xref: /openbmc/linux/kernel/time/hrtimer.c (revision 10c1d542c7e871865bca381842fd04a92d2b95ec)
1 /*
2  *  linux/kernel/hrtimer.c
3  *
4  *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6  *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
7  *
8  *  High-resolution kernel timers
9  *
10  *  In contrast to the low-resolution timeout API implemented in
11  *  kernel/timer.c, hrtimers provide finer resolution and accuracy
12  *  depending on system configuration and capabilities.
13  *
14  *  These timers are currently used for:
15  *   - itimers
16  *   - POSIX timers
17  *   - nanosleep
18  *   - precise in-kernel timing
19  *
20  *  Started by: Thomas Gleixner and Ingo Molnar
21  *
22  *  Credits:
23  *	based on kernel/timer.c
24  *
25  *	Help, testing, suggestions, bugfixes, improvements were
26  *	provided by:
27  *
28  *	George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29  *	et. al.
30  *
31  *  For licencing details see kernel-base/COPYING
32  */
33 
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/interrupt.h>
41 #include <linux/tick.h>
42 #include <linux/seq_file.h>
43 #include <linux/err.h>
44 #include <linux/debugobjects.h>
45 #include <linux/sched/signal.h>
46 #include <linux/sched/sysctl.h>
47 #include <linux/sched/rt.h>
48 #include <linux/sched/deadline.h>
49 #include <linux/sched/nohz.h>
50 #include <linux/sched/debug.h>
51 #include <linux/timer.h>
52 #include <linux/freezer.h>
53 #include <linux/compat.h>
54 
55 #include <linux/uaccess.h>
56 
57 #include <trace/events/timer.h>
58 
59 #include "tick-internal.h"
60 
61 /*
62  * Masks for selecting the soft and hard context timers from
63  * cpu_base->active
64  */
65 #define MASK_SHIFT		(HRTIMER_BASE_MONOTONIC_SOFT)
66 #define HRTIMER_ACTIVE_HARD	((1U << MASK_SHIFT) - 1)
67 #define HRTIMER_ACTIVE_SOFT	(HRTIMER_ACTIVE_HARD << MASK_SHIFT)
68 #define HRTIMER_ACTIVE_ALL	(HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
69 
70 /*
71  * The timer bases:
72  *
73  * There are more clockids than hrtimer bases. Thus, we index
74  * into the timer bases by the hrtimer_base_type enum. When trying
75  * to reach a base using a clockid, hrtimer_clockid_to_base()
76  * is used to convert from clockid to the proper hrtimer_base_type.
77  */
78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
79 {
80 	.lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
81 	.clock_base =
82 	{
83 		{
84 			.index = HRTIMER_BASE_MONOTONIC,
85 			.clockid = CLOCK_MONOTONIC,
86 			.get_time = &ktime_get,
87 		},
88 		{
89 			.index = HRTIMER_BASE_REALTIME,
90 			.clockid = CLOCK_REALTIME,
91 			.get_time = &ktime_get_real,
92 		},
93 		{
94 			.index = HRTIMER_BASE_BOOTTIME,
95 			.clockid = CLOCK_BOOTTIME,
96 			.get_time = &ktime_get_boottime,
97 		},
98 		{
99 			.index = HRTIMER_BASE_TAI,
100 			.clockid = CLOCK_TAI,
101 			.get_time = &ktime_get_clocktai,
102 		},
103 		{
104 			.index = HRTIMER_BASE_MONOTONIC_SOFT,
105 			.clockid = CLOCK_MONOTONIC,
106 			.get_time = &ktime_get,
107 		},
108 		{
109 			.index = HRTIMER_BASE_REALTIME_SOFT,
110 			.clockid = CLOCK_REALTIME,
111 			.get_time = &ktime_get_real,
112 		},
113 		{
114 			.index = HRTIMER_BASE_BOOTTIME_SOFT,
115 			.clockid = CLOCK_BOOTTIME,
116 			.get_time = &ktime_get_boottime,
117 		},
118 		{
119 			.index = HRTIMER_BASE_TAI_SOFT,
120 			.clockid = CLOCK_TAI,
121 			.get_time = &ktime_get_clocktai,
122 		},
123 	}
124 };
125 
126 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
127 	/* Make sure we catch unsupported clockids */
128 	[0 ... MAX_CLOCKS - 1]	= HRTIMER_MAX_CLOCK_BASES,
129 
130 	[CLOCK_REALTIME]	= HRTIMER_BASE_REALTIME,
131 	[CLOCK_MONOTONIC]	= HRTIMER_BASE_MONOTONIC,
132 	[CLOCK_BOOTTIME]	= HRTIMER_BASE_BOOTTIME,
133 	[CLOCK_TAI]		= HRTIMER_BASE_TAI,
134 };
135 
136 /*
137  * Functions and macros which are different for UP/SMP systems are kept in a
138  * single place
139  */
140 #ifdef CONFIG_SMP
141 
142 /*
143  * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
144  * such that hrtimer_callback_running() can unconditionally dereference
145  * timer->base->cpu_base
146  */
147 static struct hrtimer_cpu_base migration_cpu_base = {
148 	.clock_base = { { .cpu_base = &migration_cpu_base, }, },
149 };
150 
151 #define migration_base	migration_cpu_base.clock_base[0]
152 
153 /*
154  * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155  * means that all timers which are tied to this base via timer->base are
156  * locked, and the base itself is locked too.
157  *
158  * So __run_timers/migrate_timers can safely modify all timers which could
159  * be found on the lists/queues.
160  *
161  * When the timer's base is locked, and the timer removed from list, it is
162  * possible to set timer->base = &migration_base and drop the lock: the timer
163  * remains locked.
164  */
165 static
166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
167 					     unsigned long *flags)
168 {
169 	struct hrtimer_clock_base *base;
170 
171 	for (;;) {
172 		base = timer->base;
173 		if (likely(base != &migration_base)) {
174 			raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
175 			if (likely(base == timer->base))
176 				return base;
177 			/* The timer has migrated to another CPU: */
178 			raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
179 		}
180 		cpu_relax();
181 	}
182 }
183 
184 /*
185  * We do not migrate the timer when it is expiring before the next
186  * event on the target cpu. When high resolution is enabled, we cannot
187  * reprogram the target cpu hardware and we would cause it to fire
188  * late. To keep it simple, we handle the high resolution enabled and
189  * disabled case similar.
190  *
191  * Called with cpu_base->lock of target cpu held.
192  */
193 static int
194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
195 {
196 	ktime_t expires;
197 
198 	expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
199 	return expires < new_base->cpu_base->expires_next;
200 }
201 
202 static inline
203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
204 					 int pinned)
205 {
206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
207 	if (static_branch_likely(&timers_migration_enabled) && !pinned)
208 		return &per_cpu(hrtimer_bases, get_nohz_timer_target());
209 #endif
210 	return base;
211 }
212 
213 /*
214  * We switch the timer base to a power-optimized selected CPU target,
215  * if:
216  *	- NO_HZ_COMMON is enabled
217  *	- timer migration is enabled
218  *	- the timer callback is not running
219  *	- the timer is not the first expiring timer on the new target
220  *
221  * If one of the above requirements is not fulfilled we move the timer
222  * to the current CPU or leave it on the previously assigned CPU if
223  * the timer callback is currently running.
224  */
225 static inline struct hrtimer_clock_base *
226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
227 		    int pinned)
228 {
229 	struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
230 	struct hrtimer_clock_base *new_base;
231 	int basenum = base->index;
232 
233 	this_cpu_base = this_cpu_ptr(&hrtimer_bases);
234 	new_cpu_base = get_target_base(this_cpu_base, pinned);
235 again:
236 	new_base = &new_cpu_base->clock_base[basenum];
237 
238 	if (base != new_base) {
239 		/*
240 		 * We are trying to move timer to new_base.
241 		 * However we can't change timer's base while it is running,
242 		 * so we keep it on the same CPU. No hassle vs. reprogramming
243 		 * the event source in the high resolution case. The softirq
244 		 * code will take care of this when the timer function has
245 		 * completed. There is no conflict as we hold the lock until
246 		 * the timer is enqueued.
247 		 */
248 		if (unlikely(hrtimer_callback_running(timer)))
249 			return base;
250 
251 		/* See the comment in lock_hrtimer_base() */
252 		timer->base = &migration_base;
253 		raw_spin_unlock(&base->cpu_base->lock);
254 		raw_spin_lock(&new_base->cpu_base->lock);
255 
256 		if (new_cpu_base != this_cpu_base &&
257 		    hrtimer_check_target(timer, new_base)) {
258 			raw_spin_unlock(&new_base->cpu_base->lock);
259 			raw_spin_lock(&base->cpu_base->lock);
260 			new_cpu_base = this_cpu_base;
261 			timer->base = base;
262 			goto again;
263 		}
264 		timer->base = new_base;
265 	} else {
266 		if (new_cpu_base != this_cpu_base &&
267 		    hrtimer_check_target(timer, new_base)) {
268 			new_cpu_base = this_cpu_base;
269 			goto again;
270 		}
271 	}
272 	return new_base;
273 }
274 
275 #else /* CONFIG_SMP */
276 
277 static inline struct hrtimer_clock_base *
278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
279 {
280 	struct hrtimer_clock_base *base = timer->base;
281 
282 	raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
283 
284 	return base;
285 }
286 
287 # define switch_hrtimer_base(t, b, p)	(b)
288 
289 #endif	/* !CONFIG_SMP */
290 
291 /*
292  * Functions for the union type storage format of ktime_t which are
293  * too large for inlining:
294  */
295 #if BITS_PER_LONG < 64
296 /*
297  * Divide a ktime value by a nanosecond value
298  */
299 s64 __ktime_divns(const ktime_t kt, s64 div)
300 {
301 	int sft = 0;
302 	s64 dclc;
303 	u64 tmp;
304 
305 	dclc = ktime_to_ns(kt);
306 	tmp = dclc < 0 ? -dclc : dclc;
307 
308 	/* Make sure the divisor is less than 2^32: */
309 	while (div >> 32) {
310 		sft++;
311 		div >>= 1;
312 	}
313 	tmp >>= sft;
314 	do_div(tmp, (unsigned long) div);
315 	return dclc < 0 ? -tmp : tmp;
316 }
317 EXPORT_SYMBOL_GPL(__ktime_divns);
318 #endif /* BITS_PER_LONG >= 64 */
319 
320 /*
321  * Add two ktime values and do a safety check for overflow:
322  */
323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
324 {
325 	ktime_t res = ktime_add_unsafe(lhs, rhs);
326 
327 	/*
328 	 * We use KTIME_SEC_MAX here, the maximum timeout which we can
329 	 * return to user space in a timespec:
330 	 */
331 	if (res < 0 || res < lhs || res < rhs)
332 		res = ktime_set(KTIME_SEC_MAX, 0);
333 
334 	return res;
335 }
336 
337 EXPORT_SYMBOL_GPL(ktime_add_safe);
338 
339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
340 
341 static struct debug_obj_descr hrtimer_debug_descr;
342 
343 static void *hrtimer_debug_hint(void *addr)
344 {
345 	return ((struct hrtimer *) addr)->function;
346 }
347 
348 /*
349  * fixup_init is called when:
350  * - an active object is initialized
351  */
352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
353 {
354 	struct hrtimer *timer = addr;
355 
356 	switch (state) {
357 	case ODEBUG_STATE_ACTIVE:
358 		hrtimer_cancel(timer);
359 		debug_object_init(timer, &hrtimer_debug_descr);
360 		return true;
361 	default:
362 		return false;
363 	}
364 }
365 
366 /*
367  * fixup_activate is called when:
368  * - an active object is activated
369  * - an unknown non-static object is activated
370  */
371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
372 {
373 	switch (state) {
374 	case ODEBUG_STATE_ACTIVE:
375 		WARN_ON(1);
376 
377 	default:
378 		return false;
379 	}
380 }
381 
382 /*
383  * fixup_free is called when:
384  * - an active object is freed
385  */
386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
387 {
388 	struct hrtimer *timer = addr;
389 
390 	switch (state) {
391 	case ODEBUG_STATE_ACTIVE:
392 		hrtimer_cancel(timer);
393 		debug_object_free(timer, &hrtimer_debug_descr);
394 		return true;
395 	default:
396 		return false;
397 	}
398 }
399 
400 static struct debug_obj_descr hrtimer_debug_descr = {
401 	.name		= "hrtimer",
402 	.debug_hint	= hrtimer_debug_hint,
403 	.fixup_init	= hrtimer_fixup_init,
404 	.fixup_activate	= hrtimer_fixup_activate,
405 	.fixup_free	= hrtimer_fixup_free,
406 };
407 
408 static inline void debug_hrtimer_init(struct hrtimer *timer)
409 {
410 	debug_object_init(timer, &hrtimer_debug_descr);
411 }
412 
413 static inline void debug_hrtimer_activate(struct hrtimer *timer,
414 					  enum hrtimer_mode mode)
415 {
416 	debug_object_activate(timer, &hrtimer_debug_descr);
417 }
418 
419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
420 {
421 	debug_object_deactivate(timer, &hrtimer_debug_descr);
422 }
423 
424 static inline void debug_hrtimer_free(struct hrtimer *timer)
425 {
426 	debug_object_free(timer, &hrtimer_debug_descr);
427 }
428 
429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
430 			   enum hrtimer_mode mode);
431 
432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
433 			   enum hrtimer_mode mode)
434 {
435 	debug_object_init_on_stack(timer, &hrtimer_debug_descr);
436 	__hrtimer_init(timer, clock_id, mode);
437 }
438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
439 
440 void destroy_hrtimer_on_stack(struct hrtimer *timer)
441 {
442 	debug_object_free(timer, &hrtimer_debug_descr);
443 }
444 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
445 
446 #else
447 
448 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
449 static inline void debug_hrtimer_activate(struct hrtimer *timer,
450 					  enum hrtimer_mode mode) { }
451 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
452 #endif
453 
454 static inline void
455 debug_init(struct hrtimer *timer, clockid_t clockid,
456 	   enum hrtimer_mode mode)
457 {
458 	debug_hrtimer_init(timer);
459 	trace_hrtimer_init(timer, clockid, mode);
460 }
461 
462 static inline void debug_activate(struct hrtimer *timer,
463 				  enum hrtimer_mode mode)
464 {
465 	debug_hrtimer_activate(timer, mode);
466 	trace_hrtimer_start(timer, mode);
467 }
468 
469 static inline void debug_deactivate(struct hrtimer *timer)
470 {
471 	debug_hrtimer_deactivate(timer);
472 	trace_hrtimer_cancel(timer);
473 }
474 
475 static struct hrtimer_clock_base *
476 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
477 {
478 	unsigned int idx;
479 
480 	if (!*active)
481 		return NULL;
482 
483 	idx = __ffs(*active);
484 	*active &= ~(1U << idx);
485 
486 	return &cpu_base->clock_base[idx];
487 }
488 
489 #define for_each_active_base(base, cpu_base, active)	\
490 	while ((base = __next_base((cpu_base), &(active))))
491 
492 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
493 					 unsigned int active,
494 					 ktime_t expires_next)
495 {
496 	struct hrtimer_clock_base *base;
497 	ktime_t expires;
498 
499 	for_each_active_base(base, cpu_base, active) {
500 		struct timerqueue_node *next;
501 		struct hrtimer *timer;
502 
503 		next = timerqueue_getnext(&base->active);
504 		timer = container_of(next, struct hrtimer, node);
505 		expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
506 		if (expires < expires_next) {
507 			expires_next = expires;
508 			if (timer->is_soft)
509 				cpu_base->softirq_next_timer = timer;
510 			else
511 				cpu_base->next_timer = timer;
512 		}
513 	}
514 	/*
515 	 * clock_was_set() might have changed base->offset of any of
516 	 * the clock bases so the result might be negative. Fix it up
517 	 * to prevent a false positive in clockevents_program_event().
518 	 */
519 	if (expires_next < 0)
520 		expires_next = 0;
521 	return expires_next;
522 }
523 
524 /*
525  * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
526  * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
527  *
528  * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
529  * those timers will get run whenever the softirq gets handled, at the end of
530  * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
531  *
532  * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
533  * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
534  * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
535  *
536  * @active_mask must be one of:
537  *  - HRTIMER_ACTIVE_ALL,
538  *  - HRTIMER_ACTIVE_SOFT, or
539  *  - HRTIMER_ACTIVE_HARD.
540  */
541 static ktime_t
542 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
543 {
544 	unsigned int active;
545 	struct hrtimer *next_timer = NULL;
546 	ktime_t expires_next = KTIME_MAX;
547 
548 	if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
549 		active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
550 		cpu_base->softirq_next_timer = NULL;
551 		expires_next = __hrtimer_next_event_base(cpu_base, active, KTIME_MAX);
552 
553 		next_timer = cpu_base->softirq_next_timer;
554 	}
555 
556 	if (active_mask & HRTIMER_ACTIVE_HARD) {
557 		active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
558 		cpu_base->next_timer = next_timer;
559 		expires_next = __hrtimer_next_event_base(cpu_base, active, expires_next);
560 	}
561 
562 	return expires_next;
563 }
564 
565 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
566 {
567 	ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
568 	ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
569 	ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
570 
571 	ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
572 					    offs_real, offs_boot, offs_tai);
573 
574 	base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
575 	base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
576 	base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
577 
578 	return now;
579 }
580 
581 /*
582  * Is the high resolution mode active ?
583  */
584 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
585 {
586 	return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
587 		cpu_base->hres_active : 0;
588 }
589 
590 static inline int hrtimer_hres_active(void)
591 {
592 	return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
593 }
594 
595 /*
596  * Reprogram the event source with checking both queues for the
597  * next event
598  * Called with interrupts disabled and base->lock held
599  */
600 static void
601 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
602 {
603 	ktime_t expires_next;
604 
605 	/*
606 	 * Find the current next expiration time.
607 	 */
608 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
609 
610 	if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
611 		/*
612 		 * When the softirq is activated, hrtimer has to be
613 		 * programmed with the first hard hrtimer because soft
614 		 * timer interrupt could occur too late.
615 		 */
616 		if (cpu_base->softirq_activated)
617 			expires_next = __hrtimer_get_next_event(cpu_base,
618 								HRTIMER_ACTIVE_HARD);
619 		else
620 			cpu_base->softirq_expires_next = expires_next;
621 	}
622 
623 	if (skip_equal && expires_next == cpu_base->expires_next)
624 		return;
625 
626 	cpu_base->expires_next = expires_next;
627 
628 	/*
629 	 * If hres is not active, hardware does not have to be
630 	 * reprogrammed yet.
631 	 *
632 	 * If a hang was detected in the last timer interrupt then we
633 	 * leave the hang delay active in the hardware. We want the
634 	 * system to make progress. That also prevents the following
635 	 * scenario:
636 	 * T1 expires 50ms from now
637 	 * T2 expires 5s from now
638 	 *
639 	 * T1 is removed, so this code is called and would reprogram
640 	 * the hardware to 5s from now. Any hrtimer_start after that
641 	 * will not reprogram the hardware due to hang_detected being
642 	 * set. So we'd effectivly block all timers until the T2 event
643 	 * fires.
644 	 */
645 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
646 		return;
647 
648 	tick_program_event(cpu_base->expires_next, 1);
649 }
650 
651 /* High resolution timer related functions */
652 #ifdef CONFIG_HIGH_RES_TIMERS
653 
654 /*
655  * High resolution timer enabled ?
656  */
657 static bool hrtimer_hres_enabled __read_mostly  = true;
658 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
659 EXPORT_SYMBOL_GPL(hrtimer_resolution);
660 
661 /*
662  * Enable / Disable high resolution mode
663  */
664 static int __init setup_hrtimer_hres(char *str)
665 {
666 	return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
667 }
668 
669 __setup("highres=", setup_hrtimer_hres);
670 
671 /*
672  * hrtimer_high_res_enabled - query, if the highres mode is enabled
673  */
674 static inline int hrtimer_is_hres_enabled(void)
675 {
676 	return hrtimer_hres_enabled;
677 }
678 
679 /*
680  * Retrigger next event is called after clock was set
681  *
682  * Called with interrupts disabled via on_each_cpu()
683  */
684 static void retrigger_next_event(void *arg)
685 {
686 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
687 
688 	if (!__hrtimer_hres_active(base))
689 		return;
690 
691 	raw_spin_lock(&base->lock);
692 	hrtimer_update_base(base);
693 	hrtimer_force_reprogram(base, 0);
694 	raw_spin_unlock(&base->lock);
695 }
696 
697 /*
698  * Switch to high resolution mode
699  */
700 static void hrtimer_switch_to_hres(void)
701 {
702 	struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
703 
704 	if (tick_init_highres()) {
705 		printk(KERN_WARNING "Could not switch to high resolution "
706 				    "mode on CPU %d\n", base->cpu);
707 		return;
708 	}
709 	base->hres_active = 1;
710 	hrtimer_resolution = HIGH_RES_NSEC;
711 
712 	tick_setup_sched_timer();
713 	/* "Retrigger" the interrupt to get things going */
714 	retrigger_next_event(NULL);
715 }
716 
717 static void clock_was_set_work(struct work_struct *work)
718 {
719 	clock_was_set();
720 }
721 
722 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
723 
724 /*
725  * Called from timekeeping and resume code to reprogram the hrtimer
726  * interrupt device on all cpus.
727  */
728 void clock_was_set_delayed(void)
729 {
730 	schedule_work(&hrtimer_work);
731 }
732 
733 #else
734 
735 static inline int hrtimer_is_hres_enabled(void) { return 0; }
736 static inline void hrtimer_switch_to_hres(void) { }
737 static inline void retrigger_next_event(void *arg) { }
738 
739 #endif /* CONFIG_HIGH_RES_TIMERS */
740 
741 /*
742  * When a timer is enqueued and expires earlier than the already enqueued
743  * timers, we have to check, whether it expires earlier than the timer for
744  * which the clock event device was armed.
745  *
746  * Called with interrupts disabled and base->cpu_base.lock held
747  */
748 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
749 {
750 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
751 	struct hrtimer_clock_base *base = timer->base;
752 	ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
753 
754 	WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
755 
756 	/*
757 	 * CLOCK_REALTIME timer might be requested with an absolute
758 	 * expiry time which is less than base->offset. Set it to 0.
759 	 */
760 	if (expires < 0)
761 		expires = 0;
762 
763 	if (timer->is_soft) {
764 		/*
765 		 * soft hrtimer could be started on a remote CPU. In this
766 		 * case softirq_expires_next needs to be updated on the
767 		 * remote CPU. The soft hrtimer will not expire before the
768 		 * first hard hrtimer on the remote CPU -
769 		 * hrtimer_check_target() prevents this case.
770 		 */
771 		struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
772 
773 		if (timer_cpu_base->softirq_activated)
774 			return;
775 
776 		if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
777 			return;
778 
779 		timer_cpu_base->softirq_next_timer = timer;
780 		timer_cpu_base->softirq_expires_next = expires;
781 
782 		if (!ktime_before(expires, timer_cpu_base->expires_next) ||
783 		    !reprogram)
784 			return;
785 	}
786 
787 	/*
788 	 * If the timer is not on the current cpu, we cannot reprogram
789 	 * the other cpus clock event device.
790 	 */
791 	if (base->cpu_base != cpu_base)
792 		return;
793 
794 	/*
795 	 * If the hrtimer interrupt is running, then it will
796 	 * reevaluate the clock bases and reprogram the clock event
797 	 * device. The callbacks are always executed in hard interrupt
798 	 * context so we don't need an extra check for a running
799 	 * callback.
800 	 */
801 	if (cpu_base->in_hrtirq)
802 		return;
803 
804 	if (expires >= cpu_base->expires_next)
805 		return;
806 
807 	/* Update the pointer to the next expiring timer */
808 	cpu_base->next_timer = timer;
809 	cpu_base->expires_next = expires;
810 
811 	/*
812 	 * If hres is not active, hardware does not have to be
813 	 * programmed yet.
814 	 *
815 	 * If a hang was detected in the last timer interrupt then we
816 	 * do not schedule a timer which is earlier than the expiry
817 	 * which we enforced in the hang detection. We want the system
818 	 * to make progress.
819 	 */
820 	if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
821 		return;
822 
823 	/*
824 	 * Program the timer hardware. We enforce the expiry for
825 	 * events which are already in the past.
826 	 */
827 	tick_program_event(expires, 1);
828 }
829 
830 /*
831  * Clock realtime was set
832  *
833  * Change the offset of the realtime clock vs. the monotonic
834  * clock.
835  *
836  * We might have to reprogram the high resolution timer interrupt. On
837  * SMP we call the architecture specific code to retrigger _all_ high
838  * resolution timer interrupts. On UP we just disable interrupts and
839  * call the high resolution interrupt code.
840  */
841 void clock_was_set(void)
842 {
843 #ifdef CONFIG_HIGH_RES_TIMERS
844 	/* Retrigger the CPU local events everywhere */
845 	on_each_cpu(retrigger_next_event, NULL, 1);
846 #endif
847 	timerfd_clock_was_set();
848 }
849 
850 /*
851  * During resume we might have to reprogram the high resolution timer
852  * interrupt on all online CPUs.  However, all other CPUs will be
853  * stopped with IRQs interrupts disabled so the clock_was_set() call
854  * must be deferred.
855  */
856 void hrtimers_resume(void)
857 {
858 	lockdep_assert_irqs_disabled();
859 	/* Retrigger on the local CPU */
860 	retrigger_next_event(NULL);
861 	/* And schedule a retrigger for all others */
862 	clock_was_set_delayed();
863 }
864 
865 /*
866  * Counterpart to lock_hrtimer_base above:
867  */
868 static inline
869 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
870 {
871 	raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
872 }
873 
874 /**
875  * hrtimer_forward - forward the timer expiry
876  * @timer:	hrtimer to forward
877  * @now:	forward past this time
878  * @interval:	the interval to forward
879  *
880  * Forward the timer expiry so it will expire in the future.
881  * Returns the number of overruns.
882  *
883  * Can be safely called from the callback function of @timer. If
884  * called from other contexts @timer must neither be enqueued nor
885  * running the callback and the caller needs to take care of
886  * serialization.
887  *
888  * Note: This only updates the timer expiry value and does not requeue
889  * the timer.
890  */
891 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
892 {
893 	u64 orun = 1;
894 	ktime_t delta;
895 
896 	delta = ktime_sub(now, hrtimer_get_expires(timer));
897 
898 	if (delta < 0)
899 		return 0;
900 
901 	if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
902 		return 0;
903 
904 	if (interval < hrtimer_resolution)
905 		interval = hrtimer_resolution;
906 
907 	if (unlikely(delta >= interval)) {
908 		s64 incr = ktime_to_ns(interval);
909 
910 		orun = ktime_divns(delta, incr);
911 		hrtimer_add_expires_ns(timer, incr * orun);
912 		if (hrtimer_get_expires_tv64(timer) > now)
913 			return orun;
914 		/*
915 		 * This (and the ktime_add() below) is the
916 		 * correction for exact:
917 		 */
918 		orun++;
919 	}
920 	hrtimer_add_expires(timer, interval);
921 
922 	return orun;
923 }
924 EXPORT_SYMBOL_GPL(hrtimer_forward);
925 
926 /*
927  * enqueue_hrtimer - internal function to (re)start a timer
928  *
929  * The timer is inserted in expiry order. Insertion into the
930  * red black tree is O(log(n)). Must hold the base lock.
931  *
932  * Returns 1 when the new timer is the leftmost timer in the tree.
933  */
934 static int enqueue_hrtimer(struct hrtimer *timer,
935 			   struct hrtimer_clock_base *base,
936 			   enum hrtimer_mode mode)
937 {
938 	debug_activate(timer, mode);
939 
940 	base->cpu_base->active_bases |= 1 << base->index;
941 
942 	timer->state = HRTIMER_STATE_ENQUEUED;
943 
944 	return timerqueue_add(&base->active, &timer->node);
945 }
946 
947 /*
948  * __remove_hrtimer - internal function to remove a timer
949  *
950  * Caller must hold the base lock.
951  *
952  * High resolution timer mode reprograms the clock event device when the
953  * timer is the one which expires next. The caller can disable this by setting
954  * reprogram to zero. This is useful, when the context does a reprogramming
955  * anyway (e.g. timer interrupt)
956  */
957 static void __remove_hrtimer(struct hrtimer *timer,
958 			     struct hrtimer_clock_base *base,
959 			     u8 newstate, int reprogram)
960 {
961 	struct hrtimer_cpu_base *cpu_base = base->cpu_base;
962 	u8 state = timer->state;
963 
964 	timer->state = newstate;
965 	if (!(state & HRTIMER_STATE_ENQUEUED))
966 		return;
967 
968 	if (!timerqueue_del(&base->active, &timer->node))
969 		cpu_base->active_bases &= ~(1 << base->index);
970 
971 	/*
972 	 * Note: If reprogram is false we do not update
973 	 * cpu_base->next_timer. This happens when we remove the first
974 	 * timer on a remote cpu. No harm as we never dereference
975 	 * cpu_base->next_timer. So the worst thing what can happen is
976 	 * an superflous call to hrtimer_force_reprogram() on the
977 	 * remote cpu later on if the same timer gets enqueued again.
978 	 */
979 	if (reprogram && timer == cpu_base->next_timer)
980 		hrtimer_force_reprogram(cpu_base, 1);
981 }
982 
983 /*
984  * remove hrtimer, called with base lock held
985  */
986 static inline int
987 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
988 {
989 	if (hrtimer_is_queued(timer)) {
990 		u8 state = timer->state;
991 		int reprogram;
992 
993 		/*
994 		 * Remove the timer and force reprogramming when high
995 		 * resolution mode is active and the timer is on the current
996 		 * CPU. If we remove a timer on another CPU, reprogramming is
997 		 * skipped. The interrupt event on this CPU is fired and
998 		 * reprogramming happens in the interrupt handler. This is a
999 		 * rare case and less expensive than a smp call.
1000 		 */
1001 		debug_deactivate(timer);
1002 		reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
1003 
1004 		if (!restart)
1005 			state = HRTIMER_STATE_INACTIVE;
1006 
1007 		__remove_hrtimer(timer, base, state, reprogram);
1008 		return 1;
1009 	}
1010 	return 0;
1011 }
1012 
1013 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1014 					    const enum hrtimer_mode mode)
1015 {
1016 #ifdef CONFIG_TIME_LOW_RES
1017 	/*
1018 	 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1019 	 * granular time values. For relative timers we add hrtimer_resolution
1020 	 * (i.e. one jiffie) to prevent short timeouts.
1021 	 */
1022 	timer->is_rel = mode & HRTIMER_MODE_REL;
1023 	if (timer->is_rel)
1024 		tim = ktime_add_safe(tim, hrtimer_resolution);
1025 #endif
1026 	return tim;
1027 }
1028 
1029 static void
1030 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1031 {
1032 	ktime_t expires;
1033 
1034 	/*
1035 	 * Find the next SOFT expiration.
1036 	 */
1037 	expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1038 
1039 	/*
1040 	 * reprogramming needs to be triggered, even if the next soft
1041 	 * hrtimer expires at the same time than the next hard
1042 	 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1043 	 */
1044 	if (expires == KTIME_MAX)
1045 		return;
1046 
1047 	/*
1048 	 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1049 	 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1050 	 */
1051 	hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1052 }
1053 
1054 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1055 				    u64 delta_ns, const enum hrtimer_mode mode,
1056 				    struct hrtimer_clock_base *base)
1057 {
1058 	struct hrtimer_clock_base *new_base;
1059 
1060 	/* Remove an active timer from the queue: */
1061 	remove_hrtimer(timer, base, true);
1062 
1063 	if (mode & HRTIMER_MODE_REL)
1064 		tim = ktime_add_safe(tim, base->get_time());
1065 
1066 	tim = hrtimer_update_lowres(timer, tim, mode);
1067 
1068 	hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1069 
1070 	/* Switch the timer base, if necessary: */
1071 	new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1072 
1073 	return enqueue_hrtimer(timer, new_base, mode);
1074 }
1075 
1076 /**
1077  * hrtimer_start_range_ns - (re)start an hrtimer
1078  * @timer:	the timer to be added
1079  * @tim:	expiry time
1080  * @delta_ns:	"slack" range for the timer
1081  * @mode:	timer mode: absolute (HRTIMER_MODE_ABS) or
1082  *		relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1083  *		softirq based mode is considered for debug purpose only!
1084  */
1085 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1086 			    u64 delta_ns, const enum hrtimer_mode mode)
1087 {
1088 	struct hrtimer_clock_base *base;
1089 	unsigned long flags;
1090 
1091 	/*
1092 	 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1093 	 * match.
1094 	 */
1095 	WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1096 
1097 	base = lock_hrtimer_base(timer, &flags);
1098 
1099 	if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
1100 		hrtimer_reprogram(timer, true);
1101 
1102 	unlock_hrtimer_base(timer, &flags);
1103 }
1104 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1105 
1106 /**
1107  * hrtimer_try_to_cancel - try to deactivate a timer
1108  * @timer:	hrtimer to stop
1109  *
1110  * Returns:
1111  *  0 when the timer was not active
1112  *  1 when the timer was active
1113  * -1 when the timer is currently executing the callback function and
1114  *    cannot be stopped
1115  */
1116 int hrtimer_try_to_cancel(struct hrtimer *timer)
1117 {
1118 	struct hrtimer_clock_base *base;
1119 	unsigned long flags;
1120 	int ret = -1;
1121 
1122 	/*
1123 	 * Check lockless first. If the timer is not active (neither
1124 	 * enqueued nor running the callback, nothing to do here.  The
1125 	 * base lock does not serialize against a concurrent enqueue,
1126 	 * so we can avoid taking it.
1127 	 */
1128 	if (!hrtimer_active(timer))
1129 		return 0;
1130 
1131 	base = lock_hrtimer_base(timer, &flags);
1132 
1133 	if (!hrtimer_callback_running(timer))
1134 		ret = remove_hrtimer(timer, base, false);
1135 
1136 	unlock_hrtimer_base(timer, &flags);
1137 
1138 	return ret;
1139 
1140 }
1141 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1142 
1143 /**
1144  * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1145  * @timer:	the timer to be cancelled
1146  *
1147  * Returns:
1148  *  0 when the timer was not active
1149  *  1 when the timer was active
1150  */
1151 int hrtimer_cancel(struct hrtimer *timer)
1152 {
1153 	for (;;) {
1154 		int ret = hrtimer_try_to_cancel(timer);
1155 
1156 		if (ret >= 0)
1157 			return ret;
1158 		cpu_relax();
1159 	}
1160 }
1161 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1162 
1163 /**
1164  * hrtimer_get_remaining - get remaining time for the timer
1165  * @timer:	the timer to read
1166  * @adjust:	adjust relative timers when CONFIG_TIME_LOW_RES=y
1167  */
1168 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
1169 {
1170 	unsigned long flags;
1171 	ktime_t rem;
1172 
1173 	lock_hrtimer_base(timer, &flags);
1174 	if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1175 		rem = hrtimer_expires_remaining_adjusted(timer);
1176 	else
1177 		rem = hrtimer_expires_remaining(timer);
1178 	unlock_hrtimer_base(timer, &flags);
1179 
1180 	return rem;
1181 }
1182 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
1183 
1184 #ifdef CONFIG_NO_HZ_COMMON
1185 /**
1186  * hrtimer_get_next_event - get the time until next expiry event
1187  *
1188  * Returns the next expiry time or KTIME_MAX if no timer is pending.
1189  */
1190 u64 hrtimer_get_next_event(void)
1191 {
1192 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1193 	u64 expires = KTIME_MAX;
1194 	unsigned long flags;
1195 
1196 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1197 
1198 	if (!__hrtimer_hres_active(cpu_base))
1199 		expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1200 
1201 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1202 
1203 	return expires;
1204 }
1205 #endif
1206 
1207 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1208 {
1209 	if (likely(clock_id < MAX_CLOCKS)) {
1210 		int base = hrtimer_clock_to_base_table[clock_id];
1211 
1212 		if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1213 			return base;
1214 	}
1215 	WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1216 	return HRTIMER_BASE_MONOTONIC;
1217 }
1218 
1219 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1220 			   enum hrtimer_mode mode)
1221 {
1222 	bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1223 	int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
1224 	struct hrtimer_cpu_base *cpu_base;
1225 
1226 	memset(timer, 0, sizeof(struct hrtimer));
1227 
1228 	cpu_base = raw_cpu_ptr(&hrtimer_bases);
1229 
1230 	/*
1231 	 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1232 	 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1233 	 * ensure POSIX compliance.
1234 	 */
1235 	if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
1236 		clock_id = CLOCK_MONOTONIC;
1237 
1238 	base += hrtimer_clockid_to_base(clock_id);
1239 	timer->is_soft = softtimer;
1240 	timer->base = &cpu_base->clock_base[base];
1241 	timerqueue_init(&timer->node);
1242 }
1243 
1244 /**
1245  * hrtimer_init - initialize a timer to the given clock
1246  * @timer:	the timer to be initialized
1247  * @clock_id:	the clock to be used
1248  * @mode:       The modes which are relevant for intitialization:
1249  *              HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1250  *              HRTIMER_MODE_REL_SOFT
1251  *
1252  *              The PINNED variants of the above can be handed in,
1253  *              but the PINNED bit is ignored as pinning happens
1254  *              when the hrtimer is started
1255  */
1256 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1257 		  enum hrtimer_mode mode)
1258 {
1259 	debug_init(timer, clock_id, mode);
1260 	__hrtimer_init(timer, clock_id, mode);
1261 }
1262 EXPORT_SYMBOL_GPL(hrtimer_init);
1263 
1264 /*
1265  * A timer is active, when it is enqueued into the rbtree or the
1266  * callback function is running or it's in the state of being migrated
1267  * to another cpu.
1268  *
1269  * It is important for this function to not return a false negative.
1270  */
1271 bool hrtimer_active(const struct hrtimer *timer)
1272 {
1273 	struct hrtimer_clock_base *base;
1274 	unsigned int seq;
1275 
1276 	do {
1277 		base = READ_ONCE(timer->base);
1278 		seq = raw_read_seqcount_begin(&base->seq);
1279 
1280 		if (timer->state != HRTIMER_STATE_INACTIVE ||
1281 		    base->running == timer)
1282 			return true;
1283 
1284 	} while (read_seqcount_retry(&base->seq, seq) ||
1285 		 base != READ_ONCE(timer->base));
1286 
1287 	return false;
1288 }
1289 EXPORT_SYMBOL_GPL(hrtimer_active);
1290 
1291 /*
1292  * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1293  * distinct sections:
1294  *
1295  *  - queued:	the timer is queued
1296  *  - callback:	the timer is being ran
1297  *  - post:	the timer is inactive or (re)queued
1298  *
1299  * On the read side we ensure we observe timer->state and cpu_base->running
1300  * from the same section, if anything changed while we looked at it, we retry.
1301  * This includes timer->base changing because sequence numbers alone are
1302  * insufficient for that.
1303  *
1304  * The sequence numbers are required because otherwise we could still observe
1305  * a false negative if the read side got smeared over multiple consequtive
1306  * __run_hrtimer() invocations.
1307  */
1308 
1309 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1310 			  struct hrtimer_clock_base *base,
1311 			  struct hrtimer *timer, ktime_t *now,
1312 			  unsigned long flags)
1313 {
1314 	enum hrtimer_restart (*fn)(struct hrtimer *);
1315 	int restart;
1316 
1317 	lockdep_assert_held(&cpu_base->lock);
1318 
1319 	debug_deactivate(timer);
1320 	base->running = timer;
1321 
1322 	/*
1323 	 * Separate the ->running assignment from the ->state assignment.
1324 	 *
1325 	 * As with a regular write barrier, this ensures the read side in
1326 	 * hrtimer_active() cannot observe base->running == NULL &&
1327 	 * timer->state == INACTIVE.
1328 	 */
1329 	raw_write_seqcount_barrier(&base->seq);
1330 
1331 	__remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
1332 	fn = timer->function;
1333 
1334 	/*
1335 	 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1336 	 * timer is restarted with a period then it becomes an absolute
1337 	 * timer. If its not restarted it does not matter.
1338 	 */
1339 	if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1340 		timer->is_rel = false;
1341 
1342 	/*
1343 	 * The timer is marked as running in the CPU base, so it is
1344 	 * protected against migration to a different CPU even if the lock
1345 	 * is dropped.
1346 	 */
1347 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1348 	trace_hrtimer_expire_entry(timer, now);
1349 	restart = fn(timer);
1350 	trace_hrtimer_expire_exit(timer);
1351 	raw_spin_lock_irq(&cpu_base->lock);
1352 
1353 	/*
1354 	 * Note: We clear the running state after enqueue_hrtimer and
1355 	 * we do not reprogram the event hardware. Happens either in
1356 	 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1357 	 *
1358 	 * Note: Because we dropped the cpu_base->lock above,
1359 	 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1360 	 * for us already.
1361 	 */
1362 	if (restart != HRTIMER_NORESTART &&
1363 	    !(timer->state & HRTIMER_STATE_ENQUEUED))
1364 		enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
1365 
1366 	/*
1367 	 * Separate the ->running assignment from the ->state assignment.
1368 	 *
1369 	 * As with a regular write barrier, this ensures the read side in
1370 	 * hrtimer_active() cannot observe base->running.timer == NULL &&
1371 	 * timer->state == INACTIVE.
1372 	 */
1373 	raw_write_seqcount_barrier(&base->seq);
1374 
1375 	WARN_ON_ONCE(base->running != timer);
1376 	base->running = NULL;
1377 }
1378 
1379 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
1380 				 unsigned long flags, unsigned int active_mask)
1381 {
1382 	struct hrtimer_clock_base *base;
1383 	unsigned int active = cpu_base->active_bases & active_mask;
1384 
1385 	for_each_active_base(base, cpu_base, active) {
1386 		struct timerqueue_node *node;
1387 		ktime_t basenow;
1388 
1389 		basenow = ktime_add(now, base->offset);
1390 
1391 		while ((node = timerqueue_getnext(&base->active))) {
1392 			struct hrtimer *timer;
1393 
1394 			timer = container_of(node, struct hrtimer, node);
1395 
1396 			/*
1397 			 * The immediate goal for using the softexpires is
1398 			 * minimizing wakeups, not running timers at the
1399 			 * earliest interrupt after their soft expiration.
1400 			 * This allows us to avoid using a Priority Search
1401 			 * Tree, which can answer a stabbing querry for
1402 			 * overlapping intervals and instead use the simple
1403 			 * BST we already have.
1404 			 * We don't add extra wakeups by delaying timers that
1405 			 * are right-of a not yet expired timer, because that
1406 			 * timer will have to trigger a wakeup anyway.
1407 			 */
1408 			if (basenow < hrtimer_get_softexpires_tv64(timer))
1409 				break;
1410 
1411 			__run_hrtimer(cpu_base, base, timer, &basenow, flags);
1412 		}
1413 	}
1414 }
1415 
1416 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1417 {
1418 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1419 	unsigned long flags;
1420 	ktime_t now;
1421 
1422 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1423 
1424 	now = hrtimer_update_base(cpu_base);
1425 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1426 
1427 	cpu_base->softirq_activated = 0;
1428 	hrtimer_update_softirq_timer(cpu_base, true);
1429 
1430 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1431 }
1432 
1433 #ifdef CONFIG_HIGH_RES_TIMERS
1434 
1435 /*
1436  * High resolution timer interrupt
1437  * Called with interrupts disabled
1438  */
1439 void hrtimer_interrupt(struct clock_event_device *dev)
1440 {
1441 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1442 	ktime_t expires_next, now, entry_time, delta;
1443 	unsigned long flags;
1444 	int retries = 0;
1445 
1446 	BUG_ON(!cpu_base->hres_active);
1447 	cpu_base->nr_events++;
1448 	dev->next_event = KTIME_MAX;
1449 
1450 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1451 	entry_time = now = hrtimer_update_base(cpu_base);
1452 retry:
1453 	cpu_base->in_hrtirq = 1;
1454 	/*
1455 	 * We set expires_next to KTIME_MAX here with cpu_base->lock
1456 	 * held to prevent that a timer is enqueued in our queue via
1457 	 * the migration code. This does not affect enqueueing of
1458 	 * timers which run their callback and need to be requeued on
1459 	 * this CPU.
1460 	 */
1461 	cpu_base->expires_next = KTIME_MAX;
1462 
1463 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1464 		cpu_base->softirq_expires_next = KTIME_MAX;
1465 		cpu_base->softirq_activated = 1;
1466 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1467 	}
1468 
1469 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1470 
1471 	/* Reevaluate the clock bases for the next expiry */
1472 	expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
1473 	/*
1474 	 * Store the new expiry value so the migration code can verify
1475 	 * against it.
1476 	 */
1477 	cpu_base->expires_next = expires_next;
1478 	cpu_base->in_hrtirq = 0;
1479 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1480 
1481 	/* Reprogramming necessary ? */
1482 	if (!tick_program_event(expires_next, 0)) {
1483 		cpu_base->hang_detected = 0;
1484 		return;
1485 	}
1486 
1487 	/*
1488 	 * The next timer was already expired due to:
1489 	 * - tracing
1490 	 * - long lasting callbacks
1491 	 * - being scheduled away when running in a VM
1492 	 *
1493 	 * We need to prevent that we loop forever in the hrtimer
1494 	 * interrupt routine. We give it 3 attempts to avoid
1495 	 * overreacting on some spurious event.
1496 	 *
1497 	 * Acquire base lock for updating the offsets and retrieving
1498 	 * the current time.
1499 	 */
1500 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1501 	now = hrtimer_update_base(cpu_base);
1502 	cpu_base->nr_retries++;
1503 	if (++retries < 3)
1504 		goto retry;
1505 	/*
1506 	 * Give the system a chance to do something else than looping
1507 	 * here. We stored the entry time, so we know exactly how long
1508 	 * we spent here. We schedule the next event this amount of
1509 	 * time away.
1510 	 */
1511 	cpu_base->nr_hangs++;
1512 	cpu_base->hang_detected = 1;
1513 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1514 
1515 	delta = ktime_sub(now, entry_time);
1516 	if ((unsigned int)delta > cpu_base->max_hang_time)
1517 		cpu_base->max_hang_time = (unsigned int) delta;
1518 	/*
1519 	 * Limit it to a sensible value as we enforce a longer
1520 	 * delay. Give the CPU at least 100ms to catch up.
1521 	 */
1522 	if (delta > 100 * NSEC_PER_MSEC)
1523 		expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1524 	else
1525 		expires_next = ktime_add(now, delta);
1526 	tick_program_event(expires_next, 1);
1527 	printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1528 		    ktime_to_ns(delta));
1529 }
1530 
1531 /* called with interrupts disabled */
1532 static inline void __hrtimer_peek_ahead_timers(void)
1533 {
1534 	struct tick_device *td;
1535 
1536 	if (!hrtimer_hres_active())
1537 		return;
1538 
1539 	td = this_cpu_ptr(&tick_cpu_device);
1540 	if (td && td->evtdev)
1541 		hrtimer_interrupt(td->evtdev);
1542 }
1543 
1544 #else /* CONFIG_HIGH_RES_TIMERS */
1545 
1546 static inline void __hrtimer_peek_ahead_timers(void) { }
1547 
1548 #endif	/* !CONFIG_HIGH_RES_TIMERS */
1549 
1550 /*
1551  * Called from run_local_timers in hardirq context every jiffy
1552  */
1553 void hrtimer_run_queues(void)
1554 {
1555 	struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1556 	unsigned long flags;
1557 	ktime_t now;
1558 
1559 	if (__hrtimer_hres_active(cpu_base))
1560 		return;
1561 
1562 	/*
1563 	 * This _is_ ugly: We have to check periodically, whether we
1564 	 * can switch to highres and / or nohz mode. The clocksource
1565 	 * switch happens with xtime_lock held. Notification from
1566 	 * there only sets the check bit in the tick_oneshot code,
1567 	 * otherwise we might deadlock vs. xtime_lock.
1568 	 */
1569 	if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
1570 		hrtimer_switch_to_hres();
1571 		return;
1572 	}
1573 
1574 	raw_spin_lock_irqsave(&cpu_base->lock, flags);
1575 	now = hrtimer_update_base(cpu_base);
1576 
1577 	if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1578 		cpu_base->softirq_expires_next = KTIME_MAX;
1579 		cpu_base->softirq_activated = 1;
1580 		raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1581 	}
1582 
1583 	__hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
1584 	raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1585 }
1586 
1587 /*
1588  * Sleep related functions:
1589  */
1590 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1591 {
1592 	struct hrtimer_sleeper *t =
1593 		container_of(timer, struct hrtimer_sleeper, timer);
1594 	struct task_struct *task = t->task;
1595 
1596 	t->task = NULL;
1597 	if (task)
1598 		wake_up_process(task);
1599 
1600 	return HRTIMER_NORESTART;
1601 }
1602 
1603 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1604 {
1605 	sl->timer.function = hrtimer_wakeup;
1606 	sl->task = task;
1607 }
1608 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1609 
1610 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
1611 {
1612 	switch(restart->nanosleep.type) {
1613 #ifdef CONFIG_COMPAT
1614 	case TT_COMPAT:
1615 		if (compat_put_timespec64(ts, restart->nanosleep.compat_rmtp))
1616 			return -EFAULT;
1617 		break;
1618 #endif
1619 	case TT_NATIVE:
1620 		if (put_timespec64(ts, restart->nanosleep.rmtp))
1621 			return -EFAULT;
1622 		break;
1623 	default:
1624 		BUG();
1625 	}
1626 	return -ERESTART_RESTARTBLOCK;
1627 }
1628 
1629 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1630 {
1631 	struct restart_block *restart;
1632 
1633 	hrtimer_init_sleeper(t, current);
1634 
1635 	do {
1636 		set_current_state(TASK_INTERRUPTIBLE);
1637 		hrtimer_start_expires(&t->timer, mode);
1638 
1639 		if (likely(t->task))
1640 			freezable_schedule();
1641 
1642 		hrtimer_cancel(&t->timer);
1643 		mode = HRTIMER_MODE_ABS;
1644 
1645 	} while (t->task && !signal_pending(current));
1646 
1647 	__set_current_state(TASK_RUNNING);
1648 
1649 	if (!t->task)
1650 		return 0;
1651 
1652 	restart = &current->restart_block;
1653 	if (restart->nanosleep.type != TT_NONE) {
1654 		ktime_t rem = hrtimer_expires_remaining(&t->timer);
1655 		struct timespec64 rmt;
1656 
1657 		if (rem <= 0)
1658 			return 0;
1659 		rmt = ktime_to_timespec64(rem);
1660 
1661 		return nanosleep_copyout(restart, &rmt);
1662 	}
1663 	return -ERESTART_RESTARTBLOCK;
1664 }
1665 
1666 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1667 {
1668 	struct hrtimer_sleeper t;
1669 	int ret;
1670 
1671 	hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1672 				HRTIMER_MODE_ABS);
1673 	hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1674 
1675 	ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
1676 	destroy_hrtimer_on_stack(&t.timer);
1677 	return ret;
1678 }
1679 
1680 long hrtimer_nanosleep(const struct timespec64 *rqtp,
1681 		       const enum hrtimer_mode mode, const clockid_t clockid)
1682 {
1683 	struct restart_block *restart;
1684 	struct hrtimer_sleeper t;
1685 	int ret = 0;
1686 	u64 slack;
1687 
1688 	slack = current->timer_slack_ns;
1689 	if (dl_task(current) || rt_task(current))
1690 		slack = 0;
1691 
1692 	hrtimer_init_on_stack(&t.timer, clockid, mode);
1693 	hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
1694 	ret = do_nanosleep(&t, mode);
1695 	if (ret != -ERESTART_RESTARTBLOCK)
1696 		goto out;
1697 
1698 	/* Absolute timers do not update the rmtp value and restart: */
1699 	if (mode == HRTIMER_MODE_ABS) {
1700 		ret = -ERESTARTNOHAND;
1701 		goto out;
1702 	}
1703 
1704 	restart = &current->restart_block;
1705 	restart->fn = hrtimer_nanosleep_restart;
1706 	restart->nanosleep.clockid = t.timer.base->clockid;
1707 	restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1708 out:
1709 	destroy_hrtimer_on_stack(&t.timer);
1710 	return ret;
1711 }
1712 
1713 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1714 		struct timespec __user *, rmtp)
1715 {
1716 	struct timespec64 tu;
1717 
1718 	if (get_timespec64(&tu, rqtp))
1719 		return -EFAULT;
1720 
1721 	if (!timespec64_valid(&tu))
1722 		return -EINVAL;
1723 
1724 	current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
1725 	current->restart_block.nanosleep.rmtp = rmtp;
1726 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1727 }
1728 
1729 #ifdef CONFIG_COMPAT
1730 
1731 COMPAT_SYSCALL_DEFINE2(nanosleep, struct compat_timespec __user *, rqtp,
1732 		       struct compat_timespec __user *, rmtp)
1733 {
1734 	struct timespec64 tu;
1735 
1736 	if (compat_get_timespec64(&tu, rqtp))
1737 		return -EFAULT;
1738 
1739 	if (!timespec64_valid(&tu))
1740 		return -EINVAL;
1741 
1742 	current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1743 	current->restart_block.nanosleep.compat_rmtp = rmtp;
1744 	return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1745 }
1746 #endif
1747 
1748 /*
1749  * Functions related to boot-time initialization:
1750  */
1751 int hrtimers_prepare_cpu(unsigned int cpu)
1752 {
1753 	struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1754 	int i;
1755 
1756 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1757 		cpu_base->clock_base[i].cpu_base = cpu_base;
1758 		timerqueue_init_head(&cpu_base->clock_base[i].active);
1759 	}
1760 
1761 	cpu_base->cpu = cpu;
1762 	cpu_base->active_bases = 0;
1763 	cpu_base->hres_active = 0;
1764 	cpu_base->hang_detected = 0;
1765 	cpu_base->next_timer = NULL;
1766 	cpu_base->softirq_next_timer = NULL;
1767 	cpu_base->expires_next = KTIME_MAX;
1768 	cpu_base->softirq_expires_next = KTIME_MAX;
1769 	return 0;
1770 }
1771 
1772 #ifdef CONFIG_HOTPLUG_CPU
1773 
1774 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1775 				struct hrtimer_clock_base *new_base)
1776 {
1777 	struct hrtimer *timer;
1778 	struct timerqueue_node *node;
1779 
1780 	while ((node = timerqueue_getnext(&old_base->active))) {
1781 		timer = container_of(node, struct hrtimer, node);
1782 		BUG_ON(hrtimer_callback_running(timer));
1783 		debug_deactivate(timer);
1784 
1785 		/*
1786 		 * Mark it as ENQUEUED not INACTIVE otherwise the
1787 		 * timer could be seen as !active and just vanish away
1788 		 * under us on another CPU
1789 		 */
1790 		__remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
1791 		timer->base = new_base;
1792 		/*
1793 		 * Enqueue the timers on the new cpu. This does not
1794 		 * reprogram the event device in case the timer
1795 		 * expires before the earliest on this CPU, but we run
1796 		 * hrtimer_interrupt after we migrated everything to
1797 		 * sort out already expired timers and reprogram the
1798 		 * event device.
1799 		 */
1800 		enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
1801 	}
1802 }
1803 
1804 int hrtimers_dead_cpu(unsigned int scpu)
1805 {
1806 	struct hrtimer_cpu_base *old_base, *new_base;
1807 	int i;
1808 
1809 	BUG_ON(cpu_online(scpu));
1810 	tick_cancel_sched_timer(scpu);
1811 
1812 	/*
1813 	 * this BH disable ensures that raise_softirq_irqoff() does
1814 	 * not wakeup ksoftirqd (and acquire the pi-lock) while
1815 	 * holding the cpu_base lock
1816 	 */
1817 	local_bh_disable();
1818 	local_irq_disable();
1819 	old_base = &per_cpu(hrtimer_bases, scpu);
1820 	new_base = this_cpu_ptr(&hrtimer_bases);
1821 	/*
1822 	 * The caller is globally serialized and nobody else
1823 	 * takes two locks at once, deadlock is not possible.
1824 	 */
1825 	raw_spin_lock(&new_base->lock);
1826 	raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1827 
1828 	for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1829 		migrate_hrtimer_list(&old_base->clock_base[i],
1830 				     &new_base->clock_base[i]);
1831 	}
1832 
1833 	/*
1834 	 * The migration might have changed the first expiring softirq
1835 	 * timer on this CPU. Update it.
1836 	 */
1837 	hrtimer_update_softirq_timer(new_base, false);
1838 
1839 	raw_spin_unlock(&old_base->lock);
1840 	raw_spin_unlock(&new_base->lock);
1841 
1842 	/* Check, if we got expired work to do */
1843 	__hrtimer_peek_ahead_timers();
1844 	local_irq_enable();
1845 	local_bh_enable();
1846 	return 0;
1847 }
1848 
1849 #endif /* CONFIG_HOTPLUG_CPU */
1850 
1851 void __init hrtimers_init(void)
1852 {
1853 	hrtimers_prepare_cpu(smp_processor_id());
1854 	open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
1855 }
1856 
1857 /**
1858  * schedule_hrtimeout_range_clock - sleep until timeout
1859  * @expires:	timeout value (ktime_t)
1860  * @delta:	slack in expires timeout (ktime_t)
1861  * @mode:	timer mode
1862  * @clock_id:	timer clock to be used
1863  */
1864 int __sched
1865 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
1866 			       const enum hrtimer_mode mode, clockid_t clock_id)
1867 {
1868 	struct hrtimer_sleeper t;
1869 
1870 	/*
1871 	 * Optimize when a zero timeout value is given. It does not
1872 	 * matter whether this is an absolute or a relative time.
1873 	 */
1874 	if (expires && *expires == 0) {
1875 		__set_current_state(TASK_RUNNING);
1876 		return 0;
1877 	}
1878 
1879 	/*
1880 	 * A NULL parameter means "infinite"
1881 	 */
1882 	if (!expires) {
1883 		schedule();
1884 		return -EINTR;
1885 	}
1886 
1887 	hrtimer_init_on_stack(&t.timer, clock_id, mode);
1888 	hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1889 
1890 	hrtimer_init_sleeper(&t, current);
1891 
1892 	hrtimer_start_expires(&t.timer, mode);
1893 
1894 	if (likely(t.task))
1895 		schedule();
1896 
1897 	hrtimer_cancel(&t.timer);
1898 	destroy_hrtimer_on_stack(&t.timer);
1899 
1900 	__set_current_state(TASK_RUNNING);
1901 
1902 	return !t.task ? 0 : -EINTR;
1903 }
1904 
1905 /**
1906  * schedule_hrtimeout_range - sleep until timeout
1907  * @expires:	timeout value (ktime_t)
1908  * @delta:	slack in expires timeout (ktime_t)
1909  * @mode:	timer mode
1910  *
1911  * Make the current task sleep until the given expiry time has
1912  * elapsed. The routine will return immediately unless
1913  * the current task state has been set (see set_current_state()).
1914  *
1915  * The @delta argument gives the kernel the freedom to schedule the
1916  * actual wakeup to a time that is both power and performance friendly.
1917  * The kernel give the normal best effort behavior for "@expires+@delta",
1918  * but may decide to fire the timer earlier, but no earlier than @expires.
1919  *
1920  * You can set the task state as follows -
1921  *
1922  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1923  * pass before the routine returns unless the current task is explicitly
1924  * woken up, (e.g. by wake_up_process()).
1925  *
1926  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1927  * delivered to the current task or the current task is explicitly woken
1928  * up.
1929  *
1930  * The current task state is guaranteed to be TASK_RUNNING when this
1931  * routine returns.
1932  *
1933  * Returns 0 when the timer has expired. If the task was woken before the
1934  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1935  * by an explicit wakeup, it returns -EINTR.
1936  */
1937 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
1938 				     const enum hrtimer_mode mode)
1939 {
1940 	return schedule_hrtimeout_range_clock(expires, delta, mode,
1941 					      CLOCK_MONOTONIC);
1942 }
1943 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1944 
1945 /**
1946  * schedule_hrtimeout - sleep until timeout
1947  * @expires:	timeout value (ktime_t)
1948  * @mode:	timer mode
1949  *
1950  * Make the current task sleep until the given expiry time has
1951  * elapsed. The routine will return immediately unless
1952  * the current task state has been set (see set_current_state()).
1953  *
1954  * You can set the task state as follows -
1955  *
1956  * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1957  * pass before the routine returns unless the current task is explicitly
1958  * woken up, (e.g. by wake_up_process()).
1959  *
1960  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1961  * delivered to the current task or the current task is explicitly woken
1962  * up.
1963  *
1964  * The current task state is guaranteed to be TASK_RUNNING when this
1965  * routine returns.
1966  *
1967  * Returns 0 when the timer has expired. If the task was woken before the
1968  * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1969  * by an explicit wakeup, it returns -EINTR.
1970  */
1971 int __sched schedule_hrtimeout(ktime_t *expires,
1972 			       const enum hrtimer_mode mode)
1973 {
1974 	return schedule_hrtimeout_range(expires, 0, mode);
1975 }
1976 EXPORT_SYMBOL_GPL(schedule_hrtimeout);
1977