1 /* 2 * linux/kernel/time/clocksource.c 3 * 4 * This file contains the functions which manage clocksource drivers. 5 * 6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com) 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 21 * 22 * TODO WishList: 23 * o Allow clocksource drivers to be unregistered 24 */ 25 26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 27 28 #include <linux/device.h> 29 #include <linux/clocksource.h> 30 #include <linux/init.h> 31 #include <linux/module.h> 32 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */ 33 #include <linux/tick.h> 34 #include <linux/kthread.h> 35 36 #include "tick-internal.h" 37 #include "timekeeping_internal.h" 38 39 /** 40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks 41 * @mult: pointer to mult variable 42 * @shift: pointer to shift variable 43 * @from: frequency to convert from 44 * @to: frequency to convert to 45 * @maxsec: guaranteed runtime conversion range in seconds 46 * 47 * The function evaluates the shift/mult pair for the scaled math 48 * operations of clocksources and clockevents. 49 * 50 * @to and @from are frequency values in HZ. For clock sources @to is 51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock 52 * event @to is the counter frequency and @from is NSEC_PER_SEC. 53 * 54 * The @maxsec conversion range argument controls the time frame in 55 * seconds which must be covered by the runtime conversion with the 56 * calculated mult and shift factors. This guarantees that no 64bit 57 * overflow happens when the input value of the conversion is 58 * multiplied with the calculated mult factor. Larger ranges may 59 * reduce the conversion accuracy by chosing smaller mult and shift 60 * factors. 61 */ 62 void 63 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec) 64 { 65 u64 tmp; 66 u32 sft, sftacc= 32; 67 68 /* 69 * Calculate the shift factor which is limiting the conversion 70 * range: 71 */ 72 tmp = ((u64)maxsec * from) >> 32; 73 while (tmp) { 74 tmp >>=1; 75 sftacc--; 76 } 77 78 /* 79 * Find the conversion shift/mult pair which has the best 80 * accuracy and fits the maxsec conversion range: 81 */ 82 for (sft = 32; sft > 0; sft--) { 83 tmp = (u64) to << sft; 84 tmp += from / 2; 85 do_div(tmp, from); 86 if ((tmp >> sftacc) == 0) 87 break; 88 } 89 *mult = tmp; 90 *shift = sft; 91 } 92 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift); 93 94 /*[Clocksource internal variables]--------- 95 * curr_clocksource: 96 * currently selected clocksource. 97 * clocksource_list: 98 * linked list with the registered clocksources 99 * clocksource_mutex: 100 * protects manipulations to curr_clocksource and the clocksource_list 101 * override_name: 102 * Name of the user-specified clocksource. 103 */ 104 static struct clocksource *curr_clocksource; 105 static LIST_HEAD(clocksource_list); 106 static DEFINE_MUTEX(clocksource_mutex); 107 static char override_name[CS_NAME_LEN]; 108 static int finished_booting; 109 110 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG 111 static void clocksource_watchdog_work(struct work_struct *work); 112 static void clocksource_select(void); 113 114 static LIST_HEAD(watchdog_list); 115 static struct clocksource *watchdog; 116 static struct timer_list watchdog_timer; 117 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work); 118 static DEFINE_SPINLOCK(watchdog_lock); 119 static int watchdog_running; 120 static atomic_t watchdog_reset_pending; 121 122 static int clocksource_watchdog_kthread(void *data); 123 static void __clocksource_change_rating(struct clocksource *cs, int rating); 124 125 /* 126 * Interval: 0.5sec Threshold: 0.0625s 127 */ 128 #define WATCHDOG_INTERVAL (HZ >> 1) 129 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4) 130 131 static void clocksource_watchdog_work(struct work_struct *work) 132 { 133 /* 134 * If kthread_run fails the next watchdog scan over the 135 * watchdog_list will find the unstable clock again. 136 */ 137 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog"); 138 } 139 140 static void __clocksource_unstable(struct clocksource *cs) 141 { 142 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG); 143 cs->flags |= CLOCK_SOURCE_UNSTABLE; 144 145 if (cs->mark_unstable) 146 cs->mark_unstable(cs); 147 148 if (finished_booting) 149 schedule_work(&watchdog_work); 150 } 151 152 /** 153 * clocksource_mark_unstable - mark clocksource unstable via watchdog 154 * @cs: clocksource to be marked unstable 155 * 156 * This function is called instead of clocksource_change_rating from 157 * cpu hotplug code to avoid a deadlock between the clocksource mutex 158 * and the cpu hotplug mutex. It defers the update of the clocksource 159 * to the watchdog thread. 160 */ 161 void clocksource_mark_unstable(struct clocksource *cs) 162 { 163 unsigned long flags; 164 165 spin_lock_irqsave(&watchdog_lock, flags); 166 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) { 167 if (list_empty(&cs->wd_list)) 168 list_add(&cs->wd_list, &watchdog_list); 169 __clocksource_unstable(cs); 170 } 171 spin_unlock_irqrestore(&watchdog_lock, flags); 172 } 173 174 static void clocksource_watchdog(struct timer_list *unused) 175 { 176 struct clocksource *cs; 177 u64 csnow, wdnow, cslast, wdlast, delta; 178 int64_t wd_nsec, cs_nsec; 179 int next_cpu, reset_pending; 180 181 spin_lock(&watchdog_lock); 182 if (!watchdog_running) 183 goto out; 184 185 reset_pending = atomic_read(&watchdog_reset_pending); 186 187 list_for_each_entry(cs, &watchdog_list, wd_list) { 188 189 /* Clocksource already marked unstable? */ 190 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 191 if (finished_booting) 192 schedule_work(&watchdog_work); 193 continue; 194 } 195 196 local_irq_disable(); 197 csnow = cs->read(cs); 198 wdnow = watchdog->read(watchdog); 199 local_irq_enable(); 200 201 /* Clocksource initialized ? */ 202 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) || 203 atomic_read(&watchdog_reset_pending)) { 204 cs->flags |= CLOCK_SOURCE_WATCHDOG; 205 cs->wd_last = wdnow; 206 cs->cs_last = csnow; 207 continue; 208 } 209 210 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask); 211 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult, 212 watchdog->shift); 213 214 delta = clocksource_delta(csnow, cs->cs_last, cs->mask); 215 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift); 216 wdlast = cs->wd_last; /* save these in case we print them */ 217 cslast = cs->cs_last; 218 cs->cs_last = csnow; 219 cs->wd_last = wdnow; 220 221 if (atomic_read(&watchdog_reset_pending)) 222 continue; 223 224 /* Check the deviation from the watchdog clocksource. */ 225 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) { 226 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n", 227 smp_processor_id(), cs->name); 228 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n", 229 watchdog->name, wdnow, wdlast, watchdog->mask); 230 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n", 231 cs->name, csnow, cslast, cs->mask); 232 __clocksource_unstable(cs); 233 continue; 234 } 235 236 if (cs == curr_clocksource && cs->tick_stable) 237 cs->tick_stable(cs); 238 239 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && 240 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) && 241 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) { 242 /* Mark it valid for high-res. */ 243 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 244 245 /* 246 * clocksource_done_booting() will sort it if 247 * finished_booting is not set yet. 248 */ 249 if (!finished_booting) 250 continue; 251 252 /* 253 * If this is not the current clocksource let 254 * the watchdog thread reselect it. Due to the 255 * change to high res this clocksource might 256 * be preferred now. If it is the current 257 * clocksource let the tick code know about 258 * that change. 259 */ 260 if (cs != curr_clocksource) { 261 cs->flags |= CLOCK_SOURCE_RESELECT; 262 schedule_work(&watchdog_work); 263 } else { 264 tick_clock_notify(); 265 } 266 } 267 } 268 269 /* 270 * We only clear the watchdog_reset_pending, when we did a 271 * full cycle through all clocksources. 272 */ 273 if (reset_pending) 274 atomic_dec(&watchdog_reset_pending); 275 276 /* 277 * Cycle through CPUs to check if the CPUs stay synchronized 278 * to each other. 279 */ 280 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask); 281 if (next_cpu >= nr_cpu_ids) 282 next_cpu = cpumask_first(cpu_online_mask); 283 watchdog_timer.expires += WATCHDOG_INTERVAL; 284 add_timer_on(&watchdog_timer, next_cpu); 285 out: 286 spin_unlock(&watchdog_lock); 287 } 288 289 static inline void clocksource_start_watchdog(void) 290 { 291 if (watchdog_running || !watchdog || list_empty(&watchdog_list)) 292 return; 293 timer_setup(&watchdog_timer, clocksource_watchdog, 0); 294 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL; 295 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask)); 296 watchdog_running = 1; 297 } 298 299 static inline void clocksource_stop_watchdog(void) 300 { 301 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list))) 302 return; 303 del_timer(&watchdog_timer); 304 watchdog_running = 0; 305 } 306 307 static inline void clocksource_reset_watchdog(void) 308 { 309 struct clocksource *cs; 310 311 list_for_each_entry(cs, &watchdog_list, wd_list) 312 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 313 } 314 315 static void clocksource_resume_watchdog(void) 316 { 317 atomic_inc(&watchdog_reset_pending); 318 } 319 320 static void clocksource_enqueue_watchdog(struct clocksource *cs) 321 { 322 unsigned long flags; 323 324 spin_lock_irqsave(&watchdog_lock, flags); 325 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 326 /* cs is a clocksource to be watched. */ 327 list_add(&cs->wd_list, &watchdog_list); 328 cs->flags &= ~CLOCK_SOURCE_WATCHDOG; 329 } else { 330 /* cs is a watchdog. */ 331 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 332 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 333 } 334 spin_unlock_irqrestore(&watchdog_lock, flags); 335 } 336 337 static void clocksource_select_watchdog(bool fallback) 338 { 339 struct clocksource *cs, *old_wd; 340 unsigned long flags; 341 342 spin_lock_irqsave(&watchdog_lock, flags); 343 /* save current watchdog */ 344 old_wd = watchdog; 345 if (fallback) 346 watchdog = NULL; 347 348 list_for_each_entry(cs, &clocksource_list, list) { 349 /* cs is a clocksource to be watched. */ 350 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) 351 continue; 352 353 /* Skip current if we were requested for a fallback. */ 354 if (fallback && cs == old_wd) 355 continue; 356 357 /* Pick the best watchdog. */ 358 if (!watchdog || cs->rating > watchdog->rating) 359 watchdog = cs; 360 } 361 /* If we failed to find a fallback restore the old one. */ 362 if (!watchdog) 363 watchdog = old_wd; 364 365 /* If we changed the watchdog we need to reset cycles. */ 366 if (watchdog != old_wd) 367 clocksource_reset_watchdog(); 368 369 /* Check if the watchdog timer needs to be started. */ 370 clocksource_start_watchdog(); 371 spin_unlock_irqrestore(&watchdog_lock, flags); 372 } 373 374 static void clocksource_dequeue_watchdog(struct clocksource *cs) 375 { 376 unsigned long flags; 377 378 spin_lock_irqsave(&watchdog_lock, flags); 379 if (cs != watchdog) { 380 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) { 381 /* cs is a watched clocksource. */ 382 list_del_init(&cs->wd_list); 383 /* Check if the watchdog timer needs to be stopped. */ 384 clocksource_stop_watchdog(); 385 } 386 } 387 spin_unlock_irqrestore(&watchdog_lock, flags); 388 } 389 390 static int __clocksource_watchdog_kthread(void) 391 { 392 struct clocksource *cs, *tmp; 393 unsigned long flags; 394 LIST_HEAD(unstable); 395 int select = 0; 396 397 spin_lock_irqsave(&watchdog_lock, flags); 398 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) { 399 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 400 list_del_init(&cs->wd_list); 401 list_add(&cs->wd_list, &unstable); 402 select = 1; 403 } 404 if (cs->flags & CLOCK_SOURCE_RESELECT) { 405 cs->flags &= ~CLOCK_SOURCE_RESELECT; 406 select = 1; 407 } 408 } 409 /* Check if the watchdog timer needs to be stopped. */ 410 clocksource_stop_watchdog(); 411 spin_unlock_irqrestore(&watchdog_lock, flags); 412 413 /* Needs to be done outside of watchdog lock */ 414 list_for_each_entry_safe(cs, tmp, &unstable, wd_list) { 415 list_del_init(&cs->wd_list); 416 __clocksource_change_rating(cs, 0); 417 } 418 return select; 419 } 420 421 static int clocksource_watchdog_kthread(void *data) 422 { 423 mutex_lock(&clocksource_mutex); 424 if (__clocksource_watchdog_kthread()) 425 clocksource_select(); 426 mutex_unlock(&clocksource_mutex); 427 return 0; 428 } 429 430 static bool clocksource_is_watchdog(struct clocksource *cs) 431 { 432 return cs == watchdog; 433 } 434 435 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */ 436 437 static void clocksource_enqueue_watchdog(struct clocksource *cs) 438 { 439 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) 440 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES; 441 } 442 443 static void clocksource_select_watchdog(bool fallback) { } 444 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { } 445 static inline void clocksource_resume_watchdog(void) { } 446 static inline int __clocksource_watchdog_kthread(void) { return 0; } 447 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; } 448 void clocksource_mark_unstable(struct clocksource *cs) { } 449 450 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */ 451 452 /** 453 * clocksource_suspend - suspend the clocksource(s) 454 */ 455 void clocksource_suspend(void) 456 { 457 struct clocksource *cs; 458 459 list_for_each_entry_reverse(cs, &clocksource_list, list) 460 if (cs->suspend) 461 cs->suspend(cs); 462 } 463 464 /** 465 * clocksource_resume - resume the clocksource(s) 466 */ 467 void clocksource_resume(void) 468 { 469 struct clocksource *cs; 470 471 list_for_each_entry(cs, &clocksource_list, list) 472 if (cs->resume) 473 cs->resume(cs); 474 475 clocksource_resume_watchdog(); 476 } 477 478 /** 479 * clocksource_touch_watchdog - Update watchdog 480 * 481 * Update the watchdog after exception contexts such as kgdb so as not 482 * to incorrectly trip the watchdog. This might fail when the kernel 483 * was stopped in code which holds watchdog_lock. 484 */ 485 void clocksource_touch_watchdog(void) 486 { 487 clocksource_resume_watchdog(); 488 } 489 490 /** 491 * clocksource_max_adjustment- Returns max adjustment amount 492 * @cs: Pointer to clocksource 493 * 494 */ 495 static u32 clocksource_max_adjustment(struct clocksource *cs) 496 { 497 u64 ret; 498 /* 499 * We won't try to correct for more than 11% adjustments (110,000 ppm), 500 */ 501 ret = (u64)cs->mult * 11; 502 do_div(ret,100); 503 return (u32)ret; 504 } 505 506 /** 507 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted 508 * @mult: cycle to nanosecond multiplier 509 * @shift: cycle to nanosecond divisor (power of two) 510 * @maxadj: maximum adjustment value to mult (~11%) 511 * @mask: bitmask for two's complement subtraction of non 64 bit counters 512 * @max_cyc: maximum cycle value before potential overflow (does not include 513 * any safety margin) 514 * 515 * NOTE: This function includes a safety margin of 50%, in other words, we 516 * return half the number of nanoseconds the hardware counter can technically 517 * cover. This is done so that we can potentially detect problems caused by 518 * delayed timers or bad hardware, which might result in time intervals that 519 * are larger than what the math used can handle without overflows. 520 */ 521 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc) 522 { 523 u64 max_nsecs, max_cycles; 524 525 /* 526 * Calculate the maximum number of cycles that we can pass to the 527 * cyc2ns() function without overflowing a 64-bit result. 528 */ 529 max_cycles = ULLONG_MAX; 530 do_div(max_cycles, mult+maxadj); 531 532 /* 533 * The actual maximum number of cycles we can defer the clocksource is 534 * determined by the minimum of max_cycles and mask. 535 * Note: Here we subtract the maxadj to make sure we don't sleep for 536 * too long if there's a large negative adjustment. 537 */ 538 max_cycles = min(max_cycles, mask); 539 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift); 540 541 /* return the max_cycles value as well if requested */ 542 if (max_cyc) 543 *max_cyc = max_cycles; 544 545 /* Return 50% of the actual maximum, so we can detect bad values */ 546 max_nsecs >>= 1; 547 548 return max_nsecs; 549 } 550 551 /** 552 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles 553 * @cs: Pointer to clocksource to be updated 554 * 555 */ 556 static inline void clocksource_update_max_deferment(struct clocksource *cs) 557 { 558 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift, 559 cs->maxadj, cs->mask, 560 &cs->max_cycles); 561 } 562 563 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET 564 565 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur) 566 { 567 struct clocksource *cs; 568 569 if (!finished_booting || list_empty(&clocksource_list)) 570 return NULL; 571 572 /* 573 * We pick the clocksource with the highest rating. If oneshot 574 * mode is active, we pick the highres valid clocksource with 575 * the best rating. 576 */ 577 list_for_each_entry(cs, &clocksource_list, list) { 578 if (skipcur && cs == curr_clocksource) 579 continue; 580 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 581 continue; 582 return cs; 583 } 584 return NULL; 585 } 586 587 static void __clocksource_select(bool skipcur) 588 { 589 bool oneshot = tick_oneshot_mode_active(); 590 struct clocksource *best, *cs; 591 592 /* Find the best suitable clocksource */ 593 best = clocksource_find_best(oneshot, skipcur); 594 if (!best) 595 return; 596 597 /* Check for the override clocksource. */ 598 list_for_each_entry(cs, &clocksource_list, list) { 599 if (skipcur && cs == curr_clocksource) 600 continue; 601 if (strcmp(cs->name, override_name) != 0) 602 continue; 603 /* 604 * Check to make sure we don't switch to a non-highres 605 * capable clocksource if the tick code is in oneshot 606 * mode (highres or nohz) 607 */ 608 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) { 609 /* Override clocksource cannot be used. */ 610 if (cs->flags & CLOCK_SOURCE_UNSTABLE) { 611 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n", 612 cs->name); 613 override_name[0] = 0; 614 } else { 615 /* 616 * The override cannot be currently verified. 617 * Deferring to let the watchdog check. 618 */ 619 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n", 620 cs->name); 621 } 622 } else 623 /* Override clocksource can be used. */ 624 best = cs; 625 break; 626 } 627 628 if (curr_clocksource != best && !timekeeping_notify(best)) { 629 pr_info("Switched to clocksource %s\n", best->name); 630 curr_clocksource = best; 631 } 632 } 633 634 /** 635 * clocksource_select - Select the best clocksource available 636 * 637 * Private function. Must hold clocksource_mutex when called. 638 * 639 * Select the clocksource with the best rating, or the clocksource, 640 * which is selected by userspace override. 641 */ 642 static void clocksource_select(void) 643 { 644 __clocksource_select(false); 645 } 646 647 static void clocksource_select_fallback(void) 648 { 649 __clocksource_select(true); 650 } 651 652 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */ 653 static inline void clocksource_select(void) { } 654 static inline void clocksource_select_fallback(void) { } 655 656 #endif 657 658 /* 659 * clocksource_done_booting - Called near the end of core bootup 660 * 661 * Hack to avoid lots of clocksource churn at boot time. 662 * We use fs_initcall because we want this to start before 663 * device_initcall but after subsys_initcall. 664 */ 665 static int __init clocksource_done_booting(void) 666 { 667 mutex_lock(&clocksource_mutex); 668 curr_clocksource = clocksource_default_clock(); 669 finished_booting = 1; 670 /* 671 * Run the watchdog first to eliminate unstable clock sources 672 */ 673 __clocksource_watchdog_kthread(); 674 clocksource_select(); 675 mutex_unlock(&clocksource_mutex); 676 return 0; 677 } 678 fs_initcall(clocksource_done_booting); 679 680 /* 681 * Enqueue the clocksource sorted by rating 682 */ 683 static void clocksource_enqueue(struct clocksource *cs) 684 { 685 struct list_head *entry = &clocksource_list; 686 struct clocksource *tmp; 687 688 list_for_each_entry(tmp, &clocksource_list, list) { 689 /* Keep track of the place, where to insert */ 690 if (tmp->rating < cs->rating) 691 break; 692 entry = &tmp->list; 693 } 694 list_add(&cs->list, entry); 695 } 696 697 /** 698 * __clocksource_update_freq_scale - Used update clocksource with new freq 699 * @cs: clocksource to be registered 700 * @scale: Scale factor multiplied against freq to get clocksource hz 701 * @freq: clocksource frequency (cycles per second) divided by scale 702 * 703 * This should only be called from the clocksource->enable() method. 704 * 705 * This *SHOULD NOT* be called directly! Please use the 706 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper 707 * functions. 708 */ 709 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq) 710 { 711 u64 sec; 712 713 /* 714 * Default clocksources are *special* and self-define their mult/shift. 715 * But, you're not special, so you should specify a freq value. 716 */ 717 if (freq) { 718 /* 719 * Calc the maximum number of seconds which we can run before 720 * wrapping around. For clocksources which have a mask > 32-bit 721 * we need to limit the max sleep time to have a good 722 * conversion precision. 10 minutes is still a reasonable 723 * amount. That results in a shift value of 24 for a 724 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to 725 * ~ 0.06ppm granularity for NTP. 726 */ 727 sec = cs->mask; 728 do_div(sec, freq); 729 do_div(sec, scale); 730 if (!sec) 731 sec = 1; 732 else if (sec > 600 && cs->mask > UINT_MAX) 733 sec = 600; 734 735 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq, 736 NSEC_PER_SEC / scale, sec * scale); 737 } 738 /* 739 * Ensure clocksources that have large 'mult' values don't overflow 740 * when adjusted. 741 */ 742 cs->maxadj = clocksource_max_adjustment(cs); 743 while (freq && ((cs->mult + cs->maxadj < cs->mult) 744 || (cs->mult - cs->maxadj > cs->mult))) { 745 cs->mult >>= 1; 746 cs->shift--; 747 cs->maxadj = clocksource_max_adjustment(cs); 748 } 749 750 /* 751 * Only warn for *special* clocksources that self-define 752 * their mult/shift values and don't specify a freq. 753 */ 754 WARN_ONCE(cs->mult + cs->maxadj < cs->mult, 755 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n", 756 cs->name); 757 758 clocksource_update_max_deferment(cs); 759 760 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n", 761 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns); 762 } 763 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale); 764 765 /** 766 * __clocksource_register_scale - Used to install new clocksources 767 * @cs: clocksource to be registered 768 * @scale: Scale factor multiplied against freq to get clocksource hz 769 * @freq: clocksource frequency (cycles per second) divided by scale 770 * 771 * Returns -EBUSY if registration fails, zero otherwise. 772 * 773 * This *SHOULD NOT* be called directly! Please use the 774 * clocksource_register_hz() or clocksource_register_khz helper functions. 775 */ 776 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq) 777 { 778 779 /* Initialize mult/shift and max_idle_ns */ 780 __clocksource_update_freq_scale(cs, scale, freq); 781 782 /* Add clocksource to the clocksource list */ 783 mutex_lock(&clocksource_mutex); 784 clocksource_enqueue(cs); 785 clocksource_enqueue_watchdog(cs); 786 clocksource_select(); 787 clocksource_select_watchdog(false); 788 mutex_unlock(&clocksource_mutex); 789 return 0; 790 } 791 EXPORT_SYMBOL_GPL(__clocksource_register_scale); 792 793 static void __clocksource_change_rating(struct clocksource *cs, int rating) 794 { 795 list_del(&cs->list); 796 cs->rating = rating; 797 clocksource_enqueue(cs); 798 } 799 800 /** 801 * clocksource_change_rating - Change the rating of a registered clocksource 802 * @cs: clocksource to be changed 803 * @rating: new rating 804 */ 805 void clocksource_change_rating(struct clocksource *cs, int rating) 806 { 807 mutex_lock(&clocksource_mutex); 808 __clocksource_change_rating(cs, rating); 809 clocksource_select(); 810 clocksource_select_watchdog(false); 811 mutex_unlock(&clocksource_mutex); 812 } 813 EXPORT_SYMBOL(clocksource_change_rating); 814 815 /* 816 * Unbind clocksource @cs. Called with clocksource_mutex held 817 */ 818 static int clocksource_unbind(struct clocksource *cs) 819 { 820 if (clocksource_is_watchdog(cs)) { 821 /* Select and try to install a replacement watchdog. */ 822 clocksource_select_watchdog(true); 823 if (clocksource_is_watchdog(cs)) 824 return -EBUSY; 825 } 826 827 if (cs == curr_clocksource) { 828 /* Select and try to install a replacement clock source */ 829 clocksource_select_fallback(); 830 if (curr_clocksource == cs) 831 return -EBUSY; 832 } 833 clocksource_dequeue_watchdog(cs); 834 list_del_init(&cs->list); 835 return 0; 836 } 837 838 /** 839 * clocksource_unregister - remove a registered clocksource 840 * @cs: clocksource to be unregistered 841 */ 842 int clocksource_unregister(struct clocksource *cs) 843 { 844 int ret = 0; 845 846 mutex_lock(&clocksource_mutex); 847 if (!list_empty(&cs->list)) 848 ret = clocksource_unbind(cs); 849 mutex_unlock(&clocksource_mutex); 850 return ret; 851 } 852 EXPORT_SYMBOL(clocksource_unregister); 853 854 #ifdef CONFIG_SYSFS 855 /** 856 * sysfs_show_current_clocksources - sysfs interface for current clocksource 857 * @dev: unused 858 * @attr: unused 859 * @buf: char buffer to be filled with clocksource list 860 * 861 * Provides sysfs interface for listing current clocksource. 862 */ 863 static ssize_t 864 sysfs_show_current_clocksources(struct device *dev, 865 struct device_attribute *attr, char *buf) 866 { 867 ssize_t count = 0; 868 869 mutex_lock(&clocksource_mutex); 870 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name); 871 mutex_unlock(&clocksource_mutex); 872 873 return count; 874 } 875 876 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt) 877 { 878 size_t ret = cnt; 879 880 /* strings from sysfs write are not 0 terminated! */ 881 if (!cnt || cnt >= CS_NAME_LEN) 882 return -EINVAL; 883 884 /* strip of \n: */ 885 if (buf[cnt-1] == '\n') 886 cnt--; 887 if (cnt > 0) 888 memcpy(dst, buf, cnt); 889 dst[cnt] = 0; 890 return ret; 891 } 892 893 /** 894 * sysfs_override_clocksource - interface for manually overriding clocksource 895 * @dev: unused 896 * @attr: unused 897 * @buf: name of override clocksource 898 * @count: length of buffer 899 * 900 * Takes input from sysfs interface for manually overriding the default 901 * clocksource selection. 902 */ 903 static ssize_t sysfs_override_clocksource(struct device *dev, 904 struct device_attribute *attr, 905 const char *buf, size_t count) 906 { 907 ssize_t ret; 908 909 mutex_lock(&clocksource_mutex); 910 911 ret = sysfs_get_uname(buf, override_name, count); 912 if (ret >= 0) 913 clocksource_select(); 914 915 mutex_unlock(&clocksource_mutex); 916 917 return ret; 918 } 919 920 /** 921 * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource 922 * @dev: unused 923 * @attr: unused 924 * @buf: unused 925 * @count: length of buffer 926 * 927 * Takes input from sysfs interface for manually unbinding a clocksource. 928 */ 929 static ssize_t sysfs_unbind_clocksource(struct device *dev, 930 struct device_attribute *attr, 931 const char *buf, size_t count) 932 { 933 struct clocksource *cs; 934 char name[CS_NAME_LEN]; 935 ssize_t ret; 936 937 ret = sysfs_get_uname(buf, name, count); 938 if (ret < 0) 939 return ret; 940 941 ret = -ENODEV; 942 mutex_lock(&clocksource_mutex); 943 list_for_each_entry(cs, &clocksource_list, list) { 944 if (strcmp(cs->name, name)) 945 continue; 946 ret = clocksource_unbind(cs); 947 break; 948 } 949 mutex_unlock(&clocksource_mutex); 950 951 return ret ? ret : count; 952 } 953 954 /** 955 * sysfs_show_available_clocksources - sysfs interface for listing clocksource 956 * @dev: unused 957 * @attr: unused 958 * @buf: char buffer to be filled with clocksource list 959 * 960 * Provides sysfs interface for listing registered clocksources 961 */ 962 static ssize_t 963 sysfs_show_available_clocksources(struct device *dev, 964 struct device_attribute *attr, 965 char *buf) 966 { 967 struct clocksource *src; 968 ssize_t count = 0; 969 970 mutex_lock(&clocksource_mutex); 971 list_for_each_entry(src, &clocksource_list, list) { 972 /* 973 * Don't show non-HRES clocksource if the tick code is 974 * in one shot mode (highres=on or nohz=on) 975 */ 976 if (!tick_oneshot_mode_active() || 977 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES)) 978 count += snprintf(buf + count, 979 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), 980 "%s ", src->name); 981 } 982 mutex_unlock(&clocksource_mutex); 983 984 count += snprintf(buf + count, 985 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n"); 986 987 return count; 988 } 989 990 /* 991 * Sysfs setup bits: 992 */ 993 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources, 994 sysfs_override_clocksource); 995 996 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource); 997 998 static DEVICE_ATTR(available_clocksource, 0444, 999 sysfs_show_available_clocksources, NULL); 1000 1001 static struct bus_type clocksource_subsys = { 1002 .name = "clocksource", 1003 .dev_name = "clocksource", 1004 }; 1005 1006 static struct device device_clocksource = { 1007 .id = 0, 1008 .bus = &clocksource_subsys, 1009 }; 1010 1011 static int __init init_clocksource_sysfs(void) 1012 { 1013 int error = subsys_system_register(&clocksource_subsys, NULL); 1014 1015 if (!error) 1016 error = device_register(&device_clocksource); 1017 if (!error) 1018 error = device_create_file( 1019 &device_clocksource, 1020 &dev_attr_current_clocksource); 1021 if (!error) 1022 error = device_create_file(&device_clocksource, 1023 &dev_attr_unbind_clocksource); 1024 if (!error) 1025 error = device_create_file( 1026 &device_clocksource, 1027 &dev_attr_available_clocksource); 1028 return error; 1029 } 1030 1031 device_initcall(init_clocksource_sysfs); 1032 #endif /* CONFIG_SYSFS */ 1033 1034 /** 1035 * boot_override_clocksource - boot clock override 1036 * @str: override name 1037 * 1038 * Takes a clocksource= boot argument and uses it 1039 * as the clocksource override name. 1040 */ 1041 static int __init boot_override_clocksource(char* str) 1042 { 1043 mutex_lock(&clocksource_mutex); 1044 if (str) 1045 strlcpy(override_name, str, sizeof(override_name)); 1046 mutex_unlock(&clocksource_mutex); 1047 return 1; 1048 } 1049 1050 __setup("clocksource=", boot_override_clocksource); 1051 1052 /** 1053 * boot_override_clock - Compatibility layer for deprecated boot option 1054 * @str: override name 1055 * 1056 * DEPRECATED! Takes a clock= boot argument and uses it 1057 * as the clocksource override name 1058 */ 1059 static int __init boot_override_clock(char* str) 1060 { 1061 if (!strcmp(str, "pmtmr")) { 1062 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n"); 1063 return boot_override_clocksource("acpi_pm"); 1064 } 1065 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n"); 1066 return boot_override_clocksource(str); 1067 } 1068 1069 __setup("clock=", boot_override_clock); 1070