1 /* 2 * linux/kernel/time/clocksource.c 3 * 4 * This file contains the functions which manage clocksource drivers. 5 * 6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * TODO WishList: 23 * o Allow clocksource drivers to be unregistered 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/device.h> 29 #include <linux/clocksource.h> 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 33 #include <linux/tick.h> 34 #include <linux/kthread.h> 35 36 #include "tick-internal.h" 37 #include "timekeeping_internal.h" 38 39 /** 40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 41 * @mult: pointer to mult variable 42 * @shift: pointer to shift variable 43 * @from: frequency to convert from 44 * @to: frequency to convert to 45 * @maxsec: guaranteed runtime conversion range in seconds 46 * 47 * The function evaluates the shift/mult pair for the scaled math 48 * operations of clocksources and clockevents. 49 * 50 * @to and @from are frequency values in HZ. For clock sources @to is 51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 52 * event @to is the counter frequency and @from is NSEC_PER_SEC. 53 * 54 * The @maxsec conversion range argument controls the time frame in 55 * seconds which must be covered by the runtime conversion with the 56 * calculated mult and shift factors. This guarantees that no 64bit 57 * overflow happens when the input value of the conversion is 58 * multiplied with the calculated mult factor. Larger ranges may 59 * reduce the conversion accuracy by chosing smaller mult and shift 60 * factors. 61 */ 62 void 63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 64 { 65 u64 tmp; 66 u32 sft, sftacc= 32; 67 68 /* 69 * Calculate the shift factor which is limiting the conversion 70 * range: 71 */ 72 tmp = ((u64)maxsec * from) >> 32; 73 while (tmp) { 74 tmp >>=1; 75 sftacc--; 76 } 77 78 /* 79 * Find the conversion shift/mult pair which has the best 80 * accuracy and fits the maxsec conversion range: 81 */ 82 for (sft = 32; sft > 0; sft--) { 83 tmp = (u64) to << sft; 84 tmp += from / 2; 85 do_div(tmp, from); 86 if ((tmp >> sftacc) == 0) 87 break; 88 } 89 *mult = tmp; 90 *shift = sft; 91 } 92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); 93 94 /*[Clocksource internal variables]--------- 95 * curr_clocksource: 96 * currently selected clocksource. 97 * clocksource_list: 98 * linked list with the registered clocksources 99 * clocksource_mutex: 100 * protects manipulations to curr_clocksource and the clocksource_list 101 * override_name: 102 * Name of the user-specified clocksource. 103 */ 104 static struct clocksource *curr_clocksource; 105 static LIST_HEAD(clocksource_list); 106 static DEFINE_MUTEX(clocksource_mutex); 107 static char override_name[CS_NAME_LEN]; 108 static int finished_booting; 109 110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 111 static void clocksource_watchdog_work(struct work_struct *work); 112 static void clocksource_select(void); 113 114 static LIST_HEAD(watchdog_list); 115 static struct clocksource *watchdog; 116 static struct timer_list watchdog_timer; 117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 118 static DEFINE_SPINLOCK(watchdog_lock); 119 static int watchdog_running; 120 static atomic_t watchdog_reset_pending; 121 122 static int clocksource_watchdog_kthread(void *data); 123 static void __clocksource_change_rating(struct clocksource *cs, int rating); 124 125 /* 126 * Interval: 0.5sec Threshold: 0.0625s 127 */ 128 #define WATCHDOG_INTERVAL (HZ >> 1) 129 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 130 131 static void clocksource_watchdog_work(struct work_struct *work) 132 { 133 /* 134 * If kthread_run fails the next watchdog scan over the 135 * watchdog_list will find the unstable clock again. 136 */ 137 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 138 } 139 140 static void __clocksource_unstable(struct clocksource *cs) 141 { 142 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 143 cs->flags |= CLOCK_SOURCE_UNSTABLE; 144 145 if (cs->mark_unstable) 146 cs->mark_unstable(cs); 147 148 if (finished_booting) 149 schedule_work(&watchdog_work); 150 } 151 152 /** 153 * clocksource_mark_unstable - mark clocksource unstable via watchdog 154 * @cs: clocksource to be marked unstable 155 * 156 * This function is called instead of clocksource_change_rating from 157 * cpu hotplug code to avoid a deadlock between the clocksource mutex 158 * and the cpu hotplug mutex. It defers the update of the clocksource 159 * to the watchdog thread. 160 */ 161 void clocksource_mark_unstable(struct clocksource *cs) 162 { 163 unsigned long flags; 164 165 spin_lock_irqsave(&watchdog_lock, flags); 166 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 167 if (list_empty(&cs->wd_list)) 168 list_add(&cs->wd_list, &watchdog_list); 169 __clocksource_unstable(cs); 170 } 171 spin_unlock_irqrestore(&watchdog_lock, flags); 172 } 173 174 static void clocksource_watchdog(unsigned long data) 175 { 176 struct clocksource *cs; 177 u64 csnow, wdnow, cslast, wdlast, delta; 178 int64_t wd_nsec, cs_nsec; 179 int next_cpu, reset_pending; 180 181 spin_lock(&watchdog_lock); 182 if (!watchdog_running) 183 goto out; 184 185 reset_pending = atomic_read(&watchdog_reset_pending); 186 187 list_for_each_entry(cs, &watchdog_list, wd_list) { 188 189 /* Clocksource already marked unstable? */ 190 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 191 if (finished_booting) 192 schedule_work(&watchdog_work); 193 continue; 194 } 195 196 local_irq_disable(); 197 csnow = cs->read(cs); 198 wdnow = watchdog->read(watchdog); 199 local_irq_enable(); 200 201 /* Clocksource initialized ? */ 202 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 203 atomic_read(&watchdog_reset_pending)) { 204 cs->flags |= CLOCK_SOURCE_WATCHDOG; 205 cs->wd_last = wdnow; 206 cs->cs_last = csnow; 207 continue; 208 } 209 210 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask); 211 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult, 212 watchdog->shift); 213 214 delta = clocksource_delta(csnow, cs->cs_last, cs->mask); 215 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift); 216 wdlast = cs->wd_last; /* save these in case we print them */ 217 cslast = cs->cs_last; 218 cs->cs_last = csnow; 219 cs->wd_last = wdnow; 220 221 if (atomic_read(&watchdog_reset_pending)) 222 continue; 223 224 /* Check the deviation from the watchdog clocksource. */ 225 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { 226 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", 227 smp_processor_id(), cs->name); 228 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n", 229 watchdog->name, wdnow, wdlast, watchdog->mask); 230 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n", 231 cs->name, csnow, cslast, cs->mask); 232 __clocksource_unstable(cs); 233 continue; 234 } 235 236 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 237 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 238 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 239 /* Mark it valid for high-res. */ 240 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 241 242 /* 243 * clocksource_done_booting() will sort it if 244 * finished_booting is not set yet. 245 */ 246 if (!finished_booting) 247 continue; 248 249 /* 250 * If this is not the current clocksource let 251 * the watchdog thread reselect it. Due to the 252 * change to high res this clocksource might 253 * be preferred now. If it is the current 254 * clocksource let the tick code know about 255 * that change. 256 */ 257 if (cs != curr_clocksource) { 258 cs->flags |= CLOCK_SOURCE_RESELECT; 259 schedule_work(&watchdog_work); 260 } else { 261 tick_clock_notify(); 262 } 263 } 264 } 265 266 /* 267 * We only clear the watchdog_reset_pending, when we did a 268 * full cycle through all clocksources. 269 */ 270 if (reset_pending) 271 atomic_dec(&watchdog_reset_pending); 272 273 /* 274 * Cycle through CPUs to check if the CPUs stay synchronized 275 * to each other. 276 */ 277 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 278 if (next_cpu >= nr_cpu_ids) 279 next_cpu = cpumask_first(cpu_online_mask); 280 watchdog_timer.expires += WATCHDOG_INTERVAL; 281 add_timer_on(&watchdog_timer, next_cpu); 282 out: 283 spin_unlock(&watchdog_lock); 284 } 285 286 static inline void clocksource_start_watchdog(void) 287 { 288 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 289 return; 290 init_timer(&watchdog_timer); 291 watchdog_timer.function = clocksource_watchdog; 292 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 293 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 294 watchdog_running = 1; 295 } 296 297 static inline void clocksource_stop_watchdog(void) 298 { 299 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 300 return; 301 del_timer(&watchdog_timer); 302 watchdog_running = 0; 303 } 304 305 static inline void clocksource_reset_watchdog(void) 306 { 307 struct clocksource *cs; 308 309 list_for_each_entry(cs, &watchdog_list, wd_list) 310 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 311 } 312 313 static void clocksource_resume_watchdog(void) 314 { 315 atomic_inc(&watchdog_reset_pending); 316 } 317 318 static void clocksource_enqueue_watchdog(struct clocksource *cs) 319 { 320 unsigned long flags; 321 322 spin_lock_irqsave(&watchdog_lock, flags); 323 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 324 /* cs is a clocksource to be watched. */ 325 list_add(&cs->wd_list, &watchdog_list); 326 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 327 } else { 328 /* cs is a watchdog. */ 329 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 330 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 331 } 332 spin_unlock_irqrestore(&watchdog_lock, flags); 333 } 334 335 static void clocksource_select_watchdog(bool fallback) 336 { 337 struct clocksource *cs, *old_wd; 338 unsigned long flags; 339 340 spin_lock_irqsave(&watchdog_lock, flags); 341 /* save current watchdog */ 342 old_wd = watchdog; 343 if (fallback) 344 watchdog = NULL; 345 346 list_for_each_entry(cs, &clocksource_list, list) { 347 /* cs is a clocksource to be watched. */ 348 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) 349 continue; 350 351 /* Skip current if we were requested for a fallback. */ 352 if (fallback && cs == old_wd) 353 continue; 354 355 /* Pick the best watchdog. */ 356 if (!watchdog || cs->rating > watchdog->rating) 357 watchdog = cs; 358 } 359 /* If we failed to find a fallback restore the old one. */ 360 if (!watchdog) 361 watchdog = old_wd; 362 363 /* If we changed the watchdog we need to reset cycles. */ 364 if (watchdog != old_wd) 365 clocksource_reset_watchdog(); 366 367 /* Check if the watchdog timer needs to be started. */ 368 clocksource_start_watchdog(); 369 spin_unlock_irqrestore(&watchdog_lock, flags); 370 } 371 372 static void clocksource_dequeue_watchdog(struct clocksource *cs) 373 { 374 unsigned long flags; 375 376 spin_lock_irqsave(&watchdog_lock, flags); 377 if (cs != watchdog) { 378 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 379 /* cs is a watched clocksource. */ 380 list_del_init(&cs->wd_list); 381 /* Check if the watchdog timer needs to be stopped. */ 382 clocksource_stop_watchdog(); 383 } 384 } 385 spin_unlock_irqrestore(&watchdog_lock, flags); 386 } 387 388 static int __clocksource_watchdog_kthread(void) 389 { 390 struct clocksource *cs, *tmp; 391 unsigned long flags; 392 LIST_HEAD(unstable); 393 int select = 0; 394 395 spin_lock_irqsave(&watchdog_lock, flags); 396 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 397 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 398 list_del_init(&cs->wd_list); 399 list_add(&cs->wd_list, &unstable); 400 select = 1; 401 } 402 if (cs->flags & CLOCK_SOURCE_RESELECT) { 403 cs->flags &= ~CLOCK_SOURCE_RESELECT; 404 select = 1; 405 } 406 } 407 /* Check if the watchdog timer needs to be stopped. */ 408 clocksource_stop_watchdog(); 409 spin_unlock_irqrestore(&watchdog_lock, flags); 410 411 /* Needs to be done outside of watchdog lock */ 412 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { 413 list_del_init(&cs->wd_list); 414 __clocksource_change_rating(cs, 0); 415 } 416 return select; 417 } 418 419 static int clocksource_watchdog_kthread(void *data) 420 { 421 mutex_lock(&clocksource_mutex); 422 if (__clocksource_watchdog_kthread()) 423 clocksource_select(); 424 mutex_unlock(&clocksource_mutex); 425 return 0; 426 } 427 428 static bool clocksource_is_watchdog(struct clocksource *cs) 429 { 430 return cs == watchdog; 431 } 432 433 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 434 435 static void clocksource_enqueue_watchdog(struct clocksource *cs) 436 { 437 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 438 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 439 } 440 441 static void clocksource_select_watchdog(bool fallback) { } 442 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 443 static inline void clocksource_resume_watchdog(void) { } 444 static inline int __clocksource_watchdog_kthread(void) { return 0; } 445 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 446 void clocksource_mark_unstable(struct clocksource *cs) { } 447 448 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 449 450 /** 451 * clocksource_suspend - suspend the clocksource(s) 452 */ 453 void clocksource_suspend(void) 454 { 455 struct clocksource *cs; 456 457 list_for_each_entry_reverse(cs, &clocksource_list, list) 458 if (cs->suspend) 459 cs->suspend(cs); 460 } 461 462 /** 463 * clocksource_resume - resume the clocksource(s) 464 */ 465 void clocksource_resume(void) 466 { 467 struct clocksource *cs; 468 469 list_for_each_entry(cs, &clocksource_list, list) 470 if (cs->resume) 471 cs->resume(cs); 472 473 clocksource_resume_watchdog(); 474 } 475 476 /** 477 * clocksource_touch_watchdog - Update watchdog 478 * 479 * Update the watchdog after exception contexts such as kgdb so as not 480 * to incorrectly trip the watchdog. This might fail when the kernel 481 * was stopped in code which holds watchdog_lock. 482 */ 483 void clocksource_touch_watchdog(void) 484 { 485 clocksource_resume_watchdog(); 486 } 487 488 /** 489 * clocksource_max_adjustment- Returns max adjustment amount 490 * @cs: Pointer to clocksource 491 * 492 */ 493 static u32 clocksource_max_adjustment(struct clocksource *cs) 494 { 495 u64 ret; 496 /* 497 * We won't try to correct for more than 11% adjustments (110,000 ppm), 498 */ 499 ret = (u64)cs->mult * 11; 500 do_div(ret,100); 501 return (u32)ret; 502 } 503 504 /** 505 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 506 * @mult: cycle to nanosecond multiplier 507 * @shift: cycle to nanosecond divisor (power of two) 508 * @maxadj: maximum adjustment value to mult (~11%) 509 * @mask: bitmask for two's complement subtraction of non 64 bit counters 510 * @max_cyc: maximum cycle value before potential overflow (does not include 511 * any safety margin) 512 * 513 * NOTE: This function includes a safety margin of 50%, in other words, we 514 * return half the number of nanoseconds the hardware counter can technically 515 * cover. This is done so that we can potentially detect problems caused by 516 * delayed timers or bad hardware, which might result in time intervals that 517 * are larger than what the math used can handle without overflows. 518 */ 519 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) 520 { 521 u64 max_nsecs, max_cycles; 522 523 /* 524 * Calculate the maximum number of cycles that we can pass to the 525 * cyc2ns() function without overflowing a 64-bit result. 526 */ 527 max_cycles = ULLONG_MAX; 528 do_div(max_cycles, mult+maxadj); 529 530 /* 531 * The actual maximum number of cycles we can defer the clocksource is 532 * determined by the minimum of max_cycles and mask. 533 * Note: Here we subtract the maxadj to make sure we don't sleep for 534 * too long if there's a large negative adjustment. 535 */ 536 max_cycles = min(max_cycles, mask); 537 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 538 539 /* return the max_cycles value as well if requested */ 540 if (max_cyc) 541 *max_cyc = max_cycles; 542 543 /* Return 50% of the actual maximum, so we can detect bad values */ 544 max_nsecs >>= 1; 545 546 return max_nsecs; 547 } 548 549 /** 550 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles 551 * @cs: Pointer to clocksource to be updated 552 * 553 */ 554 static inline void clocksource_update_max_deferment(struct clocksource *cs) 555 { 556 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, 557 cs->maxadj, cs->mask, 558 &cs->max_cycles); 559 } 560 561 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 562 563 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 564 { 565 struct clocksource *cs; 566 567 if (!finished_booting || list_empty(&clocksource_list)) 568 return NULL; 569 570 /* 571 * We pick the clocksource with the highest rating. If oneshot 572 * mode is active, we pick the highres valid clocksource with 573 * the best rating. 574 */ 575 list_for_each_entry(cs, &clocksource_list, list) { 576 if (skipcur && cs == curr_clocksource) 577 continue; 578 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 579 continue; 580 return cs; 581 } 582 return NULL; 583 } 584 585 static void __clocksource_select(bool skipcur) 586 { 587 bool oneshot = tick_oneshot_mode_active(); 588 struct clocksource *best, *cs; 589 590 /* Find the best suitable clocksource */ 591 best = clocksource_find_best(oneshot, skipcur); 592 if (!best) 593 return; 594 595 /* Check for the override clocksource. */ 596 list_for_each_entry(cs, &clocksource_list, list) { 597 if (skipcur && cs == curr_clocksource) 598 continue; 599 if (strcmp(cs->name, override_name) != 0) 600 continue; 601 /* 602 * Check to make sure we don't switch to a non-highres 603 * capable clocksource if the tick code is in oneshot 604 * mode (highres or nohz) 605 */ 606 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 607 /* Override clocksource cannot be used. */ 608 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 609 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", 610 cs->name); 611 override_name[0] = 0; 612 } else { 613 /* 614 * The override cannot be currently verified. 615 * Deferring to let the watchdog check. 616 */ 617 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", 618 cs->name); 619 } 620 } else 621 /* Override clocksource can be used. */ 622 best = cs; 623 break; 624 } 625 626 if (curr_clocksource != best && !timekeeping_notify(best)) { 627 pr_info("Switched to clocksource %s\n", best->name); 628 curr_clocksource = best; 629 } 630 } 631 632 /** 633 * clocksource_select - Select the best clocksource available 634 * 635 * Private function. Must hold clocksource_mutex when called. 636 * 637 * Select the clocksource with the best rating, or the clocksource, 638 * which is selected by userspace override. 639 */ 640 static void clocksource_select(void) 641 { 642 __clocksource_select(false); 643 } 644 645 static void clocksource_select_fallback(void) 646 { 647 __clocksource_select(true); 648 } 649 650 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 651 static inline void clocksource_select(void) { } 652 static inline void clocksource_select_fallback(void) { } 653 654 #endif 655 656 /* 657 * clocksource_done_booting - Called near the end of core bootup 658 * 659 * Hack to avoid lots of clocksource churn at boot time. 660 * We use fs_initcall because we want this to start before 661 * device_initcall but after subsys_initcall. 662 */ 663 static int __init clocksource_done_booting(void) 664 { 665 mutex_lock(&clocksource_mutex); 666 curr_clocksource = clocksource_default_clock(); 667 finished_booting = 1; 668 /* 669 * Run the watchdog first to eliminate unstable clock sources 670 */ 671 __clocksource_watchdog_kthread(); 672 clocksource_select(); 673 mutex_unlock(&clocksource_mutex); 674 return 0; 675 } 676 fs_initcall(clocksource_done_booting); 677 678 /* 679 * Enqueue the clocksource sorted by rating 680 */ 681 static void clocksource_enqueue(struct clocksource *cs) 682 { 683 struct list_head *entry = &clocksource_list; 684 struct clocksource *tmp; 685 686 list_for_each_entry(tmp, &clocksource_list, list) { 687 /* Keep track of the place, where to insert */ 688 if (tmp->rating < cs->rating) 689 break; 690 entry = &tmp->list; 691 } 692 list_add(&cs->list, entry); 693 } 694 695 /** 696 * __clocksource_update_freq_scale - Used update clocksource with new freq 697 * @cs: clocksource to be registered 698 * @scale: Scale factor multiplied against freq to get clocksource hz 699 * @freq: clocksource frequency (cycles per second) divided by scale 700 * 701 * This should only be called from the clocksource->enable() method. 702 * 703 * This *SHOULD NOT* be called directly! Please use the 704 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper 705 * functions. 706 */ 707 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) 708 { 709 u64 sec; 710 711 /* 712 * Default clocksources are *special* and self-define their mult/shift. 713 * But, you're not special, so you should specify a freq value. 714 */ 715 if (freq) { 716 /* 717 * Calc the maximum number of seconds which we can run before 718 * wrapping around. For clocksources which have a mask > 32-bit 719 * we need to limit the max sleep time to have a good 720 * conversion precision. 10 minutes is still a reasonable 721 * amount. That results in a shift value of 24 for a 722 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to 723 * ~ 0.06ppm granularity for NTP. 724 */ 725 sec = cs->mask; 726 do_div(sec, freq); 727 do_div(sec, scale); 728 if (!sec) 729 sec = 1; 730 else if (sec > 600 && cs->mask > UINT_MAX) 731 sec = 600; 732 733 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 734 NSEC_PER_SEC / scale, sec * scale); 735 } 736 /* 737 * Ensure clocksources that have large 'mult' values don't overflow 738 * when adjusted. 739 */ 740 cs->maxadj = clocksource_max_adjustment(cs); 741 while (freq && ((cs->mult + cs->maxadj < cs->mult) 742 || (cs->mult - cs->maxadj > cs->mult))) { 743 cs->mult >>= 1; 744 cs->shift--; 745 cs->maxadj = clocksource_max_adjustment(cs); 746 } 747 748 /* 749 * Only warn for *special* clocksources that self-define 750 * their mult/shift values and don't specify a freq. 751 */ 752 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 753 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", 754 cs->name); 755 756 clocksource_update_max_deferment(cs); 757 758 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", 759 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); 760 } 761 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); 762 763 /** 764 * __clocksource_register_scale - Used to install new clocksources 765 * @cs: clocksource to be registered 766 * @scale: Scale factor multiplied against freq to get clocksource hz 767 * @freq: clocksource frequency (cycles per second) divided by scale 768 * 769 * Returns -EBUSY if registration fails, zero otherwise. 770 * 771 * This *SHOULD NOT* be called directly! Please use the 772 * clocksource_register_hz() or clocksource_register_khz helper functions. 773 */ 774 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 775 { 776 777 /* Initialize mult/shift and max_idle_ns */ 778 __clocksource_update_freq_scale(cs, scale, freq); 779 780 /* Add clocksource to the clocksource list */ 781 mutex_lock(&clocksource_mutex); 782 clocksource_enqueue(cs); 783 clocksource_enqueue_watchdog(cs); 784 clocksource_select(); 785 clocksource_select_watchdog(false); 786 mutex_unlock(&clocksource_mutex); 787 return 0; 788 } 789 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 790 791 static void __clocksource_change_rating(struct clocksource *cs, int rating) 792 { 793 list_del(&cs->list); 794 cs->rating = rating; 795 clocksource_enqueue(cs); 796 } 797 798 /** 799 * clocksource_change_rating - Change the rating of a registered clocksource 800 * @cs: clocksource to be changed 801 * @rating: new rating 802 */ 803 void clocksource_change_rating(struct clocksource *cs, int rating) 804 { 805 mutex_lock(&clocksource_mutex); 806 __clocksource_change_rating(cs, rating); 807 clocksource_select(); 808 clocksource_select_watchdog(false); 809 mutex_unlock(&clocksource_mutex); 810 } 811 EXPORT_SYMBOL(clocksource_change_rating); 812 813 /* 814 * Unbind clocksource @cs. Called with clocksource_mutex held 815 */ 816 static int clocksource_unbind(struct clocksource *cs) 817 { 818 if (clocksource_is_watchdog(cs)) { 819 /* Select and try to install a replacement watchdog. */ 820 clocksource_select_watchdog(true); 821 if (clocksource_is_watchdog(cs)) 822 return -EBUSY; 823 } 824 825 if (cs == curr_clocksource) { 826 /* Select and try to install a replacement clock source */ 827 clocksource_select_fallback(); 828 if (curr_clocksource == cs) 829 return -EBUSY; 830 } 831 clocksource_dequeue_watchdog(cs); 832 list_del_init(&cs->list); 833 return 0; 834 } 835 836 /** 837 * clocksource_unregister - remove a registered clocksource 838 * @cs: clocksource to be unregistered 839 */ 840 int clocksource_unregister(struct clocksource *cs) 841 { 842 int ret = 0; 843 844 mutex_lock(&clocksource_mutex); 845 if (!list_empty(&cs->list)) 846 ret = clocksource_unbind(cs); 847 mutex_unlock(&clocksource_mutex); 848 return ret; 849 } 850 EXPORT_SYMBOL(clocksource_unregister); 851 852 #ifdef CONFIG_SYSFS 853 /** 854 * sysfs_show_current_clocksources - sysfs interface for current clocksource 855 * @dev: unused 856 * @attr: unused 857 * @buf: char buffer to be filled with clocksource list 858 * 859 * Provides sysfs interface for listing current clocksource. 860 */ 861 static ssize_t 862 sysfs_show_current_clocksources(struct device *dev, 863 struct device_attribute *attr, char *buf) 864 { 865 ssize_t count = 0; 866 867 mutex_lock(&clocksource_mutex); 868 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 869 mutex_unlock(&clocksource_mutex); 870 871 return count; 872 } 873 874 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 875 { 876 size_t ret = cnt; 877 878 /* strings from sysfs write are not 0 terminated! */ 879 if (!cnt || cnt >= CS_NAME_LEN) 880 return -EINVAL; 881 882 /* strip of \n: */ 883 if (buf[cnt-1] == '\n') 884 cnt--; 885 if (cnt > 0) 886 memcpy(dst, buf, cnt); 887 dst[cnt] = 0; 888 return ret; 889 } 890 891 /** 892 * sysfs_override_clocksource - interface for manually overriding clocksource 893 * @dev: unused 894 * @attr: unused 895 * @buf: name of override clocksource 896 * @count: length of buffer 897 * 898 * Takes input from sysfs interface for manually overriding the default 899 * clocksource selection. 900 */ 901 static ssize_t sysfs_override_clocksource(struct device *dev, 902 struct device_attribute *attr, 903 const char *buf, size_t count) 904 { 905 ssize_t ret; 906 907 mutex_lock(&clocksource_mutex); 908 909 ret = sysfs_get_uname(buf, override_name, count); 910 if (ret >= 0) 911 clocksource_select(); 912 913 mutex_unlock(&clocksource_mutex); 914 915 return ret; 916 } 917 918 /** 919 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource 920 * @dev: unused 921 * @attr: unused 922 * @buf: unused 923 * @count: length of buffer 924 * 925 * Takes input from sysfs interface for manually unbinding a clocksource. 926 */ 927 static ssize_t sysfs_unbind_clocksource(struct device *dev, 928 struct device_attribute *attr, 929 const char *buf, size_t count) 930 { 931 struct clocksource *cs; 932 char name[CS_NAME_LEN]; 933 ssize_t ret; 934 935 ret = sysfs_get_uname(buf, name, count); 936 if (ret < 0) 937 return ret; 938 939 ret = -ENODEV; 940 mutex_lock(&clocksource_mutex); 941 list_for_each_entry(cs, &clocksource_list, list) { 942 if (strcmp(cs->name, name)) 943 continue; 944 ret = clocksource_unbind(cs); 945 break; 946 } 947 mutex_unlock(&clocksource_mutex); 948 949 return ret ? ret : count; 950 } 951 952 /** 953 * sysfs_show_available_clocksources - sysfs interface for listing clocksource 954 * @dev: unused 955 * @attr: unused 956 * @buf: char buffer to be filled with clocksource list 957 * 958 * Provides sysfs interface for listing registered clocksources 959 */ 960 static ssize_t 961 sysfs_show_available_clocksources(struct device *dev, 962 struct device_attribute *attr, 963 char *buf) 964 { 965 struct clocksource *src; 966 ssize_t count = 0; 967 968 mutex_lock(&clocksource_mutex); 969 list_for_each_entry(src, &clocksource_list, list) { 970 /* 971 * Don't show non-HRES clocksource if the tick code is 972 * in one shot mode (highres=on or nohz=on) 973 */ 974 if (!tick_oneshot_mode_active() || 975 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 976 count += snprintf(buf + count, 977 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 978 "%s ", src->name); 979 } 980 mutex_unlock(&clocksource_mutex); 981 982 count += snprintf(buf + count, 983 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 984 985 return count; 986 } 987 988 /* 989 * Sysfs setup bits: 990 */ 991 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources, 992 sysfs_override_clocksource); 993 994 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource); 995 996 static DEVICE_ATTR(available_clocksource, 0444, 997 sysfs_show_available_clocksources, NULL); 998 999 static struct bus_type clocksource_subsys = { 1000 .name = "clocksource", 1001 .dev_name = "clocksource", 1002 }; 1003 1004 static struct device device_clocksource = { 1005 .id = 0, 1006 .bus = &clocksource_subsys, 1007 }; 1008 1009 static int __init init_clocksource_sysfs(void) 1010 { 1011 int error = subsys_system_register(&clocksource_subsys, NULL); 1012 1013 if (!error) 1014 error = device_register(&device_clocksource); 1015 if (!error) 1016 error = device_create_file( 1017 &device_clocksource, 1018 &dev_attr_current_clocksource); 1019 if (!error) 1020 error = device_create_file(&device_clocksource, 1021 &dev_attr_unbind_clocksource); 1022 if (!error) 1023 error = device_create_file( 1024 &device_clocksource, 1025 &dev_attr_available_clocksource); 1026 return error; 1027 } 1028 1029 device_initcall(init_clocksource_sysfs); 1030 #endif /* CONFIG_SYSFS */ 1031 1032 /** 1033 * boot_override_clocksource - boot clock override 1034 * @str: override name 1035 * 1036 * Takes a clocksource= boot argument and uses it 1037 * as the clocksource override name. 1038 */ 1039 static int __init boot_override_clocksource(char* str) 1040 { 1041 mutex_lock(&clocksource_mutex); 1042 if (str) 1043 strlcpy(override_name, str, sizeof(override_name)); 1044 mutex_unlock(&clocksource_mutex); 1045 return 1; 1046 } 1047 1048 __setup("clocksource=", boot_override_clocksource); 1049 1050 /** 1051 * boot_override_clock - Compatibility layer for deprecated boot option 1052 * @str: override name 1053 * 1054 * DEPRECATED! Takes a clock= boot argument and uses it 1055 * as the clocksource override name 1056 */ 1057 static int __init boot_override_clock(char* str) 1058 { 1059 if (!strcmp(str, "pmtmr")) { 1060 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); 1061 return boot_override_clocksource("acpi_pm"); 1062 } 1063 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); 1064 return boot_override_clocksource(str); 1065 } 1066 1067 __setup("clock=", boot_override_clock); 1068