xref: /openbmc/linux/kernel/time/clocksource.c (revision cc19db8b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 /**
24  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25  * @mult:	pointer to mult variable
26  * @shift:	pointer to shift variable
27  * @from:	frequency to convert from
28  * @to:		frequency to convert to
29  * @maxsec:	guaranteed runtime conversion range in seconds
30  *
31  * The function evaluates the shift/mult pair for the scaled math
32  * operations of clocksources and clockevents.
33  *
34  * @to and @from are frequency values in HZ. For clock sources @to is
35  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36  * event @to is the counter frequency and @from is NSEC_PER_SEC.
37  *
38  * The @maxsec conversion range argument controls the time frame in
39  * seconds which must be covered by the runtime conversion with the
40  * calculated mult and shift factors. This guarantees that no 64bit
41  * overflow happens when the input value of the conversion is
42  * multiplied with the calculated mult factor. Larger ranges may
43  * reduce the conversion accuracy by choosing smaller mult and shift
44  * factors.
45  */
46 void
47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48 {
49 	u64 tmp;
50 	u32 sft, sftacc= 32;
51 
52 	/*
53 	 * Calculate the shift factor which is limiting the conversion
54 	 * range:
55 	 */
56 	tmp = ((u64)maxsec * from) >> 32;
57 	while (tmp) {
58 		tmp >>=1;
59 		sftacc--;
60 	}
61 
62 	/*
63 	 * Find the conversion shift/mult pair which has the best
64 	 * accuracy and fits the maxsec conversion range:
65 	 */
66 	for (sft = 32; sft > 0; sft--) {
67 		tmp = (u64) to << sft;
68 		tmp += from / 2;
69 		do_div(tmp, from);
70 		if ((tmp >> sftacc) == 0)
71 			break;
72 	}
73 	*mult = tmp;
74 	*shift = sft;
75 }
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77 
78 /*[Clocksource internal variables]---------
79  * curr_clocksource:
80  *	currently selected clocksource.
81  * suspend_clocksource:
82  *	used to calculate the suspend time.
83  * clocksource_list:
84  *	linked list with the registered clocksources
85  * clocksource_mutex:
86  *	protects manipulations to curr_clocksource and the clocksource_list
87  * override_name:
88  *	Name of the user-specified clocksource.
89  */
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
97 
98 /*
99  * Threshold: 0.0312s, when doubled: 0.0625s.
100  * Also a default for cs->uncertainty_margin when registering clocks.
101  */
102 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
103 
104 /*
105  * Maximum permissible delay between two readouts of the watchdog
106  * clocksource surrounding a read of the clocksource being validated.
107  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
108  * a lower bound for cs->uncertainty_margin values when registering clocks.
109  */
110 #define WATCHDOG_MAX_SKEW (100 * NSEC_PER_USEC)
111 
112 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
113 static void clocksource_watchdog_work(struct work_struct *work);
114 static void clocksource_select(void);
115 
116 static LIST_HEAD(watchdog_list);
117 static struct clocksource *watchdog;
118 static struct timer_list watchdog_timer;
119 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
120 static DEFINE_SPINLOCK(watchdog_lock);
121 static int watchdog_running;
122 static atomic_t watchdog_reset_pending;
123 
124 static inline void clocksource_watchdog_lock(unsigned long *flags)
125 {
126 	spin_lock_irqsave(&watchdog_lock, *flags);
127 }
128 
129 static inline void clocksource_watchdog_unlock(unsigned long *flags)
130 {
131 	spin_unlock_irqrestore(&watchdog_lock, *flags);
132 }
133 
134 static int clocksource_watchdog_kthread(void *data);
135 static void __clocksource_change_rating(struct clocksource *cs, int rating);
136 
137 /*
138  * Interval: 0.5sec.
139  */
140 #define WATCHDOG_INTERVAL (HZ >> 1)
141 
142 static void clocksource_watchdog_work(struct work_struct *work)
143 {
144 	/*
145 	 * We cannot directly run clocksource_watchdog_kthread() here, because
146 	 * clocksource_select() calls timekeeping_notify() which uses
147 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 	 * lock inversions wrt CPU hotplug.
149 	 *
150 	 * Also, we only ever run this work once or twice during the lifetime
151 	 * of the kernel, so there is no point in creating a more permanent
152 	 * kthread for this.
153 	 *
154 	 * If kthread_run fails the next watchdog scan over the
155 	 * watchdog_list will find the unstable clock again.
156 	 */
157 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
158 }
159 
160 static void __clocksource_unstable(struct clocksource *cs)
161 {
162 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
164 
165 	/*
166 	 * If the clocksource is registered clocksource_watchdog_kthread() will
167 	 * re-rate and re-select.
168 	 */
169 	if (list_empty(&cs->list)) {
170 		cs->rating = 0;
171 		return;
172 	}
173 
174 	if (cs->mark_unstable)
175 		cs->mark_unstable(cs);
176 
177 	/* kick clocksource_watchdog_kthread() */
178 	if (finished_booting)
179 		schedule_work(&watchdog_work);
180 }
181 
182 /**
183  * clocksource_mark_unstable - mark clocksource unstable via watchdog
184  * @cs:		clocksource to be marked unstable
185  *
186  * This function is called by the x86 TSC code to mark clocksources as unstable;
187  * it defers demotion and re-selection to a kthread.
188  */
189 void clocksource_mark_unstable(struct clocksource *cs)
190 {
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&watchdog_lock, flags);
194 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 			list_add(&cs->wd_list, &watchdog_list);
197 		__clocksource_unstable(cs);
198 	}
199 	spin_unlock_irqrestore(&watchdog_lock, flags);
200 }
201 
202 ulong max_cswd_read_retries = 2;
203 module_param(max_cswd_read_retries, ulong, 0644);
204 EXPORT_SYMBOL_GPL(max_cswd_read_retries);
205 static int verify_n_cpus = 8;
206 module_param(verify_n_cpus, int, 0644);
207 
208 enum wd_read_status {
209 	WD_READ_SUCCESS,
210 	WD_READ_UNSTABLE,
211 	WD_READ_SKIP
212 };
213 
214 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
215 {
216 	unsigned int nretries;
217 	u64 wd_end, wd_end2, wd_delta;
218 	int64_t wd_delay, wd_seq_delay;
219 
220 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
221 		local_irq_disable();
222 		*wdnow = watchdog->read(watchdog);
223 		*csnow = cs->read(cs);
224 		wd_end = watchdog->read(watchdog);
225 		wd_end2 = watchdog->read(watchdog);
226 		local_irq_enable();
227 
228 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
229 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
230 					      watchdog->shift);
231 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
232 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
233 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
234 					smp_processor_id(), watchdog->name, nretries);
235 			}
236 			return WD_READ_SUCCESS;
237 		}
238 
239 		/*
240 		 * Now compute delay in consecutive watchdog read to see if
241 		 * there is too much external interferences that cause
242 		 * significant delay in reading both clocksource and watchdog.
243 		 *
244 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
245 		 * report system busy, reinit the watchdog and skip the current
246 		 * watchdog test.
247 		 */
248 		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
249 		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
250 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
251 			goto skip_test;
252 	}
253 
254 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
255 		smp_processor_id(), watchdog->name, wd_delay, nretries);
256 	return WD_READ_UNSTABLE;
257 
258 skip_test:
259 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
260 		smp_processor_id(), watchdog->name, wd_seq_delay);
261 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
262 		cs->name, wd_delay);
263 	return WD_READ_SKIP;
264 }
265 
266 static u64 csnow_mid;
267 static cpumask_t cpus_ahead;
268 static cpumask_t cpus_behind;
269 static cpumask_t cpus_chosen;
270 
271 static void clocksource_verify_choose_cpus(void)
272 {
273 	int cpu, i, n = verify_n_cpus;
274 
275 	if (n < 0) {
276 		/* Check all of the CPUs. */
277 		cpumask_copy(&cpus_chosen, cpu_online_mask);
278 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
279 		return;
280 	}
281 
282 	/* If no checking desired, or no other CPU to check, leave. */
283 	cpumask_clear(&cpus_chosen);
284 	if (n == 0 || num_online_cpus() <= 1)
285 		return;
286 
287 	/* Make sure to select at least one CPU other than the current CPU. */
288 	cpu = cpumask_first(cpu_online_mask);
289 	if (cpu == smp_processor_id())
290 		cpu = cpumask_next(cpu, cpu_online_mask);
291 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
292 		return;
293 	cpumask_set_cpu(cpu, &cpus_chosen);
294 
295 	/* Force a sane value for the boot parameter. */
296 	if (n > nr_cpu_ids)
297 		n = nr_cpu_ids;
298 
299 	/*
300 	 * Randomly select the specified number of CPUs.  If the same
301 	 * CPU is selected multiple times, that CPU is checked only once,
302 	 * and no replacement CPU is selected.  This gracefully handles
303 	 * situations where verify_n_cpus is greater than the number of
304 	 * CPUs that are currently online.
305 	 */
306 	for (i = 1; i < n; i++) {
307 		cpu = prandom_u32() % nr_cpu_ids;
308 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
309 		if (cpu >= nr_cpu_ids)
310 			cpu = cpumask_first(cpu_online_mask);
311 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
312 			cpumask_set_cpu(cpu, &cpus_chosen);
313 	}
314 
315 	/* Don't verify ourselves. */
316 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
317 }
318 
319 static void clocksource_verify_one_cpu(void *csin)
320 {
321 	struct clocksource *cs = (struct clocksource *)csin;
322 
323 	csnow_mid = cs->read(cs);
324 }
325 
326 void clocksource_verify_percpu(struct clocksource *cs)
327 {
328 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
329 	u64 csnow_begin, csnow_end;
330 	int cpu, testcpu;
331 	s64 delta;
332 
333 	if (verify_n_cpus == 0)
334 		return;
335 	cpumask_clear(&cpus_ahead);
336 	cpumask_clear(&cpus_behind);
337 	cpus_read_lock();
338 	preempt_disable();
339 	clocksource_verify_choose_cpus();
340 	if (cpumask_weight(&cpus_chosen) == 0) {
341 		preempt_enable();
342 		cpus_read_unlock();
343 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
344 		return;
345 	}
346 	testcpu = smp_processor_id();
347 	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
348 	for_each_cpu(cpu, &cpus_chosen) {
349 		if (cpu == testcpu)
350 			continue;
351 		csnow_begin = cs->read(cs);
352 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
353 		csnow_end = cs->read(cs);
354 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
355 		if (delta < 0)
356 			cpumask_set_cpu(cpu, &cpus_behind);
357 		delta = (csnow_end - csnow_mid) & cs->mask;
358 		if (delta < 0)
359 			cpumask_set_cpu(cpu, &cpus_ahead);
360 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
361 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
362 		if (cs_nsec > cs_nsec_max)
363 			cs_nsec_max = cs_nsec;
364 		if (cs_nsec < cs_nsec_min)
365 			cs_nsec_min = cs_nsec;
366 	}
367 	preempt_enable();
368 	cpus_read_unlock();
369 	if (!cpumask_empty(&cpus_ahead))
370 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
371 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
372 	if (!cpumask_empty(&cpus_behind))
373 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
374 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
375 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
376 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
377 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
378 }
379 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
380 
381 static void clocksource_watchdog(struct timer_list *unused)
382 {
383 	u64 csnow, wdnow, cslast, wdlast, delta;
384 	int next_cpu, reset_pending;
385 	int64_t wd_nsec, cs_nsec;
386 	struct clocksource *cs;
387 	enum wd_read_status read_ret;
388 	u32 md;
389 
390 	spin_lock(&watchdog_lock);
391 	if (!watchdog_running)
392 		goto out;
393 
394 	reset_pending = atomic_read(&watchdog_reset_pending);
395 
396 	list_for_each_entry(cs, &watchdog_list, wd_list) {
397 
398 		/* Clocksource already marked unstable? */
399 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
400 			if (finished_booting)
401 				schedule_work(&watchdog_work);
402 			continue;
403 		}
404 
405 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
406 
407 		if (read_ret != WD_READ_SUCCESS) {
408 			if (read_ret == WD_READ_UNSTABLE)
409 				/* Clock readout unreliable, so give it up. */
410 				__clocksource_unstable(cs);
411 			continue;
412 		}
413 
414 		/* Clocksource initialized ? */
415 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
416 		    atomic_read(&watchdog_reset_pending)) {
417 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
418 			cs->wd_last = wdnow;
419 			cs->cs_last = csnow;
420 			continue;
421 		}
422 
423 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
424 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
425 					     watchdog->shift);
426 
427 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
428 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
429 		wdlast = cs->wd_last; /* save these in case we print them */
430 		cslast = cs->cs_last;
431 		cs->cs_last = csnow;
432 		cs->wd_last = wdnow;
433 
434 		if (atomic_read(&watchdog_reset_pending))
435 			continue;
436 
437 		/* Check the deviation from the watchdog clocksource. */
438 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
439 		if (abs(cs_nsec - wd_nsec) > md) {
440 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
441 				smp_processor_id(), cs->name);
442 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
443 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
444 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
445 				cs->name, cs_nsec, csnow, cslast, cs->mask);
446 			if (curr_clocksource == cs)
447 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
448 			else if (curr_clocksource)
449 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
450 			else
451 				pr_warn("                      No current clocksource.\n");
452 			__clocksource_unstable(cs);
453 			continue;
454 		}
455 
456 		if (cs == curr_clocksource && cs->tick_stable)
457 			cs->tick_stable(cs);
458 
459 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
460 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
461 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
462 			/* Mark it valid for high-res. */
463 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
464 
465 			/*
466 			 * clocksource_done_booting() will sort it if
467 			 * finished_booting is not set yet.
468 			 */
469 			if (!finished_booting)
470 				continue;
471 
472 			/*
473 			 * If this is not the current clocksource let
474 			 * the watchdog thread reselect it. Due to the
475 			 * change to high res this clocksource might
476 			 * be preferred now. If it is the current
477 			 * clocksource let the tick code know about
478 			 * that change.
479 			 */
480 			if (cs != curr_clocksource) {
481 				cs->flags |= CLOCK_SOURCE_RESELECT;
482 				schedule_work(&watchdog_work);
483 			} else {
484 				tick_clock_notify();
485 			}
486 		}
487 	}
488 
489 	/*
490 	 * We only clear the watchdog_reset_pending, when we did a
491 	 * full cycle through all clocksources.
492 	 */
493 	if (reset_pending)
494 		atomic_dec(&watchdog_reset_pending);
495 
496 	/*
497 	 * Cycle through CPUs to check if the CPUs stay synchronized
498 	 * to each other.
499 	 */
500 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
501 	if (next_cpu >= nr_cpu_ids)
502 		next_cpu = cpumask_first(cpu_online_mask);
503 
504 	/*
505 	 * Arm timer if not already pending: could race with concurrent
506 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
507 	 */
508 	if (!timer_pending(&watchdog_timer)) {
509 		watchdog_timer.expires += WATCHDOG_INTERVAL;
510 		add_timer_on(&watchdog_timer, next_cpu);
511 	}
512 out:
513 	spin_unlock(&watchdog_lock);
514 }
515 
516 static inline void clocksource_start_watchdog(void)
517 {
518 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
519 		return;
520 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
521 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
522 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
523 	watchdog_running = 1;
524 }
525 
526 static inline void clocksource_stop_watchdog(void)
527 {
528 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
529 		return;
530 	del_timer(&watchdog_timer);
531 	watchdog_running = 0;
532 }
533 
534 static inline void clocksource_reset_watchdog(void)
535 {
536 	struct clocksource *cs;
537 
538 	list_for_each_entry(cs, &watchdog_list, wd_list)
539 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
540 }
541 
542 static void clocksource_resume_watchdog(void)
543 {
544 	atomic_inc(&watchdog_reset_pending);
545 }
546 
547 static void clocksource_enqueue_watchdog(struct clocksource *cs)
548 {
549 	INIT_LIST_HEAD(&cs->wd_list);
550 
551 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
552 		/* cs is a clocksource to be watched. */
553 		list_add(&cs->wd_list, &watchdog_list);
554 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
555 	} else {
556 		/* cs is a watchdog. */
557 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
558 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
559 	}
560 }
561 
562 static void clocksource_select_watchdog(bool fallback)
563 {
564 	struct clocksource *cs, *old_wd;
565 	unsigned long flags;
566 
567 	spin_lock_irqsave(&watchdog_lock, flags);
568 	/* save current watchdog */
569 	old_wd = watchdog;
570 	if (fallback)
571 		watchdog = NULL;
572 
573 	list_for_each_entry(cs, &clocksource_list, list) {
574 		/* cs is a clocksource to be watched. */
575 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
576 			continue;
577 
578 		/* Skip current if we were requested for a fallback. */
579 		if (fallback && cs == old_wd)
580 			continue;
581 
582 		/* Pick the best watchdog. */
583 		if (!watchdog || cs->rating > watchdog->rating)
584 			watchdog = cs;
585 	}
586 	/* If we failed to find a fallback restore the old one. */
587 	if (!watchdog)
588 		watchdog = old_wd;
589 
590 	/* If we changed the watchdog we need to reset cycles. */
591 	if (watchdog != old_wd)
592 		clocksource_reset_watchdog();
593 
594 	/* Check if the watchdog timer needs to be started. */
595 	clocksource_start_watchdog();
596 	spin_unlock_irqrestore(&watchdog_lock, flags);
597 }
598 
599 static void clocksource_dequeue_watchdog(struct clocksource *cs)
600 {
601 	if (cs != watchdog) {
602 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
603 			/* cs is a watched clocksource. */
604 			list_del_init(&cs->wd_list);
605 			/* Check if the watchdog timer needs to be stopped. */
606 			clocksource_stop_watchdog();
607 		}
608 	}
609 }
610 
611 static int __clocksource_watchdog_kthread(void)
612 {
613 	struct clocksource *cs, *tmp;
614 	unsigned long flags;
615 	int select = 0;
616 
617 	/* Do any required per-CPU skew verification. */
618 	if (curr_clocksource &&
619 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
620 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
621 		clocksource_verify_percpu(curr_clocksource);
622 
623 	spin_lock_irqsave(&watchdog_lock, flags);
624 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
625 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
626 			list_del_init(&cs->wd_list);
627 			__clocksource_change_rating(cs, 0);
628 			select = 1;
629 		}
630 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
631 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
632 			select = 1;
633 		}
634 	}
635 	/* Check if the watchdog timer needs to be stopped. */
636 	clocksource_stop_watchdog();
637 	spin_unlock_irqrestore(&watchdog_lock, flags);
638 
639 	return select;
640 }
641 
642 static int clocksource_watchdog_kthread(void *data)
643 {
644 	mutex_lock(&clocksource_mutex);
645 	if (__clocksource_watchdog_kthread())
646 		clocksource_select();
647 	mutex_unlock(&clocksource_mutex);
648 	return 0;
649 }
650 
651 static bool clocksource_is_watchdog(struct clocksource *cs)
652 {
653 	return cs == watchdog;
654 }
655 
656 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
657 
658 static void clocksource_enqueue_watchdog(struct clocksource *cs)
659 {
660 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
661 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
662 }
663 
664 static void clocksource_select_watchdog(bool fallback) { }
665 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
666 static inline void clocksource_resume_watchdog(void) { }
667 static inline int __clocksource_watchdog_kthread(void) { return 0; }
668 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
669 void clocksource_mark_unstable(struct clocksource *cs) { }
670 
671 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
672 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
673 
674 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
675 
676 static bool clocksource_is_suspend(struct clocksource *cs)
677 {
678 	return cs == suspend_clocksource;
679 }
680 
681 static void __clocksource_suspend_select(struct clocksource *cs)
682 {
683 	/*
684 	 * Skip the clocksource which will be stopped in suspend state.
685 	 */
686 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
687 		return;
688 
689 	/*
690 	 * The nonstop clocksource can be selected as the suspend clocksource to
691 	 * calculate the suspend time, so it should not supply suspend/resume
692 	 * interfaces to suspend the nonstop clocksource when system suspends.
693 	 */
694 	if (cs->suspend || cs->resume) {
695 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
696 			cs->name);
697 	}
698 
699 	/* Pick the best rating. */
700 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
701 		suspend_clocksource = cs;
702 }
703 
704 /**
705  * clocksource_suspend_select - Select the best clocksource for suspend timing
706  * @fallback:	if select a fallback clocksource
707  */
708 static void clocksource_suspend_select(bool fallback)
709 {
710 	struct clocksource *cs, *old_suspend;
711 
712 	old_suspend = suspend_clocksource;
713 	if (fallback)
714 		suspend_clocksource = NULL;
715 
716 	list_for_each_entry(cs, &clocksource_list, list) {
717 		/* Skip current if we were requested for a fallback. */
718 		if (fallback && cs == old_suspend)
719 			continue;
720 
721 		__clocksource_suspend_select(cs);
722 	}
723 }
724 
725 /**
726  * clocksource_start_suspend_timing - Start measuring the suspend timing
727  * @cs:			current clocksource from timekeeping
728  * @start_cycles:	current cycles from timekeeping
729  *
730  * This function will save the start cycle values of suspend timer to calculate
731  * the suspend time when resuming system.
732  *
733  * This function is called late in the suspend process from timekeeping_suspend(),
734  * that means processes are frozen, non-boot cpus and interrupts are disabled
735  * now. It is therefore possible to start the suspend timer without taking the
736  * clocksource mutex.
737  */
738 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
739 {
740 	if (!suspend_clocksource)
741 		return;
742 
743 	/*
744 	 * If current clocksource is the suspend timer, we should use the
745 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
746 	 * from suspend timer.
747 	 */
748 	if (clocksource_is_suspend(cs)) {
749 		suspend_start = start_cycles;
750 		return;
751 	}
752 
753 	if (suspend_clocksource->enable &&
754 	    suspend_clocksource->enable(suspend_clocksource)) {
755 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
756 		return;
757 	}
758 
759 	suspend_start = suspend_clocksource->read(suspend_clocksource);
760 }
761 
762 /**
763  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
764  * @cs:		current clocksource from timekeeping
765  * @cycle_now:	current cycles from timekeeping
766  *
767  * This function will calculate the suspend time from suspend timer.
768  *
769  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
770  *
771  * This function is called early in the resume process from timekeeping_resume(),
772  * that means there is only one cpu, no processes are running and the interrupts
773  * are disabled. It is therefore possible to stop the suspend timer without
774  * taking the clocksource mutex.
775  */
776 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
777 {
778 	u64 now, delta, nsec = 0;
779 
780 	if (!suspend_clocksource)
781 		return 0;
782 
783 	/*
784 	 * If current clocksource is the suspend timer, we should use the
785 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
786 	 * avoid same reading from suspend timer.
787 	 */
788 	if (clocksource_is_suspend(cs))
789 		now = cycle_now;
790 	else
791 		now = suspend_clocksource->read(suspend_clocksource);
792 
793 	if (now > suspend_start) {
794 		delta = clocksource_delta(now, suspend_start,
795 					  suspend_clocksource->mask);
796 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
797 				       suspend_clocksource->shift);
798 	}
799 
800 	/*
801 	 * Disable the suspend timer to save power if current clocksource is
802 	 * not the suspend timer.
803 	 */
804 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
805 		suspend_clocksource->disable(suspend_clocksource);
806 
807 	return nsec;
808 }
809 
810 /**
811  * clocksource_suspend - suspend the clocksource(s)
812  */
813 void clocksource_suspend(void)
814 {
815 	struct clocksource *cs;
816 
817 	list_for_each_entry_reverse(cs, &clocksource_list, list)
818 		if (cs->suspend)
819 			cs->suspend(cs);
820 }
821 
822 /**
823  * clocksource_resume - resume the clocksource(s)
824  */
825 void clocksource_resume(void)
826 {
827 	struct clocksource *cs;
828 
829 	list_for_each_entry(cs, &clocksource_list, list)
830 		if (cs->resume)
831 			cs->resume(cs);
832 
833 	clocksource_resume_watchdog();
834 }
835 
836 /**
837  * clocksource_touch_watchdog - Update watchdog
838  *
839  * Update the watchdog after exception contexts such as kgdb so as not
840  * to incorrectly trip the watchdog. This might fail when the kernel
841  * was stopped in code which holds watchdog_lock.
842  */
843 void clocksource_touch_watchdog(void)
844 {
845 	clocksource_resume_watchdog();
846 }
847 
848 /**
849  * clocksource_max_adjustment- Returns max adjustment amount
850  * @cs:         Pointer to clocksource
851  *
852  */
853 static u32 clocksource_max_adjustment(struct clocksource *cs)
854 {
855 	u64 ret;
856 	/*
857 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
858 	 */
859 	ret = (u64)cs->mult * 11;
860 	do_div(ret,100);
861 	return (u32)ret;
862 }
863 
864 /**
865  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
866  * @mult:	cycle to nanosecond multiplier
867  * @shift:	cycle to nanosecond divisor (power of two)
868  * @maxadj:	maximum adjustment value to mult (~11%)
869  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
870  * @max_cyc:	maximum cycle value before potential overflow (does not include
871  *		any safety margin)
872  *
873  * NOTE: This function includes a safety margin of 50%, in other words, we
874  * return half the number of nanoseconds the hardware counter can technically
875  * cover. This is done so that we can potentially detect problems caused by
876  * delayed timers or bad hardware, which might result in time intervals that
877  * are larger than what the math used can handle without overflows.
878  */
879 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
880 {
881 	u64 max_nsecs, max_cycles;
882 
883 	/*
884 	 * Calculate the maximum number of cycles that we can pass to the
885 	 * cyc2ns() function without overflowing a 64-bit result.
886 	 */
887 	max_cycles = ULLONG_MAX;
888 	do_div(max_cycles, mult+maxadj);
889 
890 	/*
891 	 * The actual maximum number of cycles we can defer the clocksource is
892 	 * determined by the minimum of max_cycles and mask.
893 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
894 	 * too long if there's a large negative adjustment.
895 	 */
896 	max_cycles = min(max_cycles, mask);
897 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
898 
899 	/* return the max_cycles value as well if requested */
900 	if (max_cyc)
901 		*max_cyc = max_cycles;
902 
903 	/* Return 50% of the actual maximum, so we can detect bad values */
904 	max_nsecs >>= 1;
905 
906 	return max_nsecs;
907 }
908 
909 /**
910  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
911  * @cs:         Pointer to clocksource to be updated
912  *
913  */
914 static inline void clocksource_update_max_deferment(struct clocksource *cs)
915 {
916 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
917 						cs->maxadj, cs->mask,
918 						&cs->max_cycles);
919 }
920 
921 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
922 {
923 	struct clocksource *cs;
924 
925 	if (!finished_booting || list_empty(&clocksource_list))
926 		return NULL;
927 
928 	/*
929 	 * We pick the clocksource with the highest rating. If oneshot
930 	 * mode is active, we pick the highres valid clocksource with
931 	 * the best rating.
932 	 */
933 	list_for_each_entry(cs, &clocksource_list, list) {
934 		if (skipcur && cs == curr_clocksource)
935 			continue;
936 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
937 			continue;
938 		return cs;
939 	}
940 	return NULL;
941 }
942 
943 static void __clocksource_select(bool skipcur)
944 {
945 	bool oneshot = tick_oneshot_mode_active();
946 	struct clocksource *best, *cs;
947 
948 	/* Find the best suitable clocksource */
949 	best = clocksource_find_best(oneshot, skipcur);
950 	if (!best)
951 		return;
952 
953 	if (!strlen(override_name))
954 		goto found;
955 
956 	/* Check for the override clocksource. */
957 	list_for_each_entry(cs, &clocksource_list, list) {
958 		if (skipcur && cs == curr_clocksource)
959 			continue;
960 		if (strcmp(cs->name, override_name) != 0)
961 			continue;
962 		/*
963 		 * Check to make sure we don't switch to a non-highres
964 		 * capable clocksource if the tick code is in oneshot
965 		 * mode (highres or nohz)
966 		 */
967 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
968 			/* Override clocksource cannot be used. */
969 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
970 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
971 					cs->name);
972 				override_name[0] = 0;
973 			} else {
974 				/*
975 				 * The override cannot be currently verified.
976 				 * Deferring to let the watchdog check.
977 				 */
978 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
979 					cs->name);
980 			}
981 		} else
982 			/* Override clocksource can be used. */
983 			best = cs;
984 		break;
985 	}
986 
987 found:
988 	if (curr_clocksource != best && !timekeeping_notify(best)) {
989 		pr_info("Switched to clocksource %s\n", best->name);
990 		curr_clocksource = best;
991 	}
992 }
993 
994 /**
995  * clocksource_select - Select the best clocksource available
996  *
997  * Private function. Must hold clocksource_mutex when called.
998  *
999  * Select the clocksource with the best rating, or the clocksource,
1000  * which is selected by userspace override.
1001  */
1002 static void clocksource_select(void)
1003 {
1004 	__clocksource_select(false);
1005 }
1006 
1007 static void clocksource_select_fallback(void)
1008 {
1009 	__clocksource_select(true);
1010 }
1011 
1012 /*
1013  * clocksource_done_booting - Called near the end of core bootup
1014  *
1015  * Hack to avoid lots of clocksource churn at boot time.
1016  * We use fs_initcall because we want this to start before
1017  * device_initcall but after subsys_initcall.
1018  */
1019 static int __init clocksource_done_booting(void)
1020 {
1021 	mutex_lock(&clocksource_mutex);
1022 	curr_clocksource = clocksource_default_clock();
1023 	finished_booting = 1;
1024 	/*
1025 	 * Run the watchdog first to eliminate unstable clock sources
1026 	 */
1027 	__clocksource_watchdog_kthread();
1028 	clocksource_select();
1029 	mutex_unlock(&clocksource_mutex);
1030 	return 0;
1031 }
1032 fs_initcall(clocksource_done_booting);
1033 
1034 /*
1035  * Enqueue the clocksource sorted by rating
1036  */
1037 static void clocksource_enqueue(struct clocksource *cs)
1038 {
1039 	struct list_head *entry = &clocksource_list;
1040 	struct clocksource *tmp;
1041 
1042 	list_for_each_entry(tmp, &clocksource_list, list) {
1043 		/* Keep track of the place, where to insert */
1044 		if (tmp->rating < cs->rating)
1045 			break;
1046 		entry = &tmp->list;
1047 	}
1048 	list_add(&cs->list, entry);
1049 }
1050 
1051 /**
1052  * __clocksource_update_freq_scale - Used update clocksource with new freq
1053  * @cs:		clocksource to be registered
1054  * @scale:	Scale factor multiplied against freq to get clocksource hz
1055  * @freq:	clocksource frequency (cycles per second) divided by scale
1056  *
1057  * This should only be called from the clocksource->enable() method.
1058  *
1059  * This *SHOULD NOT* be called directly! Please use the
1060  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1061  * functions.
1062  */
1063 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1064 {
1065 	u64 sec;
1066 
1067 	/*
1068 	 * Default clocksources are *special* and self-define their mult/shift.
1069 	 * But, you're not special, so you should specify a freq value.
1070 	 */
1071 	if (freq) {
1072 		/*
1073 		 * Calc the maximum number of seconds which we can run before
1074 		 * wrapping around. For clocksources which have a mask > 32-bit
1075 		 * we need to limit the max sleep time to have a good
1076 		 * conversion precision. 10 minutes is still a reasonable
1077 		 * amount. That results in a shift value of 24 for a
1078 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1079 		 * ~ 0.06ppm granularity for NTP.
1080 		 */
1081 		sec = cs->mask;
1082 		do_div(sec, freq);
1083 		do_div(sec, scale);
1084 		if (!sec)
1085 			sec = 1;
1086 		else if (sec > 600 && cs->mask > UINT_MAX)
1087 			sec = 600;
1088 
1089 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1090 				       NSEC_PER_SEC / scale, sec * scale);
1091 	}
1092 
1093 	/*
1094 	 * If the uncertainty margin is not specified, calculate it.
1095 	 * If both scale and freq are non-zero, calculate the clock
1096 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1097 	 * if either of scale or freq is zero, be very conservative and
1098 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1099 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1100 	 * to be specified by the caller for testing purposes, but warn
1101 	 * to discourage production use of this capability.
1102 	 */
1103 	if (scale && freq && !cs->uncertainty_margin) {
1104 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1105 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1106 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1107 	} else if (!cs->uncertainty_margin) {
1108 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1109 	}
1110 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1111 
1112 	/*
1113 	 * Ensure clocksources that have large 'mult' values don't overflow
1114 	 * when adjusted.
1115 	 */
1116 	cs->maxadj = clocksource_max_adjustment(cs);
1117 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1118 		|| (cs->mult - cs->maxadj > cs->mult))) {
1119 		cs->mult >>= 1;
1120 		cs->shift--;
1121 		cs->maxadj = clocksource_max_adjustment(cs);
1122 	}
1123 
1124 	/*
1125 	 * Only warn for *special* clocksources that self-define
1126 	 * their mult/shift values and don't specify a freq.
1127 	 */
1128 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1129 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1130 		cs->name);
1131 
1132 	clocksource_update_max_deferment(cs);
1133 
1134 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1135 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1136 }
1137 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1138 
1139 /**
1140  * __clocksource_register_scale - Used to install new clocksources
1141  * @cs:		clocksource to be registered
1142  * @scale:	Scale factor multiplied against freq to get clocksource hz
1143  * @freq:	clocksource frequency (cycles per second) divided by scale
1144  *
1145  * Returns -EBUSY if registration fails, zero otherwise.
1146  *
1147  * This *SHOULD NOT* be called directly! Please use the
1148  * clocksource_register_hz() or clocksource_register_khz helper functions.
1149  */
1150 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1151 {
1152 	unsigned long flags;
1153 
1154 	clocksource_arch_init(cs);
1155 
1156 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1157 		cs->id = CSID_GENERIC;
1158 	if (cs->vdso_clock_mode < 0 ||
1159 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1160 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1161 			cs->name, cs->vdso_clock_mode);
1162 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1163 	}
1164 
1165 	/* Initialize mult/shift and max_idle_ns */
1166 	__clocksource_update_freq_scale(cs, scale, freq);
1167 
1168 	/* Add clocksource to the clocksource list */
1169 	mutex_lock(&clocksource_mutex);
1170 
1171 	clocksource_watchdog_lock(&flags);
1172 	clocksource_enqueue(cs);
1173 	clocksource_enqueue_watchdog(cs);
1174 	clocksource_watchdog_unlock(&flags);
1175 
1176 	clocksource_select();
1177 	clocksource_select_watchdog(false);
1178 	__clocksource_suspend_select(cs);
1179 	mutex_unlock(&clocksource_mutex);
1180 	return 0;
1181 }
1182 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1183 
1184 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1185 {
1186 	list_del(&cs->list);
1187 	cs->rating = rating;
1188 	clocksource_enqueue(cs);
1189 }
1190 
1191 /**
1192  * clocksource_change_rating - Change the rating of a registered clocksource
1193  * @cs:		clocksource to be changed
1194  * @rating:	new rating
1195  */
1196 void clocksource_change_rating(struct clocksource *cs, int rating)
1197 {
1198 	unsigned long flags;
1199 
1200 	mutex_lock(&clocksource_mutex);
1201 	clocksource_watchdog_lock(&flags);
1202 	__clocksource_change_rating(cs, rating);
1203 	clocksource_watchdog_unlock(&flags);
1204 
1205 	clocksource_select();
1206 	clocksource_select_watchdog(false);
1207 	clocksource_suspend_select(false);
1208 	mutex_unlock(&clocksource_mutex);
1209 }
1210 EXPORT_SYMBOL(clocksource_change_rating);
1211 
1212 /*
1213  * Unbind clocksource @cs. Called with clocksource_mutex held
1214  */
1215 static int clocksource_unbind(struct clocksource *cs)
1216 {
1217 	unsigned long flags;
1218 
1219 	if (clocksource_is_watchdog(cs)) {
1220 		/* Select and try to install a replacement watchdog. */
1221 		clocksource_select_watchdog(true);
1222 		if (clocksource_is_watchdog(cs))
1223 			return -EBUSY;
1224 	}
1225 
1226 	if (cs == curr_clocksource) {
1227 		/* Select and try to install a replacement clock source */
1228 		clocksource_select_fallback();
1229 		if (curr_clocksource == cs)
1230 			return -EBUSY;
1231 	}
1232 
1233 	if (clocksource_is_suspend(cs)) {
1234 		/*
1235 		 * Select and try to install a replacement suspend clocksource.
1236 		 * If no replacement suspend clocksource, we will just let the
1237 		 * clocksource go and have no suspend clocksource.
1238 		 */
1239 		clocksource_suspend_select(true);
1240 	}
1241 
1242 	clocksource_watchdog_lock(&flags);
1243 	clocksource_dequeue_watchdog(cs);
1244 	list_del_init(&cs->list);
1245 	clocksource_watchdog_unlock(&flags);
1246 
1247 	return 0;
1248 }
1249 
1250 /**
1251  * clocksource_unregister - remove a registered clocksource
1252  * @cs:	clocksource to be unregistered
1253  */
1254 int clocksource_unregister(struct clocksource *cs)
1255 {
1256 	int ret = 0;
1257 
1258 	mutex_lock(&clocksource_mutex);
1259 	if (!list_empty(&cs->list))
1260 		ret = clocksource_unbind(cs);
1261 	mutex_unlock(&clocksource_mutex);
1262 	return ret;
1263 }
1264 EXPORT_SYMBOL(clocksource_unregister);
1265 
1266 #ifdef CONFIG_SYSFS
1267 /**
1268  * current_clocksource_show - sysfs interface for current clocksource
1269  * @dev:	unused
1270  * @attr:	unused
1271  * @buf:	char buffer to be filled with clocksource list
1272  *
1273  * Provides sysfs interface for listing current clocksource.
1274  */
1275 static ssize_t current_clocksource_show(struct device *dev,
1276 					struct device_attribute *attr,
1277 					char *buf)
1278 {
1279 	ssize_t count = 0;
1280 
1281 	mutex_lock(&clocksource_mutex);
1282 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1283 	mutex_unlock(&clocksource_mutex);
1284 
1285 	return count;
1286 }
1287 
1288 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1289 {
1290 	size_t ret = cnt;
1291 
1292 	/* strings from sysfs write are not 0 terminated! */
1293 	if (!cnt || cnt >= CS_NAME_LEN)
1294 		return -EINVAL;
1295 
1296 	/* strip of \n: */
1297 	if (buf[cnt-1] == '\n')
1298 		cnt--;
1299 	if (cnt > 0)
1300 		memcpy(dst, buf, cnt);
1301 	dst[cnt] = 0;
1302 	return ret;
1303 }
1304 
1305 /**
1306  * current_clocksource_store - interface for manually overriding clocksource
1307  * @dev:	unused
1308  * @attr:	unused
1309  * @buf:	name of override clocksource
1310  * @count:	length of buffer
1311  *
1312  * Takes input from sysfs interface for manually overriding the default
1313  * clocksource selection.
1314  */
1315 static ssize_t current_clocksource_store(struct device *dev,
1316 					 struct device_attribute *attr,
1317 					 const char *buf, size_t count)
1318 {
1319 	ssize_t ret;
1320 
1321 	mutex_lock(&clocksource_mutex);
1322 
1323 	ret = sysfs_get_uname(buf, override_name, count);
1324 	if (ret >= 0)
1325 		clocksource_select();
1326 
1327 	mutex_unlock(&clocksource_mutex);
1328 
1329 	return ret;
1330 }
1331 static DEVICE_ATTR_RW(current_clocksource);
1332 
1333 /**
1334  * unbind_clocksource_store - interface for manually unbinding clocksource
1335  * @dev:	unused
1336  * @attr:	unused
1337  * @buf:	unused
1338  * @count:	length of buffer
1339  *
1340  * Takes input from sysfs interface for manually unbinding a clocksource.
1341  */
1342 static ssize_t unbind_clocksource_store(struct device *dev,
1343 					struct device_attribute *attr,
1344 					const char *buf, size_t count)
1345 {
1346 	struct clocksource *cs;
1347 	char name[CS_NAME_LEN];
1348 	ssize_t ret;
1349 
1350 	ret = sysfs_get_uname(buf, name, count);
1351 	if (ret < 0)
1352 		return ret;
1353 
1354 	ret = -ENODEV;
1355 	mutex_lock(&clocksource_mutex);
1356 	list_for_each_entry(cs, &clocksource_list, list) {
1357 		if (strcmp(cs->name, name))
1358 			continue;
1359 		ret = clocksource_unbind(cs);
1360 		break;
1361 	}
1362 	mutex_unlock(&clocksource_mutex);
1363 
1364 	return ret ? ret : count;
1365 }
1366 static DEVICE_ATTR_WO(unbind_clocksource);
1367 
1368 /**
1369  * available_clocksource_show - sysfs interface for listing clocksource
1370  * @dev:	unused
1371  * @attr:	unused
1372  * @buf:	char buffer to be filled with clocksource list
1373  *
1374  * Provides sysfs interface for listing registered clocksources
1375  */
1376 static ssize_t available_clocksource_show(struct device *dev,
1377 					  struct device_attribute *attr,
1378 					  char *buf)
1379 {
1380 	struct clocksource *src;
1381 	ssize_t count = 0;
1382 
1383 	mutex_lock(&clocksource_mutex);
1384 	list_for_each_entry(src, &clocksource_list, list) {
1385 		/*
1386 		 * Don't show non-HRES clocksource if the tick code is
1387 		 * in one shot mode (highres=on or nohz=on)
1388 		 */
1389 		if (!tick_oneshot_mode_active() ||
1390 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1391 			count += snprintf(buf + count,
1392 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1393 				  "%s ", src->name);
1394 	}
1395 	mutex_unlock(&clocksource_mutex);
1396 
1397 	count += snprintf(buf + count,
1398 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1399 
1400 	return count;
1401 }
1402 static DEVICE_ATTR_RO(available_clocksource);
1403 
1404 static struct attribute *clocksource_attrs[] = {
1405 	&dev_attr_current_clocksource.attr,
1406 	&dev_attr_unbind_clocksource.attr,
1407 	&dev_attr_available_clocksource.attr,
1408 	NULL
1409 };
1410 ATTRIBUTE_GROUPS(clocksource);
1411 
1412 static struct bus_type clocksource_subsys = {
1413 	.name = "clocksource",
1414 	.dev_name = "clocksource",
1415 };
1416 
1417 static struct device device_clocksource = {
1418 	.id	= 0,
1419 	.bus	= &clocksource_subsys,
1420 	.groups	= clocksource_groups,
1421 };
1422 
1423 static int __init init_clocksource_sysfs(void)
1424 {
1425 	int error = subsys_system_register(&clocksource_subsys, NULL);
1426 
1427 	if (!error)
1428 		error = device_register(&device_clocksource);
1429 
1430 	return error;
1431 }
1432 
1433 device_initcall(init_clocksource_sysfs);
1434 #endif /* CONFIG_SYSFS */
1435 
1436 /**
1437  * boot_override_clocksource - boot clock override
1438  * @str:	override name
1439  *
1440  * Takes a clocksource= boot argument and uses it
1441  * as the clocksource override name.
1442  */
1443 static int __init boot_override_clocksource(char* str)
1444 {
1445 	mutex_lock(&clocksource_mutex);
1446 	if (str)
1447 		strlcpy(override_name, str, sizeof(override_name));
1448 	mutex_unlock(&clocksource_mutex);
1449 	return 1;
1450 }
1451 
1452 __setup("clocksource=", boot_override_clocksource);
1453 
1454 /**
1455  * boot_override_clock - Compatibility layer for deprecated boot option
1456  * @str:	override name
1457  *
1458  * DEPRECATED! Takes a clock= boot argument and uses it
1459  * as the clocksource override name
1460  */
1461 static int __init boot_override_clock(char* str)
1462 {
1463 	if (!strcmp(str, "pmtmr")) {
1464 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1465 		return boot_override_clocksource("acpi_pm");
1466 	}
1467 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1468 	return boot_override_clocksource(str);
1469 }
1470 
1471 __setup("clock=", boot_override_clock);
1472