base->expires_next) || 814 !reprogram) 815 return; 816 } 817 818 /* 819 * If the timer is not on the current cpu, we cannot reprogram 820 * the other cpus clock event device. 821 */ 822 if (base->cpu_base != cpu_base) 823 return; 824 825 /* 826 * If the hrtimer interrupt is running, then it will 827 * reevaluate the clock bases and reprogram the clock event 828 * device. The callbacks are always executed in hard interrupt 829 * context so we don't need an extra check for a running 830 * callback. 831 */ 832 if (cpu_base->in_hrtirq) 833 return; 834 835 if (expires >= cpu_base->expires_next) 836 return; 837 838 /* Update the pointer to the next expiring timer */ 839 cpu_base->next_timer = timer; 840 cpu_base->expires_next = expires; 841 842 /* 843 * If hres is not active, hardware does not have to be 844 * programmed yet. 845 * 846 * If a hang was detected in the last timer interrupt then we 847 * do not schedule a timer which is earlier than the expiry 848 * which we enforced in the hang detection. We want the system 849 * to make progress. 850 */ 851 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 852 return; 853 854 /* 855 * Program the timer hardware. We enforce the expiry for 856 * events which are already in the past. 857 */ 858 tick_program_event(expires, 1); 859 } 860 861 /* 862 * Clock realtime was set 863 * 864 * Change the offset of the realtime clock vs. the monotonic 865 * clock. 866 * 867 * We might have to reprogram the high resolution timer interrupt. On 868 * SMP we call the architecture specific code to retrigger _all_ high 869 * resolution timer interrupts. On UP we just disable interrupts and 870 * call the high resolution interrupt code. 871 */ 872 void clock_was_set(void) 873 { 874 #ifdef CONFIG_HIGH_RES_TIMERS 875 /* Retrigger the CPU local events everywhere */ 876 on_each_cpu(retrigger_next_event, NULL, 1); 877 #endif 878 timerfd_clock_was_set(); 879 } 880 881 /* 882 * During resume we might have to reprogram the high resolution timer 883 * interrupt on all online CPUs. However, all other CPUs will be 884 * stopped with IRQs interrupts disabled so the clock_was_set() call 885 * must be deferred. 886 */ 887 void hrtimers_resume(void) 888 { 889 lockdep_assert_irqs_disabled(); 890 /* Retrigger on the local CPU */ 891 retrigger_next_event(NULL); 892 /* And schedule a retrigger for all others */ 893 clock_was_set_delayed(); 894 } 895 896 /* 897 * Counterpart to lock_hrtimer_base above: 898 */ 899 static inline 900 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 901 { 902 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 903 } 904 905 /** 906 * hrtimer_forward - forward the timer expiry 907 * @timer: hrtimer to forward 908 * @now: forward past this time 909 * @interval: the interval to forward 910 * 911 * Forward the timer expiry so it will expire in the future. 912 * Returns the number of overruns. 913 * 914 * Can be safely called from the callback function of @timer. If 915 * called from other contexts @timer must neither be enqueued nor 916 * running the callback and the caller needs to take care of 917 * serialization. 918 * 919 * Note: This only updates the timer expiry value and does not requeue 920 * the timer. 921 */ 922 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 923 { 924 u64 orun = 1; 925 ktime_t delta; 926 927 delta = ktime_sub(now, hrtimer_get_expires(timer)); 928 929 if (delta < 0) 930 return 0; 931 932 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 933 return 0; 934 935 if (interval < hrtimer_resolution) 936 interval = hrtimer_resolution; 937 938 if (unlikely(delta >= interval)) { 939 s64 incr = ktime_to_ns(interval); 940 941 orun = ktime_divns(delta, incr); 942 hrtimer_add_expires_ns(timer, incr * orun); 943 if (hrtimer_get_expires_tv64(timer) > now) 944 return orun; 945 /* 946 * This (and the ktime_add() below) is the 947 * correction for exact: 948 */ 949 orun++; 950 } 951 hrtimer_add_expires(timer, interval); 952 953 return orun; 954 } 955 EXPORT_SYMBOL_GPL(hrtimer_forward); 956 957 /* 958 * enqueue_hrtimer - internal function to (re)start a timer 959 * 960 * The timer is inserted in expiry order. Insertion into the 961 * red black tree is O(log(n)). Must hold the base lock. 962 * 963 * Returns 1 when the new timer is the leftmost timer in the tree. 964 */ 965 static int enqueue_hrtimer(struct hrtimer *timer, 966 struct hrtimer_clock_base *base, 967 enum hrtimer_mode mode) 968 { 969 debug_activate(timer, mode); 970 971 base->cpu_base->active_bases |= 1 << base->index; 972 973 /* Pairs with the lockless read in hrtimer_is_queued() */ 974 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 975 976 return timerqueue_add(&base->active, &timer->node); 977 } 978 979 /* 980 * __remove_hrtimer - internal function to remove a timer 981 * 982 * Caller must hold the base lock. 983 * 984 * High resolution timer mode reprograms the clock event device when the 985 * timer is the one which expires next. The caller can disable this by setting 986 * reprogram to zero. This is useful, when the context does a reprogramming 987 * anyway (e.g. timer interrupt) 988 */ 989 static void __remove_hrtimer(struct hrtimer *timer, 990 struct hrtimer_clock_base *base, 991 u8 newstate, int reprogram) 992 { 993 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 994 u8 state = timer->state; 995 996 /* Pairs with the lockless read in hrtimer_is_queued() */ 997 WRITE_ONCE(timer->state, newstate); 998 if (!(state & HRTIMER_STATE_ENQUEUED)) 999 return; 1000 1001 if (!timerqueue_del(&base->active, &timer->node)) 1002 cpu_base->active_bases &= ~(1 << base->index); 1003 1004 /* 1005 * Note: If reprogram is false we do not update 1006 * cpu_base->next_timer. This happens when we remove the first 1007 * timer on a remote cpu. No harm as we never dereference 1008 * cpu_base->next_timer. So the worst thing what can happen is 1009 * an superflous call to hrtimer_force_reprogram() on the 1010 * remote cpu later on if the same timer gets enqueued again. 1011 */ 1012 if (reprogram && timer == cpu_base->next_timer) 1013 hrtimer_force_reprogram(cpu_base, 1); 1014 } 1015 1016 /* 1017 * remove hrtimer, called with base lock held 1018 */ 1019 static inline int 1020 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1021 { 1022 u8 state = timer->state; 1023 1024 if (state & HRTIMER_STATE_ENQUEUED) { 1025 int reprogram; 1026 1027 /* 1028 * Remove the timer and force reprogramming when high 1029 * resolution mode is active and the timer is on the current 1030 * CPU. If we remove a timer on another CPU, reprogramming is 1031 * skipped. The interrupt event on this CPU is fired and 1032 * reprogramming happens in the interrupt handler. This is a 1033 * rare case and less expensive than a smp call. 1034 */ 1035 debug_deactivate(timer); 1036 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1037 1038 if (!restart) 1039 state = HRTIMER_STATE_INACTIVE; 1040 1041 __remove_hrtimer(timer, base, state, reprogram); 1042 return 1; 1043 } 1044 return 0; 1045 } 1046 1047 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1048 const enum hrtimer_mode mode) 1049 { 1050 #ifdef CONFIG_TIME_LOW_RES 1051 /* 1052 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1053 * granular time values. For relative timers we add hrtimer_resolution 1054 * (i.e. one jiffie) to prevent short timeouts. 1055 */ 1056 timer->is_rel = mode & HRTIMER_MODE_REL; 1057 if (timer->is_rel) 1058 tim = ktime_add_safe(tim, hrtimer_resolution); 1059 #endif 1060 return tim; 1061 } 1062 1063 static void 1064 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1065 { 1066 ktime_t expires; 1067 1068 /* 1069 * Find the next SOFT expiration. 1070 */ 1071 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1072 1073 /* 1074 * reprogramming needs to be triggered, even if the next soft 1075 * hrtimer expires at the same time than the next hard 1076 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1077 */ 1078 if (expires == KTIME_MAX) 1079 return; 1080 1081 /* 1082 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1083 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1084 */ 1085 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1086 } 1087 1088 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1089 u64 delta_ns, const enum hrtimer_mode mode, 1090 struct hrtimer_clock_base *base) 1091 { 1092 struct hrtimer_clock_base *new_base; 1093 1094 /* Remove an active timer from the queue: */ 1095 remove_hrtimer(timer, base, true); 1096 1097 if (mode & HRTIMER_MODE_REL) 1098 tim = ktime_add_safe(tim, base->get_time()); 1099 1100 tim = hrtimer_update_lowres(timer, tim, mode); 1101 1102 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1103 1104 /* Switch the timer base, if necessary: */ 1105 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1106 1107 return enqueue_hrtimer(timer, new_base, mode); 1108 } 1109 1110 /** 1111 * hrtimer_start_range_ns - (re)start an hrtimer 1112 * @timer: the timer to be added 1113 * @tim: expiry time 1114 * @delta_ns: "slack" range for the timer 1115 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1116 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1117 * softirq based mode is considered for debug purpose only! 1118 */ 1119 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1120 u64 delta_ns, const enum hrtimer_mode mode) 1121 { 1122 struct hrtimer_clock_base *base; 1123 unsigned long flags; 1124 1125 /* 1126 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1127 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1128 * expiry mode because unmarked timers are moved to softirq expiry. 1129 */ 1130 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1131 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1132 else 1133 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1134 1135 base = lock_hrtimer_base(timer, &flags); 1136 1137 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1138 hrtimer_reprogram(timer, true); 1139 1140 unlock_hrtimer_base(timer, &flags); 1141 } 1142 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1143 1144 /** 1145 * hrtimer_try_to_cancel - try to deactivate a timer 1146 * @timer: hrtimer to stop 1147 * 1148 * Returns: 1149 * 1150 * * 0 when the timer was not active 1151 * * 1 when the timer was active 1152 * * -1 when the timer is currently executing the callback function and 1153 * cannot be stopped 1154 */ 1155 int hrtimer_try_to_cancel(struct hrtimer *timer) 1156 { 1157 struct hrtimer_clock_base *base; 1158 unsigned long flags; 1159 int ret = -1; 1160 1161 /* 1162 * Check lockless first. If the timer is not active (neither 1163 * enqueued nor running the callback, nothing to do here. The 1164 * base lock does not serialize against a concurrent enqueue, 1165 * so we can avoid taking it. 1166 */ 1167 if (!hrtimer_active(timer)) 1168 return 0; 1169 1170 base = lock_hrtimer_base(timer, &flags); 1171 1172 if (!hrtimer_callback_running(timer)) 1173 ret = remove_hrtimer(timer, base, false); 1174 1175 unlock_hrtimer_base(timer, &flags); 1176 1177 return ret; 1178 1179 } 1180 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1181 1182 #ifdef CONFIG_PREEMPT_RT 1183 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1184 { 1185 spin_lock_init(&base->softirq_expiry_lock); 1186 } 1187 1188 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1189 { 1190 spin_lock(&base->softirq_expiry_lock); 1191 } 1192 1193 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1194 { 1195 spin_unlock(&base->softirq_expiry_lock); 1196 } 1197 1198 /* 1199 * The counterpart to hrtimer_cancel_wait_running(). 1200 * 1201 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1202 * the timer callback to finish. Drop expiry_lock and reaquire it. That 1203 * allows the waiter to acquire the lock and make progress. 1204 */ 1205 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1206 unsigned long flags) 1207 { 1208 if (atomic_read(&cpu_base->timer_waiters)) { 1209 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1210 spin_unlock(&cpu_base->softirq_expiry_lock); 1211 spin_lock(&cpu_base->softirq_expiry_lock); 1212 raw_spin_lock_irq(&cpu_base->lock); 1213 } 1214 } 1215 1216 /* 1217 * This function is called on PREEMPT_RT kernels when the fast path 1218 * deletion of a timer failed because the timer callback function was 1219 * running. 1220 * 1221 * This prevents priority inversion: if the soft irq thread is preempted 1222 * in the middle of a timer callback, then calling del_timer_sync() can 1223 * lead to two issues: 1224 * 1225 * - If the caller is on a remote CPU then it has to spin wait for the timer 1226 * handler to complete. This can result in unbound priority inversion. 1227 * 1228 * - If the caller originates from the task which preempted the timer 1229 * handler on the same CPU, then spin waiting for the timer handler to 1230 * complete is never going to end. 1231 */ 1232 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1233 { 1234 /* Lockless read. Prevent the compiler from reloading it below */ 1235 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1236 1237 /* 1238 * Just relax if the timer expires in hard interrupt context or if 1239 * it is currently on the migration base. 1240 */ 1241 if (!timer->is_soft || is_migration_base(base)) { 1242 cpu_relax(); 1243 return; 1244 } 1245 1246 /* 1247 * Mark the base as contended and grab the expiry lock, which is 1248 * held by the softirq across the timer callback. Drop the lock 1249 * immediately so the softirq can expire the next timer. In theory 1250 * the timer could already be running again, but that's more than 1251 * unlikely and just causes another wait loop. 1252 */ 1253 atomic_inc(&base->cpu_base->timer_waiters); 1254 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1255 atomic_dec(&base->cpu_base->timer_waiters); 1256 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1257 } 1258 #else 1259 static inline void 1260 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1261 static inline void 1262 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1263 static inline void 1264 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1265 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1266 unsigned long flags) { } 1267 #endif 1268 1269 /** 1270 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1271 * @timer: the timer to be cancelled 1272 * 1273 * Returns: 1274 * 0 when the timer was not active 1275 * 1 when the timer was active 1276 */ 1277 int hrtimer_cancel(struct hrtimer *timer) 1278 { 1279 int ret; 1280 1281 do { 1282 ret = hrtimer_try_to_cancel(timer); 1283 1284 if (ret < 0) 1285 hrtimer_cancel_wait_running(timer); 1286 } while (ret < 0); 1287 return ret; 1288 } 1289 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1290 1291 /** 1292 * hrtimer_get_remaining - get remaining time for the timer 1293 * @timer: the timer to read 1294 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1295 */ 1296 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1297 { 1298 unsigned long flags; 1299 ktime_t rem; 1300 1301 lock_hrtimer_base(timer, &flags); 1302 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1303 rem = hrtimer_expires_remaining_adjusted(timer); 1304 else 1305 rem = hrtimer_expires_remaining(timer); 1306 unlock_hrtimer_base(timer, &flags); 1307 1308 return rem; 1309 } 1310 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1311 1312 #ifdef CONFIG_NO_HZ_COMMON 1313 /** 1314 * hrtimer_get_next_event - get the time until next expiry event 1315 * 1316 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1317 */ 1318 u64 hrtimer_get_next_event(void) 1319 { 1320 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1321 u64 expires = KTIME_MAX; 1322 unsigned long flags; 1323 1324 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1325 1326 if (!__hrtimer_hres_active(cpu_base)) 1327 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1328 1329 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1330 1331 return expires; 1332 } 1333 1334 /** 1335 * hrtimer_next_event_without - time until next expiry event w/o one timer 1336 * @exclude: timer to exclude 1337 * 1338 * Returns the next expiry time over all timers except for the @exclude one or 1339 * KTIME_MAX if none of them is pending. 1340 */ 1341 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1342 { 1343 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1344 u64 expires = KTIME_MAX; 1345 unsigned long flags; 1346 1347 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1348 1349 if (__hrtimer_hres_active(cpu_base)) { 1350 unsigned int active; 1351 1352 if (!cpu_base->softirq_activated) { 1353 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1354 expires = __hrtimer_next_event_base(cpu_base, exclude, 1355 active, KTIME_MAX); 1356 } 1357 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1358 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1359 expires); 1360 } 1361 1362 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1363 1364 return expires; 1365 } 1366 #endif 1367 1368 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1369 { 1370 if (likely(clock_id < MAX_CLOCKS)) { 1371 int base = hrtimer_clock_to_base_table[clock_id]; 1372 1373 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1374 return base; 1375 } 1376 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1377 return HRTIMER_BASE_MONOTONIC; 1378 } 1379 1380 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1381 enum hrtimer_mode mode) 1382 { 1383 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1384 struct hrtimer_cpu_base *cpu_base; 1385 int base; 1386 1387 /* 1388 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1389 * marked for hard interrupt expiry mode are moved into soft 1390 * interrupt context for latency reasons and because the callbacks 1391 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1392 */ 1393 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1394 softtimer = true; 1395 1396 memset(timer, 0, sizeof(struct hrtimer)); 1397 1398 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1399 1400 /* 1401 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1402 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1403 * ensure POSIX compliance. 1404 */ 1405 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1406 clock_id = CLOCK_MONOTONIC; 1407 1408 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1409 base += hrtimer_clockid_to_base(clock_id); 1410 timer->is_soft = softtimer; 1411 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1412 timer->base = &cpu_base->clock_base[base]; 1413 timerqueue_init(&timer->node); 1414 } 1415 1416 /** 1417 * hrtimer_init - initialize a timer to the given clock 1418 * @timer: the timer to be initialized 1419 * @clock_id: the clock to be used 1420 * @mode: The modes which are relevant for intitialization: 1421 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1422 * HRTIMER_MODE_REL_SOFT 1423 * 1424 * The PINNED variants of the above can be handed in, 1425 * but the PINNED bit is ignored as pinning happens 1426 * when the hrtimer is started 1427 */ 1428 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1429 enum hrtimer_mode mode) 1430 { 1431 debug_init(timer, clock_id, mode); 1432 __hrtimer_init(timer, clock_id, mode); 1433 } 1434 EXPORT_SYMBOL_GPL(hrtimer_init); 1435 1436 /* 1437 * A timer is active, when it is enqueued into the rbtree or the 1438 * callback function is running or it's in the state of being migrated 1439 * to another cpu. 1440 * 1441 * It is important for this function to not return a false negative. 1442 */ 1443 bool hrtimer_active(const struct hrtimer *timer) 1444 { 1445 struct hrtimer_clock_base *base; 1446 unsigned int seq; 1447 1448 do { 1449 base = READ_ONCE(timer->base); 1450 seq = raw_read_seqcount_begin(&base->seq); 1451 1452 if (timer->state != HRTIMER_STATE_INACTIVE || 1453 base->running == timer) 1454 return true; 1455 1456 } while (read_seqcount_retry(&base->seq, seq) || 1457 base != READ_ONCE(timer->base)); 1458 1459 return false; 1460 } 1461 EXPORT_SYMBOL_GPL(hrtimer_active); 1462 1463 /* 1464 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1465 * distinct sections: 1466 * 1467 * - queued: the timer is queued 1468 * - callback: the timer is being ran 1469 * - post: the timer is inactive or (re)queued 1470 * 1471 * On the read side we ensure we observe timer->state and cpu_base->running 1472 * from the same section, if anything changed while we looked at it, we retry. 1473 * This includes timer->base changing because sequence numbers alone are 1474 * insufficient for that. 1475 * 1476 * The sequence numbers are required because otherwise we could still observe 1477 * a false negative if the read side got smeared over multiple consequtive 1478 * __run_hrtimer() invocations. 1479 */ 1480 1481 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1482 struct hrtimer_clock_base *base, 1483 struct hrtimer *timer, ktime_t *now, 1484 unsigned long flags) __must_hold(&cpu_base->lock) 1485 { 1486 enum hrtimer_restart (*fn)(struct hrtimer *); 1487 bool expires_in_hardirq; 1488 int restart; 1489 1490 lockdep_assert_held(&cpu_base->lock); 1491 1492 debug_deactivate(timer); 1493 base->running = timer; 1494 1495 /* 1496 * Separate the ->running assignment from the ->state assignment. 1497 * 1498 * As with a regular write barrier, this ensures the read side in 1499 * hrtimer_active() cannot observe base->running == NULL && 1500 * timer->state == INACTIVE. 1501 */ 1502 raw_write_seqcount_barrier(&base->seq); 1503 1504 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1505 fn = timer->function; 1506 1507 /* 1508 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1509 * timer is restarted with a period then it becomes an absolute 1510 * timer. If its not restarted it does not matter. 1511 */ 1512 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1513 timer->is_rel = false; 1514 1515 /* 1516 * The timer is marked as running in the CPU base, so it is 1517 * protected against migration to a different CPU even if the lock 1518 * is dropped. 1519 */ 1520 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1521 trace_hrtimer_expire_entry(timer, now); 1522 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1523 1524 restart = fn(timer); 1525 1526 lockdep_hrtimer_exit(expires_in_hardirq); 1527 trace_hrtimer_expire_exit(timer); 1528 raw_spin_lock_irq(&cpu_base->lock); 1529 1530 /* 1531 * Note: We clear the running state after enqueue_hrtimer and 1532 * we do not reprogram the event hardware. Happens either in 1533 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1534 * 1535 * Note: Because we dropped the cpu_base->lock above, 1536 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1537 * for us already. 1538 */ 1539 if (restart != HRTIMER_NORESTART && 1540 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1541 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1542 1543 /* 1544 * Separate the ->running assignment from the ->state assignment. 1545 * 1546 * As with a regular write barrier, this ensures the read side in 1547 * hrtimer_active() cannot observe base->running.timer == NULL && 1548 * timer->state == INACTIVE. 1549 */ 1550 raw_write_seqcount_barrier(&base->seq); 1551 1552 WARN_ON_ONCE(base->running != timer); 1553 base->running = NULL; 1554 } 1555 1556 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1557 unsigned long flags, unsigned int active_mask) 1558 { 1559 struct hrtimer_clock_base *base; 1560 unsigned int active = cpu_base->active_bases & active_mask; 1561 1562 for_each_active_base(base, cpu_base, active) { 1563 struct timerqueue_node *node; 1564 ktime_t basenow; 1565 1566 basenow = ktime_add(now, base->offset); 1567 1568 while ((node = timerqueue_getnext(&base->active))) { 1569 struct hrtimer *timer; 1570 1571 timer = container_of(node, struct hrtimer, node); 1572 1573 /* 1574 * The immediate goal for using the softexpires is 1575 * minimizing wakeups, not running timers at the 1576 * earliest interrupt after their soft expiration. 1577 * This allows us to avoid using a Priority Search 1578 * Tree, which can answer a stabbing querry for 1579 * overlapping intervals and instead use the simple 1580 * BST we already have. 1581 * We don't add extra wakeups by delaying timers that 1582 * are right-of a not yet expired timer, because that 1583 * timer will have to trigger a wakeup anyway. 1584 */ 1585 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1586 break; 1587 1588 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1589 if (active_mask == HRTIMER_ACTIVE_SOFT) 1590 hrtimer_sync_wait_running(cpu_base, flags); 1591 } 1592 } 1593 } 1594 1595 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1596 { 1597 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1598 unsigned long flags; 1599 ktime_t now; 1600 1601 hrtimer_cpu_base_lock_expiry(cpu_base); 1602 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1603 1604 now = hrtimer_update_base(cpu_base); 1605 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1606 1607 cpu_base->softirq_activated = 0; 1608 hrtimer_update_softirq_timer(cpu_base, true); 1609 1610 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1611 hrtimer_cpu_base_unlock_expiry(cpu_base); 1612 } 1613 1614 #ifdef CONFIG_HIGH_RES_TIMERS 1615 1616 /* 1617 * High resolution timer interrupt 1618 * Called with interrupts disabled 1619 */ 1620 void hrtimer_interrupt(struct clock_event_device *dev) 1621 { 1622 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1623 ktime_t expires_next, now, entry_time, delta; 1624 unsigned long flags; 1625 int retries = 0; 1626 1627 BUG_ON(!cpu_base->hres_active); 1628 cpu_base->nr_events++; 1629 dev->next_event = KTIME_MAX; 1630 1631 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1632 entry_time = now = hrtimer_update_base(cpu_base); 1633 retry: 1634 cpu_base->in_hrtirq = 1; 1635 /* 1636 * We set expires_next to KTIME_MAX here with cpu_base->lock 1637 * held to prevent that a timer is enqueued in our queue via 1638 * the migration code. This does not affect enqueueing of 1639 * timers which run their callback and need to be requeued on 1640 * this CPU. 1641 */ 1642 cpu_base->expires_next = KTIME_MAX; 1643 1644 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1645 cpu_base->softirq_expires_next = KTIME_MAX; 1646 cpu_base->softirq_activated = 1; 1647 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1648 } 1649 1650 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1651 1652 /* Reevaluate the clock bases for the next expiry */ 1653 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1654 /* 1655 * Store the new expiry value so the migration code can verify 1656 * against it. 1657 */ 1658 cpu_base->expires_next = expires_next; 1659 cpu_base->in_hrtirq = 0; 1660 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1661 1662 /* Reprogramming necessary ? */ 1663 if (!tick_program_event(expires_next, 0)) { 1664 cpu_base->hang_detected = 0; 1665 return; 1666 } 1667 1668 /* 1669 * The next timer was already expired due to: 1670 * - tracing 1671 * - long lasting callbacks 1672 * - being scheduled away when running in a VM 1673 * 1674 * We need to prevent that we loop forever in the hrtimer 1675 * interrupt routine. We give it 3 attempts to avoid 1676 * overreacting on some spurious event. 1677 * 1678 * Acquire base lock for updating the offsets and retrieving 1679 * the current time. 1680 */ 1681 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1682 now = hrtimer_update_base(cpu_base); 1683 cpu_base->nr_retries++; 1684 if (++retries < 3) 1685 goto retry; 1686 /* 1687 * Give the system a chance to do something else than looping 1688 * here. We stored the entry time, so we know exactly how long 1689 * we spent here. We schedule the next event this amount of 1690 * time away. 1691 */ 1692 cpu_base->nr_hangs++; 1693 cpu_base->hang_detected = 1; 1694 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1695 1696 delta = ktime_sub(now, entry_time); 1697 if ((unsigned int)delta > cpu_base->max_hang_time) 1698 cpu_base->max_hang_time = (unsigned int) delta; 1699 /* 1700 * Limit it to a sensible value as we enforce a longer 1701 * delay. Give the CPU at least 100ms to catch up. 1702 */ 1703 if (delta > 100 * NSEC_PER_MSEC) 1704 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1705 else 1706 expires_next = ktime_add(now, delta); 1707 tick_program_event(expires_next, 1); 1708 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1709 } 1710 1711 /* called with interrupts disabled */ 1712 static inline void __hrtimer_peek_ahead_timers(void) 1713 { 1714 struct tick_device *td; 1715 1716 if (!hrtimer_hres_active()) 1717 return; 1718 1719 td = this_cpu_ptr(&tick_cpu_device); 1720 if (td && td->evtdev) 1721 hrtimer_interrupt(td->evtdev); 1722 } 1723 1724 #else /* CONFIG_HIGH_RES_TIMERS */ 1725 1726 static inline void __hrtimer_peek_ahead_timers(void) { } 1727 1728 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1729 1730 /* 1731 * Called from run_local_timers in hardirq context every jiffy 1732 */ 1733 void hrtimer_run_queues(void) 1734 { 1735 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1736 unsigned long flags; 1737 ktime_t now; 1738 1739 if (__hrtimer_hres_active(cpu_base)) 1740 return; 1741 1742 /* 1743 * This _is_ ugly: We have to check periodically, whether we 1744 * can switch to highres and / or nohz mode. The clocksource 1745 * switch happens with xtime_lock held. Notification from 1746 * there only sets the check bit in the tick_oneshot code, 1747 * otherwise we might deadlock vs. xtime_lock. 1748 */ 1749 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1750 hrtimer_switch_to_hres(); 1751 return; 1752 } 1753 1754 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1755 now = hrtimer_update_base(cpu_base); 1756 1757 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1758 cpu_base->softirq_expires_next = KTIME_MAX; 1759 cpu_base->softirq_activated = 1; 1760 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1761 } 1762 1763 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1764 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1765 } 1766 1767 /* 1768 * Sleep related functions: 1769 */ 1770 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1771 { 1772 struct hrtimer_sleeper *t = 1773 container_of(timer, struct hrtimer_sleeper, timer); 1774 struct task_struct *task = t->task; 1775 1776 t->task = NULL; 1777 if (task) 1778 wake_up_process(task); 1779 1780 return HRTIMER_NORESTART; 1781 } 1782 1783 /** 1784 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 1785 * @sl: sleeper to be started 1786 * @mode: timer mode abs/rel 1787 * 1788 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 1789 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 1790 */ 1791 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 1792 enum hrtimer_mode mode) 1793 { 1794 /* 1795 * Make the enqueue delivery mode check work on RT. If the sleeper 1796 * was initialized for hard interrupt delivery, force the mode bit. 1797 * This is a special case for hrtimer_sleepers because 1798 * hrtimer_init_sleeper() determines the delivery mode on RT so the 1799 * fiddling with this decision is avoided at the call sites. 1800 */ 1801 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 1802 mode |= HRTIMER_MODE_HARD; 1803 1804 hrtimer_start_expires(&sl->timer, mode); 1805 } 1806 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 1807 1808 static void __hrtimer_init_sleeper(struct hrtimer_sleeper *sl, 1809 clockid_t clock_id, enum hrtimer_mode mode) 1810 { 1811 /* 1812 * On PREEMPT_RT enabled kernels hrtimers which are not explicitely 1813 * marked for hard interrupt expiry mode are moved into soft 1814 * interrupt context either for latency reasons or because the 1815 * hrtimer callback takes regular spinlocks or invokes other 1816 * functions which are not suitable for hard interrupt context on 1817 * PREEMPT_RT. 1818 * 1819 * The hrtimer_sleeper callback is RT compatible in hard interrupt 1820 * context, but there is a latency concern: Untrusted userspace can 1821 * spawn many threads which arm timers for the same expiry time on 1822 * the same CPU. That causes a latency spike due to the wakeup of 1823 * a gazillion threads. 1824 * 1825 * OTOH, priviledged real-time user space applications rely on the 1826 * low latency of hard interrupt wakeups. If the current task is in 1827 * a real-time scheduling class, mark the mode for hard interrupt 1828 * expiry. 1829 */ 1830 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 1831 if (task_is_realtime(current) && !(mode & HRTIMER_MODE_SOFT)) 1832 mode |= HRTIMER_MODE_HARD; 1833 } 1834 1835 __hrtimer_init(&sl->timer, clock_id, mode); 1836 sl->timer.function = hrtimer_wakeup; 1837 sl->task = current; 1838 } 1839 1840 /** 1841 * hrtimer_init_sleeper - initialize sleeper to the given clock 1842 * @sl: sleeper to be initialized 1843 * @clock_id: the clock to be used 1844 * @mode: timer mode abs/rel 1845 */ 1846 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, 1847 enum hrtimer_mode mode) 1848 { 1849 debug_init(&sl->timer, clock_id, mode); 1850 __hrtimer_init_sleeper(sl, clock_id, mode); 1851 1852 } 1853 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1854 1855 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1856 { 1857 switch(restart->nanosleep.type) { 1858 #ifdef CONFIG_COMPAT_32BIT_TIME 1859 case TT_COMPAT: 1860 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1861 return -EFAULT; 1862 break; 1863 #endif 1864 case TT_NATIVE: 1865 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1866 return -EFAULT; 1867 break; 1868 default: 1869 BUG(); 1870 } 1871 return -ERESTART_RESTARTBLOCK; 1872 } 1873 1874 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1875 { 1876 struct restart_block *restart; 1877 1878 do { 1879 set_current_state(TASK_INTERRUPTIBLE); 1880 hrtimer_sleeper_start_expires(t, mode); 1881 1882 if (likely(t->task)) 1883 freezable_schedule(); 1884 1885 hrtimer_cancel(&t->timer); 1886 mode = HRTIMER_MODE_ABS; 1887 1888 } while (t->task && !signal_pending(current)); 1889 1890 __set_current_state(TASK_RUNNING); 1891 1892 if (!t->task) 1893 return 0; 1894 1895 restart = ¤t->restart_block; 1896 if (restart->nanosleep.type != TT_NONE) { 1897 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1898 struct timespec64 rmt; 1899 1900 if (rem <= 0) 1901 return 0; 1902 rmt = ktime_to_timespec64(rem); 1903 1904 return nanosleep_copyout(restart, &rmt); 1905 } 1906 return -ERESTART_RESTARTBLOCK; 1907 } 1908 1909 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1910 { 1911 struct hrtimer_sleeper t; 1912 int ret; 1913 1914 hrtimer_init_sleeper_on_stack(&t, restart->nanosleep.clockid, 1915 HRTIMER_MODE_ABS); 1916 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1917 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1918 destroy_hrtimer_on_stack(&t.timer); 1919 return ret; 1920 } 1921 1922 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 1923 const clockid_t clockid) 1924 { 1925 struct restart_block *restart; 1926 struct hrtimer_sleeper t; 1927 int ret = 0; 1928 u64 slack; 1929 1930 slack = current->timer_slack_ns; 1931 if (dl_task(current) || rt_task(current)) 1932 slack = 0; 1933 1934 hrtimer_init_sleeper_on_stack(&t, clockid, mode); 1935 hrtimer_set_expires_range_ns(&t.timer, rqtp, slack); 1936 ret = do_nanosleep(&t, mode); 1937 if (ret != -ERESTART_RESTARTBLOCK) 1938 goto out; 1939 1940 /* Absolute timers do not update the rmtp value and restart: */ 1941 if (mode == HRTIMER_MODE_ABS) { 1942 ret = -ERESTARTNOHAND; 1943 goto out; 1944 } 1945 1946 restart = ¤t->restart_block; 1947 restart->fn = hrtimer_nanosleep_restart; 1948 restart->nanosleep.clockid = t.timer.base->clockid; 1949 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1950 out: 1951 destroy_hrtimer_on_stack(&t.timer); 1952 return ret; 1953 } 1954 1955 #ifdef CONFIG_64BIT 1956 1957 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1958 struct __kernel_timespec __user *, rmtp) 1959 { 1960 struct timespec64 tu; 1961 1962 if (get_timespec64(&tu, rqtp)) 1963 return -EFAULT; 1964 1965 if (!timespec64_valid(&tu)) 1966 return -EINVAL; 1967 1968 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1969 current->restart_block.nanosleep.rmtp = rmtp; 1970 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1971 CLOCK_MONOTONIC); 1972 } 1973 1974 #endif 1975 1976 #ifdef CONFIG_COMPAT_32BIT_TIME 1977 1978 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 1979 struct old_timespec32 __user *, rmtp) 1980 { 1981 struct timespec64 tu; 1982 1983 if (get_old_timespec32(&tu, rqtp)) 1984 return -EFAULT; 1985 1986 if (!timespec64_valid(&tu)) 1987 return -EINVAL; 1988 1989 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1990 current->restart_block.nanosleep.compat_rmtp = rmtp; 1991 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 1992 CLOCK_MONOTONIC); 1993 } 1994 #endif 1995 1996 /* 1997 * Functions related to boot-time initialization: 1998 */ 1999 int hrtimers_prepare_cpu(unsigned int cpu) 2000 { 2001 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2002 int i; 2003 2004 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2005 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2006 2007 clock_b->cpu_base = cpu_base; 2008 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2009 timerqueue_init_head(&clock_b->active); 2010 } 2011 2012 cpu_base->cpu = cpu; 2013 cpu_base->active_bases = 0; 2014 cpu_base->hres_active = 0; 2015 cpu_base->hang_detected = 0; 2016 cpu_base->next_timer = NULL; 2017 cpu_base->softirq_next_timer = NULL; 2018 cpu_base->expires_next = KTIME_MAX; 2019 cpu_base->softirq_expires_next = KTIME_MAX; 2020 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2021 return 0; 2022 } 2023 2024 #ifdef CONFIG_HOTPLUG_CPU 2025 2026 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2027 struct hrtimer_clock_base *new_base) 2028 { 2029 struct hrtimer *timer; 2030 struct timerqueue_node *node; 2031 2032 while ((node = timerqueue_getnext(&old_base->active))) { 2033 timer = container_of(node, struct hrtimer, node); 2034 BUG_ON(hrtimer_callback_running(timer)); 2035 debug_deactivate(timer); 2036 2037 /* 2038 * Mark it as ENQUEUED not INACTIVE otherwise the 2039 * timer could be seen as !active and just vanish away 2040 * under us on another CPU 2041 */ 2042 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2043 timer->base = new_base; 2044 /* 2045 * Enqueue the timers on the new cpu. This does not 2046 * reprogram the event device in case the timer 2047 * expires before the earliest on this CPU, but we run 2048 * hrtimer_interrupt after we migrated everything to 2049 * sort out already expired timers and reprogram the 2050 * event device. 2051 */ 2052 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2053 } 2054 } 2055 2056 int hrtimers_dead_cpu(unsigned int scpu) 2057 { 2058 struct hrtimer_cpu_base *old_base, *new_base; 2059 int i; 2060 2061 BUG_ON(cpu_online(scpu)); 2062 tick_cancel_sched_timer(scpu); 2063 2064 /* 2065 * this BH disable ensures that raise_softirq_irqoff() does 2066 * not wakeup ksoftirqd (and acquire the pi-lock) while 2067 * holding the cpu_base lock 2068 */ 2069 local_bh_disable(); 2070 local_irq_disable(); 2071 old_base = &per_cpu(hrtimer_bases, scpu); 2072 new_base = this_cpu_ptr(&hrtimer_bases); 2073 /* 2074 * The caller is globally serialized and nobody else 2075 * takes two locks at once, deadlock is not possible. 2076 */ 2077 raw_spin_lock(&new_base->lock); 2078 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 2079 2080 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2081 migrate_hrtimer_list(&old_base->clock_base[i], 2082 &new_base->clock_base[i]); 2083 } 2084 2085 /* 2086 * The migration might have changed the first expiring softirq 2087 * timer on this CPU. Update it. 2088 */ 2089 hrtimer_update_softirq_timer(new_base, false); 2090 2091 raw_spin_unlock(&old_base->lock); 2092 raw_spin_unlock(&new_base->lock); 2093 2094 /* Check, if we got expired work to do */ 2095 __hrtimer_peek_ahead_timers(); 2096 local_irq_enable(); 2097 local_bh_enable(); 2098 return 0; 2099 } 2100 2101 #endif /* CONFIG_HOTPLUG_CPU */ 2102 2103 void __init hrtimers_init(void) 2104 { 2105 hrtimers_prepare_cpu(smp_processor_id()); 2106 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2107 } 2108 2109 /** 2110 * schedule_hrtimeout_range_clock - sleep until timeout 2111 * @expires: timeout value (ktime_t) 2112 * @delta: slack in expires timeout (ktime_t) 2113 * @mode: timer mode 2114 * @clock_id: timer clock to be used 2115 */ 2116 int __sched 2117 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 2118 const enum hrtimer_mode mode, clockid_t clock_id) 2119 { 2120 struct hrtimer_sleeper t; 2121 2122 /* 2123 * Optimize when a zero timeout value is given. It does not 2124 * matter whether this is an absolute or a relative time. 2125 */ 2126 if (expires && *expires == 0) { 2127 __set_current_state(TASK_RUNNING); 2128 return 0; 2129 } 2130 2131 /* 2132 * A NULL parameter means "infinite" 2133 */ 2134 if (!expires) { 2135 schedule(); 2136 return -EINTR; 2137 } 2138 2139 hrtimer_init_sleeper_on_stack(&t, clock_id, mode); 2140 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 2141 hrtimer_sleeper_start_expires(&t, mode); 2142 2143 if (likely(t.task)) 2144 schedule(); 2145 2146 hrtimer_cancel(&t.timer); 2147 destroy_hrtimer_on_stack(&t.timer); 2148 2149 __set_current_state(TASK_RUNNING); 2150 2151 return !t.task ? 0 : -EINTR; 2152 } 2153 2154 /** 2155 * schedule_hrtimeout_range - sleep until timeout 2156 * @expires: timeout value (ktime_t) 2157 * @delta: slack in expires timeout (ktime_t) 2158 * @mode: timer mode 2159 * 2160 * Make the current task sleep until the given expiry time has 2161 * elapsed. The routine will return immediately unless 2162 * the current task state has been set (see set_current_state()). 2163 * 2164 * The @delta argument gives the kernel the freedom to schedule the 2165 * actual wakeup to a time that is both power and performance friendly. 2166 * The kernel give the normal best effort behavior for "@expires+@delta", 2167 * but may decide to fire the timer earlier, but no earlier than @expires. 2168 * 2169 * You can set the task state as follows - 2170 * 2171 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2172 * pass before the routine returns unless the current task is explicitly 2173 * woken up, (e.g. by wake_up_process()). 2174 * 2175 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2176 * delivered to the current task or the current task is explicitly woken 2177 * up. 2178 * 2179 * The current task state is guaranteed to be TASK_RUNNING when this 2180 * routine returns. 2181 * 2182 * Returns 0 when the timer has expired. If the task was woken before the 2183 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2184 * by an explicit wakeup, it returns -EINTR. 2185 */ 2186 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 2187 const enum hrtimer_mode mode) 2188 { 2189 return schedule_hrtimeout_range_clock(expires, delta, mode, 2190 CLOCK_MONOTONIC); 2191 } 2192 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 2193 2194 /** 2195 * schedule_hrtimeout - sleep until timeout 2196 * @expires: timeout value (ktime_t) 2197 * @mode: timer mode 2198 * 2199 * Make the current task sleep until the given expiry time has 2200 * elapsed. The routine will return immediately unless 2201 * the current task state has been set (see set_current_state()). 2202 * 2203 * You can set the task state as follows - 2204 * 2205 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2206 * pass before the routine returns unless the current task is explicitly 2207 * woken up, (e.g. by wake_up_process()). 2208 * 2209 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2210 * delivered to the current task or the current task is explicitly woken 2211 * up. 2212 * 2213 * The current task state is guaranteed to be TASK_RUNNING when this 2214 * routine returns. 2215 * 2216 * Returns 0 when the timer has expired. If the task was woken before the 2217 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2218 * by an explicit wakeup, it returns -EINTR. 2219 */ 2220 int __sched schedule_hrtimeout(ktime_t *expires, 2221 const enum hrtimer_mode mode) 2222 { 2223 return schedule_hrtimeout_range(expires, 0, mode); 2224 } 2225 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2226