1 /* 2 * linux/kernel/hrtimer.c 3 * 4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 7 * 8 * High-resolution kernel timers 9 * 10 * In contrast to the low-resolution timeout API implemented in 11 * kernel/timer.c, hrtimers provide finer resolution and accuracy 12 * depending on system configuration and capabilities. 13 * 14 * These timers are currently used for: 15 * - itimers 16 * - POSIX timers 17 * - nanosleep 18 * - precise in-kernel timing 19 * 20 * Started by: Thomas Gleixner and Ingo Molnar 21 * 22 * Credits: 23 * based on kernel/timer.c 24 * 25 * Help, testing, suggestions, bugfixes, improvements were 26 * provided by: 27 * 28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 29 * et. al. 30 * 31 * For licencing details see kernel-base/COPYING 32 */ 33 34 #include <linux/cpu.h> 35 #include <linux/export.h> 36 #include <linux/percpu.h> 37 #include <linux/hrtimer.h> 38 #include <linux/notifier.h> 39 #include <linux/syscalls.h> 40 #include <linux/interrupt.h> 41 #include <linux/tick.h> 42 #include <linux/seq_file.h> 43 #include <linux/err.h> 44 #include <linux/debugobjects.h> 45 #include <linux/sched/signal.h> 46 #include <linux/sched/sysctl.h> 47 #include <linux/sched/rt.h> 48 #include <linux/sched/deadline.h> 49 #include <linux/sched/nohz.h> 50 #include <linux/sched/debug.h> 51 #include <linux/timer.h> 52 #include <linux/freezer.h> 53 #include <linux/compat.h> 54 55 #include <linux/uaccess.h> 56 57 #include <trace/events/timer.h> 58 59 #include "tick-internal.h" 60 61 /* 62 * Masks for selecting the soft and hard context timers from 63 * cpu_base->active 64 */ 65 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 66 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 67 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 68 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 69 70 /* 71 * The timer bases: 72 * 73 * There are more clockids than hrtimer bases. Thus, we index 74 * into the timer bases by the hrtimer_base_type enum. When trying 75 * to reach a base using a clockid, hrtimer_clockid_to_base() 76 * is used to convert from clockid to the proper hrtimer_base_type. 77 */ 78 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 79 { 80 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 81 .clock_base = 82 { 83 { 84 .index = HRTIMER_BASE_MONOTONIC, 85 .clockid = CLOCK_MONOTONIC, 86 .get_time = &ktime_get, 87 }, 88 { 89 .index = HRTIMER_BASE_REALTIME, 90 .clockid = CLOCK_REALTIME, 91 .get_time = &ktime_get_real, 92 }, 93 { 94 .index = HRTIMER_BASE_BOOTTIME, 95 .clockid = CLOCK_BOOTTIME, 96 .get_time = &ktime_get_boottime, 97 }, 98 { 99 .index = HRTIMER_BASE_TAI, 100 .clockid = CLOCK_TAI, 101 .get_time = &ktime_get_clocktai, 102 }, 103 { 104 .index = HRTIMER_BASE_MONOTONIC_SOFT, 105 .clockid = CLOCK_MONOTONIC, 106 .get_time = &ktime_get, 107 }, 108 { 109 .index = HRTIMER_BASE_REALTIME_SOFT, 110 .clockid = CLOCK_REALTIME, 111 .get_time = &ktime_get_real, 112 }, 113 { 114 .index = HRTIMER_BASE_BOOTTIME_SOFT, 115 .clockid = CLOCK_BOOTTIME, 116 .get_time = &ktime_get_boottime, 117 }, 118 { 119 .index = HRTIMER_BASE_TAI_SOFT, 120 .clockid = CLOCK_TAI, 121 .get_time = &ktime_get_clocktai, 122 }, 123 } 124 }; 125 126 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { 127 /* Make sure we catch unsupported clockids */ 128 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES, 129 130 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, 131 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, 132 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, 133 [CLOCK_TAI] = HRTIMER_BASE_TAI, 134 }; 135 136 /* 137 * Functions and macros which are different for UP/SMP systems are kept in a 138 * single place 139 */ 140 #ifdef CONFIG_SMP 141 142 /* 143 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 144 * such that hrtimer_callback_running() can unconditionally dereference 145 * timer->base->cpu_base 146 */ 147 static struct hrtimer_cpu_base migration_cpu_base = { 148 .clock_base = { { .cpu_base = &migration_cpu_base, }, }, 149 }; 150 151 #define migration_base migration_cpu_base.clock_base[0] 152 153 /* 154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 155 * means that all timers which are tied to this base via timer->base are 156 * locked, and the base itself is locked too. 157 * 158 * So __run_timers/migrate_timers can safely modify all timers which could 159 * be found on the lists/queues. 160 * 161 * When the timer's base is locked, and the timer removed from list, it is 162 * possible to set timer->base = &migration_base and drop the lock: the timer 163 * remains locked. 164 */ 165 static 166 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 167 unsigned long *flags) 168 { 169 struct hrtimer_clock_base *base; 170 171 for (;;) { 172 base = timer->base; 173 if (likely(base != &migration_base)) { 174 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 175 if (likely(base == timer->base)) 176 return base; 177 /* The timer has migrated to another CPU: */ 178 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 179 } 180 cpu_relax(); 181 } 182 } 183 184 /* 185 * We do not migrate the timer when it is expiring before the next 186 * event on the target cpu. When high resolution is enabled, we cannot 187 * reprogram the target cpu hardware and we would cause it to fire 188 * late. To keep it simple, we handle the high resolution enabled and 189 * disabled case similar. 190 * 191 * Called with cpu_base->lock of target cpu held. 192 */ 193 static int 194 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) 195 { 196 ktime_t expires; 197 198 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 199 return expires < new_base->cpu_base->expires_next; 200 } 201 202 static inline 203 struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, 204 int pinned) 205 { 206 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 207 if (static_branch_likely(&timers_migration_enabled) && !pinned) 208 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 209 #endif 210 return base; 211 } 212 213 /* 214 * We switch the timer base to a power-optimized selected CPU target, 215 * if: 216 * - NO_HZ_COMMON is enabled 217 * - timer migration is enabled 218 * - the timer callback is not running 219 * - the timer is not the first expiring timer on the new target 220 * 221 * If one of the above requirements is not fulfilled we move the timer 222 * to the current CPU or leave it on the previously assigned CPU if 223 * the timer callback is currently running. 224 */ 225 static inline struct hrtimer_clock_base * 226 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 227 int pinned) 228 { 229 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 230 struct hrtimer_clock_base *new_base; 231 int basenum = base->index; 232 233 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 234 new_cpu_base = get_target_base(this_cpu_base, pinned); 235 again: 236 new_base = &new_cpu_base->clock_base[basenum]; 237 238 if (base != new_base) { 239 /* 240 * We are trying to move timer to new_base. 241 * However we can't change timer's base while it is running, 242 * so we keep it on the same CPU. No hassle vs. reprogramming 243 * the event source in the high resolution case. The softirq 244 * code will take care of this when the timer function has 245 * completed. There is no conflict as we hold the lock until 246 * the timer is enqueued. 247 */ 248 if (unlikely(hrtimer_callback_running(timer))) 249 return base; 250 251 /* See the comment in lock_hrtimer_base() */ 252 timer->base = &migration_base; 253 raw_spin_unlock(&base->cpu_base->lock); 254 raw_spin_lock(&new_base->cpu_base->lock); 255 256 if (new_cpu_base != this_cpu_base && 257 hrtimer_check_target(timer, new_base)) { 258 raw_spin_unlock(&new_base->cpu_base->lock); 259 raw_spin_lock(&base->cpu_base->lock); 260 new_cpu_base = this_cpu_base; 261 timer->base = base; 262 goto again; 263 } 264 timer->base = new_base; 265 } else { 266 if (new_cpu_base != this_cpu_base && 267 hrtimer_check_target(timer, new_base)) { 268 new_cpu_base = this_cpu_base; 269 goto again; 270 } 271 } 272 return new_base; 273 } 274 275 #else /* CONFIG_SMP */ 276 277 static inline struct hrtimer_clock_base * 278 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 279 { 280 struct hrtimer_clock_base *base = timer->base; 281 282 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 283 284 return base; 285 } 286 287 # define switch_hrtimer_base(t, b, p) (b) 288 289 #endif /* !CONFIG_SMP */ 290 291 /* 292 * Functions for the union type storage format of ktime_t which are 293 * too large for inlining: 294 */ 295 #if BITS_PER_LONG < 64 296 /* 297 * Divide a ktime value by a nanosecond value 298 */ 299 s64 __ktime_divns(const ktime_t kt, s64 div) 300 { 301 int sft = 0; 302 s64 dclc; 303 u64 tmp; 304 305 dclc = ktime_to_ns(kt); 306 tmp = dclc < 0 ? -dclc : dclc; 307 308 /* Make sure the divisor is less than 2^32: */ 309 while (div >> 32) { 310 sft++; 311 div >>= 1; 312 } 313 tmp >>= sft; 314 do_div(tmp, (unsigned long) div); 315 return dclc < 0 ? -tmp : tmp; 316 } 317 EXPORT_SYMBOL_GPL(__ktime_divns); 318 #endif /* BITS_PER_LONG >= 64 */ 319 320 /* 321 * Add two ktime values and do a safety check for overflow: 322 */ 323 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 324 { 325 ktime_t res = ktime_add_unsafe(lhs, rhs); 326 327 /* 328 * We use KTIME_SEC_MAX here, the maximum timeout which we can 329 * return to user space in a timespec: 330 */ 331 if (res < 0 || res < lhs || res < rhs) 332 res = ktime_set(KTIME_SEC_MAX, 0); 333 334 return res; 335 } 336 337 EXPORT_SYMBOL_GPL(ktime_add_safe); 338 339 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 340 341 static struct debug_obj_descr hrtimer_debug_descr; 342 343 static void *hrtimer_debug_hint(void *addr) 344 { 345 return ((struct hrtimer *) addr)->function; 346 } 347 348 /* 349 * fixup_init is called when: 350 * - an active object is initialized 351 */ 352 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 353 { 354 struct hrtimer *timer = addr; 355 356 switch (state) { 357 case ODEBUG_STATE_ACTIVE: 358 hrtimer_cancel(timer); 359 debug_object_init(timer, &hrtimer_debug_descr); 360 return true; 361 default: 362 return false; 363 } 364 } 365 366 /* 367 * fixup_activate is called when: 368 * - an active object is activated 369 * - an unknown non-static object is activated 370 */ 371 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 372 { 373 switch (state) { 374 case ODEBUG_STATE_ACTIVE: 375 WARN_ON(1); 376 377 default: 378 return false; 379 } 380 } 381 382 /* 383 * fixup_free is called when: 384 * - an active object is freed 385 */ 386 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 387 { 388 struct hrtimer *timer = addr; 389 390 switch (state) { 391 case ODEBUG_STATE_ACTIVE: 392 hrtimer_cancel(timer); 393 debug_object_free(timer, &hrtimer_debug_descr); 394 return true; 395 default: 396 return false; 397 } 398 } 399 400 static struct debug_obj_descr hrtimer_debug_descr = { 401 .name = "hrtimer", 402 .debug_hint = hrtimer_debug_hint, 403 .fixup_init = hrtimer_fixup_init, 404 .fixup_activate = hrtimer_fixup_activate, 405 .fixup_free = hrtimer_fixup_free, 406 }; 407 408 static inline void debug_hrtimer_init(struct hrtimer *timer) 409 { 410 debug_object_init(timer, &hrtimer_debug_descr); 411 } 412 413 static inline void debug_hrtimer_activate(struct hrtimer *timer, 414 enum hrtimer_mode mode) 415 { 416 debug_object_activate(timer, &hrtimer_debug_descr); 417 } 418 419 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 420 { 421 debug_object_deactivate(timer, &hrtimer_debug_descr); 422 } 423 424 static inline void debug_hrtimer_free(struct hrtimer *timer) 425 { 426 debug_object_free(timer, &hrtimer_debug_descr); 427 } 428 429 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 430 enum hrtimer_mode mode); 431 432 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, 433 enum hrtimer_mode mode) 434 { 435 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 436 __hrtimer_init(timer, clock_id, mode); 437 } 438 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); 439 440 void destroy_hrtimer_on_stack(struct hrtimer *timer) 441 { 442 debug_object_free(timer, &hrtimer_debug_descr); 443 } 444 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 445 446 #else 447 448 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 449 static inline void debug_hrtimer_activate(struct hrtimer *timer, 450 enum hrtimer_mode mode) { } 451 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 452 #endif 453 454 static inline void 455 debug_init(struct hrtimer *timer, clockid_t clockid, 456 enum hrtimer_mode mode) 457 { 458 debug_hrtimer_init(timer); 459 trace_hrtimer_init(timer, clockid, mode); 460 } 461 462 static inline void debug_activate(struct hrtimer *timer, 463 enum hrtimer_mode mode) 464 { 465 debug_hrtimer_activate(timer, mode); 466 trace_hrtimer_start(timer, mode); 467 } 468 469 static inline void debug_deactivate(struct hrtimer *timer) 470 { 471 debug_hrtimer_deactivate(timer); 472 trace_hrtimer_cancel(timer); 473 } 474 475 static struct hrtimer_clock_base * 476 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 477 { 478 unsigned int idx; 479 480 if (!*active) 481 return NULL; 482 483 idx = __ffs(*active); 484 *active &= ~(1U << idx); 485 486 return &cpu_base->clock_base[idx]; 487 } 488 489 #define for_each_active_base(base, cpu_base, active) \ 490 while ((base = __next_base((cpu_base), &(active)))) 491 492 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 493 const struct hrtimer *exclude, 494 unsigned int active, 495 ktime_t expires_next) 496 { 497 struct hrtimer_clock_base *base; 498 ktime_t expires; 499 500 for_each_active_base(base, cpu_base, active) { 501 struct timerqueue_node *next; 502 struct hrtimer *timer; 503 504 next = timerqueue_getnext(&base->active); 505 timer = container_of(next, struct hrtimer, node); 506 if (timer == exclude) { 507 /* Get to the next timer in the queue. */ 508 next = timerqueue_iterate_next(next); 509 if (!next) 510 continue; 511 512 timer = container_of(next, struct hrtimer, node); 513 } 514 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 515 if (expires < expires_next) { 516 expires_next = expires; 517 518 /* Skip cpu_base update if a timer is being excluded. */ 519 if (exclude) 520 continue; 521 522 if (timer->is_soft) 523 cpu_base->softirq_next_timer = timer; 524 else 525 cpu_base->next_timer = timer; 526 } 527 } 528 /* 529 * clock_was_set() might have changed base->offset of any of 530 * the clock bases so the result might be negative. Fix it up 531 * to prevent a false positive in clockevents_program_event(). 532 */ 533 if (expires_next < 0) 534 expires_next = 0; 535 return expires_next; 536 } 537 538 /* 539 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but 540 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram. 541 * 542 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 543 * those timers will get run whenever the softirq gets handled, at the end of 544 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 545 * 546 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 547 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 548 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 549 * 550 * @active_mask must be one of: 551 * - HRTIMER_ACTIVE_ALL, 552 * - HRTIMER_ACTIVE_SOFT, or 553 * - HRTIMER_ACTIVE_HARD. 554 */ 555 static ktime_t 556 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 557 { 558 unsigned int active; 559 struct hrtimer *next_timer = NULL; 560 ktime_t expires_next = KTIME_MAX; 561 562 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 563 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 564 cpu_base->softirq_next_timer = NULL; 565 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 566 active, KTIME_MAX); 567 568 next_timer = cpu_base->softirq_next_timer; 569 } 570 571 if (active_mask & HRTIMER_ACTIVE_HARD) { 572 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 573 cpu_base->next_timer = next_timer; 574 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 575 expires_next); 576 } 577 578 return expires_next; 579 } 580 581 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 582 { 583 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 584 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 585 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 586 587 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 588 offs_real, offs_boot, offs_tai); 589 590 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 591 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 592 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 593 594 return now; 595 } 596 597 /* 598 * Is the high resolution mode active ? 599 */ 600 static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 601 { 602 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 603 cpu_base->hres_active : 0; 604 } 605 606 static inline int hrtimer_hres_active(void) 607 { 608 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases)); 609 } 610 611 /* 612 * Reprogram the event source with checking both queues for the 613 * next event 614 * Called with interrupts disabled and base->lock held 615 */ 616 static void 617 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 618 { 619 ktime_t expires_next; 620 621 /* 622 * Find the current next expiration time. 623 */ 624 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 625 626 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) { 627 /* 628 * When the softirq is activated, hrtimer has to be 629 * programmed with the first hard hrtimer because soft 630 * timer interrupt could occur too late. 631 */ 632 if (cpu_base->softirq_activated) 633 expires_next = __hrtimer_get_next_event(cpu_base, 634 HRTIMER_ACTIVE_HARD); 635 else 636 cpu_base->softirq_expires_next = expires_next; 637 } 638 639 if (skip_equal && expires_next == cpu_base->expires_next) 640 return; 641 642 cpu_base->expires_next = expires_next; 643 644 /* 645 * If hres is not active, hardware does not have to be 646 * reprogrammed yet. 647 * 648 * If a hang was detected in the last timer interrupt then we 649 * leave the hang delay active in the hardware. We want the 650 * system to make progress. That also prevents the following 651 * scenario: 652 * T1 expires 50ms from now 653 * T2 expires 5s from now 654 * 655 * T1 is removed, so this code is called and would reprogram 656 * the hardware to 5s from now. Any hrtimer_start after that 657 * will not reprogram the hardware due to hang_detected being 658 * set. So we'd effectivly block all timers until the T2 event 659 * fires. 660 */ 661 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 662 return; 663 664 tick_program_event(cpu_base->expires_next, 1); 665 } 666 667 /* High resolution timer related functions */ 668 #ifdef CONFIG_HIGH_RES_TIMERS 669 670 /* 671 * High resolution timer enabled ? 672 */ 673 static bool hrtimer_hres_enabled __read_mostly = true; 674 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 675 EXPORT_SYMBOL_GPL(hrtimer_resolution); 676 677 /* 678 * Enable / Disable high resolution mode 679 */ 680 static int __init setup_hrtimer_hres(char *str) 681 { 682 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 683 } 684 685 __setup("highres=", setup_hrtimer_hres); 686 687 /* 688 * hrtimer_high_res_enabled - query, if the highres mode is enabled 689 */ 690 static inline int hrtimer_is_hres_enabled(void) 691 { 692 return hrtimer_hres_enabled; 693 } 694 695 /* 696 * Retrigger next event is called after clock was set 697 * 698 * Called with interrupts disabled via on_each_cpu() 699 */ 700 static void retrigger_next_event(void *arg) 701 { 702 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 703 704 if (!__hrtimer_hres_active(base)) 705 return; 706 707 raw_spin_lock(&base->lock); 708 hrtimer_update_base(base); 709 hrtimer_force_reprogram(base, 0); 710 raw_spin_unlock(&base->lock); 711 } 712 713 /* 714 * Switch to high resolution mode 715 */ 716 static void hrtimer_switch_to_hres(void) 717 { 718 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 719 720 if (tick_init_highres()) { 721 pr_warn("Could not switch to high resolution mode on CPU %u\n", 722 base->cpu); 723 return; 724 } 725 base->hres_active = 1; 726 hrtimer_resolution = HIGH_RES_NSEC; 727 728 tick_setup_sched_timer(); 729 /* "Retrigger" the interrupt to get things going */ 730 retrigger_next_event(NULL); 731 } 732 733 static void clock_was_set_work(struct work_struct *work) 734 { 735 clock_was_set(); 736 } 737 738 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 739 740 /* 741 * Called from timekeeping and resume code to reprogram the hrtimer 742 * interrupt device on all cpus. 743 */ 744 void clock_was_set_delayed(void) 745 { 746 schedule_work(&hrtimer_work); 747 } 748 749 #else 750 751 static inline int hrtimer_is_hres_enabled(void) { return 0; } 752 static inline void hrtimer_switch_to_hres(void) { } 753 static inline void retrigger_next_event(void *arg) { } 754 755 #endif /* CONFIG_HIGH_RES_TIMERS */ 756 757 /* 758 * When a timer is enqueued and expires earlier than the already enqueued 759 * timers, we have to check, whether it expires earlier than the timer for 760 * which the clock event device was armed. 761 * 762 * Called with interrupts disabled and base->cpu_base.lock held 763 */ 764 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 765 { 766 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 767 struct hrtimer_clock_base *base = timer->base; 768 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 769 770 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 771 772 /* 773 * CLOCK_REALTIME timer might be requested with an absolute 774 * expiry time which is less than base->offset. Set it to 0. 775 */ 776 if (expires < 0) 777 expires = 0; 778 779 if (timer->is_soft) { 780 /* 781 * soft hrtimer could be started on a remote CPU. In this 782 * case softirq_expires_next needs to be updated on the 783 * remote CPU. The soft hrtimer will not expire before the 784 * first hard hrtimer on the remote CPU - 785 * hrtimer_check_target() prevents this case. 786 */ 787 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 788 789 if (timer_cpu_base->softirq_activated) 790 return; 791 792 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 793 return; 794 795 timer_cpu_base->softirq_next_timer = timer; 796 timer_cpu_base->softirq_expires_next = expires; 797 798 if (!ktime_before(expires, timer_cpu_base->expires_next) || 799 !reprogram) 800 return; 801 } 802 803 /* 804 * If the timer is not on the current cpu, we cannot reprogram 805 * the other cpus clock event device. 806 */ 807 if (base->cpu_base != cpu_base) 808 return; 809 810 /* 811 * If the hrtimer interrupt is running, then it will 812 * reevaluate the clock bases and reprogram the clock event 813 * device. The callbacks are always executed in hard interrupt 814 * context so we don't need an extra check for a running 815 * callback. 816 */ 817 if (cpu_base->in_hrtirq) 818 return; 819 820 if (expires >= cpu_base->expires_next) 821 return; 822 823 /* Update the pointer to the next expiring timer */ 824 cpu_base->next_timer = timer; 825 cpu_base->expires_next = expires; 826 827 /* 828 * If hres is not active, hardware does not have to be 829 * programmed yet. 830 * 831 * If a hang was detected in the last timer interrupt then we 832 * do not schedule a timer which is earlier than the expiry 833 * which we enforced in the hang detection. We want the system 834 * to make progress. 835 */ 836 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 837 return; 838 839 /* 840 * Program the timer hardware. We enforce the expiry for 841 * events which are already in the past. 842 */ 843 tick_program_event(expires, 1); 844 } 845 846 /* 847 * Clock realtime was set 848 * 849 * Change the offset of the realtime clock vs. the monotonic 850 * clock. 851 * 852 * We might have to reprogram the high resolution timer interrupt. On 853 * SMP we call the architecture specific code to retrigger _all_ high 854 * resolution timer interrupts. On UP we just disable interrupts and 855 * call the high resolution interrupt code. 856 */ 857 void clock_was_set(void) 858 { 859 #ifdef CONFIG_HIGH_RES_TIMERS 860 /* Retrigger the CPU local events everywhere */ 861 on_each_cpu(retrigger_next_event, NULL, 1); 862 #endif 863 timerfd_clock_was_set(); 864 } 865 866 /* 867 * During resume we might have to reprogram the high resolution timer 868 * interrupt on all online CPUs. However, all other CPUs will be 869 * stopped with IRQs interrupts disabled so the clock_was_set() call 870 * must be deferred. 871 */ 872 void hrtimers_resume(void) 873 { 874 lockdep_assert_irqs_disabled(); 875 /* Retrigger on the local CPU */ 876 retrigger_next_event(NULL); 877 /* And schedule a retrigger for all others */ 878 clock_was_set_delayed(); 879 } 880 881 /* 882 * Counterpart to lock_hrtimer_base above: 883 */ 884 static inline 885 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 886 { 887 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 888 } 889 890 /** 891 * hrtimer_forward - forward the timer expiry 892 * @timer: hrtimer to forward 893 * @now: forward past this time 894 * @interval: the interval to forward 895 * 896 * Forward the timer expiry so it will expire in the future. 897 * Returns the number of overruns. 898 * 899 * Can be safely called from the callback function of @timer. If 900 * called from other contexts @timer must neither be enqueued nor 901 * running the callback and the caller needs to take care of 902 * serialization. 903 * 904 * Note: This only updates the timer expiry value and does not requeue 905 * the timer. 906 */ 907 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 908 { 909 u64 orun = 1; 910 ktime_t delta; 911 912 delta = ktime_sub(now, hrtimer_get_expires(timer)); 913 914 if (delta < 0) 915 return 0; 916 917 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 918 return 0; 919 920 if (interval < hrtimer_resolution) 921 interval = hrtimer_resolution; 922 923 if (unlikely(delta >= interval)) { 924 s64 incr = ktime_to_ns(interval); 925 926 orun = ktime_divns(delta, incr); 927 hrtimer_add_expires_ns(timer, incr * orun); 928 if (hrtimer_get_expires_tv64(timer) > now) 929 return orun; 930 /* 931 * This (and the ktime_add() below) is the 932 * correction for exact: 933 */ 934 orun++; 935 } 936 hrtimer_add_expires(timer, interval); 937 938 return orun; 939 } 940 EXPORT_SYMBOL_GPL(hrtimer_forward); 941 942 /* 943 * enqueue_hrtimer - internal function to (re)start a timer 944 * 945 * The timer is inserted in expiry order. Insertion into the 946 * red black tree is O(log(n)). Must hold the base lock. 947 * 948 * Returns 1 when the new timer is the leftmost timer in the tree. 949 */ 950 static int enqueue_hrtimer(struct hrtimer *timer, 951 struct hrtimer_clock_base *base, 952 enum hrtimer_mode mode) 953 { 954 debug_activate(timer, mode); 955 956 base->cpu_base->active_bases |= 1 << base->index; 957 958 timer->state = HRTIMER_STATE_ENQUEUED; 959 960 return timerqueue_add(&base->active, &timer->node); 961 } 962 963 /* 964 * __remove_hrtimer - internal function to remove a timer 965 * 966 * Caller must hold the base lock. 967 * 968 * High resolution timer mode reprograms the clock event device when the 969 * timer is the one which expires next. The caller can disable this by setting 970 * reprogram to zero. This is useful, when the context does a reprogramming 971 * anyway (e.g. timer interrupt) 972 */ 973 static void __remove_hrtimer(struct hrtimer *timer, 974 struct hrtimer_clock_base *base, 975 u8 newstate, int reprogram) 976 { 977 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 978 u8 state = timer->state; 979 980 timer->state = newstate; 981 if (!(state & HRTIMER_STATE_ENQUEUED)) 982 return; 983 984 if (!timerqueue_del(&base->active, &timer->node)) 985 cpu_base->active_bases &= ~(1 << base->index); 986 987 /* 988 * Note: If reprogram is false we do not update 989 * cpu_base->next_timer. This happens when we remove the first 990 * timer on a remote cpu. No harm as we never dereference 991 * cpu_base->next_timer. So the worst thing what can happen is 992 * an superflous call to hrtimer_force_reprogram() on the 993 * remote cpu later on if the same timer gets enqueued again. 994 */ 995 if (reprogram && timer == cpu_base->next_timer) 996 hrtimer_force_reprogram(cpu_base, 1); 997 } 998 999 /* 1000 * remove hrtimer, called with base lock held 1001 */ 1002 static inline int 1003 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart) 1004 { 1005 if (hrtimer_is_queued(timer)) { 1006 u8 state = timer->state; 1007 int reprogram; 1008 1009 /* 1010 * Remove the timer and force reprogramming when high 1011 * resolution mode is active and the timer is on the current 1012 * CPU. If we remove a timer on another CPU, reprogramming is 1013 * skipped. The interrupt event on this CPU is fired and 1014 * reprogramming happens in the interrupt handler. This is a 1015 * rare case and less expensive than a smp call. 1016 */ 1017 debug_deactivate(timer); 1018 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1019 1020 if (!restart) 1021 state = HRTIMER_STATE_INACTIVE; 1022 1023 __remove_hrtimer(timer, base, state, reprogram); 1024 return 1; 1025 } 1026 return 0; 1027 } 1028 1029 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1030 const enum hrtimer_mode mode) 1031 { 1032 #ifdef CONFIG_TIME_LOW_RES 1033 /* 1034 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1035 * granular time values. For relative timers we add hrtimer_resolution 1036 * (i.e. one jiffie) to prevent short timeouts. 1037 */ 1038 timer->is_rel = mode & HRTIMER_MODE_REL; 1039 if (timer->is_rel) 1040 tim = ktime_add_safe(tim, hrtimer_resolution); 1041 #endif 1042 return tim; 1043 } 1044 1045 static void 1046 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1047 { 1048 ktime_t expires; 1049 1050 /* 1051 * Find the next SOFT expiration. 1052 */ 1053 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1054 1055 /* 1056 * reprogramming needs to be triggered, even if the next soft 1057 * hrtimer expires at the same time than the next hard 1058 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1059 */ 1060 if (expires == KTIME_MAX) 1061 return; 1062 1063 /* 1064 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1065 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1066 */ 1067 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1068 } 1069 1070 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1071 u64 delta_ns, const enum hrtimer_mode mode, 1072 struct hrtimer_clock_base *base) 1073 { 1074 struct hrtimer_clock_base *new_base; 1075 1076 /* Remove an active timer from the queue: */ 1077 remove_hrtimer(timer, base, true); 1078 1079 if (mode & HRTIMER_MODE_REL) 1080 tim = ktime_add_safe(tim, base->get_time()); 1081 1082 tim = hrtimer_update_lowres(timer, tim, mode); 1083 1084 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1085 1086 /* Switch the timer base, if necessary: */ 1087 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); 1088 1089 return enqueue_hrtimer(timer, new_base, mode); 1090 } 1091 1092 /** 1093 * hrtimer_start_range_ns - (re)start an hrtimer 1094 * @timer: the timer to be added 1095 * @tim: expiry time 1096 * @delta_ns: "slack" range for the timer 1097 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1098 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1099 * softirq based mode is considered for debug purpose only! 1100 */ 1101 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1102 u64 delta_ns, const enum hrtimer_mode mode) 1103 { 1104 struct hrtimer_clock_base *base; 1105 unsigned long flags; 1106 1107 /* 1108 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1109 * match. 1110 */ 1111 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1112 1113 base = lock_hrtimer_base(timer, &flags); 1114 1115 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1116 hrtimer_reprogram(timer, true); 1117 1118 unlock_hrtimer_base(timer, &flags); 1119 } 1120 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1121 1122 /** 1123 * hrtimer_try_to_cancel - try to deactivate a timer 1124 * @timer: hrtimer to stop 1125 * 1126 * Returns: 1127 * 0 when the timer was not active 1128 * 1 when the timer was active 1129 * -1 when the timer is currently executing the callback function and 1130 * cannot be stopped 1131 */ 1132 int hrtimer_try_to_cancel(struct hrtimer *timer) 1133 { 1134 struct hrtimer_clock_base *base; 1135 unsigned long flags; 1136 int ret = -1; 1137 1138 /* 1139 * Check lockless first. If the timer is not active (neither 1140 * enqueued nor running the callback, nothing to do here. The 1141 * base lock does not serialize against a concurrent enqueue, 1142 * so we can avoid taking it. 1143 */ 1144 if (!hrtimer_active(timer)) 1145 return 0; 1146 1147 base = lock_hrtimer_base(timer, &flags); 1148 1149 if (!hrtimer_callback_running(timer)) 1150 ret = remove_hrtimer(timer, base, false); 1151 1152 unlock_hrtimer_base(timer, &flags); 1153 1154 return ret; 1155 1156 } 1157 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1158 1159 /** 1160 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1161 * @timer: the timer to be cancelled 1162 * 1163 * Returns: 1164 * 0 when the timer was not active 1165 * 1 when the timer was active 1166 */ 1167 int hrtimer_cancel(struct hrtimer *timer) 1168 { 1169 for (;;) { 1170 int ret = hrtimer_try_to_cancel(timer); 1171 1172 if (ret >= 0) 1173 return ret; 1174 cpu_relax(); 1175 } 1176 } 1177 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1178 1179 /** 1180 * hrtimer_get_remaining - get remaining time for the timer 1181 * @timer: the timer to read 1182 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1183 */ 1184 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1185 { 1186 unsigned long flags; 1187 ktime_t rem; 1188 1189 lock_hrtimer_base(timer, &flags); 1190 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1191 rem = hrtimer_expires_remaining_adjusted(timer); 1192 else 1193 rem = hrtimer_expires_remaining(timer); 1194 unlock_hrtimer_base(timer, &flags); 1195 1196 return rem; 1197 } 1198 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1199 1200 #ifdef CONFIG_NO_HZ_COMMON 1201 /** 1202 * hrtimer_get_next_event - get the time until next expiry event 1203 * 1204 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1205 */ 1206 u64 hrtimer_get_next_event(void) 1207 { 1208 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1209 u64 expires = KTIME_MAX; 1210 unsigned long flags; 1211 1212 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1213 1214 if (!__hrtimer_hres_active(cpu_base)) 1215 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1216 1217 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1218 1219 return expires; 1220 } 1221 1222 /** 1223 * hrtimer_next_event_without - time until next expiry event w/o one timer 1224 * @exclude: timer to exclude 1225 * 1226 * Returns the next expiry time over all timers except for the @exclude one or 1227 * KTIME_MAX if none of them is pending. 1228 */ 1229 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1230 { 1231 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1232 u64 expires = KTIME_MAX; 1233 unsigned long flags; 1234 1235 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1236 1237 if (__hrtimer_hres_active(cpu_base)) { 1238 unsigned int active; 1239 1240 if (!cpu_base->softirq_activated) { 1241 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1242 expires = __hrtimer_next_event_base(cpu_base, exclude, 1243 active, KTIME_MAX); 1244 } 1245 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1246 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1247 expires); 1248 } 1249 1250 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1251 1252 return expires; 1253 } 1254 #endif 1255 1256 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1257 { 1258 if (likely(clock_id < MAX_CLOCKS)) { 1259 int base = hrtimer_clock_to_base_table[clock_id]; 1260 1261 if (likely(base != HRTIMER_MAX_CLOCK_BASES)) 1262 return base; 1263 } 1264 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1265 return HRTIMER_BASE_MONOTONIC; 1266 } 1267 1268 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1269 enum hrtimer_mode mode) 1270 { 1271 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1272 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1273 struct hrtimer_cpu_base *cpu_base; 1274 1275 memset(timer, 0, sizeof(struct hrtimer)); 1276 1277 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1278 1279 /* 1280 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1281 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1282 * ensure POSIX compliance. 1283 */ 1284 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1285 clock_id = CLOCK_MONOTONIC; 1286 1287 base += hrtimer_clockid_to_base(clock_id); 1288 timer->is_soft = softtimer; 1289 timer->base = &cpu_base->clock_base[base]; 1290 timerqueue_init(&timer->node); 1291 } 1292 1293 /** 1294 * hrtimer_init - initialize a timer to the given clock 1295 * @timer: the timer to be initialized 1296 * @clock_id: the clock to be used 1297 * @mode: The modes which are relevant for intitialization: 1298 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1299 * HRTIMER_MODE_REL_SOFT 1300 * 1301 * The PINNED variants of the above can be handed in, 1302 * but the PINNED bit is ignored as pinning happens 1303 * when the hrtimer is started 1304 */ 1305 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, 1306 enum hrtimer_mode mode) 1307 { 1308 debug_init(timer, clock_id, mode); 1309 __hrtimer_init(timer, clock_id, mode); 1310 } 1311 EXPORT_SYMBOL_GPL(hrtimer_init); 1312 1313 /* 1314 * A timer is active, when it is enqueued into the rbtree or the 1315 * callback function is running or it's in the state of being migrated 1316 * to another cpu. 1317 * 1318 * It is important for this function to not return a false negative. 1319 */ 1320 bool hrtimer_active(const struct hrtimer *timer) 1321 { 1322 struct hrtimer_clock_base *base; 1323 unsigned int seq; 1324 1325 do { 1326 base = READ_ONCE(timer->base); 1327 seq = raw_read_seqcount_begin(&base->seq); 1328 1329 if (timer->state != HRTIMER_STATE_INACTIVE || 1330 base->running == timer) 1331 return true; 1332 1333 } while (read_seqcount_retry(&base->seq, seq) || 1334 base != READ_ONCE(timer->base)); 1335 1336 return false; 1337 } 1338 EXPORT_SYMBOL_GPL(hrtimer_active); 1339 1340 /* 1341 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1342 * distinct sections: 1343 * 1344 * - queued: the timer is queued 1345 * - callback: the timer is being ran 1346 * - post: the timer is inactive or (re)queued 1347 * 1348 * On the read side we ensure we observe timer->state and cpu_base->running 1349 * from the same section, if anything changed while we looked at it, we retry. 1350 * This includes timer->base changing because sequence numbers alone are 1351 * insufficient for that. 1352 * 1353 * The sequence numbers are required because otherwise we could still observe 1354 * a false negative if the read side got smeared over multiple consequtive 1355 * __run_hrtimer() invocations. 1356 */ 1357 1358 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1359 struct hrtimer_clock_base *base, 1360 struct hrtimer *timer, ktime_t *now, 1361 unsigned long flags) 1362 { 1363 enum hrtimer_restart (*fn)(struct hrtimer *); 1364 int restart; 1365 1366 lockdep_assert_held(&cpu_base->lock); 1367 1368 debug_deactivate(timer); 1369 base->running = timer; 1370 1371 /* 1372 * Separate the ->running assignment from the ->state assignment. 1373 * 1374 * As with a regular write barrier, this ensures the read side in 1375 * hrtimer_active() cannot observe base->running == NULL && 1376 * timer->state == INACTIVE. 1377 */ 1378 raw_write_seqcount_barrier(&base->seq); 1379 1380 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1381 fn = timer->function; 1382 1383 /* 1384 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1385 * timer is restarted with a period then it becomes an absolute 1386 * timer. If its not restarted it does not matter. 1387 */ 1388 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1389 timer->is_rel = false; 1390 1391 /* 1392 * The timer is marked as running in the CPU base, so it is 1393 * protected against migration to a different CPU even if the lock 1394 * is dropped. 1395 */ 1396 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1397 trace_hrtimer_expire_entry(timer, now); 1398 restart = fn(timer); 1399 trace_hrtimer_expire_exit(timer); 1400 raw_spin_lock_irq(&cpu_base->lock); 1401 1402 /* 1403 * Note: We clear the running state after enqueue_hrtimer and 1404 * we do not reprogram the event hardware. Happens either in 1405 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1406 * 1407 * Note: Because we dropped the cpu_base->lock above, 1408 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1409 * for us already. 1410 */ 1411 if (restart != HRTIMER_NORESTART && 1412 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1413 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1414 1415 /* 1416 * Separate the ->running assignment from the ->state assignment. 1417 * 1418 * As with a regular write barrier, this ensures the read side in 1419 * hrtimer_active() cannot observe base->running.timer == NULL && 1420 * timer->state == INACTIVE. 1421 */ 1422 raw_write_seqcount_barrier(&base->seq); 1423 1424 WARN_ON_ONCE(base->running != timer); 1425 base->running = NULL; 1426 } 1427 1428 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1429 unsigned long flags, unsigned int active_mask) 1430 { 1431 struct hrtimer_clock_base *base; 1432 unsigned int active = cpu_base->active_bases & active_mask; 1433 1434 for_each_active_base(base, cpu_base, active) { 1435 struct timerqueue_node *node; 1436 ktime_t basenow; 1437 1438 basenow = ktime_add(now, base->offset); 1439 1440 while ((node = timerqueue_getnext(&base->active))) { 1441 struct hrtimer *timer; 1442 1443 timer = container_of(node, struct hrtimer, node); 1444 1445 /* 1446 * The immediate goal for using the softexpires is 1447 * minimizing wakeups, not running timers at the 1448 * earliest interrupt after their soft expiration. 1449 * This allows us to avoid using a Priority Search 1450 * Tree, which can answer a stabbing querry for 1451 * overlapping intervals and instead use the simple 1452 * BST we already have. 1453 * We don't add extra wakeups by delaying timers that 1454 * are right-of a not yet expired timer, because that 1455 * timer will have to trigger a wakeup anyway. 1456 */ 1457 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1458 break; 1459 1460 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1461 } 1462 } 1463 } 1464 1465 static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h) 1466 { 1467 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1468 unsigned long flags; 1469 ktime_t now; 1470 1471 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1472 1473 now = hrtimer_update_base(cpu_base); 1474 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1475 1476 cpu_base->softirq_activated = 0; 1477 hrtimer_update_softirq_timer(cpu_base, true); 1478 1479 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1480 } 1481 1482 #ifdef CONFIG_HIGH_RES_TIMERS 1483 1484 /* 1485 * High resolution timer interrupt 1486 * Called with interrupts disabled 1487 */ 1488 void hrtimer_interrupt(struct clock_event_device *dev) 1489 { 1490 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1491 ktime_t expires_next, now, entry_time, delta; 1492 unsigned long flags; 1493 int retries = 0; 1494 1495 BUG_ON(!cpu_base->hres_active); 1496 cpu_base->nr_events++; 1497 dev->next_event = KTIME_MAX; 1498 1499 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1500 entry_time = now = hrtimer_update_base(cpu_base); 1501 retry: 1502 cpu_base->in_hrtirq = 1; 1503 /* 1504 * We set expires_next to KTIME_MAX here with cpu_base->lock 1505 * held to prevent that a timer is enqueued in our queue via 1506 * the migration code. This does not affect enqueueing of 1507 * timers which run their callback and need to be requeued on 1508 * this CPU. 1509 */ 1510 cpu_base->expires_next = KTIME_MAX; 1511 1512 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1513 cpu_base->softirq_expires_next = KTIME_MAX; 1514 cpu_base->softirq_activated = 1; 1515 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1516 } 1517 1518 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1519 1520 /* Reevaluate the clock bases for the next expiry */ 1521 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1522 /* 1523 * Store the new expiry value so the migration code can verify 1524 * against it. 1525 */ 1526 cpu_base->expires_next = expires_next; 1527 cpu_base->in_hrtirq = 0; 1528 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1529 1530 /* Reprogramming necessary ? */ 1531 if (!tick_program_event(expires_next, 0)) { 1532 cpu_base->hang_detected = 0; 1533 return; 1534 } 1535 1536 /* 1537 * The next timer was already expired due to: 1538 * - tracing 1539 * - long lasting callbacks 1540 * - being scheduled away when running in a VM 1541 * 1542 * We need to prevent that we loop forever in the hrtimer 1543 * interrupt routine. We give it 3 attempts to avoid 1544 * overreacting on some spurious event. 1545 * 1546 * Acquire base lock for updating the offsets and retrieving 1547 * the current time. 1548 */ 1549 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1550 now = hrtimer_update_base(cpu_base); 1551 cpu_base->nr_retries++; 1552 if (++retries < 3) 1553 goto retry; 1554 /* 1555 * Give the system a chance to do something else than looping 1556 * here. We stored the entry time, so we know exactly how long 1557 * we spent here. We schedule the next event this amount of 1558 * time away. 1559 */ 1560 cpu_base->nr_hangs++; 1561 cpu_base->hang_detected = 1; 1562 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1563 1564 delta = ktime_sub(now, entry_time); 1565 if ((unsigned int)delta > cpu_base->max_hang_time) 1566 cpu_base->max_hang_time = (unsigned int) delta; 1567 /* 1568 * Limit it to a sensible value as we enforce a longer 1569 * delay. Give the CPU at least 100ms to catch up. 1570 */ 1571 if (delta > 100 * NSEC_PER_MSEC) 1572 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1573 else 1574 expires_next = ktime_add(now, delta); 1575 tick_program_event(expires_next, 1); 1576 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1577 } 1578 1579 /* called with interrupts disabled */ 1580 static inline void __hrtimer_peek_ahead_timers(void) 1581 { 1582 struct tick_device *td; 1583 1584 if (!hrtimer_hres_active()) 1585 return; 1586 1587 td = this_cpu_ptr(&tick_cpu_device); 1588 if (td && td->evtdev) 1589 hrtimer_interrupt(td->evtdev); 1590 } 1591 1592 #else /* CONFIG_HIGH_RES_TIMERS */ 1593 1594 static inline void __hrtimer_peek_ahead_timers(void) { } 1595 1596 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1597 1598 /* 1599 * Called from run_local_timers in hardirq context every jiffy 1600 */ 1601 void hrtimer_run_queues(void) 1602 { 1603 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1604 unsigned long flags; 1605 ktime_t now; 1606 1607 if (__hrtimer_hres_active(cpu_base)) 1608 return; 1609 1610 /* 1611 * This _is_ ugly: We have to check periodically, whether we 1612 * can switch to highres and / or nohz mode. The clocksource 1613 * switch happens with xtime_lock held. Notification from 1614 * there only sets the check bit in the tick_oneshot code, 1615 * otherwise we might deadlock vs. xtime_lock. 1616 */ 1617 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1618 hrtimer_switch_to_hres(); 1619 return; 1620 } 1621 1622 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1623 now = hrtimer_update_base(cpu_base); 1624 1625 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1626 cpu_base->softirq_expires_next = KTIME_MAX; 1627 cpu_base->softirq_activated = 1; 1628 raise_softirq_irqoff(HRTIMER_SOFTIRQ); 1629 } 1630 1631 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1632 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1633 } 1634 1635 /* 1636 * Sleep related functions: 1637 */ 1638 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1639 { 1640 struct hrtimer_sleeper *t = 1641 container_of(timer, struct hrtimer_sleeper, timer); 1642 struct task_struct *task = t->task; 1643 1644 t->task = NULL; 1645 if (task) 1646 wake_up_process(task); 1647 1648 return HRTIMER_NORESTART; 1649 } 1650 1651 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) 1652 { 1653 sl->timer.function = hrtimer_wakeup; 1654 sl->task = task; 1655 } 1656 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); 1657 1658 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 1659 { 1660 switch(restart->nanosleep.type) { 1661 #ifdef CONFIG_COMPAT_32BIT_TIME 1662 case TT_COMPAT: 1663 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 1664 return -EFAULT; 1665 break; 1666 #endif 1667 case TT_NATIVE: 1668 if (put_timespec64(ts, restart->nanosleep.rmtp)) 1669 return -EFAULT; 1670 break; 1671 default: 1672 BUG(); 1673 } 1674 return -ERESTART_RESTARTBLOCK; 1675 } 1676 1677 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 1678 { 1679 struct restart_block *restart; 1680 1681 hrtimer_init_sleeper(t, current); 1682 1683 do { 1684 set_current_state(TASK_INTERRUPTIBLE); 1685 hrtimer_start_expires(&t->timer, mode); 1686 1687 if (likely(t->task)) 1688 freezable_schedule(); 1689 1690 hrtimer_cancel(&t->timer); 1691 mode = HRTIMER_MODE_ABS; 1692 1693 } while (t->task && !signal_pending(current)); 1694 1695 __set_current_state(TASK_RUNNING); 1696 1697 if (!t->task) 1698 return 0; 1699 1700 restart = ¤t->restart_block; 1701 if (restart->nanosleep.type != TT_NONE) { 1702 ktime_t rem = hrtimer_expires_remaining(&t->timer); 1703 struct timespec64 rmt; 1704 1705 if (rem <= 0) 1706 return 0; 1707 rmt = ktime_to_timespec64(rem); 1708 1709 return nanosleep_copyout(restart, &rmt); 1710 } 1711 return -ERESTART_RESTARTBLOCK; 1712 } 1713 1714 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 1715 { 1716 struct hrtimer_sleeper t; 1717 int ret; 1718 1719 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, 1720 HRTIMER_MODE_ABS); 1721 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 1722 1723 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 1724 destroy_hrtimer_on_stack(&t.timer); 1725 return ret; 1726 } 1727 1728 long hrtimer_nanosleep(const struct timespec64 *rqtp, 1729 const enum hrtimer_mode mode, const clockid_t clockid) 1730 { 1731 struct restart_block *restart; 1732 struct hrtimer_sleeper t; 1733 int ret = 0; 1734 u64 slack; 1735 1736 slack = current->timer_slack_ns; 1737 if (dl_task(current) || rt_task(current)) 1738 slack = 0; 1739 1740 hrtimer_init_on_stack(&t.timer, clockid, mode); 1741 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack); 1742 ret = do_nanosleep(&t, mode); 1743 if (ret != -ERESTART_RESTARTBLOCK) 1744 goto out; 1745 1746 /* Absolute timers do not update the rmtp value and restart: */ 1747 if (mode == HRTIMER_MODE_ABS) { 1748 ret = -ERESTARTNOHAND; 1749 goto out; 1750 } 1751 1752 restart = ¤t->restart_block; 1753 restart->fn = hrtimer_nanosleep_restart; 1754 restart->nanosleep.clockid = t.timer.base->clockid; 1755 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 1756 out: 1757 destroy_hrtimer_on_stack(&t.timer); 1758 return ret; 1759 } 1760 1761 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT) 1762 1763 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 1764 struct __kernel_timespec __user *, rmtp) 1765 { 1766 struct timespec64 tu; 1767 1768 if (get_timespec64(&tu, rqtp)) 1769 return -EFAULT; 1770 1771 if (!timespec64_valid(&tu)) 1772 return -EINVAL; 1773 1774 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 1775 current->restart_block.nanosleep.rmtp = rmtp; 1776 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1777 } 1778 1779 #endif 1780 1781 #ifdef CONFIG_COMPAT_32BIT_TIME 1782 1783 COMPAT_SYSCALL_DEFINE2(nanosleep, struct old_timespec32 __user *, rqtp, 1784 struct old_timespec32 __user *, rmtp) 1785 { 1786 struct timespec64 tu; 1787 1788 if (get_old_timespec32(&tu, rqtp)) 1789 return -EFAULT; 1790 1791 if (!timespec64_valid(&tu)) 1792 return -EINVAL; 1793 1794 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 1795 current->restart_block.nanosleep.compat_rmtp = rmtp; 1796 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC); 1797 } 1798 #endif 1799 1800 /* 1801 * Functions related to boot-time initialization: 1802 */ 1803 int hrtimers_prepare_cpu(unsigned int cpu) 1804 { 1805 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 1806 int i; 1807 1808 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1809 cpu_base->clock_base[i].cpu_base = cpu_base; 1810 timerqueue_init_head(&cpu_base->clock_base[i].active); 1811 } 1812 1813 cpu_base->cpu = cpu; 1814 cpu_base->active_bases = 0; 1815 cpu_base->hres_active = 0; 1816 cpu_base->hang_detected = 0; 1817 cpu_base->next_timer = NULL; 1818 cpu_base->softirq_next_timer = NULL; 1819 cpu_base->expires_next = KTIME_MAX; 1820 cpu_base->softirq_expires_next = KTIME_MAX; 1821 return 0; 1822 } 1823 1824 #ifdef CONFIG_HOTPLUG_CPU 1825 1826 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 1827 struct hrtimer_clock_base *new_base) 1828 { 1829 struct hrtimer *timer; 1830 struct timerqueue_node *node; 1831 1832 while ((node = timerqueue_getnext(&old_base->active))) { 1833 timer = container_of(node, struct hrtimer, node); 1834 BUG_ON(hrtimer_callback_running(timer)); 1835 debug_deactivate(timer); 1836 1837 /* 1838 * Mark it as ENQUEUED not INACTIVE otherwise the 1839 * timer could be seen as !active and just vanish away 1840 * under us on another CPU 1841 */ 1842 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 1843 timer->base = new_base; 1844 /* 1845 * Enqueue the timers on the new cpu. This does not 1846 * reprogram the event device in case the timer 1847 * expires before the earliest on this CPU, but we run 1848 * hrtimer_interrupt after we migrated everything to 1849 * sort out already expired timers and reprogram the 1850 * event device. 1851 */ 1852 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 1853 } 1854 } 1855 1856 int hrtimers_dead_cpu(unsigned int scpu) 1857 { 1858 struct hrtimer_cpu_base *old_base, *new_base; 1859 int i; 1860 1861 BUG_ON(cpu_online(scpu)); 1862 tick_cancel_sched_timer(scpu); 1863 1864 /* 1865 * this BH disable ensures that raise_softirq_irqoff() does 1866 * not wakeup ksoftirqd (and acquire the pi-lock) while 1867 * holding the cpu_base lock 1868 */ 1869 local_bh_disable(); 1870 local_irq_disable(); 1871 old_base = &per_cpu(hrtimer_bases, scpu); 1872 new_base = this_cpu_ptr(&hrtimer_bases); 1873 /* 1874 * The caller is globally serialized and nobody else 1875 * takes two locks at once, deadlock is not possible. 1876 */ 1877 raw_spin_lock(&new_base->lock); 1878 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); 1879 1880 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 1881 migrate_hrtimer_list(&old_base->clock_base[i], 1882 &new_base->clock_base[i]); 1883 } 1884 1885 /* 1886 * The migration might have changed the first expiring softirq 1887 * timer on this CPU. Update it. 1888 */ 1889 hrtimer_update_softirq_timer(new_base, false); 1890 1891 raw_spin_unlock(&old_base->lock); 1892 raw_spin_unlock(&new_base->lock); 1893 1894 /* Check, if we got expired work to do */ 1895 __hrtimer_peek_ahead_timers(); 1896 local_irq_enable(); 1897 local_bh_enable(); 1898 return 0; 1899 } 1900 1901 #endif /* CONFIG_HOTPLUG_CPU */ 1902 1903 void __init hrtimers_init(void) 1904 { 1905 hrtimers_prepare_cpu(smp_processor_id()); 1906 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 1907 } 1908 1909 /** 1910 * schedule_hrtimeout_range_clock - sleep until timeout 1911 * @expires: timeout value (ktime_t) 1912 * @delta: slack in expires timeout (ktime_t) 1913 * @mode: timer mode 1914 * @clock_id: timer clock to be used 1915 */ 1916 int __sched 1917 schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta, 1918 const enum hrtimer_mode mode, clockid_t clock_id) 1919 { 1920 struct hrtimer_sleeper t; 1921 1922 /* 1923 * Optimize when a zero timeout value is given. It does not 1924 * matter whether this is an absolute or a relative time. 1925 */ 1926 if (expires && *expires == 0) { 1927 __set_current_state(TASK_RUNNING); 1928 return 0; 1929 } 1930 1931 /* 1932 * A NULL parameter means "infinite" 1933 */ 1934 if (!expires) { 1935 schedule(); 1936 return -EINTR; 1937 } 1938 1939 hrtimer_init_on_stack(&t.timer, clock_id, mode); 1940 hrtimer_set_expires_range_ns(&t.timer, *expires, delta); 1941 1942 hrtimer_init_sleeper(&t, current); 1943 1944 hrtimer_start_expires(&t.timer, mode); 1945 1946 if (likely(t.task)) 1947 schedule(); 1948 1949 hrtimer_cancel(&t.timer); 1950 destroy_hrtimer_on_stack(&t.timer); 1951 1952 __set_current_state(TASK_RUNNING); 1953 1954 return !t.task ? 0 : -EINTR; 1955 } 1956 1957 /** 1958 * schedule_hrtimeout_range - sleep until timeout 1959 * @expires: timeout value (ktime_t) 1960 * @delta: slack in expires timeout (ktime_t) 1961 * @mode: timer mode 1962 * 1963 * Make the current task sleep until the given expiry time has 1964 * elapsed. The routine will return immediately unless 1965 * the current task state has been set (see set_current_state()). 1966 * 1967 * The @delta argument gives the kernel the freedom to schedule the 1968 * actual wakeup to a time that is both power and performance friendly. 1969 * The kernel give the normal best effort behavior for "@expires+@delta", 1970 * but may decide to fire the timer earlier, but no earlier than @expires. 1971 * 1972 * You can set the task state as follows - 1973 * 1974 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 1975 * pass before the routine returns unless the current task is explicitly 1976 * woken up, (e.g. by wake_up_process()). 1977 * 1978 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 1979 * delivered to the current task or the current task is explicitly woken 1980 * up. 1981 * 1982 * The current task state is guaranteed to be TASK_RUNNING when this 1983 * routine returns. 1984 * 1985 * Returns 0 when the timer has expired. If the task was woken before the 1986 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 1987 * by an explicit wakeup, it returns -EINTR. 1988 */ 1989 int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta, 1990 const enum hrtimer_mode mode) 1991 { 1992 return schedule_hrtimeout_range_clock(expires, delta, mode, 1993 CLOCK_MONOTONIC); 1994 } 1995 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); 1996 1997 /** 1998 * schedule_hrtimeout - sleep until timeout 1999 * @expires: timeout value (ktime_t) 2000 * @mode: timer mode 2001 * 2002 * Make the current task sleep until the given expiry time has 2003 * elapsed. The routine will return immediately unless 2004 * the current task state has been set (see set_current_state()). 2005 * 2006 * You can set the task state as follows - 2007 * 2008 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to 2009 * pass before the routine returns unless the current task is explicitly 2010 * woken up, (e.g. by wake_up_process()). 2011 * 2012 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is 2013 * delivered to the current task or the current task is explicitly woken 2014 * up. 2015 * 2016 * The current task state is guaranteed to be TASK_RUNNING when this 2017 * routine returns. 2018 * 2019 * Returns 0 when the timer has expired. If the task was woken before the 2020 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or 2021 * by an explicit wakeup, it returns -EINTR. 2022 */ 2023 int __sched schedule_hrtimeout(ktime_t *expires, 2024 const enum hrtimer_mode mode) 2025 { 2026 return schedule_hrtimeout_range(expires, 0, mode); 2027 } 2028 EXPORT_SYMBOL_GPL(schedule_hrtimeout); 2029