xref: /openbmc/linux/kernel/time/clocksource.c (revision c37e85c1)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 /**
24  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25  * @mult:	pointer to mult variable
26  * @shift:	pointer to shift variable
27  * @from:	frequency to convert from
28  * @to:		frequency to convert to
29  * @maxsec:	guaranteed runtime conversion range in seconds
30  *
31  * The function evaluates the shift/mult pair for the scaled math
32  * operations of clocksources and clockevents.
33  *
34  * @to and @from are frequency values in HZ. For clock sources @to is
35  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36  * event @to is the counter frequency and @from is NSEC_PER_SEC.
37  *
38  * The @maxsec conversion range argument controls the time frame in
39  * seconds which must be covered by the runtime conversion with the
40  * calculated mult and shift factors. This guarantees that no 64bit
41  * overflow happens when the input value of the conversion is
42  * multiplied with the calculated mult factor. Larger ranges may
43  * reduce the conversion accuracy by choosing smaller mult and shift
44  * factors.
45  */
46 void
47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48 {
49 	u64 tmp;
50 	u32 sft, sftacc= 32;
51 
52 	/*
53 	 * Calculate the shift factor which is limiting the conversion
54 	 * range:
55 	 */
56 	tmp = ((u64)maxsec * from) >> 32;
57 	while (tmp) {
58 		tmp >>=1;
59 		sftacc--;
60 	}
61 
62 	/*
63 	 * Find the conversion shift/mult pair which has the best
64 	 * accuracy and fits the maxsec conversion range:
65 	 */
66 	for (sft = 32; sft > 0; sft--) {
67 		tmp = (u64) to << sft;
68 		tmp += from / 2;
69 		do_div(tmp, from);
70 		if ((tmp >> sftacc) == 0)
71 			break;
72 	}
73 	*mult = tmp;
74 	*shift = sft;
75 }
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77 
78 /*[Clocksource internal variables]---------
79  * curr_clocksource:
80  *	currently selected clocksource.
81  * suspend_clocksource:
82  *	used to calculate the suspend time.
83  * clocksource_list:
84  *	linked list with the registered clocksources
85  * clocksource_mutex:
86  *	protects manipulations to curr_clocksource and the clocksource_list
87  * override_name:
88  *	Name of the user-specified clocksource.
89  */
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
97 
98 /*
99  * Interval: 0.5sec.
100  */
101 #define WATCHDOG_INTERVAL (HZ >> 1)
102 
103 /*
104  * Threshold: 0.0312s, when doubled: 0.0625s.
105  * Also a default for cs->uncertainty_margin when registering clocks.
106  */
107 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
108 
109 /*
110  * Maximum permissible delay between two readouts of the watchdog
111  * clocksource surrounding a read of the clocksource being validated.
112  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
113  * a lower bound for cs->uncertainty_margin values when registering clocks.
114  *
115  * The default of 500 parts per million is based on NTP's limits.
116  * If a clocksource is good enough for NTP, it is good enough for us!
117  */
118 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
119 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
120 #else
121 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
122 #endif
123 
124 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
125 
126 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
127 static void clocksource_watchdog_work(struct work_struct *work);
128 static void clocksource_select(void);
129 
130 static LIST_HEAD(watchdog_list);
131 static struct clocksource *watchdog;
132 static struct timer_list watchdog_timer;
133 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
134 static DEFINE_SPINLOCK(watchdog_lock);
135 static int watchdog_running;
136 static atomic_t watchdog_reset_pending;
137 
138 static inline void clocksource_watchdog_lock(unsigned long *flags)
139 {
140 	spin_lock_irqsave(&watchdog_lock, *flags);
141 }
142 
143 static inline void clocksource_watchdog_unlock(unsigned long *flags)
144 {
145 	spin_unlock_irqrestore(&watchdog_lock, *flags);
146 }
147 
148 static int clocksource_watchdog_kthread(void *data);
149 static void __clocksource_change_rating(struct clocksource *cs, int rating);
150 
151 static void clocksource_watchdog_work(struct work_struct *work)
152 {
153 	/*
154 	 * We cannot directly run clocksource_watchdog_kthread() here, because
155 	 * clocksource_select() calls timekeeping_notify() which uses
156 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
157 	 * lock inversions wrt CPU hotplug.
158 	 *
159 	 * Also, we only ever run this work once or twice during the lifetime
160 	 * of the kernel, so there is no point in creating a more permanent
161 	 * kthread for this.
162 	 *
163 	 * If kthread_run fails the next watchdog scan over the
164 	 * watchdog_list will find the unstable clock again.
165 	 */
166 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
167 }
168 
169 static void __clocksource_unstable(struct clocksource *cs)
170 {
171 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
172 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
173 
174 	/*
175 	 * If the clocksource is registered clocksource_watchdog_kthread() will
176 	 * re-rate and re-select.
177 	 */
178 	if (list_empty(&cs->list)) {
179 		cs->rating = 0;
180 		return;
181 	}
182 
183 	if (cs->mark_unstable)
184 		cs->mark_unstable(cs);
185 
186 	/* kick clocksource_watchdog_kthread() */
187 	if (finished_booting)
188 		schedule_work(&watchdog_work);
189 }
190 
191 /**
192  * clocksource_mark_unstable - mark clocksource unstable via watchdog
193  * @cs:		clocksource to be marked unstable
194  *
195  * This function is called by the x86 TSC code to mark clocksources as unstable;
196  * it defers demotion and re-selection to a kthread.
197  */
198 void clocksource_mark_unstable(struct clocksource *cs)
199 {
200 	unsigned long flags;
201 
202 	spin_lock_irqsave(&watchdog_lock, flags);
203 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
204 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
205 			list_add(&cs->wd_list, &watchdog_list);
206 		__clocksource_unstable(cs);
207 	}
208 	spin_unlock_irqrestore(&watchdog_lock, flags);
209 }
210 
211 ulong max_cswd_read_retries = 2;
212 module_param(max_cswd_read_retries, ulong, 0644);
213 EXPORT_SYMBOL_GPL(max_cswd_read_retries);
214 static int verify_n_cpus = 8;
215 module_param(verify_n_cpus, int, 0644);
216 
217 enum wd_read_status {
218 	WD_READ_SUCCESS,
219 	WD_READ_UNSTABLE,
220 	WD_READ_SKIP
221 };
222 
223 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
224 {
225 	unsigned int nretries;
226 	u64 wd_end, wd_end2, wd_delta;
227 	int64_t wd_delay, wd_seq_delay;
228 
229 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
230 		local_irq_disable();
231 		*wdnow = watchdog->read(watchdog);
232 		*csnow = cs->read(cs);
233 		wd_end = watchdog->read(watchdog);
234 		wd_end2 = watchdog->read(watchdog);
235 		local_irq_enable();
236 
237 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
238 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
239 					      watchdog->shift);
240 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
241 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
242 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
243 					smp_processor_id(), watchdog->name, nretries);
244 			}
245 			return WD_READ_SUCCESS;
246 		}
247 
248 		/*
249 		 * Now compute delay in consecutive watchdog read to see if
250 		 * there is too much external interferences that cause
251 		 * significant delay in reading both clocksource and watchdog.
252 		 *
253 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
254 		 * report system busy, reinit the watchdog and skip the current
255 		 * watchdog test.
256 		 */
257 		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
258 		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
259 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
260 			goto skip_test;
261 	}
262 
263 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd read-back delay of %lldns, attempt %d, marking unstable\n",
264 		smp_processor_id(), cs->name, wd_delay, nretries);
265 	return WD_READ_UNSTABLE;
266 
267 skip_test:
268 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
269 		smp_processor_id(), watchdog->name, wd_seq_delay);
270 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
271 		cs->name, wd_delay);
272 	return WD_READ_SKIP;
273 }
274 
275 static u64 csnow_mid;
276 static cpumask_t cpus_ahead;
277 static cpumask_t cpus_behind;
278 static cpumask_t cpus_chosen;
279 
280 static void clocksource_verify_choose_cpus(void)
281 {
282 	int cpu, i, n = verify_n_cpus;
283 
284 	if (n < 0) {
285 		/* Check all of the CPUs. */
286 		cpumask_copy(&cpus_chosen, cpu_online_mask);
287 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288 		return;
289 	}
290 
291 	/* If no checking desired, or no other CPU to check, leave. */
292 	cpumask_clear(&cpus_chosen);
293 	if (n == 0 || num_online_cpus() <= 1)
294 		return;
295 
296 	/* Make sure to select at least one CPU other than the current CPU. */
297 	cpu = cpumask_first(cpu_online_mask);
298 	if (cpu == smp_processor_id())
299 		cpu = cpumask_next(cpu, cpu_online_mask);
300 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
301 		return;
302 	cpumask_set_cpu(cpu, &cpus_chosen);
303 
304 	/* Force a sane value for the boot parameter. */
305 	if (n > nr_cpu_ids)
306 		n = nr_cpu_ids;
307 
308 	/*
309 	 * Randomly select the specified number of CPUs.  If the same
310 	 * CPU is selected multiple times, that CPU is checked only once,
311 	 * and no replacement CPU is selected.  This gracefully handles
312 	 * situations where verify_n_cpus is greater than the number of
313 	 * CPUs that are currently online.
314 	 */
315 	for (i = 1; i < n; i++) {
316 		cpu = get_random_u32_below(nr_cpu_ids);
317 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
318 		if (cpu >= nr_cpu_ids)
319 			cpu = cpumask_first(cpu_online_mask);
320 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
321 			cpumask_set_cpu(cpu, &cpus_chosen);
322 	}
323 
324 	/* Don't verify ourselves. */
325 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
326 }
327 
328 static void clocksource_verify_one_cpu(void *csin)
329 {
330 	struct clocksource *cs = (struct clocksource *)csin;
331 
332 	csnow_mid = cs->read(cs);
333 }
334 
335 void clocksource_verify_percpu(struct clocksource *cs)
336 {
337 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
338 	u64 csnow_begin, csnow_end;
339 	int cpu, testcpu;
340 	s64 delta;
341 
342 	if (verify_n_cpus == 0)
343 		return;
344 	cpumask_clear(&cpus_ahead);
345 	cpumask_clear(&cpus_behind);
346 	cpus_read_lock();
347 	preempt_disable();
348 	clocksource_verify_choose_cpus();
349 	if (cpumask_empty(&cpus_chosen)) {
350 		preempt_enable();
351 		cpus_read_unlock();
352 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
353 		return;
354 	}
355 	testcpu = smp_processor_id();
356 	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
357 	for_each_cpu(cpu, &cpus_chosen) {
358 		if (cpu == testcpu)
359 			continue;
360 		csnow_begin = cs->read(cs);
361 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
362 		csnow_end = cs->read(cs);
363 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
364 		if (delta < 0)
365 			cpumask_set_cpu(cpu, &cpus_behind);
366 		delta = (csnow_end - csnow_mid) & cs->mask;
367 		if (delta < 0)
368 			cpumask_set_cpu(cpu, &cpus_ahead);
369 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
370 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
371 		if (cs_nsec > cs_nsec_max)
372 			cs_nsec_max = cs_nsec;
373 		if (cs_nsec < cs_nsec_min)
374 			cs_nsec_min = cs_nsec;
375 	}
376 	preempt_enable();
377 	cpus_read_unlock();
378 	if (!cpumask_empty(&cpus_ahead))
379 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
380 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
381 	if (!cpumask_empty(&cpus_behind))
382 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
383 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
384 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
385 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
386 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
387 }
388 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
389 
390 static void clocksource_watchdog(struct timer_list *unused)
391 {
392 	u64 csnow, wdnow, cslast, wdlast, delta;
393 	int next_cpu, reset_pending;
394 	int64_t wd_nsec, cs_nsec;
395 	struct clocksource *cs;
396 	enum wd_read_status read_ret;
397 	u32 md;
398 
399 	spin_lock(&watchdog_lock);
400 	if (!watchdog_running)
401 		goto out;
402 
403 	reset_pending = atomic_read(&watchdog_reset_pending);
404 
405 	list_for_each_entry(cs, &watchdog_list, wd_list) {
406 
407 		/* Clocksource already marked unstable? */
408 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
409 			if (finished_booting)
410 				schedule_work(&watchdog_work);
411 			continue;
412 		}
413 
414 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
415 
416 		if (read_ret != WD_READ_SUCCESS) {
417 			if (read_ret == WD_READ_UNSTABLE)
418 				/* Clock readout unreliable, so give it up. */
419 				__clocksource_unstable(cs);
420 			continue;
421 		}
422 
423 		/* Clocksource initialized ? */
424 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
425 		    atomic_read(&watchdog_reset_pending)) {
426 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
427 			cs->wd_last = wdnow;
428 			cs->cs_last = csnow;
429 			continue;
430 		}
431 
432 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
433 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
434 					     watchdog->shift);
435 
436 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
437 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
438 		wdlast = cs->wd_last; /* save these in case we print them */
439 		cslast = cs->cs_last;
440 		cs->cs_last = csnow;
441 		cs->wd_last = wdnow;
442 
443 		if (atomic_read(&watchdog_reset_pending))
444 			continue;
445 
446 		/* Check the deviation from the watchdog clocksource. */
447 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
448 		if (abs(cs_nsec - wd_nsec) > md) {
449 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
450 				smp_processor_id(), cs->name);
451 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
452 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
453 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
454 				cs->name, cs_nsec, csnow, cslast, cs->mask);
455 			if (curr_clocksource == cs)
456 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
457 			else if (curr_clocksource)
458 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
459 			else
460 				pr_warn("                      No current clocksource.\n");
461 			__clocksource_unstable(cs);
462 			continue;
463 		}
464 
465 		if (cs == curr_clocksource && cs->tick_stable)
466 			cs->tick_stable(cs);
467 
468 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
469 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
470 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
471 			/* Mark it valid for high-res. */
472 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
473 
474 			/*
475 			 * clocksource_done_booting() will sort it if
476 			 * finished_booting is not set yet.
477 			 */
478 			if (!finished_booting)
479 				continue;
480 
481 			/*
482 			 * If this is not the current clocksource let
483 			 * the watchdog thread reselect it. Due to the
484 			 * change to high res this clocksource might
485 			 * be preferred now. If it is the current
486 			 * clocksource let the tick code know about
487 			 * that change.
488 			 */
489 			if (cs != curr_clocksource) {
490 				cs->flags |= CLOCK_SOURCE_RESELECT;
491 				schedule_work(&watchdog_work);
492 			} else {
493 				tick_clock_notify();
494 			}
495 		}
496 	}
497 
498 	/*
499 	 * We only clear the watchdog_reset_pending, when we did a
500 	 * full cycle through all clocksources.
501 	 */
502 	if (reset_pending)
503 		atomic_dec(&watchdog_reset_pending);
504 
505 	/*
506 	 * Cycle through CPUs to check if the CPUs stay synchronized
507 	 * to each other.
508 	 */
509 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
510 	if (next_cpu >= nr_cpu_ids)
511 		next_cpu = cpumask_first(cpu_online_mask);
512 
513 	/*
514 	 * Arm timer if not already pending: could race with concurrent
515 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
516 	 */
517 	if (!timer_pending(&watchdog_timer)) {
518 		watchdog_timer.expires += WATCHDOG_INTERVAL;
519 		add_timer_on(&watchdog_timer, next_cpu);
520 	}
521 out:
522 	spin_unlock(&watchdog_lock);
523 }
524 
525 static inline void clocksource_start_watchdog(void)
526 {
527 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
528 		return;
529 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
530 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
531 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
532 	watchdog_running = 1;
533 }
534 
535 static inline void clocksource_stop_watchdog(void)
536 {
537 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
538 		return;
539 	del_timer(&watchdog_timer);
540 	watchdog_running = 0;
541 }
542 
543 static inline void clocksource_reset_watchdog(void)
544 {
545 	struct clocksource *cs;
546 
547 	list_for_each_entry(cs, &watchdog_list, wd_list)
548 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
549 }
550 
551 static void clocksource_resume_watchdog(void)
552 {
553 	atomic_inc(&watchdog_reset_pending);
554 }
555 
556 static void clocksource_enqueue_watchdog(struct clocksource *cs)
557 {
558 	INIT_LIST_HEAD(&cs->wd_list);
559 
560 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
561 		/* cs is a clocksource to be watched. */
562 		list_add(&cs->wd_list, &watchdog_list);
563 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
564 	} else {
565 		/* cs is a watchdog. */
566 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
567 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
568 	}
569 }
570 
571 static void clocksource_select_watchdog(bool fallback)
572 {
573 	struct clocksource *cs, *old_wd;
574 	unsigned long flags;
575 
576 	spin_lock_irqsave(&watchdog_lock, flags);
577 	/* save current watchdog */
578 	old_wd = watchdog;
579 	if (fallback)
580 		watchdog = NULL;
581 
582 	list_for_each_entry(cs, &clocksource_list, list) {
583 		/* cs is a clocksource to be watched. */
584 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
585 			continue;
586 
587 		/* Skip current if we were requested for a fallback. */
588 		if (fallback && cs == old_wd)
589 			continue;
590 
591 		/* Pick the best watchdog. */
592 		if (!watchdog || cs->rating > watchdog->rating)
593 			watchdog = cs;
594 	}
595 	/* If we failed to find a fallback restore the old one. */
596 	if (!watchdog)
597 		watchdog = old_wd;
598 
599 	/* If we changed the watchdog we need to reset cycles. */
600 	if (watchdog != old_wd)
601 		clocksource_reset_watchdog();
602 
603 	/* Check if the watchdog timer needs to be started. */
604 	clocksource_start_watchdog();
605 	spin_unlock_irqrestore(&watchdog_lock, flags);
606 }
607 
608 static void clocksource_dequeue_watchdog(struct clocksource *cs)
609 {
610 	if (cs != watchdog) {
611 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
612 			/* cs is a watched clocksource. */
613 			list_del_init(&cs->wd_list);
614 			/* Check if the watchdog timer needs to be stopped. */
615 			clocksource_stop_watchdog();
616 		}
617 	}
618 }
619 
620 static int __clocksource_watchdog_kthread(void)
621 {
622 	struct clocksource *cs, *tmp;
623 	unsigned long flags;
624 	int select = 0;
625 
626 	/* Do any required per-CPU skew verification. */
627 	if (curr_clocksource &&
628 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
629 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
630 		clocksource_verify_percpu(curr_clocksource);
631 
632 	spin_lock_irqsave(&watchdog_lock, flags);
633 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
634 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
635 			list_del_init(&cs->wd_list);
636 			__clocksource_change_rating(cs, 0);
637 			select = 1;
638 		}
639 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
640 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
641 			select = 1;
642 		}
643 	}
644 	/* Check if the watchdog timer needs to be stopped. */
645 	clocksource_stop_watchdog();
646 	spin_unlock_irqrestore(&watchdog_lock, flags);
647 
648 	return select;
649 }
650 
651 static int clocksource_watchdog_kthread(void *data)
652 {
653 	mutex_lock(&clocksource_mutex);
654 	if (__clocksource_watchdog_kthread())
655 		clocksource_select();
656 	mutex_unlock(&clocksource_mutex);
657 	return 0;
658 }
659 
660 static bool clocksource_is_watchdog(struct clocksource *cs)
661 {
662 	return cs == watchdog;
663 }
664 
665 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
666 
667 static void clocksource_enqueue_watchdog(struct clocksource *cs)
668 {
669 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
670 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
671 }
672 
673 static void clocksource_select_watchdog(bool fallback) { }
674 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
675 static inline void clocksource_resume_watchdog(void) { }
676 static inline int __clocksource_watchdog_kthread(void) { return 0; }
677 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
678 void clocksource_mark_unstable(struct clocksource *cs) { }
679 
680 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
681 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
682 
683 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
684 
685 static bool clocksource_is_suspend(struct clocksource *cs)
686 {
687 	return cs == suspend_clocksource;
688 }
689 
690 static void __clocksource_suspend_select(struct clocksource *cs)
691 {
692 	/*
693 	 * Skip the clocksource which will be stopped in suspend state.
694 	 */
695 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
696 		return;
697 
698 	/*
699 	 * The nonstop clocksource can be selected as the suspend clocksource to
700 	 * calculate the suspend time, so it should not supply suspend/resume
701 	 * interfaces to suspend the nonstop clocksource when system suspends.
702 	 */
703 	if (cs->suspend || cs->resume) {
704 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
705 			cs->name);
706 	}
707 
708 	/* Pick the best rating. */
709 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
710 		suspend_clocksource = cs;
711 }
712 
713 /**
714  * clocksource_suspend_select - Select the best clocksource for suspend timing
715  * @fallback:	if select a fallback clocksource
716  */
717 static void clocksource_suspend_select(bool fallback)
718 {
719 	struct clocksource *cs, *old_suspend;
720 
721 	old_suspend = suspend_clocksource;
722 	if (fallback)
723 		suspend_clocksource = NULL;
724 
725 	list_for_each_entry(cs, &clocksource_list, list) {
726 		/* Skip current if we were requested for a fallback. */
727 		if (fallback && cs == old_suspend)
728 			continue;
729 
730 		__clocksource_suspend_select(cs);
731 	}
732 }
733 
734 /**
735  * clocksource_start_suspend_timing - Start measuring the suspend timing
736  * @cs:			current clocksource from timekeeping
737  * @start_cycles:	current cycles from timekeeping
738  *
739  * This function will save the start cycle values of suspend timer to calculate
740  * the suspend time when resuming system.
741  *
742  * This function is called late in the suspend process from timekeeping_suspend(),
743  * that means processes are frozen, non-boot cpus and interrupts are disabled
744  * now. It is therefore possible to start the suspend timer without taking the
745  * clocksource mutex.
746  */
747 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
748 {
749 	if (!suspend_clocksource)
750 		return;
751 
752 	/*
753 	 * If current clocksource is the suspend timer, we should use the
754 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
755 	 * from suspend timer.
756 	 */
757 	if (clocksource_is_suspend(cs)) {
758 		suspend_start = start_cycles;
759 		return;
760 	}
761 
762 	if (suspend_clocksource->enable &&
763 	    suspend_clocksource->enable(suspend_clocksource)) {
764 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
765 		return;
766 	}
767 
768 	suspend_start = suspend_clocksource->read(suspend_clocksource);
769 }
770 
771 /**
772  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
773  * @cs:		current clocksource from timekeeping
774  * @cycle_now:	current cycles from timekeeping
775  *
776  * This function will calculate the suspend time from suspend timer.
777  *
778  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
779  *
780  * This function is called early in the resume process from timekeeping_resume(),
781  * that means there is only one cpu, no processes are running and the interrupts
782  * are disabled. It is therefore possible to stop the suspend timer without
783  * taking the clocksource mutex.
784  */
785 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
786 {
787 	u64 now, delta, nsec = 0;
788 
789 	if (!suspend_clocksource)
790 		return 0;
791 
792 	/*
793 	 * If current clocksource is the suspend timer, we should use the
794 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
795 	 * avoid same reading from suspend timer.
796 	 */
797 	if (clocksource_is_suspend(cs))
798 		now = cycle_now;
799 	else
800 		now = suspend_clocksource->read(suspend_clocksource);
801 
802 	if (now > suspend_start) {
803 		delta = clocksource_delta(now, suspend_start,
804 					  suspend_clocksource->mask);
805 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
806 				       suspend_clocksource->shift);
807 	}
808 
809 	/*
810 	 * Disable the suspend timer to save power if current clocksource is
811 	 * not the suspend timer.
812 	 */
813 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
814 		suspend_clocksource->disable(suspend_clocksource);
815 
816 	return nsec;
817 }
818 
819 /**
820  * clocksource_suspend - suspend the clocksource(s)
821  */
822 void clocksource_suspend(void)
823 {
824 	struct clocksource *cs;
825 
826 	list_for_each_entry_reverse(cs, &clocksource_list, list)
827 		if (cs->suspend)
828 			cs->suspend(cs);
829 }
830 
831 /**
832  * clocksource_resume - resume the clocksource(s)
833  */
834 void clocksource_resume(void)
835 {
836 	struct clocksource *cs;
837 
838 	list_for_each_entry(cs, &clocksource_list, list)
839 		if (cs->resume)
840 			cs->resume(cs);
841 
842 	clocksource_resume_watchdog();
843 }
844 
845 /**
846  * clocksource_touch_watchdog - Update watchdog
847  *
848  * Update the watchdog after exception contexts such as kgdb so as not
849  * to incorrectly trip the watchdog. This might fail when the kernel
850  * was stopped in code which holds watchdog_lock.
851  */
852 void clocksource_touch_watchdog(void)
853 {
854 	clocksource_resume_watchdog();
855 }
856 
857 /**
858  * clocksource_max_adjustment- Returns max adjustment amount
859  * @cs:         Pointer to clocksource
860  *
861  */
862 static u32 clocksource_max_adjustment(struct clocksource *cs)
863 {
864 	u64 ret;
865 	/*
866 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
867 	 */
868 	ret = (u64)cs->mult * 11;
869 	do_div(ret,100);
870 	return (u32)ret;
871 }
872 
873 /**
874  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
875  * @mult:	cycle to nanosecond multiplier
876  * @shift:	cycle to nanosecond divisor (power of two)
877  * @maxadj:	maximum adjustment value to mult (~11%)
878  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
879  * @max_cyc:	maximum cycle value before potential overflow (does not include
880  *		any safety margin)
881  *
882  * NOTE: This function includes a safety margin of 50%, in other words, we
883  * return half the number of nanoseconds the hardware counter can technically
884  * cover. This is done so that we can potentially detect problems caused by
885  * delayed timers or bad hardware, which might result in time intervals that
886  * are larger than what the math used can handle without overflows.
887  */
888 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
889 {
890 	u64 max_nsecs, max_cycles;
891 
892 	/*
893 	 * Calculate the maximum number of cycles that we can pass to the
894 	 * cyc2ns() function without overflowing a 64-bit result.
895 	 */
896 	max_cycles = ULLONG_MAX;
897 	do_div(max_cycles, mult+maxadj);
898 
899 	/*
900 	 * The actual maximum number of cycles we can defer the clocksource is
901 	 * determined by the minimum of max_cycles and mask.
902 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
903 	 * too long if there's a large negative adjustment.
904 	 */
905 	max_cycles = min(max_cycles, mask);
906 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
907 
908 	/* return the max_cycles value as well if requested */
909 	if (max_cyc)
910 		*max_cyc = max_cycles;
911 
912 	/* Return 50% of the actual maximum, so we can detect bad values */
913 	max_nsecs >>= 1;
914 
915 	return max_nsecs;
916 }
917 
918 /**
919  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
920  * @cs:         Pointer to clocksource to be updated
921  *
922  */
923 static inline void clocksource_update_max_deferment(struct clocksource *cs)
924 {
925 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
926 						cs->maxadj, cs->mask,
927 						&cs->max_cycles);
928 }
929 
930 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
931 {
932 	struct clocksource *cs;
933 
934 	if (!finished_booting || list_empty(&clocksource_list))
935 		return NULL;
936 
937 	/*
938 	 * We pick the clocksource with the highest rating. If oneshot
939 	 * mode is active, we pick the highres valid clocksource with
940 	 * the best rating.
941 	 */
942 	list_for_each_entry(cs, &clocksource_list, list) {
943 		if (skipcur && cs == curr_clocksource)
944 			continue;
945 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
946 			continue;
947 		return cs;
948 	}
949 	return NULL;
950 }
951 
952 static void __clocksource_select(bool skipcur)
953 {
954 	bool oneshot = tick_oneshot_mode_active();
955 	struct clocksource *best, *cs;
956 
957 	/* Find the best suitable clocksource */
958 	best = clocksource_find_best(oneshot, skipcur);
959 	if (!best)
960 		return;
961 
962 	if (!strlen(override_name))
963 		goto found;
964 
965 	/* Check for the override clocksource. */
966 	list_for_each_entry(cs, &clocksource_list, list) {
967 		if (skipcur && cs == curr_clocksource)
968 			continue;
969 		if (strcmp(cs->name, override_name) != 0)
970 			continue;
971 		/*
972 		 * Check to make sure we don't switch to a non-highres
973 		 * capable clocksource if the tick code is in oneshot
974 		 * mode (highres or nohz)
975 		 */
976 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
977 			/* Override clocksource cannot be used. */
978 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
979 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
980 					cs->name);
981 				override_name[0] = 0;
982 			} else {
983 				/*
984 				 * The override cannot be currently verified.
985 				 * Deferring to let the watchdog check.
986 				 */
987 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
988 					cs->name);
989 			}
990 		} else
991 			/* Override clocksource can be used. */
992 			best = cs;
993 		break;
994 	}
995 
996 found:
997 	if (curr_clocksource != best && !timekeeping_notify(best)) {
998 		pr_info("Switched to clocksource %s\n", best->name);
999 		curr_clocksource = best;
1000 	}
1001 }
1002 
1003 /**
1004  * clocksource_select - Select the best clocksource available
1005  *
1006  * Private function. Must hold clocksource_mutex when called.
1007  *
1008  * Select the clocksource with the best rating, or the clocksource,
1009  * which is selected by userspace override.
1010  */
1011 static void clocksource_select(void)
1012 {
1013 	__clocksource_select(false);
1014 }
1015 
1016 static void clocksource_select_fallback(void)
1017 {
1018 	__clocksource_select(true);
1019 }
1020 
1021 /*
1022  * clocksource_done_booting - Called near the end of core bootup
1023  *
1024  * Hack to avoid lots of clocksource churn at boot time.
1025  * We use fs_initcall because we want this to start before
1026  * device_initcall but after subsys_initcall.
1027  */
1028 static int __init clocksource_done_booting(void)
1029 {
1030 	mutex_lock(&clocksource_mutex);
1031 	curr_clocksource = clocksource_default_clock();
1032 	finished_booting = 1;
1033 	/*
1034 	 * Run the watchdog first to eliminate unstable clock sources
1035 	 */
1036 	__clocksource_watchdog_kthread();
1037 	clocksource_select();
1038 	mutex_unlock(&clocksource_mutex);
1039 	return 0;
1040 }
1041 fs_initcall(clocksource_done_booting);
1042 
1043 /*
1044  * Enqueue the clocksource sorted by rating
1045  */
1046 static void clocksource_enqueue(struct clocksource *cs)
1047 {
1048 	struct list_head *entry = &clocksource_list;
1049 	struct clocksource *tmp;
1050 
1051 	list_for_each_entry(tmp, &clocksource_list, list) {
1052 		/* Keep track of the place, where to insert */
1053 		if (tmp->rating < cs->rating)
1054 			break;
1055 		entry = &tmp->list;
1056 	}
1057 	list_add(&cs->list, entry);
1058 }
1059 
1060 /**
1061  * __clocksource_update_freq_scale - Used update clocksource with new freq
1062  * @cs:		clocksource to be registered
1063  * @scale:	Scale factor multiplied against freq to get clocksource hz
1064  * @freq:	clocksource frequency (cycles per second) divided by scale
1065  *
1066  * This should only be called from the clocksource->enable() method.
1067  *
1068  * This *SHOULD NOT* be called directly! Please use the
1069  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1070  * functions.
1071  */
1072 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1073 {
1074 	u64 sec;
1075 
1076 	/*
1077 	 * Default clocksources are *special* and self-define their mult/shift.
1078 	 * But, you're not special, so you should specify a freq value.
1079 	 */
1080 	if (freq) {
1081 		/*
1082 		 * Calc the maximum number of seconds which we can run before
1083 		 * wrapping around. For clocksources which have a mask > 32-bit
1084 		 * we need to limit the max sleep time to have a good
1085 		 * conversion precision. 10 minutes is still a reasonable
1086 		 * amount. That results in a shift value of 24 for a
1087 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1088 		 * ~ 0.06ppm granularity for NTP.
1089 		 */
1090 		sec = cs->mask;
1091 		do_div(sec, freq);
1092 		do_div(sec, scale);
1093 		if (!sec)
1094 			sec = 1;
1095 		else if (sec > 600 && cs->mask > UINT_MAX)
1096 			sec = 600;
1097 
1098 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1099 				       NSEC_PER_SEC / scale, sec * scale);
1100 	}
1101 
1102 	/*
1103 	 * If the uncertainty margin is not specified, calculate it.
1104 	 * If both scale and freq are non-zero, calculate the clock
1105 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1106 	 * if either of scale or freq is zero, be very conservative and
1107 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1108 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1109 	 * to be specified by the caller for testing purposes, but warn
1110 	 * to discourage production use of this capability.
1111 	 */
1112 	if (scale && freq && !cs->uncertainty_margin) {
1113 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1114 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1115 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1116 	} else if (!cs->uncertainty_margin) {
1117 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1118 	}
1119 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1120 
1121 	/*
1122 	 * Ensure clocksources that have large 'mult' values don't overflow
1123 	 * when adjusted.
1124 	 */
1125 	cs->maxadj = clocksource_max_adjustment(cs);
1126 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1127 		|| (cs->mult - cs->maxadj > cs->mult))) {
1128 		cs->mult >>= 1;
1129 		cs->shift--;
1130 		cs->maxadj = clocksource_max_adjustment(cs);
1131 	}
1132 
1133 	/*
1134 	 * Only warn for *special* clocksources that self-define
1135 	 * their mult/shift values and don't specify a freq.
1136 	 */
1137 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1138 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1139 		cs->name);
1140 
1141 	clocksource_update_max_deferment(cs);
1142 
1143 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1144 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1145 }
1146 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1147 
1148 /**
1149  * __clocksource_register_scale - Used to install new clocksources
1150  * @cs:		clocksource to be registered
1151  * @scale:	Scale factor multiplied against freq to get clocksource hz
1152  * @freq:	clocksource frequency (cycles per second) divided by scale
1153  *
1154  * Returns -EBUSY if registration fails, zero otherwise.
1155  *
1156  * This *SHOULD NOT* be called directly! Please use the
1157  * clocksource_register_hz() or clocksource_register_khz helper functions.
1158  */
1159 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1160 {
1161 	unsigned long flags;
1162 
1163 	clocksource_arch_init(cs);
1164 
1165 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1166 		cs->id = CSID_GENERIC;
1167 	if (cs->vdso_clock_mode < 0 ||
1168 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1169 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1170 			cs->name, cs->vdso_clock_mode);
1171 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1172 	}
1173 
1174 	/* Initialize mult/shift and max_idle_ns */
1175 	__clocksource_update_freq_scale(cs, scale, freq);
1176 
1177 	/* Add clocksource to the clocksource list */
1178 	mutex_lock(&clocksource_mutex);
1179 
1180 	clocksource_watchdog_lock(&flags);
1181 	clocksource_enqueue(cs);
1182 	clocksource_enqueue_watchdog(cs);
1183 	clocksource_watchdog_unlock(&flags);
1184 
1185 	clocksource_select();
1186 	clocksource_select_watchdog(false);
1187 	__clocksource_suspend_select(cs);
1188 	mutex_unlock(&clocksource_mutex);
1189 	return 0;
1190 }
1191 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1192 
1193 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1194 {
1195 	list_del(&cs->list);
1196 	cs->rating = rating;
1197 	clocksource_enqueue(cs);
1198 }
1199 
1200 /**
1201  * clocksource_change_rating - Change the rating of a registered clocksource
1202  * @cs:		clocksource to be changed
1203  * @rating:	new rating
1204  */
1205 void clocksource_change_rating(struct clocksource *cs, int rating)
1206 {
1207 	unsigned long flags;
1208 
1209 	mutex_lock(&clocksource_mutex);
1210 	clocksource_watchdog_lock(&flags);
1211 	__clocksource_change_rating(cs, rating);
1212 	clocksource_watchdog_unlock(&flags);
1213 
1214 	clocksource_select();
1215 	clocksource_select_watchdog(false);
1216 	clocksource_suspend_select(false);
1217 	mutex_unlock(&clocksource_mutex);
1218 }
1219 EXPORT_SYMBOL(clocksource_change_rating);
1220 
1221 /*
1222  * Unbind clocksource @cs. Called with clocksource_mutex held
1223  */
1224 static int clocksource_unbind(struct clocksource *cs)
1225 {
1226 	unsigned long flags;
1227 
1228 	if (clocksource_is_watchdog(cs)) {
1229 		/* Select and try to install a replacement watchdog. */
1230 		clocksource_select_watchdog(true);
1231 		if (clocksource_is_watchdog(cs))
1232 			return -EBUSY;
1233 	}
1234 
1235 	if (cs == curr_clocksource) {
1236 		/* Select and try to install a replacement clock source */
1237 		clocksource_select_fallback();
1238 		if (curr_clocksource == cs)
1239 			return -EBUSY;
1240 	}
1241 
1242 	if (clocksource_is_suspend(cs)) {
1243 		/*
1244 		 * Select and try to install a replacement suspend clocksource.
1245 		 * If no replacement suspend clocksource, we will just let the
1246 		 * clocksource go and have no suspend clocksource.
1247 		 */
1248 		clocksource_suspend_select(true);
1249 	}
1250 
1251 	clocksource_watchdog_lock(&flags);
1252 	clocksource_dequeue_watchdog(cs);
1253 	list_del_init(&cs->list);
1254 	clocksource_watchdog_unlock(&flags);
1255 
1256 	return 0;
1257 }
1258 
1259 /**
1260  * clocksource_unregister - remove a registered clocksource
1261  * @cs:	clocksource to be unregistered
1262  */
1263 int clocksource_unregister(struct clocksource *cs)
1264 {
1265 	int ret = 0;
1266 
1267 	mutex_lock(&clocksource_mutex);
1268 	if (!list_empty(&cs->list))
1269 		ret = clocksource_unbind(cs);
1270 	mutex_unlock(&clocksource_mutex);
1271 	return ret;
1272 }
1273 EXPORT_SYMBOL(clocksource_unregister);
1274 
1275 #ifdef CONFIG_SYSFS
1276 /**
1277  * current_clocksource_show - sysfs interface for current clocksource
1278  * @dev:	unused
1279  * @attr:	unused
1280  * @buf:	char buffer to be filled with clocksource list
1281  *
1282  * Provides sysfs interface for listing current clocksource.
1283  */
1284 static ssize_t current_clocksource_show(struct device *dev,
1285 					struct device_attribute *attr,
1286 					char *buf)
1287 {
1288 	ssize_t count = 0;
1289 
1290 	mutex_lock(&clocksource_mutex);
1291 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1292 	mutex_unlock(&clocksource_mutex);
1293 
1294 	return count;
1295 }
1296 
1297 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1298 {
1299 	size_t ret = cnt;
1300 
1301 	/* strings from sysfs write are not 0 terminated! */
1302 	if (!cnt || cnt >= CS_NAME_LEN)
1303 		return -EINVAL;
1304 
1305 	/* strip of \n: */
1306 	if (buf[cnt-1] == '\n')
1307 		cnt--;
1308 	if (cnt > 0)
1309 		memcpy(dst, buf, cnt);
1310 	dst[cnt] = 0;
1311 	return ret;
1312 }
1313 
1314 /**
1315  * current_clocksource_store - interface for manually overriding clocksource
1316  * @dev:	unused
1317  * @attr:	unused
1318  * @buf:	name of override clocksource
1319  * @count:	length of buffer
1320  *
1321  * Takes input from sysfs interface for manually overriding the default
1322  * clocksource selection.
1323  */
1324 static ssize_t current_clocksource_store(struct device *dev,
1325 					 struct device_attribute *attr,
1326 					 const char *buf, size_t count)
1327 {
1328 	ssize_t ret;
1329 
1330 	mutex_lock(&clocksource_mutex);
1331 
1332 	ret = sysfs_get_uname(buf, override_name, count);
1333 	if (ret >= 0)
1334 		clocksource_select();
1335 
1336 	mutex_unlock(&clocksource_mutex);
1337 
1338 	return ret;
1339 }
1340 static DEVICE_ATTR_RW(current_clocksource);
1341 
1342 /**
1343  * unbind_clocksource_store - interface for manually unbinding clocksource
1344  * @dev:	unused
1345  * @attr:	unused
1346  * @buf:	unused
1347  * @count:	length of buffer
1348  *
1349  * Takes input from sysfs interface for manually unbinding a clocksource.
1350  */
1351 static ssize_t unbind_clocksource_store(struct device *dev,
1352 					struct device_attribute *attr,
1353 					const char *buf, size_t count)
1354 {
1355 	struct clocksource *cs;
1356 	char name[CS_NAME_LEN];
1357 	ssize_t ret;
1358 
1359 	ret = sysfs_get_uname(buf, name, count);
1360 	if (ret < 0)
1361 		return ret;
1362 
1363 	ret = -ENODEV;
1364 	mutex_lock(&clocksource_mutex);
1365 	list_for_each_entry(cs, &clocksource_list, list) {
1366 		if (strcmp(cs->name, name))
1367 			continue;
1368 		ret = clocksource_unbind(cs);
1369 		break;
1370 	}
1371 	mutex_unlock(&clocksource_mutex);
1372 
1373 	return ret ? ret : count;
1374 }
1375 static DEVICE_ATTR_WO(unbind_clocksource);
1376 
1377 /**
1378  * available_clocksource_show - sysfs interface for listing clocksource
1379  * @dev:	unused
1380  * @attr:	unused
1381  * @buf:	char buffer to be filled with clocksource list
1382  *
1383  * Provides sysfs interface for listing registered clocksources
1384  */
1385 static ssize_t available_clocksource_show(struct device *dev,
1386 					  struct device_attribute *attr,
1387 					  char *buf)
1388 {
1389 	struct clocksource *src;
1390 	ssize_t count = 0;
1391 
1392 	mutex_lock(&clocksource_mutex);
1393 	list_for_each_entry(src, &clocksource_list, list) {
1394 		/*
1395 		 * Don't show non-HRES clocksource if the tick code is
1396 		 * in one shot mode (highres=on or nohz=on)
1397 		 */
1398 		if (!tick_oneshot_mode_active() ||
1399 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1400 			count += snprintf(buf + count,
1401 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1402 				  "%s ", src->name);
1403 	}
1404 	mutex_unlock(&clocksource_mutex);
1405 
1406 	count += snprintf(buf + count,
1407 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1408 
1409 	return count;
1410 }
1411 static DEVICE_ATTR_RO(available_clocksource);
1412 
1413 static struct attribute *clocksource_attrs[] = {
1414 	&dev_attr_current_clocksource.attr,
1415 	&dev_attr_unbind_clocksource.attr,
1416 	&dev_attr_available_clocksource.attr,
1417 	NULL
1418 };
1419 ATTRIBUTE_GROUPS(clocksource);
1420 
1421 static struct bus_type clocksource_subsys = {
1422 	.name = "clocksource",
1423 	.dev_name = "clocksource",
1424 };
1425 
1426 static struct device device_clocksource = {
1427 	.id	= 0,
1428 	.bus	= &clocksource_subsys,
1429 	.groups	= clocksource_groups,
1430 };
1431 
1432 static int __init init_clocksource_sysfs(void)
1433 {
1434 	int error = subsys_system_register(&clocksource_subsys, NULL);
1435 
1436 	if (!error)
1437 		error = device_register(&device_clocksource);
1438 
1439 	return error;
1440 }
1441 
1442 device_initcall(init_clocksource_sysfs);
1443 #endif /* CONFIG_SYSFS */
1444 
1445 /**
1446  * boot_override_clocksource - boot clock override
1447  * @str:	override name
1448  *
1449  * Takes a clocksource= boot argument and uses it
1450  * as the clocksource override name.
1451  */
1452 static int __init boot_override_clocksource(char* str)
1453 {
1454 	mutex_lock(&clocksource_mutex);
1455 	if (str)
1456 		strlcpy(override_name, str, sizeof(override_name));
1457 	mutex_unlock(&clocksource_mutex);
1458 	return 1;
1459 }
1460 
1461 __setup("clocksource=", boot_override_clocksource);
1462 
1463 /**
1464  * boot_override_clock - Compatibility layer for deprecated boot option
1465  * @str:	override name
1466  *
1467  * DEPRECATED! Takes a clock= boot argument and uses it
1468  * as the clocksource override name
1469  */
1470 static int __init boot_override_clock(char* str)
1471 {
1472 	if (!strcmp(str, "pmtmr")) {
1473 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1474 		return boot_override_clocksource("acpi_pm");
1475 	}
1476 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1477 	return boot_override_clocksource(str);
1478 }
1479 
1480 __setup("clock=", boot_override_clock);
1481