xref: /openbmc/linux/kernel/time/clocksource.c (revision 2e27e793)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * This file contains the functions which manage clocksource drivers.
4  *
5  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/device.h>
11 #include <linux/clocksource.h>
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15 #include <linux/tick.h>
16 #include <linux/kthread.h>
17 #include <linux/prandom.h>
18 #include <linux/cpu.h>
19 
20 #include "tick-internal.h"
21 #include "timekeeping_internal.h"
22 
23 /**
24  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25  * @mult:	pointer to mult variable
26  * @shift:	pointer to shift variable
27  * @from:	frequency to convert from
28  * @to:		frequency to convert to
29  * @maxsec:	guaranteed runtime conversion range in seconds
30  *
31  * The function evaluates the shift/mult pair for the scaled math
32  * operations of clocksources and clockevents.
33  *
34  * @to and @from are frequency values in HZ. For clock sources @to is
35  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36  * event @to is the counter frequency and @from is NSEC_PER_SEC.
37  *
38  * The @maxsec conversion range argument controls the time frame in
39  * seconds which must be covered by the runtime conversion with the
40  * calculated mult and shift factors. This guarantees that no 64bit
41  * overflow happens when the input value of the conversion is
42  * multiplied with the calculated mult factor. Larger ranges may
43  * reduce the conversion accuracy by choosing smaller mult and shift
44  * factors.
45  */
46 void
47 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48 {
49 	u64 tmp;
50 	u32 sft, sftacc= 32;
51 
52 	/*
53 	 * Calculate the shift factor which is limiting the conversion
54 	 * range:
55 	 */
56 	tmp = ((u64)maxsec * from) >> 32;
57 	while (tmp) {
58 		tmp >>=1;
59 		sftacc--;
60 	}
61 
62 	/*
63 	 * Find the conversion shift/mult pair which has the best
64 	 * accuracy and fits the maxsec conversion range:
65 	 */
66 	for (sft = 32; sft > 0; sft--) {
67 		tmp = (u64) to << sft;
68 		tmp += from / 2;
69 		do_div(tmp, from);
70 		if ((tmp >> sftacc) == 0)
71 			break;
72 	}
73 	*mult = tmp;
74 	*shift = sft;
75 }
76 EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77 
78 /*[Clocksource internal variables]---------
79  * curr_clocksource:
80  *	currently selected clocksource.
81  * suspend_clocksource:
82  *	used to calculate the suspend time.
83  * clocksource_list:
84  *	linked list with the registered clocksources
85  * clocksource_mutex:
86  *	protects manipulations to curr_clocksource and the clocksource_list
87  * override_name:
88  *	Name of the user-specified clocksource.
89  */
90 static struct clocksource *curr_clocksource;
91 static struct clocksource *suspend_clocksource;
92 static LIST_HEAD(clocksource_list);
93 static DEFINE_MUTEX(clocksource_mutex);
94 static char override_name[CS_NAME_LEN];
95 static int finished_booting;
96 static u64 suspend_start;
97 
98 /*
99  * Threshold: 0.0312s, when doubled: 0.0625s.
100  * Also a default for cs->uncertainty_margin when registering clocks.
101  */
102 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
103 
104 /*
105  * Maximum permissible delay between two readouts of the watchdog
106  * clocksource surrounding a read of the clocksource being validated.
107  * This delay could be due to SMIs, NMIs, or to VCPU preemptions.  Used as
108  * a lower bound for cs->uncertainty_margin values when registering clocks.
109  */
110 #define WATCHDOG_MAX_SKEW (50 * NSEC_PER_USEC)
111 
112 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
113 static void clocksource_watchdog_work(struct work_struct *work);
114 static void clocksource_select(void);
115 
116 static LIST_HEAD(watchdog_list);
117 static struct clocksource *watchdog;
118 static struct timer_list watchdog_timer;
119 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
120 static DEFINE_SPINLOCK(watchdog_lock);
121 static int watchdog_running;
122 static atomic_t watchdog_reset_pending;
123 
124 static inline void clocksource_watchdog_lock(unsigned long *flags)
125 {
126 	spin_lock_irqsave(&watchdog_lock, *flags);
127 }
128 
129 static inline void clocksource_watchdog_unlock(unsigned long *flags)
130 {
131 	spin_unlock_irqrestore(&watchdog_lock, *flags);
132 }
133 
134 static int clocksource_watchdog_kthread(void *data);
135 static void __clocksource_change_rating(struct clocksource *cs, int rating);
136 
137 /*
138  * Interval: 0.5sec.
139  */
140 #define WATCHDOG_INTERVAL (HZ >> 1)
141 
142 static void clocksource_watchdog_work(struct work_struct *work)
143 {
144 	/*
145 	 * We cannot directly run clocksource_watchdog_kthread() here, because
146 	 * clocksource_select() calls timekeeping_notify() which uses
147 	 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 	 * lock inversions wrt CPU hotplug.
149 	 *
150 	 * Also, we only ever run this work once or twice during the lifetime
151 	 * of the kernel, so there is no point in creating a more permanent
152 	 * kthread for this.
153 	 *
154 	 * If kthread_run fails the next watchdog scan over the
155 	 * watchdog_list will find the unstable clock again.
156 	 */
157 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
158 }
159 
160 static void __clocksource_unstable(struct clocksource *cs)
161 {
162 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
164 
165 	/*
166 	 * If the clocksource is registered clocksource_watchdog_kthread() will
167 	 * re-rate and re-select.
168 	 */
169 	if (list_empty(&cs->list)) {
170 		cs->rating = 0;
171 		return;
172 	}
173 
174 	if (cs->mark_unstable)
175 		cs->mark_unstable(cs);
176 
177 	/* kick clocksource_watchdog_kthread() */
178 	if (finished_booting)
179 		schedule_work(&watchdog_work);
180 }
181 
182 /**
183  * clocksource_mark_unstable - mark clocksource unstable via watchdog
184  * @cs:		clocksource to be marked unstable
185  *
186  * This function is called by the x86 TSC code to mark clocksources as unstable;
187  * it defers demotion and re-selection to a kthread.
188  */
189 void clocksource_mark_unstable(struct clocksource *cs)
190 {
191 	unsigned long flags;
192 
193 	spin_lock_irqsave(&watchdog_lock, flags);
194 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 		if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 			list_add(&cs->wd_list, &watchdog_list);
197 		__clocksource_unstable(cs);
198 	}
199 	spin_unlock_irqrestore(&watchdog_lock, flags);
200 }
201 
202 static ulong max_cswd_read_retries = 3;
203 module_param(max_cswd_read_retries, ulong, 0644);
204 static int verify_n_cpus = 8;
205 module_param(verify_n_cpus, int, 0644);
206 
207 static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
208 {
209 	unsigned int nretries;
210 	u64 wd_end, wd_delta;
211 	int64_t wd_delay;
212 
213 	for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
214 		local_irq_disable();
215 		*wdnow = watchdog->read(watchdog);
216 		*csnow = cs->read(cs);
217 		wd_end = watchdog->read(watchdog);
218 		local_irq_enable();
219 
220 		wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
221 		wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
222 					      watchdog->shift);
223 		if (wd_delay <= WATCHDOG_MAX_SKEW) {
224 			if (nretries > 1 || nretries >= max_cswd_read_retries) {
225 				pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
226 					smp_processor_id(), watchdog->name, nretries);
227 			}
228 			return true;
229 		}
230 	}
231 
232 	pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
233 		smp_processor_id(), watchdog->name, wd_delay, nretries);
234 	return false;
235 }
236 
237 static u64 csnow_mid;
238 static cpumask_t cpus_ahead;
239 static cpumask_t cpus_behind;
240 static cpumask_t cpus_chosen;
241 
242 static void clocksource_verify_choose_cpus(void)
243 {
244 	int cpu, i, n = verify_n_cpus;
245 
246 	if (n < 0) {
247 		/* Check all of the CPUs. */
248 		cpumask_copy(&cpus_chosen, cpu_online_mask);
249 		cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
250 		return;
251 	}
252 
253 	/* If no checking desired, or no other CPU to check, leave. */
254 	cpumask_clear(&cpus_chosen);
255 	if (n == 0 || num_online_cpus() <= 1)
256 		return;
257 
258 	/* Make sure to select at least one CPU other than the current CPU. */
259 	cpu = cpumask_next(-1, cpu_online_mask);
260 	if (cpu == smp_processor_id())
261 		cpu = cpumask_next(cpu, cpu_online_mask);
262 	if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
263 		return;
264 	cpumask_set_cpu(cpu, &cpus_chosen);
265 
266 	/* Force a sane value for the boot parameter. */
267 	if (n > nr_cpu_ids)
268 		n = nr_cpu_ids;
269 
270 	/*
271 	 * Randomly select the specified number of CPUs.  If the same
272 	 * CPU is selected multiple times, that CPU is checked only once,
273 	 * and no replacement CPU is selected.  This gracefully handles
274 	 * situations where verify_n_cpus is greater than the number of
275 	 * CPUs that are currently online.
276 	 */
277 	for (i = 1; i < n; i++) {
278 		cpu = prandom_u32() % nr_cpu_ids;
279 		cpu = cpumask_next(cpu - 1, cpu_online_mask);
280 		if (cpu >= nr_cpu_ids)
281 			cpu = cpumask_next(-1, cpu_online_mask);
282 		if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
283 			cpumask_set_cpu(cpu, &cpus_chosen);
284 	}
285 
286 	/* Don't verify ourselves. */
287 	cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288 }
289 
290 static void clocksource_verify_one_cpu(void *csin)
291 {
292 	struct clocksource *cs = (struct clocksource *)csin;
293 
294 	csnow_mid = cs->read(cs);
295 }
296 
297 static void clocksource_verify_percpu(struct clocksource *cs)
298 {
299 	int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
300 	u64 csnow_begin, csnow_end;
301 	int cpu, testcpu;
302 	s64 delta;
303 
304 	if (verify_n_cpus == 0)
305 		return;
306 	cpumask_clear(&cpus_ahead);
307 	cpumask_clear(&cpus_behind);
308 	get_online_cpus();
309 	preempt_disable();
310 	clocksource_verify_choose_cpus();
311 	if (cpumask_weight(&cpus_chosen) == 0) {
312 		preempt_enable();
313 		put_online_cpus();
314 		pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
315 		return;
316 	}
317 	testcpu = smp_processor_id();
318 	pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
319 	for_each_cpu(cpu, &cpus_chosen) {
320 		if (cpu == testcpu)
321 			continue;
322 		csnow_begin = cs->read(cs);
323 		smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
324 		csnow_end = cs->read(cs);
325 		delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
326 		if (delta < 0)
327 			cpumask_set_cpu(cpu, &cpus_behind);
328 		delta = (csnow_end - csnow_mid) & cs->mask;
329 		if (delta < 0)
330 			cpumask_set_cpu(cpu, &cpus_ahead);
331 		delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
332 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
333 		if (cs_nsec > cs_nsec_max)
334 			cs_nsec_max = cs_nsec;
335 		if (cs_nsec < cs_nsec_min)
336 			cs_nsec_min = cs_nsec;
337 	}
338 	preempt_enable();
339 	put_online_cpus();
340 	if (!cpumask_empty(&cpus_ahead))
341 		pr_warn("        CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
342 			cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
343 	if (!cpumask_empty(&cpus_behind))
344 		pr_warn("        CPUs %*pbl behind CPU %d for clocksource %s.\n",
345 			cpumask_pr_args(&cpus_behind), testcpu, cs->name);
346 	if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
347 		pr_warn("        CPU %d check durations %lldns - %lldns for clocksource %s.\n",
348 			testcpu, cs_nsec_min, cs_nsec_max, cs->name);
349 }
350 
351 static void clocksource_watchdog(struct timer_list *unused)
352 {
353 	u64 csnow, wdnow, cslast, wdlast, delta;
354 	int next_cpu, reset_pending;
355 	int64_t wd_nsec, cs_nsec;
356 	struct clocksource *cs;
357 	u32 md;
358 
359 	spin_lock(&watchdog_lock);
360 	if (!watchdog_running)
361 		goto out;
362 
363 	reset_pending = atomic_read(&watchdog_reset_pending);
364 
365 	list_for_each_entry(cs, &watchdog_list, wd_list) {
366 
367 		/* Clocksource already marked unstable? */
368 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
369 			if (finished_booting)
370 				schedule_work(&watchdog_work);
371 			continue;
372 		}
373 
374 		if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
375 			/* Clock readout unreliable, so give it up. */
376 			__clocksource_unstable(cs);
377 			continue;
378 		}
379 
380 		/* Clocksource initialized ? */
381 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
382 		    atomic_read(&watchdog_reset_pending)) {
383 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
384 			cs->wd_last = wdnow;
385 			cs->cs_last = csnow;
386 			continue;
387 		}
388 
389 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
390 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
391 					     watchdog->shift);
392 
393 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
394 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
395 		wdlast = cs->wd_last; /* save these in case we print them */
396 		cslast = cs->cs_last;
397 		cs->cs_last = csnow;
398 		cs->wd_last = wdnow;
399 
400 		if (atomic_read(&watchdog_reset_pending))
401 			continue;
402 
403 		/* Check the deviation from the watchdog clocksource. */
404 		md = cs->uncertainty_margin + watchdog->uncertainty_margin;
405 		if (abs(cs_nsec - wd_nsec) > md) {
406 			pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
407 				smp_processor_id(), cs->name);
408 			pr_warn("                      '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
409 				watchdog->name, wdnow, wdlast, watchdog->mask);
410 			pr_warn("                      '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
411 				cs->name, csnow, cslast, cs->mask);
412 			if (curr_clocksource == cs)
413 				pr_warn("                      '%s' is current clocksource.\n", cs->name);
414 			else if (curr_clocksource)
415 				pr_warn("                      '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
416 			else
417 				pr_warn("                      No current clocksource.\n");
418 			__clocksource_unstable(cs);
419 			continue;
420 		}
421 
422 		if (cs == curr_clocksource && cs->tick_stable)
423 			cs->tick_stable(cs);
424 
425 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
426 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
427 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
428 			/* Mark it valid for high-res. */
429 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
430 
431 			/*
432 			 * clocksource_done_booting() will sort it if
433 			 * finished_booting is not set yet.
434 			 */
435 			if (!finished_booting)
436 				continue;
437 
438 			/*
439 			 * If this is not the current clocksource let
440 			 * the watchdog thread reselect it. Due to the
441 			 * change to high res this clocksource might
442 			 * be preferred now. If it is the current
443 			 * clocksource let the tick code know about
444 			 * that change.
445 			 */
446 			if (cs != curr_clocksource) {
447 				cs->flags |= CLOCK_SOURCE_RESELECT;
448 				schedule_work(&watchdog_work);
449 			} else {
450 				tick_clock_notify();
451 			}
452 		}
453 	}
454 
455 	/*
456 	 * We only clear the watchdog_reset_pending, when we did a
457 	 * full cycle through all clocksources.
458 	 */
459 	if (reset_pending)
460 		atomic_dec(&watchdog_reset_pending);
461 
462 	/*
463 	 * Cycle through CPUs to check if the CPUs stay synchronized
464 	 * to each other.
465 	 */
466 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
467 	if (next_cpu >= nr_cpu_ids)
468 		next_cpu = cpumask_first(cpu_online_mask);
469 
470 	/*
471 	 * Arm timer if not already pending: could race with concurrent
472 	 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
473 	 */
474 	if (!timer_pending(&watchdog_timer)) {
475 		watchdog_timer.expires += WATCHDOG_INTERVAL;
476 		add_timer_on(&watchdog_timer, next_cpu);
477 	}
478 out:
479 	spin_unlock(&watchdog_lock);
480 }
481 
482 static inline void clocksource_start_watchdog(void)
483 {
484 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
485 		return;
486 	timer_setup(&watchdog_timer, clocksource_watchdog, 0);
487 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
488 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
489 	watchdog_running = 1;
490 }
491 
492 static inline void clocksource_stop_watchdog(void)
493 {
494 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
495 		return;
496 	del_timer(&watchdog_timer);
497 	watchdog_running = 0;
498 }
499 
500 static inline void clocksource_reset_watchdog(void)
501 {
502 	struct clocksource *cs;
503 
504 	list_for_each_entry(cs, &watchdog_list, wd_list)
505 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
506 }
507 
508 static void clocksource_resume_watchdog(void)
509 {
510 	atomic_inc(&watchdog_reset_pending);
511 }
512 
513 static void clocksource_enqueue_watchdog(struct clocksource *cs)
514 {
515 	INIT_LIST_HEAD(&cs->wd_list);
516 
517 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
518 		/* cs is a clocksource to be watched. */
519 		list_add(&cs->wd_list, &watchdog_list);
520 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
521 	} else {
522 		/* cs is a watchdog. */
523 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
524 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
525 	}
526 }
527 
528 static void clocksource_select_watchdog(bool fallback)
529 {
530 	struct clocksource *cs, *old_wd;
531 	unsigned long flags;
532 
533 	spin_lock_irqsave(&watchdog_lock, flags);
534 	/* save current watchdog */
535 	old_wd = watchdog;
536 	if (fallback)
537 		watchdog = NULL;
538 
539 	list_for_each_entry(cs, &clocksource_list, list) {
540 		/* cs is a clocksource to be watched. */
541 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
542 			continue;
543 
544 		/* Skip current if we were requested for a fallback. */
545 		if (fallback && cs == old_wd)
546 			continue;
547 
548 		/* Pick the best watchdog. */
549 		if (!watchdog || cs->rating > watchdog->rating)
550 			watchdog = cs;
551 	}
552 	/* If we failed to find a fallback restore the old one. */
553 	if (!watchdog)
554 		watchdog = old_wd;
555 
556 	/* If we changed the watchdog we need to reset cycles. */
557 	if (watchdog != old_wd)
558 		clocksource_reset_watchdog();
559 
560 	/* Check if the watchdog timer needs to be started. */
561 	clocksource_start_watchdog();
562 	spin_unlock_irqrestore(&watchdog_lock, flags);
563 }
564 
565 static void clocksource_dequeue_watchdog(struct clocksource *cs)
566 {
567 	if (cs != watchdog) {
568 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
569 			/* cs is a watched clocksource. */
570 			list_del_init(&cs->wd_list);
571 			/* Check if the watchdog timer needs to be stopped. */
572 			clocksource_stop_watchdog();
573 		}
574 	}
575 }
576 
577 static int __clocksource_watchdog_kthread(void)
578 {
579 	struct clocksource *cs, *tmp;
580 	unsigned long flags;
581 	int select = 0;
582 
583 	/* Do any required per-CPU skew verification. */
584 	if (curr_clocksource &&
585 	    curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
586 	    curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
587 		clocksource_verify_percpu(curr_clocksource);
588 
589 	spin_lock_irqsave(&watchdog_lock, flags);
590 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
591 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
592 			list_del_init(&cs->wd_list);
593 			__clocksource_change_rating(cs, 0);
594 			select = 1;
595 		}
596 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
597 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
598 			select = 1;
599 		}
600 	}
601 	/* Check if the watchdog timer needs to be stopped. */
602 	clocksource_stop_watchdog();
603 	spin_unlock_irqrestore(&watchdog_lock, flags);
604 
605 	return select;
606 }
607 
608 static int clocksource_watchdog_kthread(void *data)
609 {
610 	mutex_lock(&clocksource_mutex);
611 	if (__clocksource_watchdog_kthread())
612 		clocksource_select();
613 	mutex_unlock(&clocksource_mutex);
614 	return 0;
615 }
616 
617 static bool clocksource_is_watchdog(struct clocksource *cs)
618 {
619 	return cs == watchdog;
620 }
621 
622 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
623 
624 static void clocksource_enqueue_watchdog(struct clocksource *cs)
625 {
626 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
627 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
628 }
629 
630 static void clocksource_select_watchdog(bool fallback) { }
631 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
632 static inline void clocksource_resume_watchdog(void) { }
633 static inline int __clocksource_watchdog_kthread(void) { return 0; }
634 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
635 void clocksource_mark_unstable(struct clocksource *cs) { }
636 
637 static inline void clocksource_watchdog_lock(unsigned long *flags) { }
638 static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
639 
640 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
641 
642 static bool clocksource_is_suspend(struct clocksource *cs)
643 {
644 	return cs == suspend_clocksource;
645 }
646 
647 static void __clocksource_suspend_select(struct clocksource *cs)
648 {
649 	/*
650 	 * Skip the clocksource which will be stopped in suspend state.
651 	 */
652 	if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
653 		return;
654 
655 	/*
656 	 * The nonstop clocksource can be selected as the suspend clocksource to
657 	 * calculate the suspend time, so it should not supply suspend/resume
658 	 * interfaces to suspend the nonstop clocksource when system suspends.
659 	 */
660 	if (cs->suspend || cs->resume) {
661 		pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
662 			cs->name);
663 	}
664 
665 	/* Pick the best rating. */
666 	if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
667 		suspend_clocksource = cs;
668 }
669 
670 /**
671  * clocksource_suspend_select - Select the best clocksource for suspend timing
672  * @fallback:	if select a fallback clocksource
673  */
674 static void clocksource_suspend_select(bool fallback)
675 {
676 	struct clocksource *cs, *old_suspend;
677 
678 	old_suspend = suspend_clocksource;
679 	if (fallback)
680 		suspend_clocksource = NULL;
681 
682 	list_for_each_entry(cs, &clocksource_list, list) {
683 		/* Skip current if we were requested for a fallback. */
684 		if (fallback && cs == old_suspend)
685 			continue;
686 
687 		__clocksource_suspend_select(cs);
688 	}
689 }
690 
691 /**
692  * clocksource_start_suspend_timing - Start measuring the suspend timing
693  * @cs:			current clocksource from timekeeping
694  * @start_cycles:	current cycles from timekeeping
695  *
696  * This function will save the start cycle values of suspend timer to calculate
697  * the suspend time when resuming system.
698  *
699  * This function is called late in the suspend process from timekeeping_suspend(),
700  * that means processes are frozen, non-boot cpus and interrupts are disabled
701  * now. It is therefore possible to start the suspend timer without taking the
702  * clocksource mutex.
703  */
704 void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
705 {
706 	if (!suspend_clocksource)
707 		return;
708 
709 	/*
710 	 * If current clocksource is the suspend timer, we should use the
711 	 * tkr_mono.cycle_last value as suspend_start to avoid same reading
712 	 * from suspend timer.
713 	 */
714 	if (clocksource_is_suspend(cs)) {
715 		suspend_start = start_cycles;
716 		return;
717 	}
718 
719 	if (suspend_clocksource->enable &&
720 	    suspend_clocksource->enable(suspend_clocksource)) {
721 		pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
722 		return;
723 	}
724 
725 	suspend_start = suspend_clocksource->read(suspend_clocksource);
726 }
727 
728 /**
729  * clocksource_stop_suspend_timing - Stop measuring the suspend timing
730  * @cs:		current clocksource from timekeeping
731  * @cycle_now:	current cycles from timekeeping
732  *
733  * This function will calculate the suspend time from suspend timer.
734  *
735  * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
736  *
737  * This function is called early in the resume process from timekeeping_resume(),
738  * that means there is only one cpu, no processes are running and the interrupts
739  * are disabled. It is therefore possible to stop the suspend timer without
740  * taking the clocksource mutex.
741  */
742 u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
743 {
744 	u64 now, delta, nsec = 0;
745 
746 	if (!suspend_clocksource)
747 		return 0;
748 
749 	/*
750 	 * If current clocksource is the suspend timer, we should use the
751 	 * tkr_mono.cycle_last value from timekeeping as current cycle to
752 	 * avoid same reading from suspend timer.
753 	 */
754 	if (clocksource_is_suspend(cs))
755 		now = cycle_now;
756 	else
757 		now = suspend_clocksource->read(suspend_clocksource);
758 
759 	if (now > suspend_start) {
760 		delta = clocksource_delta(now, suspend_start,
761 					  suspend_clocksource->mask);
762 		nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
763 				       suspend_clocksource->shift);
764 	}
765 
766 	/*
767 	 * Disable the suspend timer to save power if current clocksource is
768 	 * not the suspend timer.
769 	 */
770 	if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
771 		suspend_clocksource->disable(suspend_clocksource);
772 
773 	return nsec;
774 }
775 
776 /**
777  * clocksource_suspend - suspend the clocksource(s)
778  */
779 void clocksource_suspend(void)
780 {
781 	struct clocksource *cs;
782 
783 	list_for_each_entry_reverse(cs, &clocksource_list, list)
784 		if (cs->suspend)
785 			cs->suspend(cs);
786 }
787 
788 /**
789  * clocksource_resume - resume the clocksource(s)
790  */
791 void clocksource_resume(void)
792 {
793 	struct clocksource *cs;
794 
795 	list_for_each_entry(cs, &clocksource_list, list)
796 		if (cs->resume)
797 			cs->resume(cs);
798 
799 	clocksource_resume_watchdog();
800 }
801 
802 /**
803  * clocksource_touch_watchdog - Update watchdog
804  *
805  * Update the watchdog after exception contexts such as kgdb so as not
806  * to incorrectly trip the watchdog. This might fail when the kernel
807  * was stopped in code which holds watchdog_lock.
808  */
809 void clocksource_touch_watchdog(void)
810 {
811 	clocksource_resume_watchdog();
812 }
813 
814 /**
815  * clocksource_max_adjustment- Returns max adjustment amount
816  * @cs:         Pointer to clocksource
817  *
818  */
819 static u32 clocksource_max_adjustment(struct clocksource *cs)
820 {
821 	u64 ret;
822 	/*
823 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
824 	 */
825 	ret = (u64)cs->mult * 11;
826 	do_div(ret,100);
827 	return (u32)ret;
828 }
829 
830 /**
831  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
832  * @mult:	cycle to nanosecond multiplier
833  * @shift:	cycle to nanosecond divisor (power of two)
834  * @maxadj:	maximum adjustment value to mult (~11%)
835  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
836  * @max_cyc:	maximum cycle value before potential overflow (does not include
837  *		any safety margin)
838  *
839  * NOTE: This function includes a safety margin of 50%, in other words, we
840  * return half the number of nanoseconds the hardware counter can technically
841  * cover. This is done so that we can potentially detect problems caused by
842  * delayed timers or bad hardware, which might result in time intervals that
843  * are larger than what the math used can handle without overflows.
844  */
845 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
846 {
847 	u64 max_nsecs, max_cycles;
848 
849 	/*
850 	 * Calculate the maximum number of cycles that we can pass to the
851 	 * cyc2ns() function without overflowing a 64-bit result.
852 	 */
853 	max_cycles = ULLONG_MAX;
854 	do_div(max_cycles, mult+maxadj);
855 
856 	/*
857 	 * The actual maximum number of cycles we can defer the clocksource is
858 	 * determined by the minimum of max_cycles and mask.
859 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
860 	 * too long if there's a large negative adjustment.
861 	 */
862 	max_cycles = min(max_cycles, mask);
863 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
864 
865 	/* return the max_cycles value as well if requested */
866 	if (max_cyc)
867 		*max_cyc = max_cycles;
868 
869 	/* Return 50% of the actual maximum, so we can detect bad values */
870 	max_nsecs >>= 1;
871 
872 	return max_nsecs;
873 }
874 
875 /**
876  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
877  * @cs:         Pointer to clocksource to be updated
878  *
879  */
880 static inline void clocksource_update_max_deferment(struct clocksource *cs)
881 {
882 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
883 						cs->maxadj, cs->mask,
884 						&cs->max_cycles);
885 }
886 
887 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
888 {
889 	struct clocksource *cs;
890 
891 	if (!finished_booting || list_empty(&clocksource_list))
892 		return NULL;
893 
894 	/*
895 	 * We pick the clocksource with the highest rating. If oneshot
896 	 * mode is active, we pick the highres valid clocksource with
897 	 * the best rating.
898 	 */
899 	list_for_each_entry(cs, &clocksource_list, list) {
900 		if (skipcur && cs == curr_clocksource)
901 			continue;
902 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
903 			continue;
904 		return cs;
905 	}
906 	return NULL;
907 }
908 
909 static void __clocksource_select(bool skipcur)
910 {
911 	bool oneshot = tick_oneshot_mode_active();
912 	struct clocksource *best, *cs;
913 
914 	/* Find the best suitable clocksource */
915 	best = clocksource_find_best(oneshot, skipcur);
916 	if (!best)
917 		return;
918 
919 	if (!strlen(override_name))
920 		goto found;
921 
922 	/* Check for the override clocksource. */
923 	list_for_each_entry(cs, &clocksource_list, list) {
924 		if (skipcur && cs == curr_clocksource)
925 			continue;
926 		if (strcmp(cs->name, override_name) != 0)
927 			continue;
928 		/*
929 		 * Check to make sure we don't switch to a non-highres
930 		 * capable clocksource if the tick code is in oneshot
931 		 * mode (highres or nohz)
932 		 */
933 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
934 			/* Override clocksource cannot be used. */
935 			if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
936 				pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
937 					cs->name);
938 				override_name[0] = 0;
939 			} else {
940 				/*
941 				 * The override cannot be currently verified.
942 				 * Deferring to let the watchdog check.
943 				 */
944 				pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
945 					cs->name);
946 			}
947 		} else
948 			/* Override clocksource can be used. */
949 			best = cs;
950 		break;
951 	}
952 
953 found:
954 	if (curr_clocksource != best && !timekeeping_notify(best)) {
955 		pr_info("Switched to clocksource %s\n", best->name);
956 		curr_clocksource = best;
957 	}
958 }
959 
960 /**
961  * clocksource_select - Select the best clocksource available
962  *
963  * Private function. Must hold clocksource_mutex when called.
964  *
965  * Select the clocksource with the best rating, or the clocksource,
966  * which is selected by userspace override.
967  */
968 static void clocksource_select(void)
969 {
970 	__clocksource_select(false);
971 }
972 
973 static void clocksource_select_fallback(void)
974 {
975 	__clocksource_select(true);
976 }
977 
978 /*
979  * clocksource_done_booting - Called near the end of core bootup
980  *
981  * Hack to avoid lots of clocksource churn at boot time.
982  * We use fs_initcall because we want this to start before
983  * device_initcall but after subsys_initcall.
984  */
985 static int __init clocksource_done_booting(void)
986 {
987 	mutex_lock(&clocksource_mutex);
988 	curr_clocksource = clocksource_default_clock();
989 	finished_booting = 1;
990 	/*
991 	 * Run the watchdog first to eliminate unstable clock sources
992 	 */
993 	__clocksource_watchdog_kthread();
994 	clocksource_select();
995 	mutex_unlock(&clocksource_mutex);
996 	return 0;
997 }
998 fs_initcall(clocksource_done_booting);
999 
1000 /*
1001  * Enqueue the clocksource sorted by rating
1002  */
1003 static void clocksource_enqueue(struct clocksource *cs)
1004 {
1005 	struct list_head *entry = &clocksource_list;
1006 	struct clocksource *tmp;
1007 
1008 	list_for_each_entry(tmp, &clocksource_list, list) {
1009 		/* Keep track of the place, where to insert */
1010 		if (tmp->rating < cs->rating)
1011 			break;
1012 		entry = &tmp->list;
1013 	}
1014 	list_add(&cs->list, entry);
1015 }
1016 
1017 /**
1018  * __clocksource_update_freq_scale - Used update clocksource with new freq
1019  * @cs:		clocksource to be registered
1020  * @scale:	Scale factor multiplied against freq to get clocksource hz
1021  * @freq:	clocksource frequency (cycles per second) divided by scale
1022  *
1023  * This should only be called from the clocksource->enable() method.
1024  *
1025  * This *SHOULD NOT* be called directly! Please use the
1026  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1027  * functions.
1028  */
1029 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1030 {
1031 	u64 sec;
1032 
1033 	/*
1034 	 * Default clocksources are *special* and self-define their mult/shift.
1035 	 * But, you're not special, so you should specify a freq value.
1036 	 */
1037 	if (freq) {
1038 		/*
1039 		 * Calc the maximum number of seconds which we can run before
1040 		 * wrapping around. For clocksources which have a mask > 32-bit
1041 		 * we need to limit the max sleep time to have a good
1042 		 * conversion precision. 10 minutes is still a reasonable
1043 		 * amount. That results in a shift value of 24 for a
1044 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1045 		 * ~ 0.06ppm granularity for NTP.
1046 		 */
1047 		sec = cs->mask;
1048 		do_div(sec, freq);
1049 		do_div(sec, scale);
1050 		if (!sec)
1051 			sec = 1;
1052 		else if (sec > 600 && cs->mask > UINT_MAX)
1053 			sec = 600;
1054 
1055 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1056 				       NSEC_PER_SEC / scale, sec * scale);
1057 	}
1058 
1059 	/*
1060 	 * If the uncertainty margin is not specified, calculate it.
1061 	 * If both scale and freq are non-zero, calculate the clock
1062 	 * period, but bound below at 2*WATCHDOG_MAX_SKEW.  However,
1063 	 * if either of scale or freq is zero, be very conservative and
1064 	 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1065 	 * uncertainty margin.  Allow stupidly small uncertainty margins
1066 	 * to be specified by the caller for testing purposes, but warn
1067 	 * to discourage production use of this capability.
1068 	 */
1069 	if (scale && freq && !cs->uncertainty_margin) {
1070 		cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1071 		if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1072 			cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1073 	} else if (!cs->uncertainty_margin) {
1074 		cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1075 	}
1076 	WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1077 
1078 	/*
1079 	 * Ensure clocksources that have large 'mult' values don't overflow
1080 	 * when adjusted.
1081 	 */
1082 	cs->maxadj = clocksource_max_adjustment(cs);
1083 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
1084 		|| (cs->mult - cs->maxadj > cs->mult))) {
1085 		cs->mult >>= 1;
1086 		cs->shift--;
1087 		cs->maxadj = clocksource_max_adjustment(cs);
1088 	}
1089 
1090 	/*
1091 	 * Only warn for *special* clocksources that self-define
1092 	 * their mult/shift values and don't specify a freq.
1093 	 */
1094 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1095 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1096 		cs->name);
1097 
1098 	clocksource_update_max_deferment(cs);
1099 
1100 	pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1101 		cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1102 }
1103 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1104 
1105 /**
1106  * __clocksource_register_scale - Used to install new clocksources
1107  * @cs:		clocksource to be registered
1108  * @scale:	Scale factor multiplied against freq to get clocksource hz
1109  * @freq:	clocksource frequency (cycles per second) divided by scale
1110  *
1111  * Returns -EBUSY if registration fails, zero otherwise.
1112  *
1113  * This *SHOULD NOT* be called directly! Please use the
1114  * clocksource_register_hz() or clocksource_register_khz helper functions.
1115  */
1116 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1117 {
1118 	unsigned long flags;
1119 
1120 	clocksource_arch_init(cs);
1121 
1122 	if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1123 		cs->id = CSID_GENERIC;
1124 	if (cs->vdso_clock_mode < 0 ||
1125 	    cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1126 		pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1127 			cs->name, cs->vdso_clock_mode);
1128 		cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1129 	}
1130 
1131 	/* Initialize mult/shift and max_idle_ns */
1132 	__clocksource_update_freq_scale(cs, scale, freq);
1133 
1134 	/* Add clocksource to the clocksource list */
1135 	mutex_lock(&clocksource_mutex);
1136 
1137 	clocksource_watchdog_lock(&flags);
1138 	clocksource_enqueue(cs);
1139 	clocksource_enqueue_watchdog(cs);
1140 	clocksource_watchdog_unlock(&flags);
1141 
1142 	clocksource_select();
1143 	clocksource_select_watchdog(false);
1144 	__clocksource_suspend_select(cs);
1145 	mutex_unlock(&clocksource_mutex);
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1149 
1150 static void __clocksource_change_rating(struct clocksource *cs, int rating)
1151 {
1152 	list_del(&cs->list);
1153 	cs->rating = rating;
1154 	clocksource_enqueue(cs);
1155 }
1156 
1157 /**
1158  * clocksource_change_rating - Change the rating of a registered clocksource
1159  * @cs:		clocksource to be changed
1160  * @rating:	new rating
1161  */
1162 void clocksource_change_rating(struct clocksource *cs, int rating)
1163 {
1164 	unsigned long flags;
1165 
1166 	mutex_lock(&clocksource_mutex);
1167 	clocksource_watchdog_lock(&flags);
1168 	__clocksource_change_rating(cs, rating);
1169 	clocksource_watchdog_unlock(&flags);
1170 
1171 	clocksource_select();
1172 	clocksource_select_watchdog(false);
1173 	clocksource_suspend_select(false);
1174 	mutex_unlock(&clocksource_mutex);
1175 }
1176 EXPORT_SYMBOL(clocksource_change_rating);
1177 
1178 /*
1179  * Unbind clocksource @cs. Called with clocksource_mutex held
1180  */
1181 static int clocksource_unbind(struct clocksource *cs)
1182 {
1183 	unsigned long flags;
1184 
1185 	if (clocksource_is_watchdog(cs)) {
1186 		/* Select and try to install a replacement watchdog. */
1187 		clocksource_select_watchdog(true);
1188 		if (clocksource_is_watchdog(cs))
1189 			return -EBUSY;
1190 	}
1191 
1192 	if (cs == curr_clocksource) {
1193 		/* Select and try to install a replacement clock source */
1194 		clocksource_select_fallback();
1195 		if (curr_clocksource == cs)
1196 			return -EBUSY;
1197 	}
1198 
1199 	if (clocksource_is_suspend(cs)) {
1200 		/*
1201 		 * Select and try to install a replacement suspend clocksource.
1202 		 * If no replacement suspend clocksource, we will just let the
1203 		 * clocksource go and have no suspend clocksource.
1204 		 */
1205 		clocksource_suspend_select(true);
1206 	}
1207 
1208 	clocksource_watchdog_lock(&flags);
1209 	clocksource_dequeue_watchdog(cs);
1210 	list_del_init(&cs->list);
1211 	clocksource_watchdog_unlock(&flags);
1212 
1213 	return 0;
1214 }
1215 
1216 /**
1217  * clocksource_unregister - remove a registered clocksource
1218  * @cs:	clocksource to be unregistered
1219  */
1220 int clocksource_unregister(struct clocksource *cs)
1221 {
1222 	int ret = 0;
1223 
1224 	mutex_lock(&clocksource_mutex);
1225 	if (!list_empty(&cs->list))
1226 		ret = clocksource_unbind(cs);
1227 	mutex_unlock(&clocksource_mutex);
1228 	return ret;
1229 }
1230 EXPORT_SYMBOL(clocksource_unregister);
1231 
1232 #ifdef CONFIG_SYSFS
1233 /**
1234  * current_clocksource_show - sysfs interface for current clocksource
1235  * @dev:	unused
1236  * @attr:	unused
1237  * @buf:	char buffer to be filled with clocksource list
1238  *
1239  * Provides sysfs interface for listing current clocksource.
1240  */
1241 static ssize_t current_clocksource_show(struct device *dev,
1242 					struct device_attribute *attr,
1243 					char *buf)
1244 {
1245 	ssize_t count = 0;
1246 
1247 	mutex_lock(&clocksource_mutex);
1248 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1249 	mutex_unlock(&clocksource_mutex);
1250 
1251 	return count;
1252 }
1253 
1254 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1255 {
1256 	size_t ret = cnt;
1257 
1258 	/* strings from sysfs write are not 0 terminated! */
1259 	if (!cnt || cnt >= CS_NAME_LEN)
1260 		return -EINVAL;
1261 
1262 	/* strip of \n: */
1263 	if (buf[cnt-1] == '\n')
1264 		cnt--;
1265 	if (cnt > 0)
1266 		memcpy(dst, buf, cnt);
1267 	dst[cnt] = 0;
1268 	return ret;
1269 }
1270 
1271 /**
1272  * current_clocksource_store - interface for manually overriding clocksource
1273  * @dev:	unused
1274  * @attr:	unused
1275  * @buf:	name of override clocksource
1276  * @count:	length of buffer
1277  *
1278  * Takes input from sysfs interface for manually overriding the default
1279  * clocksource selection.
1280  */
1281 static ssize_t current_clocksource_store(struct device *dev,
1282 					 struct device_attribute *attr,
1283 					 const char *buf, size_t count)
1284 {
1285 	ssize_t ret;
1286 
1287 	mutex_lock(&clocksource_mutex);
1288 
1289 	ret = sysfs_get_uname(buf, override_name, count);
1290 	if (ret >= 0)
1291 		clocksource_select();
1292 
1293 	mutex_unlock(&clocksource_mutex);
1294 
1295 	return ret;
1296 }
1297 static DEVICE_ATTR_RW(current_clocksource);
1298 
1299 /**
1300  * unbind_clocksource_store - interface for manually unbinding clocksource
1301  * @dev:	unused
1302  * @attr:	unused
1303  * @buf:	unused
1304  * @count:	length of buffer
1305  *
1306  * Takes input from sysfs interface for manually unbinding a clocksource.
1307  */
1308 static ssize_t unbind_clocksource_store(struct device *dev,
1309 					struct device_attribute *attr,
1310 					const char *buf, size_t count)
1311 {
1312 	struct clocksource *cs;
1313 	char name[CS_NAME_LEN];
1314 	ssize_t ret;
1315 
1316 	ret = sysfs_get_uname(buf, name, count);
1317 	if (ret < 0)
1318 		return ret;
1319 
1320 	ret = -ENODEV;
1321 	mutex_lock(&clocksource_mutex);
1322 	list_for_each_entry(cs, &clocksource_list, list) {
1323 		if (strcmp(cs->name, name))
1324 			continue;
1325 		ret = clocksource_unbind(cs);
1326 		break;
1327 	}
1328 	mutex_unlock(&clocksource_mutex);
1329 
1330 	return ret ? ret : count;
1331 }
1332 static DEVICE_ATTR_WO(unbind_clocksource);
1333 
1334 /**
1335  * available_clocksource_show - sysfs interface for listing clocksource
1336  * @dev:	unused
1337  * @attr:	unused
1338  * @buf:	char buffer to be filled with clocksource list
1339  *
1340  * Provides sysfs interface for listing registered clocksources
1341  */
1342 static ssize_t available_clocksource_show(struct device *dev,
1343 					  struct device_attribute *attr,
1344 					  char *buf)
1345 {
1346 	struct clocksource *src;
1347 	ssize_t count = 0;
1348 
1349 	mutex_lock(&clocksource_mutex);
1350 	list_for_each_entry(src, &clocksource_list, list) {
1351 		/*
1352 		 * Don't show non-HRES clocksource if the tick code is
1353 		 * in one shot mode (highres=on or nohz=on)
1354 		 */
1355 		if (!tick_oneshot_mode_active() ||
1356 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1357 			count += snprintf(buf + count,
1358 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1359 				  "%s ", src->name);
1360 	}
1361 	mutex_unlock(&clocksource_mutex);
1362 
1363 	count += snprintf(buf + count,
1364 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1365 
1366 	return count;
1367 }
1368 static DEVICE_ATTR_RO(available_clocksource);
1369 
1370 static struct attribute *clocksource_attrs[] = {
1371 	&dev_attr_current_clocksource.attr,
1372 	&dev_attr_unbind_clocksource.attr,
1373 	&dev_attr_available_clocksource.attr,
1374 	NULL
1375 };
1376 ATTRIBUTE_GROUPS(clocksource);
1377 
1378 static struct bus_type clocksource_subsys = {
1379 	.name = "clocksource",
1380 	.dev_name = "clocksource",
1381 };
1382 
1383 static struct device device_clocksource = {
1384 	.id	= 0,
1385 	.bus	= &clocksource_subsys,
1386 	.groups	= clocksource_groups,
1387 };
1388 
1389 static int __init init_clocksource_sysfs(void)
1390 {
1391 	int error = subsys_system_register(&clocksource_subsys, NULL);
1392 
1393 	if (!error)
1394 		error = device_register(&device_clocksource);
1395 
1396 	return error;
1397 }
1398 
1399 device_initcall(init_clocksource_sysfs);
1400 #endif /* CONFIG_SYSFS */
1401 
1402 /**
1403  * boot_override_clocksource - boot clock override
1404  * @str:	override name
1405  *
1406  * Takes a clocksource= boot argument and uses it
1407  * as the clocksource override name.
1408  */
1409 static int __init boot_override_clocksource(char* str)
1410 {
1411 	mutex_lock(&clocksource_mutex);
1412 	if (str)
1413 		strlcpy(override_name, str, sizeof(override_name));
1414 	mutex_unlock(&clocksource_mutex);
1415 	return 1;
1416 }
1417 
1418 __setup("clocksource=", boot_override_clocksource);
1419 
1420 /**
1421  * boot_override_clock - Compatibility layer for deprecated boot option
1422  * @str:	override name
1423  *
1424  * DEPRECATED! Takes a clock= boot argument and uses it
1425  * as the clocksource override name
1426  */
1427 static int __init boot_override_clock(char* str)
1428 {
1429 	if (!strcmp(str, "pmtmr")) {
1430 		pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1431 		return boot_override_clocksource("acpi_pm");
1432 	}
1433 	pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1434 	return boot_override_clocksource(str);
1435 }
1436 
1437 __setup("clock=", boot_override_clock);
1438