xref: /openbmc/linux/kernel/time/clocksource.c (revision 414772b8f7d7a9ccbfb5f0f3fd51bbfb8d54501a)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 /**
24  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25  * @mult:	pointer to mult variable
26  * @shift:	pointer to shift variable
27  * @from:	frequency to convert from
28  * @to:		frequency to convert to
29  * @maxsec:	guaranteed runtime conversion range in seconds
30  *
31  * The function evaluates the shift/mult pair for the scaled math
32  * operations of clocksources and clockevents.
33  *
34  * @to and @from are frequency values in HZ. For clock sources @to is
35  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36  * event @to is the counter frequency and @from is NSEC_PER_SEC.
37  *
38  * The @maxsec conversion range argument controls the time frame in
39  * seconds which must be covered by the runtime conversion with the
40  * calculated mult and shift factors. This guarantees that no 64bit
41  * overflow happens when the input value of the conversion is
42  * multiplied with the calculated mult factor. Larger ranges may
43  * reduce the conversion accuracy by choosing smaller mult and shift
44  * factors.
45  */
46 void
47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48 {
49 	u64 tmp;
50 	u32 sft, sftacc= 32;
51 
52 	/*
53 	 * Calculate the shift factor which is limiting the conversion
54 	 * range:
55 	 */
56 	tmp = ((u64)maxsec * from) >> 32;
57 	while (tmp) {
58 		tmp >>=1;
59 		sftacc--;
60 	}
61 
62 	/*
63 	 * Find the conversion shift/mult pair which has the best
64 	 * accuracy and fits the maxsec conversion range:
65 	 */
66 	for (sft = 32; sft > 0; sft--) {
67 		tmp = (u64) to << sft;
68 		tmp += from / 2;
69 		do_div(tmp, from);
70 		if ((tmp >> sftacc) == 0)
71 			break;
72 	}
73 	*mult = tmp;
74 	*shift = sft;
75 }
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77 
78 /*[Clocksource internal variables]---------
79  * curr_clocksource:
80  *	currently selected clocksource.
81  * suspend_clocksource:
82  *	used to calculate the suspend time.
83  * clocksource_list:
84  *	linked list with the registered clocksources
85  * clocksource_mutex:
86  *	protects manipulations to curr_clocksource and the clocksource_list
87  * override_name:
88  *	Name of the user-specified clocksource.
89  */
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
97 
98 /*
99  * Interval: 0.5sec.
100  */
101 #define WATCHDOG_INTERVAL (HZ >> 1)
102 
103 /*
104  * Threshold: 0.0312s, when doubled: 0.0625s.
105  * Also a default for cs->uncertainty_margin when registering clocks.
106  */
107 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
108 
109 /*
110  * Maximum permissible delay between two readouts of the watchdog
111  * clocksource surrounding a read of the clocksource being validated.
112  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
113  * a lower bound for cs->uncertainty_margin values when registering clocks.
114  *
115  * The default of 500 parts per million is based on NTP's limits.
116  * If a clocksource is good enough for NTP, it is good enough for us!
117  */
118 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
119 #define MAX_SKEW_USEC	CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
120 #else
121 #define MAX_SKEW_USEC	(125 * WATCHDOG_INTERVAL / HZ)
122 #endif
123 
124 #define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
125 
126 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
127 static void clocksource_watchdog_work(struct work_struct *work);
128 static void clocksource_select(void);
129 
130 static LIST_HEAD(watchdog_list);
131 static struct clocksource *watchdog;
132 static struct timer_list watchdog_timer;
133 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
134 static DEFINE_SPINLOCK(watchdog_lock);
135 static int watchdog_running;
136 static atomic_t watchdog_reset_pending;
137 
138 static inline void clocksource_watchdog_lock(unsigned long *flags)
139 {
140 	spin_lock_irqsave(&watchdog_lock, *flags);
141 }
142 
143 static inline void clocksource_watchdog_unlock(unsigned long *flags)
144 {
145 	spin_unlock_irqrestore(&watchdog_lock, *flags);
146 }
147 
148 static int clocksource_watchdog_kthread(void *data);
149 static void __clocksource_change_rating(struct clocksource *cs, int rating);
150 
151 static void clocksource_watchdog_work(struct work_struct *work)
152 {
153 	/*
154 	 * We cannot directly run clocksource_watchdog_kthread() here, because
155 	 * clocksource_select() calls timekeeping_notify() which uses
156 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
157 	 * lock inversions wrt CPU hotplug.
158 	 *
159 	 * Also, we only ever run this work once or twice during the lifetime
160 	 * of the kernel, so there is no point in creating a more permanent
161 	 * kthread for this.
162 	 *
163 	 * If kthread_run fails the next watchdog scan over the
164 	 * watchdog_list will find the unstable clock again.
165 	 */
166 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
167 }
168 
169 static void __clocksource_unstable(struct clocksource *cs)
170 {
171 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
172 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
173 
174 	/*
175 	 * If the clocksource is registered clocksource_watchdog_kthread() will
176 	 * re-rate and re-select.
177 	 */
178 	if (list_empty(&cs->list)) {
179 		cs->rating = 0;
180 		return;
181 	}
182 
183 	if (cs->mark_unstable)
184 		cs->mark_unstable(cs);
185 
186 	/* kick clocksource_watchdog_kthread() */
187 	if (finished_booting)
188 		schedule_work(&watchdog_work);
189 }
190 
191 /**
192  * clocksource_mark_unstable - mark clocksource unstable via watchdog
193  * @cs:		clocksource to be marked unstable
194  *
195  * This function is called by the x86 TSC code to mark clocksources as unstable;
196  * it defers demotion and re-selection to a kthread.
197  */
198 void clocksource_mark_unstable(struct clocksource *cs)
199 {
200 	unsigned long flags;
201 
202 	spin_lock_irqsave(&watchdog_lock, flags);
203 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
204 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
205 			list_add(&cs->wd_list, &watchdog_list);
206 		__clocksource_unstable(cs);
207 	}
208 	spin_unlock_irqrestore(&watchdog_lock, flags);
209 }
210 
211 ulong max_cswd_read_retries = 2;
212 module_param(max_cswd_read_retries, ulong, 0644);
213 EXPORT_SYMBOL_GPL(max_cswd_read_retries);
214 static int verify_n_cpus = 8;
215 module_param(verify_n_cpus, int, 0644);
216 
217 enum wd_read_status {
218 	WD_READ_SUCCESS,
219 	WD_READ_UNSTABLE,
220 	WD_READ_SKIP
221 };
222 
223 static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
224 {
225 	unsigned int nretries;
226 	u64 wd_end, wd_end2, wd_delta;
227 	int64_t wd_delay, wd_seq_delay;
228 
229 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
230 		local_irq_disable();
231 		*wdnow = watchdog->read(watchdog);
232 		*csnow = cs->read(cs);
233 		wd_end = watchdog->read(watchdog);
234 		wd_end2 = watchdog->read(watchdog);
235 		local_irq_enable();
236 
237 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
238 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
239 					      watchdog->shift);
240 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
241 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
242 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
243 					smp_processor_id(), watchdog->name, nretries);
244 			}
245 			return WD_READ_SUCCESS;
246 		}
247 
248 		/*
249 		 * Now compute delay in consecutive watchdog read to see if
250 		 * there is too much external interferences that cause
251 		 * significant delay in reading both clocksource and watchdog.
252 		 *
253 		 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
254 		 * report system busy, reinit the watchdog and skip the current
255 		 * watchdog test.
256 		 */
257 		wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
258 		wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
259 		if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
260 			goto skip_test;
261 	}
262 
263 	pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
264 		smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
265 	return WD_READ_UNSTABLE;
266 
267 skip_test:
268 	pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
269 		smp_processor_id(), watchdog->name, wd_seq_delay);
270 	pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
271 		cs->name, wd_delay);
272 	return WD_READ_SKIP;
273 }
274 
275 static u64 csnow_mid;
276 static cpumask_t cpus_ahead;
277 static cpumask_t cpus_behind;
278 static cpumask_t cpus_chosen;
279 
280 static void clocksource_verify_choose_cpus(void)
281 {
282 	int cpu, i, n = verify_n_cpus;
283 
284 	if (n < 0) {
285 		/* Check all of the CPUs. */
286 		cpumask_copy(&cpus_chosen, cpu_online_mask);
287 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288 		return;
289 	}
290 
291 	/* If no checking desired, or no other CPU to check, leave. */
292 	cpumask_clear(&cpus_chosen);
293 	if (n == 0 || num_online_cpus() <= 1)
294 		return;
295 
296 	/* Make sure to select at least one CPU other than the current CPU. */
297 	cpu = cpumask_first(cpu_online_mask);
298 	if (cpu == smp_processor_id())
299 		cpu = cpumask_next(cpu, cpu_online_mask);
300 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
301 		return;
302 	cpumask_set_cpu(cpu, &cpus_chosen);
303 
304 	/* Force a sane value for the boot parameter. */
305 	if (n > nr_cpu_ids)
306 		n = nr_cpu_ids;
307 
308 	/*
309 	 * Randomly select the specified number of CPUs.  If the same
310 	 * CPU is selected multiple times, that CPU is checked only once,
311 	 * and no replacement CPU is selected.  This gracefully handles
312 	 * situations where verify_n_cpus is greater than the number of
313 	 * CPUs that are currently online.
314 	 */
315 	for (i = 1; i < n; i++) {
316 		cpu = get_random_u32_below(nr_cpu_ids);
317 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
318 		if (cpu >= nr_cpu_ids)
319 			cpu = cpumask_first(cpu_online_mask);
320 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
321 			cpumask_set_cpu(cpu, &cpus_chosen);
322 	}
323 
324 	/* Don't verify ourselves. */
325 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
326 }
327 
328 static void clocksource_verify_one_cpu(void *csin)
329 {
330 	struct clocksource *cs = (struct clocksource *)csin;
331 
332 	csnow_mid = cs->read(cs);
333 }
334 
335 void clocksource_verify_percpu(struct clocksource *cs)
336 {
337 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
338 	u64 csnow_begin, csnow_end;
339 	int cpu, testcpu;
340 	s64 delta;
341 
342 	if (verify_n_cpus == 0)
343 		return;
344 	cpumask_clear(&cpus_ahead);
345 	cpumask_clear(&cpus_behind);
346 	cpus_read_lock();
347 	preempt_disable();
348 	clocksource_verify_choose_cpus();
349 	if (cpumask_empty(&cpus_chosen)) {
350 		preempt_enable();
351 		cpus_read_unlock();
352 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
353 		return;
354 	}
355 	testcpu = smp_processor_id();
356 	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
357 	for_each_cpu(cpu, &cpus_chosen) {
358 		if (cpu == testcpu)
359 			continue;
360 		csnow_begin = cs->read(cs);
361 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
362 		csnow_end = cs->read(cs);
363 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
364 		if (delta < 0)
365 			cpumask_set_cpu(cpu, &cpus_behind);
366 		delta = (csnow_end - csnow_mid) & cs->mask;
367 		if (delta < 0)
368 			cpumask_set_cpu(cpu, &cpus_ahead);
369 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
370 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
371 		if (cs_nsec > cs_nsec_max)
372 			cs_nsec_max = cs_nsec;
373 		if (cs_nsec < cs_nsec_min)
374 			cs_nsec_min = cs_nsec;
375 	}
376 	preempt_enable();
377 	cpus_read_unlock();
378 	if (!cpumask_empty(&cpus_ahead))
379 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
380 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
381 	if (!cpumask_empty(&cpus_behind))
382 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
383 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
384 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
385 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
386 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
387 }
388 EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
389 
390 static inline void clocksource_reset_watchdog(void)
391 {
392 	struct clocksource *cs;
393 
394 	list_for_each_entry(cs, &watchdog_list, wd_list)
395 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
396 }
397 
398 
399 static void clocksource_watchdog(struct timer_list *unused)
400 {
401 	u64 csnow, wdnow, cslast, wdlast, delta;
402 	int next_cpu, reset_pending;
403 	int64_t wd_nsec, cs_nsec;
404 	struct clocksource *cs;
405 	enum wd_read_status read_ret;
406 	unsigned long extra_wait = 0;
407 	u32 md;
408 
409 	spin_lock(&watchdog_lock);
410 	if (!watchdog_running)
411 		goto out;
412 
413 	reset_pending = atomic_read(&watchdog_reset_pending);
414 
415 	list_for_each_entry(cs, &watchdog_list, wd_list) {
416 
417 		/* Clocksource already marked unstable? */
418 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
419 			if (finished_booting)
420 				schedule_work(&watchdog_work);
421 			continue;
422 		}
423 
424 		read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
425 
426 		if (read_ret == WD_READ_UNSTABLE) {
427 			/* Clock readout unreliable, so give it up. */
428 			__clocksource_unstable(cs);
429 			continue;
430 		}
431 
432 		/*
433 		 * When WD_READ_SKIP is returned, it means the system is likely
434 		 * under very heavy load, where the latency of reading
435 		 * watchdog/clocksource is very big, and affect the accuracy of
436 		 * watchdog check. So give system some space and suspend the
437 		 * watchdog check for 5 minutes.
438 		 */
439 		if (read_ret == WD_READ_SKIP) {
440 			/*
441 			 * As the watchdog timer will be suspended, and
442 			 * cs->last could keep unchanged for 5 minutes, reset
443 			 * the counters.
444 			 */
445 			clocksource_reset_watchdog();
446 			extra_wait = HZ * 300;
447 			break;
448 		}
449 
450 		/* Clocksource initialized ? */
451 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
452 		    atomic_read(&watchdog_reset_pending)) {
453 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
454 			cs->wd_last = wdnow;
455 			cs->cs_last = csnow;
456 			continue;
457 		}
458 
459 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
460 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
461 					     watchdog->shift);
462 
463 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
464 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
465 		wdlast = cs->wd_last; /* save these in case we print them */
466 		cslast = cs->cs_last;
467 		cs->cs_last = csnow;
468 		cs->wd_last = wdnow;
469 
470 		if (atomic_read(&watchdog_reset_pending))
471 			continue;
472 
473 		/* Check the deviation from the watchdog clocksource. */
474 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
475 		if (abs(cs_nsec - wd_nsec) > md) {
476 			u64 cs_wd_msec;
477 			u64 wd_msec;
478 			u32 wd_rem;
479 
480 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
481 				smp_processor_id(), cs->name);
482 			pr_warn("                      '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
483 				watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
484 			pr_warn("                      '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
485 				cs->name, cs_nsec, csnow, cslast, cs->mask);
486 			cs_wd_msec = div_u64_rem(cs_nsec - wd_nsec, 1000U * 1000U, &wd_rem);
487 			wd_msec = div_u64_rem(wd_nsec, 1000U * 1000U, &wd_rem);
488 			pr_warn("                      Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
489 				cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
490 			if (curr_clocksource == cs)
491 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
492 			else if (curr_clocksource)
493 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
494 			else
495 				pr_warn("                      No current clocksource.\n");
496 			__clocksource_unstable(cs);
497 			continue;
498 		}
499 
500 		if (cs == curr_clocksource && cs->tick_stable)
501 			cs->tick_stable(cs);
502 
503 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
504 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
505 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
506 			/* Mark it valid for high-res. */
507 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
508 
509 			/*
510 			 * clocksource_done_booting() will sort it if
511 			 * finished_booting is not set yet.
512 			 */
513 			if (!finished_booting)
514 				continue;
515 
516 			/*
517 			 * If this is not the current clocksource let
518 			 * the watchdog thread reselect it. Due to the
519 			 * change to high res this clocksource might
520 			 * be preferred now. If it is the current
521 			 * clocksource let the tick code know about
522 			 * that change.
523 			 */
524 			if (cs != curr_clocksource) {
525 				cs->flags |= CLOCK_SOURCE_RESELECT;
526 				schedule_work(&watchdog_work);
527 			} else {
528 				tick_clock_notify();
529 			}
530 		}
531 	}
532 
533 	/*
534 	 * We only clear the watchdog_reset_pending, when we did a
535 	 * full cycle through all clocksources.
536 	 */
537 	if (reset_pending)
538 		atomic_dec(&watchdog_reset_pending);
539 
540 	/*
541 	 * Cycle through CPUs to check if the CPUs stay synchronized
542 	 * to each other.
543 	 */
544 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
545 	if (next_cpu >= nr_cpu_ids)
546 		next_cpu = cpumask_first(cpu_online_mask);
547 
548 	/*
549 	 * Arm timer if not already pending: could race with concurrent
550 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
551 	 */
552 	if (!timer_pending(&watchdog_timer)) {
553 		watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
554 		add_timer_on(&watchdog_timer, next_cpu);
555 	}
556 out:
557 	spin_unlock(&watchdog_lock);
558 }
559 
560 static inline void clocksource_start_watchdog(void)
561 {
562 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
563 		return;
564 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
565 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
566 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
567 	watchdog_running = 1;
568 }
569 
570 static inline void clocksource_stop_watchdog(void)
571 {
572 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
573 		return;
574 	del_timer(&watchdog_timer);
575 	watchdog_running = 0;
576 }
577 
578 static void clocksource_resume_watchdog(void)
579 {
580 	atomic_inc(&watchdog_reset_pending);
581 }
582 
583 static void clocksource_enqueue_watchdog(struct clocksource *cs)
584 {
585 	INIT_LIST_HEAD(&cs->wd_list);
586 
587 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
588 		/* cs is a clocksource to be watched. */
589 		list_add(&cs->wd_list, &watchdog_list);
590 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
591 	} else {
592 		/* cs is a watchdog. */
593 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
594 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
595 	}
596 }
597 
598 static void clocksource_select_watchdog(bool fallback)
599 {
600 	struct clocksource *cs, *old_wd;
601 	unsigned long flags;
602 
603 	spin_lock_irqsave(&watchdog_lock, flags);
604 	/* save current watchdog */
605 	old_wd = watchdog;
606 	if (fallback)
607 		watchdog = NULL;
608 
609 	list_for_each_entry(cs, &clocksource_list, list) {
610 		/* cs is a clocksource to be watched. */
611 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
612 			continue;
613 
614 		/* Skip current if we were requested for a fallback. */
615 		if (fallback && cs == old_wd)
616 			continue;
617 
618 		/* Pick the best watchdog. */
619 		if (!watchdog || cs->rating > watchdog->rating)
620 			watchdog = cs;
621 	}
622 	/* If we failed to find a fallback restore the old one. */
623 	if (!watchdog)
624 		watchdog = old_wd;
625 
626 	/* If we changed the watchdog we need to reset cycles. */
627 	if (watchdog != old_wd)
628 		clocksource_reset_watchdog();
629 
630 	/* Check if the watchdog timer needs to be started. */
631 	clocksource_start_watchdog();
632 	spin_unlock_irqrestore(&watchdog_lock, flags);
633 }
634 
635 static void clocksource_dequeue_watchdog(struct clocksource *cs)
636 {
637 	if (cs != watchdog) {
638 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
639 			/* cs is a watched clocksource. */
640 			list_del_init(&cs->wd_list);
641 			/* Check if the watchdog timer needs to be stopped. */
642 			clocksource_stop_watchdog();
643 		}
644 	}
645 }
646 
647 static int __clocksource_watchdog_kthread(void)
648 {
649 	struct clocksource *cs, *tmp;
650 	unsigned long flags;
651 	int select = 0;
652 
653 	/* Do any required per-CPU skew verification. */
654 	if (curr_clocksource &&
655 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
656 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
657 		clocksource_verify_percpu(curr_clocksource);
658 
659 	spin_lock_irqsave(&watchdog_lock, flags);
660 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
661 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
662 			list_del_init(&cs->wd_list);
663 			__clocksource_change_rating(cs, 0);
664 			select = 1;
665 		}
666 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
667 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
668 			select = 1;
669 		}
670 	}
671 	/* Check if the watchdog timer needs to be stopped. */
672 	clocksource_stop_watchdog();
673 	spin_unlock_irqrestore(&watchdog_lock, flags);
674 
675 	return select;
676 }
677 
678 static int clocksource_watchdog_kthread(void *data)
679 {
680 	mutex_lock(&clocksource_mutex);
681 	if (__clocksource_watchdog_kthread())
682 		clocksource_select();
683 	mutex_unlock(&clocksource_mutex);
684 	return 0;
685 }
686 
687 static bool clocksource_is_watchdog(struct clocksource *cs)
688 {
689 	return cs == watchdog;
690 }
691 
692 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
693 
694 static void clocksource_enqueue_watchdog(struct clocksource *cs)
695 {
696 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
697 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
698 }
699 
700 static void clocksource_select_watchdog(bool fallback) { }
701 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
702 static inline void clocksource_resume_watchdog(void) { }
703 static inline int __clocksource_watchdog_kthread(void) { return 0; }
704 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
705 void clocksource_mark_unstable(struct clocksource *cs) { }
706 
707 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
708 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
709 
710 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
711 
712 static bool clocksource_is_suspend(struct clocksource *cs)
713 {
714 	return cs == suspend_clocksource;
715 }
716 
717 static void __clocksource_suspend_select(struct clocksource *cs)
718 {
719 	/*
720 	 * Skip the clocksource which will be stopped in suspend state.
721 	 */
722 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
723 		return;
724 
725 	/*
726 	 * The nonstop clocksource can be selected as the suspend clocksource to
727 	 * calculate the suspend time, so it should not supply suspend/resume
728 	 * interfaces to suspend the nonstop clocksource when system suspends.
729 	 */
730 	if (cs->suspend || cs->resume) {
731 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
732 			cs->name);
733 	}
734 
735 	/* Pick the best rating. */
736 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
737 		suspend_clocksource = cs;
738 }
739 
740 /**
741  * clocksource_suspend_select - Select the best clocksource for suspend timing
742  * @fallback:	if select a fallback clocksource
743  */
744 static void clocksource_suspend_select(bool fallback)
745 {
746 	struct clocksource *cs, *old_suspend;
747 
748 	old_suspend = suspend_clocksource;
749 	if (fallback)
750 		suspend_clocksource = NULL;
751 
752 	list_for_each_entry(cs, &clocksource_list, list) {
753 		/* Skip current if we were requested for a fallback. */
754 		if (fallback && cs == old_suspend)
755 			continue;
756 
757 		__clocksource_suspend_select(cs);
758 	}
759 }
760 
761 /**
762  * clocksource_start_suspend_timing - Start measuring the suspend timing
763  * @cs:			current clocksource from timekeeping
764  * @start_cycles:	current cycles from timekeeping
765  *
766  * This function will save the start cycle values of suspend timer to calculate
767  * the suspend time when resuming system.
768  *
769  * This function is called late in the suspend process from timekeeping_suspend(),
770  * that means processes are frozen, non-boot cpus and interrupts are disabled
771  * now. It is therefore possible to start the suspend timer without taking the
772  * clocksource mutex.
773  */
774 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
775 {
776 	if (!suspend_clocksource)
777 		return;
778 
779 	/*
780 	 * If current clocksource is the suspend timer, we should use the
781 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
782 	 * from suspend timer.
783 	 */
784 	if (clocksource_is_suspend(cs)) {
785 		suspend_start = start_cycles;
786 		return;
787 	}
788 
789 	if (suspend_clocksource->enable &&
790 	    suspend_clocksource->enable(suspend_clocksource)) {
791 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
792 		return;
793 	}
794 
795 	suspend_start = suspend_clocksource->read(suspend_clocksource);
796 }
797 
798 /**
799  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
800  * @cs:		current clocksource from timekeeping
801  * @cycle_now:	current cycles from timekeeping
802  *
803  * This function will calculate the suspend time from suspend timer.
804  *
805  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
806  *
807  * This function is called early in the resume process from timekeeping_resume(),
808  * that means there is only one cpu, no processes are running and the interrupts
809  * are disabled. It is therefore possible to stop the suspend timer without
810  * taking the clocksource mutex.
811  */
812 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
813 {
814 	u64 now, delta, nsec = 0;
815 
816 	if (!suspend_clocksource)
817 		return 0;
818 
819 	/*
820 	 * If current clocksource is the suspend timer, we should use the
821 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
822 	 * avoid same reading from suspend timer.
823 	 */
824 	if (clocksource_is_suspend(cs))
825 		now = cycle_now;
826 	else
827 		now = suspend_clocksource->read(suspend_clocksource);
828 
829 	if (now > suspend_start) {
830 		delta = clocksource_delta(now, suspend_start,
831 					  suspend_clocksource->mask);
832 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
833 				       suspend_clocksource->shift);
834 	}
835 
836 	/*
837 	 * Disable the suspend timer to save power if current clocksource is
838 	 * not the suspend timer.
839 	 */
840 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
841 		suspend_clocksource->disable(suspend_clocksource);
842 
843 	return nsec;
844 }
845 
846 /**
847  * clocksource_suspend - suspend the clocksource(s)
848  */
849 void clocksource_suspend(void)
850 {
851 	struct clocksource *cs;
852 
853 	list_for_each_entry_reverse(cs, &clocksource_list, list)
854 		if (cs->suspend)
855 			cs->suspend(cs);
856 }
857 
858 /**
859  * clocksource_resume - resume the clocksource(s)
860  */
861 void clocksource_resume(void)
862 {
863 	struct clocksource *cs;
864 
865 	list_for_each_entry(cs, &clocksource_list, list)
866 		if (cs->resume)
867 			cs->resume(cs);
868 
869 	clocksource_resume_watchdog();
870 }
871 
872 /**
873  * clocksource_touch_watchdog - Update watchdog
874  *
875  * Update the watchdog after exception contexts such as kgdb so as not
876  * to incorrectly trip the watchdog. This might fail when the kernel
877  * was stopped in code which holds watchdog_lock.
878  */
879 void clocksource_touch_watchdog(void)
880 {
881 	clocksource_resume_watchdog();
882 }
883 
884 /**
885  * clocksource_max_adjustment- Returns max adjustment amount
886  * @cs:         Pointer to clocksource
887  *
888  */
889 static u32 clocksource_max_adjustment(struct clocksource *cs)
890 {
891 	u64 ret;
892 	/*
893 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
894 	 */
895 	ret = (u64)cs->mult * 11;
896 	do_div(ret,100);
897 	return (u32)ret;
898 }
899 
900 /**
901  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
902  * @mult:	cycle to nanosecond multiplier
903  * @shift:	cycle to nanosecond divisor (power of two)
904  * @maxadj:	maximum adjustment value to mult (~11%)
905  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
906  * @max_cyc:	maximum cycle value before potential overflow (does not include
907  *		any safety margin)
908  *
909  * NOTE: This function includes a safety margin of 50%, in other words, we
910  * return half the number of nanoseconds the hardware counter can technically
911  * cover. This is done so that we can potentially detect problems caused by
912  * delayed timers or bad hardware, which might result in time intervals that
913  * are larger than what the math used can handle without overflows.
914  */
915 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
916 {
917 	u64 max_nsecs, max_cycles;
918 
919 	/*
920 	 * Calculate the maximum number of cycles that we can pass to the
921 	 * cyc2ns() function without overflowing a 64-bit result.
922 	 */
923 	max_cycles = ULLONG_MAX;
924 	do_div(max_cycles, mult+maxadj);
925 
926 	/*
927 	 * The actual maximum number of cycles we can defer the clocksource is
928 	 * determined by the minimum of max_cycles and mask.
929 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
930 	 * too long if there's a large negative adjustment.
931 	 */
932 	max_cycles = min(max_cycles, mask);
933 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
934 
935 	/* return the max_cycles value as well if requested */
936 	if (max_cyc)
937 		*max_cyc = max_cycles;
938 
939 	/* Return 50% of the actual maximum, so we can detect bad values */
940 	max_nsecs >>= 1;
941 
942 	return max_nsecs;
943 }
944 
945 /**
946  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
947  * @cs:         Pointer to clocksource to be updated
948  *
949  */
950 static inline void clocksource_update_max_deferment(struct clocksource *cs)
951 {
952 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
953 						cs->maxadj, cs->mask,
954 						&cs->max_cycles);
955 }
956 
957 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
958 {
959 	struct clocksource *cs;
960 
961 	if (!finished_booting || list_empty(&clocksource_list))
962 		return NULL;
963 
964 	/*
965 	 * We pick the clocksource with the highest rating. If oneshot
966 	 * mode is active, we pick the highres valid clocksource with
967 	 * the best rating.
968 	 */
969 	list_for_each_entry(cs, &clocksource_list, list) {
970 		if (skipcur && cs == curr_clocksource)
971 			continue;
972 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
973 			continue;
974 		return cs;
975 	}
976 	return NULL;
977 }
978 
979 static void __clocksource_select(bool skipcur)
980 {
981 	bool oneshot = tick_oneshot_mode_active();
982 	struct clocksource *best, *cs;
983 
984 	/* Find the best suitable clocksource */
985 	best = clocksource_find_best(oneshot, skipcur);
986 	if (!best)
987 		return;
988 
989 	if (!strlen(override_name))
990 		goto found;
991 
992 	/* Check for the override clocksource. */
993 	list_for_each_entry(cs, &clocksource_list, list) {
994 		if (skipcur && cs == curr_clocksource)
995 			continue;
996 		if (strcmp(cs->name, override_name) != 0)
997 			continue;
998 		/*
999 		 * Check to make sure we don't switch to a non-highres
1000 		 * capable clocksource if the tick code is in oneshot
1001 		 * mode (highres or nohz)
1002 		 */
1003 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1004 			/* Override clocksource cannot be used. */
1005 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1006 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1007 					cs->name);
1008 				override_name[0] = 0;
1009 			} else {
1010 				/*
1011 				 * The override cannot be currently verified.
1012 				 * Deferring to let the watchdog check.
1013 				 */
1014 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1015 					cs->name);
1016 			}
1017 		} else
1018 			/* Override clocksource can be used. */
1019 			best = cs;
1020 		break;
1021 	}
1022 
1023 found:
1024 	if (curr_clocksource != best && !timekeeping_notify(best)) {
1025 		pr_info("Switched to clocksource %s\n", best->name);
1026 		curr_clocksource = best;
1027 	}
1028 }
1029 
1030 /**
1031  * clocksource_select - Select the best clocksource available
1032  *
1033  * Private function. Must hold clocksource_mutex when called.
1034  *
1035  * Select the clocksource with the best rating, or the clocksource,
1036  * which is selected by userspace override.
1037  */
1038 static void clocksource_select(void)
1039 {
1040 	__clocksource_select(false);
1041 }
1042 
1043 static void clocksource_select_fallback(void)
1044 {
1045 	__clocksource_select(true);
1046 }
1047 
1048 /*
1049  * clocksource_done_booting - Called near the end of core bootup
1050  *
1051  * Hack to avoid lots of clocksource churn at boot time.
1052  * We use fs_initcall because we want this to start before
1053  * device_initcall but after subsys_initcall.
1054  */
1055 static int __init clocksource_done_booting(void)
1056 {
1057 	mutex_lock(&clocksource_mutex);
1058 	curr_clocksource = clocksource_default_clock();
1059 	finished_booting = 1;
1060 	/*
1061 	 * Run the watchdog first to eliminate unstable clock sources
1062 	 */
1063 	__clocksource_watchdog_kthread();
1064 	clocksource_select();
1065 	mutex_unlock(&clocksource_mutex);
1066 	return 0;
1067 }
1068 fs_initcall(clocksource_done_booting);
1069 
1070 /*
1071  * Enqueue the clocksource sorted by rating
1072  */
1073 static void clocksource_enqueue(struct clocksource *cs)
1074 {
1075 	struct list_head *entry = &clocksource_list;
1076 	struct clocksource *tmp;
1077 
1078 	list_for_each_entry(tmp, &clocksource_list, list) {
1079 		/* Keep track of the place, where to insert */
1080 		if (tmp->rating < cs->rating)
1081 			break;
1082 		entry = &tmp->list;
1083 	}
1084 	list_add(&cs->list, entry);
1085 }
1086 
1087 /**
1088  * __clocksource_update_freq_scale - Used update clocksource with new freq
1089  * @cs:		clocksource to be registered
1090  * @scale:	Scale factor multiplied against freq to get clocksource hz
1091  * @freq:	clocksource frequency (cycles per second) divided by scale
1092  *
1093  * This should only be called from the clocksource->enable() method.
1094  *
1095  * This *SHOULD NOT* be called directly! Please use the
1096  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1097  * functions.
1098  */
1099 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1100 {
1101 	u64 sec;
1102 
1103 	/*
1104 	 * Default clocksources are *special* and self-define their mult/shift.
1105 	 * But, you're not special, so you should specify a freq value.
1106 	 */
1107 	if (freq) {
1108 		/*
1109 		 * Calc the maximum number of seconds which we can run before
1110 		 * wrapping around. For clocksources which have a mask > 32-bit
1111 		 * we need to limit the max sleep time to have a good
1112 		 * conversion precision. 10 minutes is still a reasonable
1113 		 * amount. That results in a shift value of 24 for a
1114 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1115 		 * ~ 0.06ppm granularity for NTP.
1116 		 */
1117 		sec = cs->mask;
1118 		do_div(sec, freq);
1119 		do_div(sec, scale);
1120 		if (!sec)
1121 			sec = 1;
1122 		else if (sec > 600 && cs->mask > UINT_MAX)
1123 			sec = 600;
1124 
1125 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1126 				       NSEC_PER_SEC / scale, sec * scale);
1127 	}
1128 
1129 	/*
1130 	 * If the uncertainty margin is not specified, calculate it.
1131 	 * If both scale and freq are non-zero, calculate the clock
1132 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1133 	 * if either of scale or freq is zero, be very conservative and
1134 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1135 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1136 	 * to be specified by the caller for testing purposes, but warn
1137 	 * to discourage production use of this capability.
1138 	 */
1139 	if (scale && freq && !cs->uncertainty_margin) {
1140 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1141 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1142 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1143 	} else if (!cs->uncertainty_margin) {
1144 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1145 	}
1146 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1147 
1148 	/*
1149 	 * Ensure clocksources that have large 'mult' values don't overflow
1150 	 * when adjusted.
1151 	 */
1152 	cs->maxadj = clocksource_max_adjustment(cs);
1153 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1154 		|| (cs->mult - cs->maxadj > cs->mult))) {
1155 		cs->mult >>= 1;
1156 		cs->shift--;
1157 		cs->maxadj = clocksource_max_adjustment(cs);
1158 	}
1159 
1160 	/*
1161 	 * Only warn for *special* clocksources that self-define
1162 	 * their mult/shift values and don't specify a freq.
1163 	 */
1164 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1165 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1166 		cs->name);
1167 
1168 	clocksource_update_max_deferment(cs);
1169 
1170 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1171 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1172 }
1173 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1174 
1175 /**
1176  * __clocksource_register_scale - Used to install new clocksources
1177  * @cs:		clocksource to be registered
1178  * @scale:	Scale factor multiplied against freq to get clocksource hz
1179  * @freq:	clocksource frequency (cycles per second) divided by scale
1180  *
1181  * Returns -EBUSY if registration fails, zero otherwise.
1182  *
1183  * This *SHOULD NOT* be called directly! Please use the
1184  * clocksource_register_hz() or clocksource_register_khz helper functions.
1185  */
1186 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1187 {
1188 	unsigned long flags;
1189 
1190 	clocksource_arch_init(cs);
1191 
1192 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1193 		cs->id = CSID_GENERIC;
1194 	if (cs->vdso_clock_mode < 0 ||
1195 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1196 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1197 			cs->name, cs->vdso_clock_mode);
1198 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1199 	}
1200 
1201 	/* Initialize mult/shift and max_idle_ns */
1202 	__clocksource_update_freq_scale(cs, scale, freq);
1203 
1204 	/* Add clocksource to the clocksource list */
1205 	mutex_lock(&clocksource_mutex);
1206 
1207 	clocksource_watchdog_lock(&flags);
1208 	clocksource_enqueue(cs);
1209 	clocksource_enqueue_watchdog(cs);
1210 	clocksource_watchdog_unlock(&flags);
1211 
1212 	clocksource_select();
1213 	clocksource_select_watchdog(false);
1214 	__clocksource_suspend_select(cs);
1215 	mutex_unlock(&clocksource_mutex);
1216 	return 0;
1217 }
1218 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1219 
1220 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1221 {
1222 	list_del(&cs->list);
1223 	cs->rating = rating;
1224 	clocksource_enqueue(cs);
1225 }
1226 
1227 /**
1228  * clocksource_change_rating - Change the rating of a registered clocksource
1229  * @cs:		clocksource to be changed
1230  * @rating:	new rating
1231  */
1232 void clocksource_change_rating(struct clocksource *cs, int rating)
1233 {
1234 	unsigned long flags;
1235 
1236 	mutex_lock(&clocksource_mutex);
1237 	clocksource_watchdog_lock(&flags);
1238 	__clocksource_change_rating(cs, rating);
1239 	clocksource_watchdog_unlock(&flags);
1240 
1241 	clocksource_select();
1242 	clocksource_select_watchdog(false);
1243 	clocksource_suspend_select(false);
1244 	mutex_unlock(&clocksource_mutex);
1245 }
1246 EXPORT_SYMBOL(clocksource_change_rating);
1247 
1248 /*
1249  * Unbind clocksource @cs. Called with clocksource_mutex held
1250  */
1251 static int clocksource_unbind(struct clocksource *cs)
1252 {
1253 	unsigned long flags;
1254 
1255 	if (clocksource_is_watchdog(cs)) {
1256 		/* Select and try to install a replacement watchdog. */
1257 		clocksource_select_watchdog(true);
1258 		if (clocksource_is_watchdog(cs))
1259 			return -EBUSY;
1260 	}
1261 
1262 	if (cs == curr_clocksource) {
1263 		/* Select and try to install a replacement clock source */
1264 		clocksource_select_fallback();
1265 		if (curr_clocksource == cs)
1266 			return -EBUSY;
1267 	}
1268 
1269 	if (clocksource_is_suspend(cs)) {
1270 		/*
1271 		 * Select and try to install a replacement suspend clocksource.
1272 		 * If no replacement suspend clocksource, we will just let the
1273 		 * clocksource go and have no suspend clocksource.
1274 		 */
1275 		clocksource_suspend_select(true);
1276 	}
1277 
1278 	clocksource_watchdog_lock(&flags);
1279 	clocksource_dequeue_watchdog(cs);
1280 	list_del_init(&cs->list);
1281 	clocksource_watchdog_unlock(&flags);
1282 
1283 	return 0;
1284 }
1285 
1286 /**
1287  * clocksource_unregister - remove a registered clocksource
1288  * @cs:	clocksource to be unregistered
1289  */
1290 int clocksource_unregister(struct clocksource *cs)
1291 {
1292 	int ret = 0;
1293 
1294 	mutex_lock(&clocksource_mutex);
1295 	if (!list_empty(&cs->list))
1296 		ret = clocksource_unbind(cs);
1297 	mutex_unlock(&clocksource_mutex);
1298 	return ret;
1299 }
1300 EXPORT_SYMBOL(clocksource_unregister);
1301 
1302 #ifdef CONFIG_SYSFS
1303 /**
1304  * current_clocksource_show - sysfs interface for current clocksource
1305  * @dev:	unused
1306  * @attr:	unused
1307  * @buf:	char buffer to be filled with clocksource list
1308  *
1309  * Provides sysfs interface for listing current clocksource.
1310  */
1311 static ssize_t current_clocksource_show(struct device *dev,
1312 					struct device_attribute *attr,
1313 					char *buf)
1314 {
1315 	ssize_t count = 0;
1316 
1317 	mutex_lock(&clocksource_mutex);
1318 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1319 	mutex_unlock(&clocksource_mutex);
1320 
1321 	return count;
1322 }
1323 
1324 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1325 {
1326 	size_t ret = cnt;
1327 
1328 	/* strings from sysfs write are not 0 terminated! */
1329 	if (!cnt || cnt >= CS_NAME_LEN)
1330 		return -EINVAL;
1331 
1332 	/* strip of \n: */
1333 	if (buf[cnt-1] == '\n')
1334 		cnt--;
1335 	if (cnt > 0)
1336 		memcpy(dst, buf, cnt);
1337 	dst[cnt] = 0;
1338 	return ret;
1339 }
1340 
1341 /**
1342  * current_clocksource_store - interface for manually overriding clocksource
1343  * @dev:	unused
1344  * @attr:	unused
1345  * @buf:	name of override clocksource
1346  * @count:	length of buffer
1347  *
1348  * Takes input from sysfs interface for manually overriding the default
1349  * clocksource selection.
1350  */
1351 static ssize_t current_clocksource_store(struct device *dev,
1352 					 struct device_attribute *attr,
1353 					 const char *buf, size_t count)
1354 {
1355 	ssize_t ret;
1356 
1357 	mutex_lock(&clocksource_mutex);
1358 
1359 	ret = sysfs_get_uname(buf, override_name, count);
1360 	if (ret >= 0)
1361 		clocksource_select();
1362 
1363 	mutex_unlock(&clocksource_mutex);
1364 
1365 	return ret;
1366 }
1367 static DEVICE_ATTR_RW(current_clocksource);
1368 
1369 /**
1370  * unbind_clocksource_store - interface for manually unbinding clocksource
1371  * @dev:	unused
1372  * @attr:	unused
1373  * @buf:	unused
1374  * @count:	length of buffer
1375  *
1376  * Takes input from sysfs interface for manually unbinding a clocksource.
1377  */
1378 static ssize_t unbind_clocksource_store(struct device *dev,
1379 					struct device_attribute *attr,
1380 					const char *buf, size_t count)
1381 {
1382 	struct clocksource *cs;
1383 	char name[CS_NAME_LEN];
1384 	ssize_t ret;
1385 
1386 	ret = sysfs_get_uname(buf, name, count);
1387 	if (ret < 0)
1388 		return ret;
1389 
1390 	ret = -ENODEV;
1391 	mutex_lock(&clocksource_mutex);
1392 	list_for_each_entry(cs, &clocksource_list, list) {
1393 		if (strcmp(cs->name, name))
1394 			continue;
1395 		ret = clocksource_unbind(cs);
1396 		break;
1397 	}
1398 	mutex_unlock(&clocksource_mutex);
1399 
1400 	return ret ? ret : count;
1401 }
1402 static DEVICE_ATTR_WO(unbind_clocksource);
1403 
1404 /**
1405  * available_clocksource_show - sysfs interface for listing clocksource
1406  * @dev:	unused
1407  * @attr:	unused
1408  * @buf:	char buffer to be filled with clocksource list
1409  *
1410  * Provides sysfs interface for listing registered clocksources
1411  */
1412 static ssize_t available_clocksource_show(struct device *dev,
1413 					  struct device_attribute *attr,
1414 					  char *buf)
1415 {
1416 	struct clocksource *src;
1417 	ssize_t count = 0;
1418 
1419 	mutex_lock(&clocksource_mutex);
1420 	list_for_each_entry(src, &clocksource_list, list) {
1421 		/*
1422 		 * Don't show non-HRES clocksource if the tick code is
1423 		 * in one shot mode (highres=on or nohz=on)
1424 		 */
1425 		if (!tick_oneshot_mode_active() ||
1426 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1427 			count += snprintf(buf + count,
1428 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1429 				  "%s ", src->name);
1430 	}
1431 	mutex_unlock(&clocksource_mutex);
1432 
1433 	count += snprintf(buf + count,
1434 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1435 
1436 	return count;
1437 }
1438 static DEVICE_ATTR_RO(available_clocksource);
1439 
1440 static struct attribute *clocksource_attrs[] = {
1441 	&dev_attr_current_clocksource.attr,
1442 	&dev_attr_unbind_clocksource.attr,
1443 	&dev_attr_available_clocksource.attr,
1444 	NULL
1445 };
1446 ATTRIBUTE_GROUPS(clocksource);
1447 
1448 static struct bus_type clocksource_subsys = {
1449 	.name = "clocksource",
1450 	.dev_name = "clocksource",
1451 };
1452 
1453 static struct device device_clocksource = {
1454 	.id	= 0,
1455 	.bus	= &clocksource_subsys,
1456 	.groups	= clocksource_groups,
1457 };
1458 
1459 static int __init init_clocksource_sysfs(void)
1460 {
1461 	int error = subsys_system_register(&clocksource_subsys, NULL);
1462 
1463 	if (!error)
1464 		error = device_register(&device_clocksource);
1465 
1466 	return error;
1467 }
1468 
1469 device_initcall(init_clocksource_sysfs);
1470 #endif /* CONFIG_SYSFS */
1471 
1472 /**
1473  * boot_override_clocksource - boot clock override
1474  * @str:	override name
1475  *
1476  * Takes a clocksource= boot argument and uses it
1477  * as the clocksource override name.
1478  */
1479 static int __init boot_override_clocksource(char* str)
1480 {
1481 	mutex_lock(&clocksource_mutex);
1482 	if (str)
1483 		strscpy(override_name, str, sizeof(override_name));
1484 	mutex_unlock(&clocksource_mutex);
1485 	return 1;
1486 }
1487 
1488 __setup("clocksource=", boot_override_clocksource);
1489 
1490 /**
1491  * boot_override_clock - Compatibility layer for deprecated boot option
1492  * @str:	override name
1493  *
1494  * DEPRECATED! Takes a clock= boot argument and uses it
1495  * as the clocksource override name
1496  */
1497 static int __init boot_override_clock(char* str)
1498 {
1499 	if (!strcmp(str, "pmtmr")) {
1500 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1501 		return boot_override_clocksource("acpi_pm");
1502 	}
1503 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1504 	return boot_override_clocksource(str);
1505 }
1506 
1507 __setup("clock=", boot_override_clock);
1508