xref: /openbmc/linux/kernel/time/clocksource.c (revision addee42a)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/device.h>
29 #include <linux/clocksource.h>
30 #include <linux/init.h>
31 #include <linux/module.h>
32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33 #include <linux/tick.h>
34 #include <linux/kthread.h>
35 
36 #include "tick-internal.h"
37 #include "timekeeping_internal.h"
38 
39 /**
40  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41  * @mult:	pointer to mult variable
42  * @shift:	pointer to shift variable
43  * @from:	frequency to convert from
44  * @to:		frequency to convert to
45  * @maxsec:	guaranteed runtime conversion range in seconds
46  *
47  * The function evaluates the shift/mult pair for the scaled math
48  * operations of clocksources and clockevents.
49  *
50  * @to and @from are frequency values in HZ. For clock sources @to is
51  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52  * event @to is the counter frequency and @from is NSEC_PER_SEC.
53  *
54  * The @maxsec conversion range argument controls the time frame in
55  * seconds which must be covered by the runtime conversion with the
56  * calculated mult and shift factors. This guarantees that no 64bit
57  * overflow happens when the input value of the conversion is
58  * multiplied with the calculated mult factor. Larger ranges may
59  * reduce the conversion accuracy by chosing smaller mult and shift
60  * factors.
61  */
62 void
63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64 {
65 	u64 tmp;
66 	u32 sft, sftacc= 32;
67 
68 	/*
69 	 * Calculate the shift factor which is limiting the conversion
70 	 * range:
71 	 */
72 	tmp = ((u64)maxsec * from) >> 32;
73 	while (tmp) {
74 		tmp >>=1;
75 		sftacc--;
76 	}
77 
78 	/*
79 	 * Find the conversion shift/mult pair which has the best
80 	 * accuracy and fits the maxsec conversion range:
81 	 */
82 	for (sft = 32; sft > 0; sft--) {
83 		tmp = (u64) to << sft;
84 		tmp += from / 2;
85 		do_div(tmp, from);
86 		if ((tmp >> sftacc) == 0)
87 			break;
88 	}
89 	*mult = tmp;
90 	*shift = sft;
91 }
92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93 
94 /*[Clocksource internal variables]---------
95  * curr_clocksource:
96  *	currently selected clocksource.
97  * clocksource_list:
98  *	linked list with the registered clocksources
99  * clocksource_mutex:
100  *	protects manipulations to curr_clocksource and the clocksource_list
101  * override_name:
102  *	Name of the user-specified clocksource.
103  */
104 static struct clocksource *curr_clocksource;
105 static LIST_HEAD(clocksource_list);
106 static DEFINE_MUTEX(clocksource_mutex);
107 static char override_name[CS_NAME_LEN];
108 static int finished_booting;
109 
110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111 static void clocksource_watchdog_work(struct work_struct *work);
112 static void clocksource_select(void);
113 
114 static LIST_HEAD(watchdog_list);
115 static struct clocksource *watchdog;
116 static struct timer_list watchdog_timer;
117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118 static DEFINE_SPINLOCK(watchdog_lock);
119 static int watchdog_running;
120 static atomic_t watchdog_reset_pending;
121 
122 static void inline clocksource_watchdog_lock(unsigned long *flags)
123 {
124 	spin_lock_irqsave(&watchdog_lock, *flags);
125 }
126 
127 static void inline clocksource_watchdog_unlock(unsigned long *flags)
128 {
129 	spin_unlock_irqrestore(&watchdog_lock, *flags);
130 }
131 
132 static int clocksource_watchdog_kthread(void *data);
133 static void __clocksource_change_rating(struct clocksource *cs, int rating);
134 
135 /*
136  * Interval: 0.5sec Threshold: 0.0625s
137  */
138 #define WATCHDOG_INTERVAL (HZ >> 1)
139 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
140 
141 static void clocksource_watchdog_work(struct work_struct *work)
142 {
143 	/*
144 	 * If kthread_run fails the next watchdog scan over the
145 	 * watchdog_list will find the unstable clock again.
146 	 */
147 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
148 }
149 
150 static void __clocksource_unstable(struct clocksource *cs)
151 {
152 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
153 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
154 
155 	/*
156 	 * If the clocksource is registered clocksource_watchdog_kthread() will
157 	 * re-rate and re-select.
158 	 */
159 	if (list_empty(&cs->list)) {
160 		cs->rating = 0;
161 		return;
162 	}
163 
164 	if (cs->mark_unstable)
165 		cs->mark_unstable(cs);
166 
167 	/* kick clocksource_watchdog_kthread() */
168 	if (finished_booting)
169 		schedule_work(&watchdog_work);
170 }
171 
172 /**
173  * clocksource_mark_unstable - mark clocksource unstable via watchdog
174  * @cs:		clocksource to be marked unstable
175  *
176  * This function is called by the x86 TSC code to mark clocksources as unstable;
177  * it defers demotion and re-selection to a kthread.
178  */
179 void clocksource_mark_unstable(struct clocksource *cs)
180 {
181 	unsigned long flags;
182 
183 	spin_lock_irqsave(&watchdog_lock, flags);
184 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
185 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
186 			list_add(&cs->wd_list, &watchdog_list);
187 		__clocksource_unstable(cs);
188 	}
189 	spin_unlock_irqrestore(&watchdog_lock, flags);
190 }
191 
192 static void clocksource_watchdog(struct timer_list *unused)
193 {
194 	struct clocksource *cs;
195 	u64 csnow, wdnow, cslast, wdlast, delta;
196 	int64_t wd_nsec, cs_nsec;
197 	int next_cpu, reset_pending;
198 
199 	spin_lock(&watchdog_lock);
200 	if (!watchdog_running)
201 		goto out;
202 
203 	reset_pending = atomic_read(&watchdog_reset_pending);
204 
205 	list_for_each_entry(cs, &watchdog_list, wd_list) {
206 
207 		/* Clocksource already marked unstable? */
208 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
209 			if (finished_booting)
210 				schedule_work(&watchdog_work);
211 			continue;
212 		}
213 
214 		local_irq_disable();
215 		csnow = cs->read(cs);
216 		wdnow = watchdog->read(watchdog);
217 		local_irq_enable();
218 
219 		/* Clocksource initialized ? */
220 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
221 		    atomic_read(&watchdog_reset_pending)) {
222 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
223 			cs->wd_last = wdnow;
224 			cs->cs_last = csnow;
225 			continue;
226 		}
227 
228 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
229 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
230 					     watchdog->shift);
231 
232 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
233 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
234 		wdlast = cs->wd_last; /* save these in case we print them */
235 		cslast = cs->cs_last;
236 		cs->cs_last = csnow;
237 		cs->wd_last = wdnow;
238 
239 		if (atomic_read(&watchdog_reset_pending))
240 			continue;
241 
242 		/* Check the deviation from the watchdog clocksource. */
243 		if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
244 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
245 				smp_processor_id(), cs->name);
246 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
247 				watchdog->name, wdnow, wdlast, watchdog->mask);
248 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
249 				cs->name, csnow, cslast, cs->mask);
250 			__clocksource_unstable(cs);
251 			continue;
252 		}
253 
254 		if (cs == curr_clocksource && cs->tick_stable)
255 			cs->tick_stable(cs);
256 
257 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
258 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
259 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
260 			/* Mark it valid for high-res. */
261 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
262 
263 			/*
264 			 * clocksource_done_booting() will sort it if
265 			 * finished_booting is not set yet.
266 			 */
267 			if (!finished_booting)
268 				continue;
269 
270 			/*
271 			 * If this is not the current clocksource let
272 			 * the watchdog thread reselect it. Due to the
273 			 * change to high res this clocksource might
274 			 * be preferred now. If it is the current
275 			 * clocksource let the tick code know about
276 			 * that change.
277 			 */
278 			if (cs != curr_clocksource) {
279 				cs->flags |= CLOCK_SOURCE_RESELECT;
280 				schedule_work(&watchdog_work);
281 			} else {
282 				tick_clock_notify();
283 			}
284 		}
285 	}
286 
287 	/*
288 	 * We only clear the watchdog_reset_pending, when we did a
289 	 * full cycle through all clocksources.
290 	 */
291 	if (reset_pending)
292 		atomic_dec(&watchdog_reset_pending);
293 
294 	/*
295 	 * Cycle through CPUs to check if the CPUs stay synchronized
296 	 * to each other.
297 	 */
298 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
299 	if (next_cpu >= nr_cpu_ids)
300 		next_cpu = cpumask_first(cpu_online_mask);
301 	watchdog_timer.expires += WATCHDOG_INTERVAL;
302 	add_timer_on(&watchdog_timer, next_cpu);
303 out:
304 	spin_unlock(&watchdog_lock);
305 }
306 
307 static inline void clocksource_start_watchdog(void)
308 {
309 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
310 		return;
311 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
312 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
313 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
314 	watchdog_running = 1;
315 }
316 
317 static inline void clocksource_stop_watchdog(void)
318 {
319 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
320 		return;
321 	del_timer(&watchdog_timer);
322 	watchdog_running = 0;
323 }
324 
325 static inline void clocksource_reset_watchdog(void)
326 {
327 	struct clocksource *cs;
328 
329 	list_for_each_entry(cs, &watchdog_list, wd_list)
330 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
331 }
332 
333 static void clocksource_resume_watchdog(void)
334 {
335 	atomic_inc(&watchdog_reset_pending);
336 }
337 
338 static void clocksource_enqueue_watchdog(struct clocksource *cs)
339 {
340 	INIT_LIST_HEAD(&cs->wd_list);
341 
342 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
343 		/* cs is a clocksource to be watched. */
344 		list_add(&cs->wd_list, &watchdog_list);
345 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
346 	} else {
347 		/* cs is a watchdog. */
348 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
349 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
350 	}
351 }
352 
353 static void clocksource_select_watchdog(bool fallback)
354 {
355 	struct clocksource *cs, *old_wd;
356 	unsigned long flags;
357 
358 	spin_lock_irqsave(&watchdog_lock, flags);
359 	/* save current watchdog */
360 	old_wd = watchdog;
361 	if (fallback)
362 		watchdog = NULL;
363 
364 	list_for_each_entry(cs, &clocksource_list, list) {
365 		/* cs is a clocksource to be watched. */
366 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
367 			continue;
368 
369 		/* Skip current if we were requested for a fallback. */
370 		if (fallback && cs == old_wd)
371 			continue;
372 
373 		/* Pick the best watchdog. */
374 		if (!watchdog || cs->rating > watchdog->rating)
375 			watchdog = cs;
376 	}
377 	/* If we failed to find a fallback restore the old one. */
378 	if (!watchdog)
379 		watchdog = old_wd;
380 
381 	/* If we changed the watchdog we need to reset cycles. */
382 	if (watchdog != old_wd)
383 		clocksource_reset_watchdog();
384 
385 	/* Check if the watchdog timer needs to be started. */
386 	clocksource_start_watchdog();
387 	spin_unlock_irqrestore(&watchdog_lock, flags);
388 }
389 
390 static void clocksource_dequeue_watchdog(struct clocksource *cs)
391 {
392 	if (cs != watchdog) {
393 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
394 			/* cs is a watched clocksource. */
395 			list_del_init(&cs->wd_list);
396 			/* Check if the watchdog timer needs to be stopped. */
397 			clocksource_stop_watchdog();
398 		}
399 	}
400 }
401 
402 static int __clocksource_watchdog_kthread(void)
403 {
404 	struct clocksource *cs, *tmp;
405 	unsigned long flags;
406 	int select = 0;
407 
408 	spin_lock_irqsave(&watchdog_lock, flags);
409 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
410 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
411 			list_del_init(&cs->wd_list);
412 			__clocksource_change_rating(cs, 0);
413 			select = 1;
414 		}
415 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
416 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
417 			select = 1;
418 		}
419 	}
420 	/* Check if the watchdog timer needs to be stopped. */
421 	clocksource_stop_watchdog();
422 	spin_unlock_irqrestore(&watchdog_lock, flags);
423 
424 	return select;
425 }
426 
427 static int clocksource_watchdog_kthread(void *data)
428 {
429 	mutex_lock(&clocksource_mutex);
430 	if (__clocksource_watchdog_kthread())
431 		clocksource_select();
432 	mutex_unlock(&clocksource_mutex);
433 	return 0;
434 }
435 
436 static bool clocksource_is_watchdog(struct clocksource *cs)
437 {
438 	return cs == watchdog;
439 }
440 
441 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442 
443 static void clocksource_enqueue_watchdog(struct clocksource *cs)
444 {
445 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447 }
448 
449 static void clocksource_select_watchdog(bool fallback) { }
450 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
451 static inline void clocksource_resume_watchdog(void) { }
452 static inline int __clocksource_watchdog_kthread(void) { return 0; }
453 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
454 void clocksource_mark_unstable(struct clocksource *cs) { }
455 
456 static void inline clocksource_watchdog_lock(unsigned long *flags) { }
457 static void inline clocksource_watchdog_unlock(unsigned long *flags) { }
458 
459 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
460 
461 /**
462  * clocksource_suspend - suspend the clocksource(s)
463  */
464 void clocksource_suspend(void)
465 {
466 	struct clocksource *cs;
467 
468 	list_for_each_entry_reverse(cs, &clocksource_list, list)
469 		if (cs->suspend)
470 			cs->suspend(cs);
471 }
472 
473 /**
474  * clocksource_resume - resume the clocksource(s)
475  */
476 void clocksource_resume(void)
477 {
478 	struct clocksource *cs;
479 
480 	list_for_each_entry(cs, &clocksource_list, list)
481 		if (cs->resume)
482 			cs->resume(cs);
483 
484 	clocksource_resume_watchdog();
485 }
486 
487 /**
488  * clocksource_touch_watchdog - Update watchdog
489  *
490  * Update the watchdog after exception contexts such as kgdb so as not
491  * to incorrectly trip the watchdog. This might fail when the kernel
492  * was stopped in code which holds watchdog_lock.
493  */
494 void clocksource_touch_watchdog(void)
495 {
496 	clocksource_resume_watchdog();
497 }
498 
499 /**
500  * clocksource_max_adjustment- Returns max adjustment amount
501  * @cs:         Pointer to clocksource
502  *
503  */
504 static u32 clocksource_max_adjustment(struct clocksource *cs)
505 {
506 	u64 ret;
507 	/*
508 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
509 	 */
510 	ret = (u64)cs->mult * 11;
511 	do_div(ret,100);
512 	return (u32)ret;
513 }
514 
515 /**
516  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
517  * @mult:	cycle to nanosecond multiplier
518  * @shift:	cycle to nanosecond divisor (power of two)
519  * @maxadj:	maximum adjustment value to mult (~11%)
520  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
521  * @max_cyc:	maximum cycle value before potential overflow (does not include
522  *		any safety margin)
523  *
524  * NOTE: This function includes a safety margin of 50%, in other words, we
525  * return half the number of nanoseconds the hardware counter can technically
526  * cover. This is done so that we can potentially detect problems caused by
527  * delayed timers or bad hardware, which might result in time intervals that
528  * are larger than what the math used can handle without overflows.
529  */
530 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
531 {
532 	u64 max_nsecs, max_cycles;
533 
534 	/*
535 	 * Calculate the maximum number of cycles that we can pass to the
536 	 * cyc2ns() function without overflowing a 64-bit result.
537 	 */
538 	max_cycles = ULLONG_MAX;
539 	do_div(max_cycles, mult+maxadj);
540 
541 	/*
542 	 * The actual maximum number of cycles we can defer the clocksource is
543 	 * determined by the minimum of max_cycles and mask.
544 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
545 	 * too long if there's a large negative adjustment.
546 	 */
547 	max_cycles = min(max_cycles, mask);
548 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
549 
550 	/* return the max_cycles value as well if requested */
551 	if (max_cyc)
552 		*max_cyc = max_cycles;
553 
554 	/* Return 50% of the actual maximum, so we can detect bad values */
555 	max_nsecs >>= 1;
556 
557 	return max_nsecs;
558 }
559 
560 /**
561  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
562  * @cs:         Pointer to clocksource to be updated
563  *
564  */
565 static inline void clocksource_update_max_deferment(struct clocksource *cs)
566 {
567 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
568 						cs->maxadj, cs->mask,
569 						&cs->max_cycles);
570 }
571 
572 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
573 
574 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
575 {
576 	struct clocksource *cs;
577 
578 	if (!finished_booting || list_empty(&clocksource_list))
579 		return NULL;
580 
581 	/*
582 	 * We pick the clocksource with the highest rating. If oneshot
583 	 * mode is active, we pick the highres valid clocksource with
584 	 * the best rating.
585 	 */
586 	list_for_each_entry(cs, &clocksource_list, list) {
587 		if (skipcur && cs == curr_clocksource)
588 			continue;
589 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
590 			continue;
591 		return cs;
592 	}
593 	return NULL;
594 }
595 
596 static void __clocksource_select(bool skipcur)
597 {
598 	bool oneshot = tick_oneshot_mode_active();
599 	struct clocksource *best, *cs;
600 
601 	/* Find the best suitable clocksource */
602 	best = clocksource_find_best(oneshot, skipcur);
603 	if (!best)
604 		return;
605 
606 	if (!strlen(override_name))
607 		goto found;
608 
609 	/* Check for the override clocksource. */
610 	list_for_each_entry(cs, &clocksource_list, list) {
611 		if (skipcur && cs == curr_clocksource)
612 			continue;
613 		if (strcmp(cs->name, override_name) != 0)
614 			continue;
615 		/*
616 		 * Check to make sure we don't switch to a non-highres
617 		 * capable clocksource if the tick code is in oneshot
618 		 * mode (highres or nohz)
619 		 */
620 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
621 			/* Override clocksource cannot be used. */
622 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
623 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
624 					cs->name);
625 				override_name[0] = 0;
626 			} else {
627 				/*
628 				 * The override cannot be currently verified.
629 				 * Deferring to let the watchdog check.
630 				 */
631 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
632 					cs->name);
633 			}
634 		} else
635 			/* Override clocksource can be used. */
636 			best = cs;
637 		break;
638 	}
639 
640 found:
641 	if (curr_clocksource != best && !timekeeping_notify(best)) {
642 		pr_info("Switched to clocksource %s\n", best->name);
643 		curr_clocksource = best;
644 	}
645 }
646 
647 /**
648  * clocksource_select - Select the best clocksource available
649  *
650  * Private function. Must hold clocksource_mutex when called.
651  *
652  * Select the clocksource with the best rating, or the clocksource,
653  * which is selected by userspace override.
654  */
655 static void clocksource_select(void)
656 {
657 	__clocksource_select(false);
658 }
659 
660 static void clocksource_select_fallback(void)
661 {
662 	__clocksource_select(true);
663 }
664 
665 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
666 static inline void clocksource_select(void) { }
667 static inline void clocksource_select_fallback(void) { }
668 
669 #endif
670 
671 /*
672  * clocksource_done_booting - Called near the end of core bootup
673  *
674  * Hack to avoid lots of clocksource churn at boot time.
675  * We use fs_initcall because we want this to start before
676  * device_initcall but after subsys_initcall.
677  */
678 static int __init clocksource_done_booting(void)
679 {
680 	mutex_lock(&clocksource_mutex);
681 	curr_clocksource = clocksource_default_clock();
682 	finished_booting = 1;
683 	/*
684 	 * Run the watchdog first to eliminate unstable clock sources
685 	 */
686 	__clocksource_watchdog_kthread();
687 	clocksource_select();
688 	mutex_unlock(&clocksource_mutex);
689 	return 0;
690 }
691 fs_initcall(clocksource_done_booting);
692 
693 /*
694  * Enqueue the clocksource sorted by rating
695  */
696 static void clocksource_enqueue(struct clocksource *cs)
697 {
698 	struct list_head *entry = &clocksource_list;
699 	struct clocksource *tmp;
700 
701 	list_for_each_entry(tmp, &clocksource_list, list) {
702 		/* Keep track of the place, where to insert */
703 		if (tmp->rating < cs->rating)
704 			break;
705 		entry = &tmp->list;
706 	}
707 	list_add(&cs->list, entry);
708 }
709 
710 /**
711  * __clocksource_update_freq_scale - Used update clocksource with new freq
712  * @cs:		clocksource to be registered
713  * @scale:	Scale factor multiplied against freq to get clocksource hz
714  * @freq:	clocksource frequency (cycles per second) divided by scale
715  *
716  * This should only be called from the clocksource->enable() method.
717  *
718  * This *SHOULD NOT* be called directly! Please use the
719  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
720  * functions.
721  */
722 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
723 {
724 	u64 sec;
725 
726 	/*
727 	 * Default clocksources are *special* and self-define their mult/shift.
728 	 * But, you're not special, so you should specify a freq value.
729 	 */
730 	if (freq) {
731 		/*
732 		 * Calc the maximum number of seconds which we can run before
733 		 * wrapping around. For clocksources which have a mask > 32-bit
734 		 * we need to limit the max sleep time to have a good
735 		 * conversion precision. 10 minutes is still a reasonable
736 		 * amount. That results in a shift value of 24 for a
737 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
738 		 * ~ 0.06ppm granularity for NTP.
739 		 */
740 		sec = cs->mask;
741 		do_div(sec, freq);
742 		do_div(sec, scale);
743 		if (!sec)
744 			sec = 1;
745 		else if (sec > 600 && cs->mask > UINT_MAX)
746 			sec = 600;
747 
748 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
749 				       NSEC_PER_SEC / scale, sec * scale);
750 	}
751 	/*
752 	 * Ensure clocksources that have large 'mult' values don't overflow
753 	 * when adjusted.
754 	 */
755 	cs->maxadj = clocksource_max_adjustment(cs);
756 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
757 		|| (cs->mult - cs->maxadj > cs->mult))) {
758 		cs->mult >>= 1;
759 		cs->shift--;
760 		cs->maxadj = clocksource_max_adjustment(cs);
761 	}
762 
763 	/*
764 	 * Only warn for *special* clocksources that self-define
765 	 * their mult/shift values and don't specify a freq.
766 	 */
767 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
768 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
769 		cs->name);
770 
771 	clocksource_update_max_deferment(cs);
772 
773 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
774 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
775 }
776 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
777 
778 /**
779  * __clocksource_register_scale - Used to install new clocksources
780  * @cs:		clocksource to be registered
781  * @scale:	Scale factor multiplied against freq to get clocksource hz
782  * @freq:	clocksource frequency (cycles per second) divided by scale
783  *
784  * Returns -EBUSY if registration fails, zero otherwise.
785  *
786  * This *SHOULD NOT* be called directly! Please use the
787  * clocksource_register_hz() or clocksource_register_khz helper functions.
788  */
789 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790 {
791 	unsigned long flags;
792 
793 	/* Initialize mult/shift and max_idle_ns */
794 	__clocksource_update_freq_scale(cs, scale, freq);
795 
796 	/* Add clocksource to the clocksource list */
797 	mutex_lock(&clocksource_mutex);
798 
799 	clocksource_watchdog_lock(&flags);
800 	clocksource_enqueue(cs);
801 	clocksource_enqueue_watchdog(cs);
802 	clocksource_watchdog_unlock(&flags);
803 
804 	clocksource_select();
805 	clocksource_select_watchdog(false);
806 	mutex_unlock(&clocksource_mutex);
807 	return 0;
808 }
809 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
810 
811 static void __clocksource_change_rating(struct clocksource *cs, int rating)
812 {
813 	list_del(&cs->list);
814 	cs->rating = rating;
815 	clocksource_enqueue(cs);
816 }
817 
818 /**
819  * clocksource_change_rating - Change the rating of a registered clocksource
820  * @cs:		clocksource to be changed
821  * @rating:	new rating
822  */
823 void clocksource_change_rating(struct clocksource *cs, int rating)
824 {
825 	unsigned long flags;
826 
827 	mutex_lock(&clocksource_mutex);
828 	clocksource_watchdog_lock(&flags);
829 	__clocksource_change_rating(cs, rating);
830 	clocksource_watchdog_unlock(&flags);
831 
832 	clocksource_select();
833 	clocksource_select_watchdog(false);
834 	mutex_unlock(&clocksource_mutex);
835 }
836 EXPORT_SYMBOL(clocksource_change_rating);
837 
838 /*
839  * Unbind clocksource @cs. Called with clocksource_mutex held
840  */
841 static int clocksource_unbind(struct clocksource *cs)
842 {
843 	unsigned long flags;
844 
845 	if (clocksource_is_watchdog(cs)) {
846 		/* Select and try to install a replacement watchdog. */
847 		clocksource_select_watchdog(true);
848 		if (clocksource_is_watchdog(cs))
849 			return -EBUSY;
850 	}
851 
852 	if (cs == curr_clocksource) {
853 		/* Select and try to install a replacement clock source */
854 		clocksource_select_fallback();
855 		if (curr_clocksource == cs)
856 			return -EBUSY;
857 	}
858 
859 	clocksource_watchdog_lock(&flags);
860 	clocksource_dequeue_watchdog(cs);
861 	list_del_init(&cs->list);
862 	clocksource_watchdog_unlock(&flags);
863 
864 	return 0;
865 }
866 
867 /**
868  * clocksource_unregister - remove a registered clocksource
869  * @cs:	clocksource to be unregistered
870  */
871 int clocksource_unregister(struct clocksource *cs)
872 {
873 	int ret = 0;
874 
875 	mutex_lock(&clocksource_mutex);
876 	if (!list_empty(&cs->list))
877 		ret = clocksource_unbind(cs);
878 	mutex_unlock(&clocksource_mutex);
879 	return ret;
880 }
881 EXPORT_SYMBOL(clocksource_unregister);
882 
883 #ifdef CONFIG_SYSFS
884 /**
885  * current_clocksource_show - sysfs interface for current clocksource
886  * @dev:	unused
887  * @attr:	unused
888  * @buf:	char buffer to be filled with clocksource list
889  *
890  * Provides sysfs interface for listing current clocksource.
891  */
892 static ssize_t current_clocksource_show(struct device *dev,
893 					struct device_attribute *attr,
894 					char *buf)
895 {
896 	ssize_t count = 0;
897 
898 	mutex_lock(&clocksource_mutex);
899 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
900 	mutex_unlock(&clocksource_mutex);
901 
902 	return count;
903 }
904 
905 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
906 {
907 	size_t ret = cnt;
908 
909 	/* strings from sysfs write are not 0 terminated! */
910 	if (!cnt || cnt >= CS_NAME_LEN)
911 		return -EINVAL;
912 
913 	/* strip of \n: */
914 	if (buf[cnt-1] == '\n')
915 		cnt--;
916 	if (cnt > 0)
917 		memcpy(dst, buf, cnt);
918 	dst[cnt] = 0;
919 	return ret;
920 }
921 
922 /**
923  * current_clocksource_store - interface for manually overriding clocksource
924  * @dev:	unused
925  * @attr:	unused
926  * @buf:	name of override clocksource
927  * @count:	length of buffer
928  *
929  * Takes input from sysfs interface for manually overriding the default
930  * clocksource selection.
931  */
932 static ssize_t current_clocksource_store(struct device *dev,
933 					 struct device_attribute *attr,
934 					 const char *buf, size_t count)
935 {
936 	ssize_t ret;
937 
938 	mutex_lock(&clocksource_mutex);
939 
940 	ret = sysfs_get_uname(buf, override_name, count);
941 	if (ret >= 0)
942 		clocksource_select();
943 
944 	mutex_unlock(&clocksource_mutex);
945 
946 	return ret;
947 }
948 static DEVICE_ATTR_RW(current_clocksource);
949 
950 /**
951  * unbind_clocksource_store - interface for manually unbinding clocksource
952  * @dev:	unused
953  * @attr:	unused
954  * @buf:	unused
955  * @count:	length of buffer
956  *
957  * Takes input from sysfs interface for manually unbinding a clocksource.
958  */
959 static ssize_t unbind_clocksource_store(struct device *dev,
960 					struct device_attribute *attr,
961 					const char *buf, size_t count)
962 {
963 	struct clocksource *cs;
964 	char name[CS_NAME_LEN];
965 	ssize_t ret;
966 
967 	ret = sysfs_get_uname(buf, name, count);
968 	if (ret < 0)
969 		return ret;
970 
971 	ret = -ENODEV;
972 	mutex_lock(&clocksource_mutex);
973 	list_for_each_entry(cs, &clocksource_list, list) {
974 		if (strcmp(cs->name, name))
975 			continue;
976 		ret = clocksource_unbind(cs);
977 		break;
978 	}
979 	mutex_unlock(&clocksource_mutex);
980 
981 	return ret ? ret : count;
982 }
983 static DEVICE_ATTR_WO(unbind_clocksource);
984 
985 /**
986  * available_clocksource_show - sysfs interface for listing clocksource
987  * @dev:	unused
988  * @attr:	unused
989  * @buf:	char buffer to be filled with clocksource list
990  *
991  * Provides sysfs interface for listing registered clocksources
992  */
993 static ssize_t available_clocksource_show(struct device *dev,
994 					  struct device_attribute *attr,
995 					  char *buf)
996 {
997 	struct clocksource *src;
998 	ssize_t count = 0;
999 
1000 	mutex_lock(&clocksource_mutex);
1001 	list_for_each_entry(src, &clocksource_list, list) {
1002 		/*
1003 		 * Don't show non-HRES clocksource if the tick code is
1004 		 * in one shot mode (highres=on or nohz=on)
1005 		 */
1006 		if (!tick_oneshot_mode_active() ||
1007 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1008 			count += snprintf(buf + count,
1009 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1010 				  "%s ", src->name);
1011 	}
1012 	mutex_unlock(&clocksource_mutex);
1013 
1014 	count += snprintf(buf + count,
1015 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1016 
1017 	return count;
1018 }
1019 static DEVICE_ATTR_RO(available_clocksource);
1020 
1021 static struct attribute *clocksource_attrs[] = {
1022 	&dev_attr_current_clocksource.attr,
1023 	&dev_attr_unbind_clocksource.attr,
1024 	&dev_attr_available_clocksource.attr,
1025 	NULL
1026 };
1027 ATTRIBUTE_GROUPS(clocksource);
1028 
1029 static struct bus_type clocksource_subsys = {
1030 	.name = "clocksource",
1031 	.dev_name = "clocksource",
1032 };
1033 
1034 static struct device device_clocksource = {
1035 	.id	= 0,
1036 	.bus	= &clocksource_subsys,
1037 	.groups	= clocksource_groups,
1038 };
1039 
1040 static int __init init_clocksource_sysfs(void)
1041 {
1042 	int error = subsys_system_register(&clocksource_subsys, NULL);
1043 
1044 	if (!error)
1045 		error = device_register(&device_clocksource);
1046 
1047 	return error;
1048 }
1049 
1050 device_initcall(init_clocksource_sysfs);
1051 #endif /* CONFIG_SYSFS */
1052 
1053 /**
1054  * boot_override_clocksource - boot clock override
1055  * @str:	override name
1056  *
1057  * Takes a clocksource= boot argument and uses it
1058  * as the clocksource override name.
1059  */
1060 static int __init boot_override_clocksource(char* str)
1061 {
1062 	mutex_lock(&clocksource_mutex);
1063 	if (str)
1064 		strlcpy(override_name, str, sizeof(override_name));
1065 	mutex_unlock(&clocksource_mutex);
1066 	return 1;
1067 }
1068 
1069 __setup("clocksource=", boot_override_clocksource);
1070 
1071 /**
1072  * boot_override_clock - Compatibility layer for deprecated boot option
1073  * @str:	override name
1074  *
1075  * DEPRECATED! Takes a clock= boot argument and uses it
1076  * as the clocksource override name
1077  */
1078 static int __init boot_override_clock(char* str)
1079 {
1080 	if (!strcmp(str, "pmtmr")) {
1081 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1082 		return boot_override_clocksource("acpi_pm");
1083 	}
1084 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1085 	return boot_override_clocksource(str);
1086 }
1087 
1088 __setup("clock=", boot_override_clock);
1089