1 /* 2 * linux/kernel/time/clocksource.c 3 * 4 * This file contains the functions which manage clocksource drivers. 5 * 6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * TODO WishList: 23 * o Allow clocksource drivers to be unregistered 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/device.h> 29 #include <linux/clocksource.h> 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 33 #include <linux/tick.h> 34 #include <linux/kthread.h> 35 36 #include "tick-internal.h" 37 #include "timekeeping_internal.h" 38 39 /** 40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 41 * @mult: pointer to mult variable 42 * @shift: pointer to shift variable 43 * @from: frequency to convert from 44 * @to: frequency to convert to 45 * @maxsec: guaranteed runtime conversion range in seconds 46 * 47 * The function evaluates the shift/mult pair for the scaled math 48 * operations of clocksources and clockevents. 49 * 50 * @to and @from are frequency values in HZ. For clock sources @to is 51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 52 * event @to is the counter frequency and @from is NSEC_PER_SEC. 53 * 54 * The @maxsec conversion range argument controls the time frame in 55 * seconds which must be covered by the runtime conversion with the 56 * calculated mult and shift factors. This guarantees that no 64bit 57 * overflow happens when the input value of the conversion is 58 * multiplied with the calculated mult factor. Larger ranges may 59 * reduce the conversion accuracy by chosing smaller mult and shift 60 * factors. 61 */ 62 void 63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 64 { 65 u64 tmp; 66 u32 sft, sftacc= 32; 67 68 /* 69 * Calculate the shift factor which is limiting the conversion 70 * range: 71 */ 72 tmp = ((u64)maxsec * from) >> 32; 73 while (tmp) { 74 tmp >>=1; 75 sftacc--; 76 } 77 78 /* 79 * Find the conversion shift/mult pair which has the best 80 * accuracy and fits the maxsec conversion range: 81 */ 82 for (sft = 32; sft > 0; sft--) { 83 tmp = (u64) to << sft; 84 tmp += from / 2; 85 do_div(tmp, from); 86 if ((tmp >> sftacc) == 0) 87 break; 88 } 89 *mult = tmp; 90 *shift = sft; 91 } 92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); 93 94 /*[Clocksource internal variables]--------- 95 * curr_clocksource: 96 * currently selected clocksource. 97 * clocksource_list: 98 * linked list with the registered clocksources 99 * clocksource_mutex: 100 * protects manipulations to curr_clocksource and the clocksource_list 101 * override_name: 102 * Name of the user-specified clocksource. 103 */ 104 static struct clocksource *curr_clocksource; 105 static LIST_HEAD(clocksource_list); 106 static DEFINE_MUTEX(clocksource_mutex); 107 static char override_name[CS_NAME_LEN]; 108 static int finished_booting; 109 110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 111 static void clocksource_watchdog_work(struct work_struct *work); 112 static void clocksource_select(void); 113 114 static LIST_HEAD(watchdog_list); 115 static struct clocksource *watchdog; 116 static struct timer_list watchdog_timer; 117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 118 static DEFINE_SPINLOCK(watchdog_lock); 119 static int watchdog_running; 120 static atomic_t watchdog_reset_pending; 121 122 static int clocksource_watchdog_kthread(void *data); 123 static void __clocksource_change_rating(struct clocksource *cs, int rating); 124 125 /* 126 * Interval: 0.5sec Threshold: 0.0625s 127 */ 128 #define WATCHDOG_INTERVAL (HZ >> 1) 129 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 130 131 static void clocksource_watchdog_work(struct work_struct *work) 132 { 133 /* 134 * If kthread_run fails the next watchdog scan over the 135 * watchdog_list will find the unstable clock again. 136 */ 137 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 138 } 139 140 static void __clocksource_unstable(struct clocksource *cs) 141 { 142 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 143 cs->flags |= CLOCK_SOURCE_UNSTABLE; 144 145 if (cs->mark_unstable) 146 cs->mark_unstable(cs); 147 148 if (finished_booting) 149 schedule_work(&watchdog_work); 150 } 151 152 /** 153 * clocksource_mark_unstable - mark clocksource unstable via watchdog 154 * @cs: clocksource to be marked unstable 155 * 156 * This function is called instead of clocksource_change_rating from 157 * cpu hotplug code to avoid a deadlock between the clocksource mutex 158 * and the cpu hotplug mutex. It defers the update of the clocksource 159 * to the watchdog thread. 160 */ 161 void clocksource_mark_unstable(struct clocksource *cs) 162 { 163 unsigned long flags; 164 165 spin_lock_irqsave(&watchdog_lock, flags); 166 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 167 if (list_empty(&cs->wd_list)) 168 list_add(&cs->wd_list, &watchdog_list); 169 __clocksource_unstable(cs); 170 } 171 spin_unlock_irqrestore(&watchdog_lock, flags); 172 } 173 174 static void clocksource_watchdog(struct timer_list *unused) 175 { 176 struct clocksource *cs; 177 u64 csnow, wdnow, cslast, wdlast, delta; 178 int64_t wd_nsec, cs_nsec; 179 int next_cpu, reset_pending; 180 181 spin_lock(&watchdog_lock); 182 if (!watchdog_running) 183 goto out; 184 185 reset_pending = atomic_read(&watchdog_reset_pending); 186 187 list_for_each_entry(cs, &watchdog_list, wd_list) { 188 189 /* Clocksource already marked unstable? */ 190 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 191 if (finished_booting) 192 schedule_work(&watchdog_work); 193 continue; 194 } 195 196 local_irq_disable(); 197 csnow = cs->read(cs); 198 wdnow = watchdog->read(watchdog); 199 local_irq_enable(); 200 201 /* Clocksource initialized ? */ 202 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 203 atomic_read(&watchdog_reset_pending)) { 204 cs->flags |= CLOCK_SOURCE_WATCHDOG; 205 cs->wd_last = wdnow; 206 cs->cs_last = csnow; 207 continue; 208 } 209 210 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask); 211 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult, 212 watchdog->shift); 213 214 delta = clocksource_delta(csnow, cs->cs_last, cs->mask); 215 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift); 216 wdlast = cs->wd_last; /* save these in case we print them */ 217 cslast = cs->cs_last; 218 cs->cs_last = csnow; 219 cs->wd_last = wdnow; 220 221 if (atomic_read(&watchdog_reset_pending)) 222 continue; 223 224 /* Check the deviation from the watchdog clocksource. */ 225 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { 226 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", 227 smp_processor_id(), cs->name); 228 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n", 229 watchdog->name, wdnow, wdlast, watchdog->mask); 230 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n", 231 cs->name, csnow, cslast, cs->mask); 232 __clocksource_unstable(cs); 233 continue; 234 } 235 236 if (cs == curr_clocksource && cs->tick_stable) 237 cs->tick_stable(cs); 238 239 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 240 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 241 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 242 /* Mark it valid for high-res. */ 243 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 244 245 /* 246 * clocksource_done_booting() will sort it if 247 * finished_booting is not set yet. 248 */ 249 if (!finished_booting) 250 continue; 251 252 /* 253 * If this is not the current clocksource let 254 * the watchdog thread reselect it. Due to the 255 * change to high res this clocksource might 256 * be preferred now. If it is the current 257 * clocksource let the tick code know about 258 * that change. 259 */ 260 if (cs != curr_clocksource) { 261 cs->flags |= CLOCK_SOURCE_RESELECT; 262 schedule_work(&watchdog_work); 263 } else { 264 tick_clock_notify(); 265 } 266 } 267 } 268 269 /* 270 * We only clear the watchdog_reset_pending, when we did a 271 * full cycle through all clocksources. 272 */ 273 if (reset_pending) 274 atomic_dec(&watchdog_reset_pending); 275 276 /* 277 * Cycle through CPUs to check if the CPUs stay synchronized 278 * to each other. 279 */ 280 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 281 if (next_cpu >= nr_cpu_ids) 282 next_cpu = cpumask_first(cpu_online_mask); 283 watchdog_timer.expires += WATCHDOG_INTERVAL; 284 add_timer_on(&watchdog_timer, next_cpu); 285 out: 286 spin_unlock(&watchdog_lock); 287 } 288 289 static inline void clocksource_start_watchdog(void) 290 { 291 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 292 return; 293 timer_setup(&watchdog_timer, clocksource_watchdog, 0); 294 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 295 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 296 watchdog_running = 1; 297 } 298 299 static inline void clocksource_stop_watchdog(void) 300 { 301 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 302 return; 303 del_timer(&watchdog_timer); 304 watchdog_running = 0; 305 } 306 307 static inline void clocksource_reset_watchdog(void) 308 { 309 struct clocksource *cs; 310 311 list_for_each_entry(cs, &watchdog_list, wd_list) 312 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 313 } 314 315 static void clocksource_resume_watchdog(void) 316 { 317 atomic_inc(&watchdog_reset_pending); 318 } 319 320 static void clocksource_enqueue_watchdog(struct clocksource *cs) 321 { 322 unsigned long flags; 323 324 spin_lock_irqsave(&watchdog_lock, flags); 325 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 326 /* cs is a clocksource to be watched. */ 327 list_add(&cs->wd_list, &watchdog_list); 328 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 329 } else { 330 /* cs is a watchdog. */ 331 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 332 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 333 } 334 spin_unlock_irqrestore(&watchdog_lock, flags); 335 } 336 337 static void clocksource_select_watchdog(bool fallback) 338 { 339 struct clocksource *cs, *old_wd; 340 unsigned long flags; 341 342 spin_lock_irqsave(&watchdog_lock, flags); 343 /* save current watchdog */ 344 old_wd = watchdog; 345 if (fallback) 346 watchdog = NULL; 347 348 list_for_each_entry(cs, &clocksource_list, list) { 349 /* cs is a clocksource to be watched. */ 350 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) 351 continue; 352 353 /* Skip current if we were requested for a fallback. */ 354 if (fallback && cs == old_wd) 355 continue; 356 357 /* Pick the best watchdog. */ 358 if (!watchdog || cs->rating > watchdog->rating) 359 watchdog = cs; 360 } 361 /* If we failed to find a fallback restore the old one. */ 362 if (!watchdog) 363 watchdog = old_wd; 364 365 /* If we changed the watchdog we need to reset cycles. */ 366 if (watchdog != old_wd) 367 clocksource_reset_watchdog(); 368 369 /* Check if the watchdog timer needs to be started. */ 370 clocksource_start_watchdog(); 371 spin_unlock_irqrestore(&watchdog_lock, flags); 372 } 373 374 static void clocksource_dequeue_watchdog(struct clocksource *cs) 375 { 376 unsigned long flags; 377 378 spin_lock_irqsave(&watchdog_lock, flags); 379 if (cs != watchdog) { 380 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 381 /* cs is a watched clocksource. */ 382 list_del_init(&cs->wd_list); 383 /* Check if the watchdog timer needs to be stopped. */ 384 clocksource_stop_watchdog(); 385 } 386 } 387 spin_unlock_irqrestore(&watchdog_lock, flags); 388 } 389 390 static int __clocksource_watchdog_kthread(void) 391 { 392 struct clocksource *cs, *tmp; 393 unsigned long flags; 394 LIST_HEAD(unstable); 395 int select = 0; 396 397 spin_lock_irqsave(&watchdog_lock, flags); 398 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 399 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 400 list_del_init(&cs->wd_list); 401 list_add(&cs->wd_list, &unstable); 402 select = 1; 403 } 404 if (cs->flags & CLOCK_SOURCE_RESELECT) { 405 cs->flags &= ~CLOCK_SOURCE_RESELECT; 406 select = 1; 407 } 408 } 409 /* Check if the watchdog timer needs to be stopped. */ 410 clocksource_stop_watchdog(); 411 spin_unlock_irqrestore(&watchdog_lock, flags); 412 413 /* Needs to be done outside of watchdog lock */ 414 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { 415 list_del_init(&cs->wd_list); 416 __clocksource_change_rating(cs, 0); 417 } 418 return select; 419 } 420 421 static int clocksource_watchdog_kthread(void *data) 422 { 423 mutex_lock(&clocksource_mutex); 424 if (__clocksource_watchdog_kthread()) 425 clocksource_select(); 426 mutex_unlock(&clocksource_mutex); 427 return 0; 428 } 429 430 static bool clocksource_is_watchdog(struct clocksource *cs) 431 { 432 return cs == watchdog; 433 } 434 435 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 436 437 static void clocksource_enqueue_watchdog(struct clocksource *cs) 438 { 439 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 440 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 441 } 442 443 static void clocksource_select_watchdog(bool fallback) { } 444 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 445 static inline void clocksource_resume_watchdog(void) { } 446 static inline int __clocksource_watchdog_kthread(void) { return 0; } 447 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 448 void clocksource_mark_unstable(struct clocksource *cs) { } 449 450 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 451 452 /** 453 * clocksource_suspend - suspend the clocksource(s) 454 */ 455 void clocksource_suspend(void) 456 { 457 struct clocksource *cs; 458 459 list_for_each_entry_reverse(cs, &clocksource_list, list) 460 if (cs->suspend) 461 cs->suspend(cs); 462 } 463 464 /** 465 * clocksource_resume - resume the clocksource(s) 466 */ 467 void clocksource_resume(void) 468 { 469 struct clocksource *cs; 470 471 list_for_each_entry(cs, &clocksource_list, list) 472 if (cs->resume) 473 cs->resume(cs); 474 475 clocksource_resume_watchdog(); 476 } 477 478 /** 479 * clocksource_touch_watchdog - Update watchdog 480 * 481 * Update the watchdog after exception contexts such as kgdb so as not 482 * to incorrectly trip the watchdog. This might fail when the kernel 483 * was stopped in code which holds watchdog_lock. 484 */ 485 void clocksource_touch_watchdog(void) 486 { 487 clocksource_resume_watchdog(); 488 } 489 490 /** 491 * clocksource_max_adjustment- Returns max adjustment amount 492 * @cs: Pointer to clocksource 493 * 494 */ 495 static u32 clocksource_max_adjustment(struct clocksource *cs) 496 { 497 u64 ret; 498 /* 499 * We won't try to correct for more than 11% adjustments (110,000 ppm), 500 */ 501 ret = (u64)cs->mult * 11; 502 do_div(ret,100); 503 return (u32)ret; 504 } 505 506 /** 507 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 508 * @mult: cycle to nanosecond multiplier 509 * @shift: cycle to nanosecond divisor (power of two) 510 * @maxadj: maximum adjustment value to mult (~11%) 511 * @mask: bitmask for two's complement subtraction of non 64 bit counters 512 * @max_cyc: maximum cycle value before potential overflow (does not include 513 * any safety margin) 514 * 515 * NOTE: This function includes a safety margin of 50%, in other words, we 516 * return half the number of nanoseconds the hardware counter can technically 517 * cover. This is done so that we can potentially detect problems caused by 518 * delayed timers or bad hardware, which might result in time intervals that 519 * are larger than what the math used can handle without overflows. 520 */ 521 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) 522 { 523 u64 max_nsecs, max_cycles; 524 525 /* 526 * Calculate the maximum number of cycles that we can pass to the 527 * cyc2ns() function without overflowing a 64-bit result. 528 */ 529 max_cycles = ULLONG_MAX; 530 do_div(max_cycles, mult+maxadj); 531 532 /* 533 * The actual maximum number of cycles we can defer the clocksource is 534 * determined by the minimum of max_cycles and mask. 535 * Note: Here we subtract the maxadj to make sure we don't sleep for 536 * too long if there's a large negative adjustment. 537 */ 538 max_cycles = min(max_cycles, mask); 539 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 540 541 /* return the max_cycles value as well if requested */ 542 if (max_cyc) 543 *max_cyc = max_cycles; 544 545 /* Return 50% of the actual maximum, so we can detect bad values */ 546 max_nsecs >>= 1; 547 548 return max_nsecs; 549 } 550 551 /** 552 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles 553 * @cs: Pointer to clocksource to be updated 554 * 555 */ 556 static inline void clocksource_update_max_deferment(struct clocksource *cs) 557 { 558 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, 559 cs->maxadj, cs->mask, 560 &cs->max_cycles); 561 } 562 563 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 564 565 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 566 { 567 struct clocksource *cs; 568 569 if (!finished_booting || list_empty(&clocksource_list)) 570 return NULL; 571 572 /* 573 * We pick the clocksource with the highest rating. If oneshot 574 * mode is active, we pick the highres valid clocksource with 575 * the best rating. 576 */ 577 list_for_each_entry(cs, &clocksource_list, list) { 578 if (skipcur && cs == curr_clocksource) 579 continue; 580 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 581 continue; 582 return cs; 583 } 584 return NULL; 585 } 586 587 static void __clocksource_select(bool skipcur) 588 { 589 bool oneshot = tick_oneshot_mode_active(); 590 struct clocksource *best, *cs; 591 592 /* Find the best suitable clocksource */ 593 best = clocksource_find_best(oneshot, skipcur); 594 if (!best) 595 return; 596 597 if (!strlen(override_name)) 598 goto found; 599 600 /* Check for the override clocksource. */ 601 list_for_each_entry(cs, &clocksource_list, list) { 602 if (skipcur && cs == curr_clocksource) 603 continue; 604 if (strcmp(cs->name, override_name) != 0) 605 continue; 606 /* 607 * Check to make sure we don't switch to a non-highres 608 * capable clocksource if the tick code is in oneshot 609 * mode (highres or nohz) 610 */ 611 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 612 /* Override clocksource cannot be used. */ 613 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 614 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", 615 cs->name); 616 override_name[0] = 0; 617 } else { 618 /* 619 * The override cannot be currently verified. 620 * Deferring to let the watchdog check. 621 */ 622 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", 623 cs->name); 624 } 625 } else 626 /* Override clocksource can be used. */ 627 best = cs; 628 break; 629 } 630 631 found: 632 if (curr_clocksource != best && !timekeeping_notify(best)) { 633 pr_info("Switched to clocksource %s\n", best->name); 634 curr_clocksource = best; 635 } 636 } 637 638 /** 639 * clocksource_select - Select the best clocksource available 640 * 641 * Private function. Must hold clocksource_mutex when called. 642 * 643 * Select the clocksource with the best rating, or the clocksource, 644 * which is selected by userspace override. 645 */ 646 static void clocksource_select(void) 647 { 648 __clocksource_select(false); 649 } 650 651 static void clocksource_select_fallback(void) 652 { 653 __clocksource_select(true); 654 } 655 656 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 657 static inline void clocksource_select(void) { } 658 static inline void clocksource_select_fallback(void) { } 659 660 #endif 661 662 /* 663 * clocksource_done_booting - Called near the end of core bootup 664 * 665 * Hack to avoid lots of clocksource churn at boot time. 666 * We use fs_initcall because we want this to start before 667 * device_initcall but after subsys_initcall. 668 */ 669 static int __init clocksource_done_booting(void) 670 { 671 mutex_lock(&clocksource_mutex); 672 curr_clocksource = clocksource_default_clock(); 673 finished_booting = 1; 674 /* 675 * Run the watchdog first to eliminate unstable clock sources 676 */ 677 __clocksource_watchdog_kthread(); 678 clocksource_select(); 679 mutex_unlock(&clocksource_mutex); 680 return 0; 681 } 682 fs_initcall(clocksource_done_booting); 683 684 /* 685 * Enqueue the clocksource sorted by rating 686 */ 687 static void clocksource_enqueue(struct clocksource *cs) 688 { 689 struct list_head *entry = &clocksource_list; 690 struct clocksource *tmp; 691 692 list_for_each_entry(tmp, &clocksource_list, list) { 693 /* Keep track of the place, where to insert */ 694 if (tmp->rating < cs->rating) 695 break; 696 entry = &tmp->list; 697 } 698 list_add(&cs->list, entry); 699 } 700 701 /** 702 * __clocksource_update_freq_scale - Used update clocksource with new freq 703 * @cs: clocksource to be registered 704 * @scale: Scale factor multiplied against freq to get clocksource hz 705 * @freq: clocksource frequency (cycles per second) divided by scale 706 * 707 * This should only be called from the clocksource->enable() method. 708 * 709 * This *SHOULD NOT* be called directly! Please use the 710 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper 711 * functions. 712 */ 713 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) 714 { 715 u64 sec; 716 717 /* 718 * Default clocksources are *special* and self-define their mult/shift. 719 * But, you're not special, so you should specify a freq value. 720 */ 721 if (freq) { 722 /* 723 * Calc the maximum number of seconds which we can run before 724 * wrapping around. For clocksources which have a mask > 32-bit 725 * we need to limit the max sleep time to have a good 726 * conversion precision. 10 minutes is still a reasonable 727 * amount. That results in a shift value of 24 for a 728 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to 729 * ~ 0.06ppm granularity for NTP. 730 */ 731 sec = cs->mask; 732 do_div(sec, freq); 733 do_div(sec, scale); 734 if (!sec) 735 sec = 1; 736 else if (sec > 600 && cs->mask > UINT_MAX) 737 sec = 600; 738 739 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 740 NSEC_PER_SEC / scale, sec * scale); 741 } 742 /* 743 * Ensure clocksources that have large 'mult' values don't overflow 744 * when adjusted. 745 */ 746 cs->maxadj = clocksource_max_adjustment(cs); 747 while (freq && ((cs->mult + cs->maxadj < cs->mult) 748 || (cs->mult - cs->maxadj > cs->mult))) { 749 cs->mult >>= 1; 750 cs->shift--; 751 cs->maxadj = clocksource_max_adjustment(cs); 752 } 753 754 /* 755 * Only warn for *special* clocksources that self-define 756 * their mult/shift values and don't specify a freq. 757 */ 758 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 759 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", 760 cs->name); 761 762 clocksource_update_max_deferment(cs); 763 764 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", 765 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); 766 } 767 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); 768 769 /** 770 * __clocksource_register_scale - Used to install new clocksources 771 * @cs: clocksource to be registered 772 * @scale: Scale factor multiplied against freq to get clocksource hz 773 * @freq: clocksource frequency (cycles per second) divided by scale 774 * 775 * Returns -EBUSY if registration fails, zero otherwise. 776 * 777 * This *SHOULD NOT* be called directly! Please use the 778 * clocksource_register_hz() or clocksource_register_khz helper functions. 779 */ 780 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 781 { 782 783 /* Initialize mult/shift and max_idle_ns */ 784 __clocksource_update_freq_scale(cs, scale, freq); 785 786 /* Add clocksource to the clocksource list */ 787 mutex_lock(&clocksource_mutex); 788 clocksource_enqueue(cs); 789 clocksource_enqueue_watchdog(cs); 790 clocksource_select(); 791 clocksource_select_watchdog(false); 792 mutex_unlock(&clocksource_mutex); 793 return 0; 794 } 795 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 796 797 static void __clocksource_change_rating(struct clocksource *cs, int rating) 798 { 799 list_del(&cs->list); 800 cs->rating = rating; 801 clocksource_enqueue(cs); 802 } 803 804 /** 805 * clocksource_change_rating - Change the rating of a registered clocksource 806 * @cs: clocksource to be changed 807 * @rating: new rating 808 */ 809 void clocksource_change_rating(struct clocksource *cs, int rating) 810 { 811 mutex_lock(&clocksource_mutex); 812 __clocksource_change_rating(cs, rating); 813 clocksource_select(); 814 clocksource_select_watchdog(false); 815 mutex_unlock(&clocksource_mutex); 816 } 817 EXPORT_SYMBOL(clocksource_change_rating); 818 819 /* 820 * Unbind clocksource @cs. Called with clocksource_mutex held 821 */ 822 static int clocksource_unbind(struct clocksource *cs) 823 { 824 if (clocksource_is_watchdog(cs)) { 825 /* Select and try to install a replacement watchdog. */ 826 clocksource_select_watchdog(true); 827 if (clocksource_is_watchdog(cs)) 828 return -EBUSY; 829 } 830 831 if (cs == curr_clocksource) { 832 /* Select and try to install a replacement clock source */ 833 clocksource_select_fallback(); 834 if (curr_clocksource == cs) 835 return -EBUSY; 836 } 837 clocksource_dequeue_watchdog(cs); 838 list_del_init(&cs->list); 839 return 0; 840 } 841 842 /** 843 * clocksource_unregister - remove a registered clocksource 844 * @cs: clocksource to be unregistered 845 */ 846 int clocksource_unregister(struct clocksource *cs) 847 { 848 int ret = 0; 849 850 mutex_lock(&clocksource_mutex); 851 if (!list_empty(&cs->list)) 852 ret = clocksource_unbind(cs); 853 mutex_unlock(&clocksource_mutex); 854 return ret; 855 } 856 EXPORT_SYMBOL(clocksource_unregister); 857 858 #ifdef CONFIG_SYSFS 859 /** 860 * current_clocksource_show - sysfs interface for current clocksource 861 * @dev: unused 862 * @attr: unused 863 * @buf: char buffer to be filled with clocksource list 864 * 865 * Provides sysfs interface for listing current clocksource. 866 */ 867 static ssize_t current_clocksource_show(struct device *dev, 868 struct device_attribute *attr, 869 char *buf) 870 { 871 ssize_t count = 0; 872 873 mutex_lock(&clocksource_mutex); 874 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 875 mutex_unlock(&clocksource_mutex); 876 877 return count; 878 } 879 880 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 881 { 882 size_t ret = cnt; 883 884 /* strings from sysfs write are not 0 terminated! */ 885 if (!cnt || cnt >= CS_NAME_LEN) 886 return -EINVAL; 887 888 /* strip of \n: */ 889 if (buf[cnt-1] == '\n') 890 cnt--; 891 if (cnt > 0) 892 memcpy(dst, buf, cnt); 893 dst[cnt] = 0; 894 return ret; 895 } 896 897 /** 898 * current_clocksource_store - interface for manually overriding clocksource 899 * @dev: unused 900 * @attr: unused 901 * @buf: name of override clocksource 902 * @count: length of buffer 903 * 904 * Takes input from sysfs interface for manually overriding the default 905 * clocksource selection. 906 */ 907 static ssize_t current_clocksource_store(struct device *dev, 908 struct device_attribute *attr, 909 const char *buf, size_t count) 910 { 911 ssize_t ret; 912 913 mutex_lock(&clocksource_mutex); 914 915 ret = sysfs_get_uname(buf, override_name, count); 916 if (ret >= 0) 917 clocksource_select(); 918 919 mutex_unlock(&clocksource_mutex); 920 921 return ret; 922 } 923 static DEVICE_ATTR_RW(current_clocksource); 924 925 /** 926 * unbind_clocksource_store - interface for manually unbinding clocksource 927 * @dev: unused 928 * @attr: unused 929 * @buf: unused 930 * @count: length of buffer 931 * 932 * Takes input from sysfs interface for manually unbinding a clocksource. 933 */ 934 static ssize_t unbind_clocksource_store(struct device *dev, 935 struct device_attribute *attr, 936 const char *buf, size_t count) 937 { 938 struct clocksource *cs; 939 char name[CS_NAME_LEN]; 940 ssize_t ret; 941 942 ret = sysfs_get_uname(buf, name, count); 943 if (ret < 0) 944 return ret; 945 946 ret = -ENODEV; 947 mutex_lock(&clocksource_mutex); 948 list_for_each_entry(cs, &clocksource_list, list) { 949 if (strcmp(cs->name, name)) 950 continue; 951 ret = clocksource_unbind(cs); 952 break; 953 } 954 mutex_unlock(&clocksource_mutex); 955 956 return ret ? ret : count; 957 } 958 static DEVICE_ATTR_WO(unbind_clocksource); 959 960 /** 961 * available_clocksource_show - sysfs interface for listing clocksource 962 * @dev: unused 963 * @attr: unused 964 * @buf: char buffer to be filled with clocksource list 965 * 966 * Provides sysfs interface for listing registered clocksources 967 */ 968 static ssize_t available_clocksource_show(struct device *dev, 969 struct device_attribute *attr, 970 char *buf) 971 { 972 struct clocksource *src; 973 ssize_t count = 0; 974 975 mutex_lock(&clocksource_mutex); 976 list_for_each_entry(src, &clocksource_list, list) { 977 /* 978 * Don't show non-HRES clocksource if the tick code is 979 * in one shot mode (highres=on or nohz=on) 980 */ 981 if (!tick_oneshot_mode_active() || 982 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 983 count += snprintf(buf + count, 984 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 985 "%s ", src->name); 986 } 987 mutex_unlock(&clocksource_mutex); 988 989 count += snprintf(buf + count, 990 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 991 992 return count; 993 } 994 static DEVICE_ATTR_RO(available_clocksource); 995 996 static struct attribute *clocksource_attrs[] = { 997 &dev_attr_current_clocksource.attr, 998 &dev_attr_unbind_clocksource.attr, 999 &dev_attr_available_clocksource.attr, 1000 NULL 1001 }; 1002 ATTRIBUTE_GROUPS(clocksource); 1003 1004 static struct bus_type clocksource_subsys = { 1005 .name = "clocksource", 1006 .dev_name = "clocksource", 1007 }; 1008 1009 static struct device device_clocksource = { 1010 .id = 0, 1011 .bus = &clocksource_subsys, 1012 .groups = clocksource_groups, 1013 }; 1014 1015 static int __init init_clocksource_sysfs(void) 1016 { 1017 int error = subsys_system_register(&clocksource_subsys, NULL); 1018 1019 if (!error) 1020 error = device_register(&device_clocksource); 1021 1022 return error; 1023 } 1024 1025 device_initcall(init_clocksource_sysfs); 1026 #endif /* CONFIG_SYSFS */ 1027 1028 /** 1029 * boot_override_clocksource - boot clock override 1030 * @str: override name 1031 * 1032 * Takes a clocksource= boot argument and uses it 1033 * as the clocksource override name. 1034 */ 1035 static int __init boot_override_clocksource(char* str) 1036 { 1037 mutex_lock(&clocksource_mutex); 1038 if (str) 1039 strlcpy(override_name, str, sizeof(override_name)); 1040 mutex_unlock(&clocksource_mutex); 1041 return 1; 1042 } 1043 1044 __setup("clocksource=", boot_override_clocksource); 1045 1046 /** 1047 * boot_override_clock - Compatibility layer for deprecated boot option 1048 * @str: override name 1049 * 1050 * DEPRECATED! Takes a clock= boot argument and uses it 1051 * as the clocksource override name 1052 */ 1053 static int __init boot_override_clock(char* str) 1054 { 1055 if (!strcmp(str, "pmtmr")) { 1056 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); 1057 return boot_override_clocksource("acpi_pm"); 1058 } 1059 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); 1060 return boot_override_clocksource(str); 1061 } 1062 1063 __setup("clock=", boot_override_clock); 1064