xref: /openbmc/linux/kernel/time/clocksource.c (revision 02b4e275)
1 /*
2  * linux/kernel/time/clocksource.c
3  *
4  * This file contains the functions which manage clocksource drivers.
5  *
6  * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  *
22  * TODO WishList:
23  *   o Allow clocksource drivers to be unregistered
24  */
25 
26 #include <linux/device.h>
27 #include <linux/clocksource.h>
28 #include <linux/init.h>
29 #include <linux/module.h>
30 #include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
31 #include <linux/tick.h>
32 #include <linux/kthread.h>
33 
34 #include "tick-internal.h"
35 #include "timekeeping_internal.h"
36 
37 /**
38  * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
39  * @mult:	pointer to mult variable
40  * @shift:	pointer to shift variable
41  * @from:	frequency to convert from
42  * @to:		frequency to convert to
43  * @maxsec:	guaranteed runtime conversion range in seconds
44  *
45  * The function evaluates the shift/mult pair for the scaled math
46  * operations of clocksources and clockevents.
47  *
48  * @to and @from are frequency values in HZ. For clock sources @to is
49  * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
50  * event @to is the counter frequency and @from is NSEC_PER_SEC.
51  *
52  * The @maxsec conversion range argument controls the time frame in
53  * seconds which must be covered by the runtime conversion with the
54  * calculated mult and shift factors. This guarantees that no 64bit
55  * overflow happens when the input value of the conversion is
56  * multiplied with the calculated mult factor. Larger ranges may
57  * reduce the conversion accuracy by chosing smaller mult and shift
58  * factors.
59  */
60 void
61 clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
62 {
63 	u64 tmp;
64 	u32 sft, sftacc= 32;
65 
66 	/*
67 	 * Calculate the shift factor which is limiting the conversion
68 	 * range:
69 	 */
70 	tmp = ((u64)maxsec * from) >> 32;
71 	while (tmp) {
72 		tmp >>=1;
73 		sftacc--;
74 	}
75 
76 	/*
77 	 * Find the conversion shift/mult pair which has the best
78 	 * accuracy and fits the maxsec conversion range:
79 	 */
80 	for (sft = 32; sft > 0; sft--) {
81 		tmp = (u64) to << sft;
82 		tmp += from / 2;
83 		do_div(tmp, from);
84 		if ((tmp >> sftacc) == 0)
85 			break;
86 	}
87 	*mult = tmp;
88 	*shift = sft;
89 }
90 
91 /*[Clocksource internal variables]---------
92  * curr_clocksource:
93  *	currently selected clocksource.
94  * clocksource_list:
95  *	linked list with the registered clocksources
96  * clocksource_mutex:
97  *	protects manipulations to curr_clocksource and the clocksource_list
98  * override_name:
99  *	Name of the user-specified clocksource.
100  */
101 static struct clocksource *curr_clocksource;
102 static LIST_HEAD(clocksource_list);
103 static DEFINE_MUTEX(clocksource_mutex);
104 static char override_name[CS_NAME_LEN];
105 static int finished_booting;
106 
107 #ifdef CONFIG_CLOCKSOURCE_WATCHDOG
108 static void clocksource_watchdog_work(struct work_struct *work);
109 static void clocksource_select(void);
110 
111 static LIST_HEAD(watchdog_list);
112 static struct clocksource *watchdog;
113 static struct timer_list watchdog_timer;
114 static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
115 static DEFINE_SPINLOCK(watchdog_lock);
116 static int watchdog_running;
117 static atomic_t watchdog_reset_pending;
118 
119 static int clocksource_watchdog_kthread(void *data);
120 static void __clocksource_change_rating(struct clocksource *cs, int rating);
121 
122 /*
123  * Interval: 0.5sec Threshold: 0.0625s
124  */
125 #define WATCHDOG_INTERVAL (HZ >> 1)
126 #define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
127 
128 static void clocksource_watchdog_work(struct work_struct *work)
129 {
130 	/*
131 	 * If kthread_run fails the next watchdog scan over the
132 	 * watchdog_list will find the unstable clock again.
133 	 */
134 	kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
135 }
136 
137 static void __clocksource_unstable(struct clocksource *cs)
138 {
139 	cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
140 	cs->flags |= CLOCK_SOURCE_UNSTABLE;
141 	if (finished_booting)
142 		schedule_work(&watchdog_work);
143 }
144 
145 /**
146  * clocksource_mark_unstable - mark clocksource unstable via watchdog
147  * @cs:		clocksource to be marked unstable
148  *
149  * This function is called instead of clocksource_change_rating from
150  * cpu hotplug code to avoid a deadlock between the clocksource mutex
151  * and the cpu hotplug mutex. It defers the update of the clocksource
152  * to the watchdog thread.
153  */
154 void clocksource_mark_unstable(struct clocksource *cs)
155 {
156 	unsigned long flags;
157 
158 	spin_lock_irqsave(&watchdog_lock, flags);
159 	if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
160 		if (list_empty(&cs->wd_list))
161 			list_add(&cs->wd_list, &watchdog_list);
162 		__clocksource_unstable(cs);
163 	}
164 	spin_unlock_irqrestore(&watchdog_lock, flags);
165 }
166 
167 static void clocksource_watchdog(unsigned long data)
168 {
169 	struct clocksource *cs;
170 	cycle_t csnow, wdnow, cslast, wdlast, delta;
171 	int64_t wd_nsec, cs_nsec;
172 	int next_cpu, reset_pending;
173 
174 	spin_lock(&watchdog_lock);
175 	if (!watchdog_running)
176 		goto out;
177 
178 	reset_pending = atomic_read(&watchdog_reset_pending);
179 
180 	list_for_each_entry(cs, &watchdog_list, wd_list) {
181 
182 		/* Clocksource already marked unstable? */
183 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
184 			if (finished_booting)
185 				schedule_work(&watchdog_work);
186 			continue;
187 		}
188 
189 		local_irq_disable();
190 		csnow = cs->read(cs);
191 		wdnow = watchdog->read(watchdog);
192 		local_irq_enable();
193 
194 		/* Clocksource initialized ? */
195 		if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
196 		    atomic_read(&watchdog_reset_pending)) {
197 			cs->flags |= CLOCK_SOURCE_WATCHDOG;
198 			cs->wd_last = wdnow;
199 			cs->cs_last = csnow;
200 			continue;
201 		}
202 
203 		delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
204 		wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
205 					     watchdog->shift);
206 
207 		delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
208 		cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
209 		wdlast = cs->wd_last; /* save these in case we print them */
210 		cslast = cs->cs_last;
211 		cs->cs_last = csnow;
212 		cs->wd_last = wdnow;
213 
214 		if (atomic_read(&watchdog_reset_pending))
215 			continue;
216 
217 		/* Check the deviation from the watchdog clocksource. */
218 		if ((abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD)) {
219 			pr_warn("timekeeping watchdog: Marking clocksource '%s' as unstable, because the skew is too large:\n", cs->name);
220 			pr_warn("	'%s' wd_now: %llx wd_last: %llx mask: %llx\n",
221 				watchdog->name, wdnow, wdlast, watchdog->mask);
222 			pr_warn("	'%s' cs_now: %llx cs_last: %llx mask: %llx\n",
223 				cs->name, csnow, cslast, cs->mask);
224 			__clocksource_unstable(cs);
225 			continue;
226 		}
227 
228 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
229 		    (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
230 		    (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
231 			/* Mark it valid for high-res. */
232 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
233 
234 			/*
235 			 * clocksource_done_booting() will sort it if
236 			 * finished_booting is not set yet.
237 			 */
238 			if (!finished_booting)
239 				continue;
240 
241 			/*
242 			 * If this is not the current clocksource let
243 			 * the watchdog thread reselect it. Due to the
244 			 * change to high res this clocksource might
245 			 * be preferred now. If it is the current
246 			 * clocksource let the tick code know about
247 			 * that change.
248 			 */
249 			if (cs != curr_clocksource) {
250 				cs->flags |= CLOCK_SOURCE_RESELECT;
251 				schedule_work(&watchdog_work);
252 			} else {
253 				tick_clock_notify();
254 			}
255 		}
256 	}
257 
258 	/*
259 	 * We only clear the watchdog_reset_pending, when we did a
260 	 * full cycle through all clocksources.
261 	 */
262 	if (reset_pending)
263 		atomic_dec(&watchdog_reset_pending);
264 
265 	/*
266 	 * Cycle through CPUs to check if the CPUs stay synchronized
267 	 * to each other.
268 	 */
269 	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
270 	if (next_cpu >= nr_cpu_ids)
271 		next_cpu = cpumask_first(cpu_online_mask);
272 	watchdog_timer.expires += WATCHDOG_INTERVAL;
273 	add_timer_on(&watchdog_timer, next_cpu);
274 out:
275 	spin_unlock(&watchdog_lock);
276 }
277 
278 static inline void clocksource_start_watchdog(void)
279 {
280 	if (watchdog_running || !watchdog || list_empty(&watchdog_list))
281 		return;
282 	init_timer(&watchdog_timer);
283 	watchdog_timer.function = clocksource_watchdog;
284 	watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
285 	add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
286 	watchdog_running = 1;
287 }
288 
289 static inline void clocksource_stop_watchdog(void)
290 {
291 	if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
292 		return;
293 	del_timer(&watchdog_timer);
294 	watchdog_running = 0;
295 }
296 
297 static inline void clocksource_reset_watchdog(void)
298 {
299 	struct clocksource *cs;
300 
301 	list_for_each_entry(cs, &watchdog_list, wd_list)
302 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
303 }
304 
305 static void clocksource_resume_watchdog(void)
306 {
307 	atomic_inc(&watchdog_reset_pending);
308 }
309 
310 static void clocksource_enqueue_watchdog(struct clocksource *cs)
311 {
312 	unsigned long flags;
313 
314 	spin_lock_irqsave(&watchdog_lock, flags);
315 	if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
316 		/* cs is a clocksource to be watched. */
317 		list_add(&cs->wd_list, &watchdog_list);
318 		cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
319 	} else {
320 		/* cs is a watchdog. */
321 		if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
322 			cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
323 		/* Pick the best watchdog. */
324 		if (!watchdog || cs->rating > watchdog->rating) {
325 			watchdog = cs;
326 			/* Reset watchdog cycles */
327 			clocksource_reset_watchdog();
328 		}
329 	}
330 	/* Check if the watchdog timer needs to be started. */
331 	clocksource_start_watchdog();
332 	spin_unlock_irqrestore(&watchdog_lock, flags);
333 }
334 
335 static void clocksource_dequeue_watchdog(struct clocksource *cs)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(&watchdog_lock, flags);
340 	if (cs != watchdog) {
341 		if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
342 			/* cs is a watched clocksource. */
343 			list_del_init(&cs->wd_list);
344 			/* Check if the watchdog timer needs to be stopped. */
345 			clocksource_stop_watchdog();
346 		}
347 	}
348 	spin_unlock_irqrestore(&watchdog_lock, flags);
349 }
350 
351 static int __clocksource_watchdog_kthread(void)
352 {
353 	struct clocksource *cs, *tmp;
354 	unsigned long flags;
355 	LIST_HEAD(unstable);
356 	int select = 0;
357 
358 	spin_lock_irqsave(&watchdog_lock, flags);
359 	list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
360 		if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
361 			list_del_init(&cs->wd_list);
362 			list_add(&cs->wd_list, &unstable);
363 			select = 1;
364 		}
365 		if (cs->flags & CLOCK_SOURCE_RESELECT) {
366 			cs->flags &= ~CLOCK_SOURCE_RESELECT;
367 			select = 1;
368 		}
369 	}
370 	/* Check if the watchdog timer needs to be stopped. */
371 	clocksource_stop_watchdog();
372 	spin_unlock_irqrestore(&watchdog_lock, flags);
373 
374 	/* Needs to be done outside of watchdog lock */
375 	list_for_each_entry_safe(cs, tmp, &unstable, wd_list) {
376 		list_del_init(&cs->wd_list);
377 		__clocksource_change_rating(cs, 0);
378 	}
379 	return select;
380 }
381 
382 static int clocksource_watchdog_kthread(void *data)
383 {
384 	mutex_lock(&clocksource_mutex);
385 	if (__clocksource_watchdog_kthread())
386 		clocksource_select();
387 	mutex_unlock(&clocksource_mutex);
388 	return 0;
389 }
390 
391 static bool clocksource_is_watchdog(struct clocksource *cs)
392 {
393 	return cs == watchdog;
394 }
395 
396 #else /* CONFIG_CLOCKSOURCE_WATCHDOG */
397 
398 static void clocksource_enqueue_watchdog(struct clocksource *cs)
399 {
400 	if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
401 		cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
402 }
403 
404 static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
405 static inline void clocksource_resume_watchdog(void) { }
406 static inline int __clocksource_watchdog_kthread(void) { return 0; }
407 static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
408 void clocksource_mark_unstable(struct clocksource *cs) { }
409 
410 #endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
411 
412 /**
413  * clocksource_suspend - suspend the clocksource(s)
414  */
415 void clocksource_suspend(void)
416 {
417 	struct clocksource *cs;
418 
419 	list_for_each_entry_reverse(cs, &clocksource_list, list)
420 		if (cs->suspend)
421 			cs->suspend(cs);
422 }
423 
424 /**
425  * clocksource_resume - resume the clocksource(s)
426  */
427 void clocksource_resume(void)
428 {
429 	struct clocksource *cs;
430 
431 	list_for_each_entry(cs, &clocksource_list, list)
432 		if (cs->resume)
433 			cs->resume(cs);
434 
435 	clocksource_resume_watchdog();
436 }
437 
438 /**
439  * clocksource_touch_watchdog - Update watchdog
440  *
441  * Update the watchdog after exception contexts such as kgdb so as not
442  * to incorrectly trip the watchdog. This might fail when the kernel
443  * was stopped in code which holds watchdog_lock.
444  */
445 void clocksource_touch_watchdog(void)
446 {
447 	clocksource_resume_watchdog();
448 }
449 
450 /**
451  * clocksource_max_adjustment- Returns max adjustment amount
452  * @cs:         Pointer to clocksource
453  *
454  */
455 static u32 clocksource_max_adjustment(struct clocksource *cs)
456 {
457 	u64 ret;
458 	/*
459 	 * We won't try to correct for more than 11% adjustments (110,000 ppm),
460 	 */
461 	ret = (u64)cs->mult * 11;
462 	do_div(ret,100);
463 	return (u32)ret;
464 }
465 
466 /**
467  * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
468  * @mult:	cycle to nanosecond multiplier
469  * @shift:	cycle to nanosecond divisor (power of two)
470  * @maxadj:	maximum adjustment value to mult (~11%)
471  * @mask:	bitmask for two's complement subtraction of non 64 bit counters
472  * @max_cyc:	maximum cycle value before potential overflow (does not include
473  *		any safety margin)
474  *
475  * NOTE: This function includes a safety margin of 50%, in other words, we
476  * return half the number of nanoseconds the hardware counter can technically
477  * cover. This is done so that we can potentially detect problems caused by
478  * delayed timers or bad hardware, which might result in time intervals that
479  * are larger then what the math used can handle without overflows.
480  */
481 u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
482 {
483 	u64 max_nsecs, max_cycles;
484 
485 	/*
486 	 * Calculate the maximum number of cycles that we can pass to the
487 	 * cyc2ns() function without overflowing a 64-bit result.
488 	 */
489 	max_cycles = ULLONG_MAX;
490 	do_div(max_cycles, mult+maxadj);
491 
492 	/*
493 	 * The actual maximum number of cycles we can defer the clocksource is
494 	 * determined by the minimum of max_cycles and mask.
495 	 * Note: Here we subtract the maxadj to make sure we don't sleep for
496 	 * too long if there's a large negative adjustment.
497 	 */
498 	max_cycles = min(max_cycles, mask);
499 	max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
500 
501 	/* return the max_cycles value as well if requested */
502 	if (max_cyc)
503 		*max_cyc = max_cycles;
504 
505 	/* Return 50% of the actual maximum, so we can detect bad values */
506 	max_nsecs >>= 1;
507 
508 	return max_nsecs;
509 }
510 
511 /**
512  * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
513  * @cs:         Pointer to clocksource to be updated
514  *
515  */
516 static inline void clocksource_update_max_deferment(struct clocksource *cs)
517 {
518 	cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
519 						cs->maxadj, cs->mask,
520 						&cs->max_cycles);
521 }
522 
523 #ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
524 
525 static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
526 {
527 	struct clocksource *cs;
528 
529 	if (!finished_booting || list_empty(&clocksource_list))
530 		return NULL;
531 
532 	/*
533 	 * We pick the clocksource with the highest rating. If oneshot
534 	 * mode is active, we pick the highres valid clocksource with
535 	 * the best rating.
536 	 */
537 	list_for_each_entry(cs, &clocksource_list, list) {
538 		if (skipcur && cs == curr_clocksource)
539 			continue;
540 		if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
541 			continue;
542 		return cs;
543 	}
544 	return NULL;
545 }
546 
547 static void __clocksource_select(bool skipcur)
548 {
549 	bool oneshot = tick_oneshot_mode_active();
550 	struct clocksource *best, *cs;
551 
552 	/* Find the best suitable clocksource */
553 	best = clocksource_find_best(oneshot, skipcur);
554 	if (!best)
555 		return;
556 
557 	/* Check for the override clocksource. */
558 	list_for_each_entry(cs, &clocksource_list, list) {
559 		if (skipcur && cs == curr_clocksource)
560 			continue;
561 		if (strcmp(cs->name, override_name) != 0)
562 			continue;
563 		/*
564 		 * Check to make sure we don't switch to a non-highres
565 		 * capable clocksource if the tick code is in oneshot
566 		 * mode (highres or nohz)
567 		 */
568 		if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
569 			/* Override clocksource cannot be used. */
570 			printk(KERN_WARNING "Override clocksource %s is not "
571 			       "HRT compatible. Cannot switch while in "
572 			       "HRT/NOHZ mode\n", cs->name);
573 			override_name[0] = 0;
574 		} else
575 			/* Override clocksource can be used. */
576 			best = cs;
577 		break;
578 	}
579 
580 	if (curr_clocksource != best && !timekeeping_notify(best)) {
581 		pr_info("Switched to clocksource %s\n", best->name);
582 		curr_clocksource = best;
583 	}
584 }
585 
586 /**
587  * clocksource_select - Select the best clocksource available
588  *
589  * Private function. Must hold clocksource_mutex when called.
590  *
591  * Select the clocksource with the best rating, or the clocksource,
592  * which is selected by userspace override.
593  */
594 static void clocksource_select(void)
595 {
596 	return __clocksource_select(false);
597 }
598 
599 static void clocksource_select_fallback(void)
600 {
601 	return __clocksource_select(true);
602 }
603 
604 #else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
605 
606 static inline void clocksource_select(void) { }
607 static inline void clocksource_select_fallback(void) { }
608 
609 #endif
610 
611 /*
612  * clocksource_done_booting - Called near the end of core bootup
613  *
614  * Hack to avoid lots of clocksource churn at boot time.
615  * We use fs_initcall because we want this to start before
616  * device_initcall but after subsys_initcall.
617  */
618 static int __init clocksource_done_booting(void)
619 {
620 	mutex_lock(&clocksource_mutex);
621 	curr_clocksource = clocksource_default_clock();
622 	finished_booting = 1;
623 	/*
624 	 * Run the watchdog first to eliminate unstable clock sources
625 	 */
626 	__clocksource_watchdog_kthread();
627 	clocksource_select();
628 	mutex_unlock(&clocksource_mutex);
629 	return 0;
630 }
631 fs_initcall(clocksource_done_booting);
632 
633 /*
634  * Enqueue the clocksource sorted by rating
635  */
636 static void clocksource_enqueue(struct clocksource *cs)
637 {
638 	struct list_head *entry = &clocksource_list;
639 	struct clocksource *tmp;
640 
641 	list_for_each_entry(tmp, &clocksource_list, list)
642 		/* Keep track of the place, where to insert */
643 		if (tmp->rating >= cs->rating)
644 			entry = &tmp->list;
645 	list_add(&cs->list, entry);
646 }
647 
648 /**
649  * __clocksource_update_freq_scale - Used update clocksource with new freq
650  * @cs:		clocksource to be registered
651  * @scale:	Scale factor multiplied against freq to get clocksource hz
652  * @freq:	clocksource frequency (cycles per second) divided by scale
653  *
654  * This should only be called from the clocksource->enable() method.
655  *
656  * This *SHOULD NOT* be called directly! Please use the
657  * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
658  * functions.
659  */
660 void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
661 {
662 	u64 sec;
663 
664 	/*
665 	 * Default clocksources are *special* and self-define their mult/shift.
666 	 * But, you're not special, so you should specify a freq value.
667 	 */
668 	if (freq) {
669 		/*
670 		 * Calc the maximum number of seconds which we can run before
671 		 * wrapping around. For clocksources which have a mask > 32-bit
672 		 * we need to limit the max sleep time to have a good
673 		 * conversion precision. 10 minutes is still a reasonable
674 		 * amount. That results in a shift value of 24 for a
675 		 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
676 		 * ~ 0.06ppm granularity for NTP.
677 		 */
678 		sec = cs->mask;
679 		do_div(sec, freq);
680 		do_div(sec, scale);
681 		if (!sec)
682 			sec = 1;
683 		else if (sec > 600 && cs->mask > UINT_MAX)
684 			sec = 600;
685 
686 		clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
687 				       NSEC_PER_SEC / scale, sec * scale);
688 	}
689 	/*
690 	 * Ensure clocksources that have large 'mult' values don't overflow
691 	 * when adjusted.
692 	 */
693 	cs->maxadj = clocksource_max_adjustment(cs);
694 	while (freq && ((cs->mult + cs->maxadj < cs->mult)
695 		|| (cs->mult - cs->maxadj > cs->mult))) {
696 		cs->mult >>= 1;
697 		cs->shift--;
698 		cs->maxadj = clocksource_max_adjustment(cs);
699 	}
700 
701 	/*
702 	 * Only warn for *special* clocksources that self-define
703 	 * their mult/shift values and don't specify a freq.
704 	 */
705 	WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
706 		"timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
707 		cs->name);
708 
709 	clocksource_update_max_deferment(cs);
710 
711 	pr_info("clocksource %s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
712 			cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
713 }
714 EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
715 
716 /**
717  * __clocksource_register_scale - Used to install new clocksources
718  * @cs:		clocksource to be registered
719  * @scale:	Scale factor multiplied against freq to get clocksource hz
720  * @freq:	clocksource frequency (cycles per second) divided by scale
721  *
722  * Returns -EBUSY if registration fails, zero otherwise.
723  *
724  * This *SHOULD NOT* be called directly! Please use the
725  * clocksource_register_hz() or clocksource_register_khz helper functions.
726  */
727 int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
728 {
729 
730 	/* Initialize mult/shift and max_idle_ns */
731 	__clocksource_update_freq_scale(cs, scale, freq);
732 
733 	/* Add clocksource to the clocksource list */
734 	mutex_lock(&clocksource_mutex);
735 	clocksource_enqueue(cs);
736 	clocksource_enqueue_watchdog(cs);
737 	clocksource_select();
738 	mutex_unlock(&clocksource_mutex);
739 	return 0;
740 }
741 EXPORT_SYMBOL_GPL(__clocksource_register_scale);
742 
743 static void __clocksource_change_rating(struct clocksource *cs, int rating)
744 {
745 	list_del(&cs->list);
746 	cs->rating = rating;
747 	clocksource_enqueue(cs);
748 }
749 
750 /**
751  * clocksource_change_rating - Change the rating of a registered clocksource
752  * @cs:		clocksource to be changed
753  * @rating:	new rating
754  */
755 void clocksource_change_rating(struct clocksource *cs, int rating)
756 {
757 	mutex_lock(&clocksource_mutex);
758 	__clocksource_change_rating(cs, rating);
759 	clocksource_select();
760 	mutex_unlock(&clocksource_mutex);
761 }
762 EXPORT_SYMBOL(clocksource_change_rating);
763 
764 /*
765  * Unbind clocksource @cs. Called with clocksource_mutex held
766  */
767 static int clocksource_unbind(struct clocksource *cs)
768 {
769 	/*
770 	 * I really can't convince myself to support this on hardware
771 	 * designed by lobotomized monkeys.
772 	 */
773 	if (clocksource_is_watchdog(cs))
774 		return -EBUSY;
775 
776 	if (cs == curr_clocksource) {
777 		/* Select and try to install a replacement clock source */
778 		clocksource_select_fallback();
779 		if (curr_clocksource == cs)
780 			return -EBUSY;
781 	}
782 	clocksource_dequeue_watchdog(cs);
783 	list_del_init(&cs->list);
784 	return 0;
785 }
786 
787 /**
788  * clocksource_unregister - remove a registered clocksource
789  * @cs:	clocksource to be unregistered
790  */
791 int clocksource_unregister(struct clocksource *cs)
792 {
793 	int ret = 0;
794 
795 	mutex_lock(&clocksource_mutex);
796 	if (!list_empty(&cs->list))
797 		ret = clocksource_unbind(cs);
798 	mutex_unlock(&clocksource_mutex);
799 	return ret;
800 }
801 EXPORT_SYMBOL(clocksource_unregister);
802 
803 #ifdef CONFIG_SYSFS
804 /**
805  * sysfs_show_current_clocksources - sysfs interface for current clocksource
806  * @dev:	unused
807  * @attr:	unused
808  * @buf:	char buffer to be filled with clocksource list
809  *
810  * Provides sysfs interface for listing current clocksource.
811  */
812 static ssize_t
813 sysfs_show_current_clocksources(struct device *dev,
814 				struct device_attribute *attr, char *buf)
815 {
816 	ssize_t count = 0;
817 
818 	mutex_lock(&clocksource_mutex);
819 	count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
820 	mutex_unlock(&clocksource_mutex);
821 
822 	return count;
823 }
824 
825 ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
826 {
827 	size_t ret = cnt;
828 
829 	/* strings from sysfs write are not 0 terminated! */
830 	if (!cnt || cnt >= CS_NAME_LEN)
831 		return -EINVAL;
832 
833 	/* strip of \n: */
834 	if (buf[cnt-1] == '\n')
835 		cnt--;
836 	if (cnt > 0)
837 		memcpy(dst, buf, cnt);
838 	dst[cnt] = 0;
839 	return ret;
840 }
841 
842 /**
843  * sysfs_override_clocksource - interface for manually overriding clocksource
844  * @dev:	unused
845  * @attr:	unused
846  * @buf:	name of override clocksource
847  * @count:	length of buffer
848  *
849  * Takes input from sysfs interface for manually overriding the default
850  * clocksource selection.
851  */
852 static ssize_t sysfs_override_clocksource(struct device *dev,
853 					  struct device_attribute *attr,
854 					  const char *buf, size_t count)
855 {
856 	ssize_t ret;
857 
858 	mutex_lock(&clocksource_mutex);
859 
860 	ret = sysfs_get_uname(buf, override_name, count);
861 	if (ret >= 0)
862 		clocksource_select();
863 
864 	mutex_unlock(&clocksource_mutex);
865 
866 	return ret;
867 }
868 
869 /**
870  * sysfs_unbind_current_clocksource - interface for manually unbinding clocksource
871  * @dev:	unused
872  * @attr:	unused
873  * @buf:	unused
874  * @count:	length of buffer
875  *
876  * Takes input from sysfs interface for manually unbinding a clocksource.
877  */
878 static ssize_t sysfs_unbind_clocksource(struct device *dev,
879 					struct device_attribute *attr,
880 					const char *buf, size_t count)
881 {
882 	struct clocksource *cs;
883 	char name[CS_NAME_LEN];
884 	ssize_t ret;
885 
886 	ret = sysfs_get_uname(buf, name, count);
887 	if (ret < 0)
888 		return ret;
889 
890 	ret = -ENODEV;
891 	mutex_lock(&clocksource_mutex);
892 	list_for_each_entry(cs, &clocksource_list, list) {
893 		if (strcmp(cs->name, name))
894 			continue;
895 		ret = clocksource_unbind(cs);
896 		break;
897 	}
898 	mutex_unlock(&clocksource_mutex);
899 
900 	return ret ? ret : count;
901 }
902 
903 /**
904  * sysfs_show_available_clocksources - sysfs interface for listing clocksource
905  * @dev:	unused
906  * @attr:	unused
907  * @buf:	char buffer to be filled with clocksource list
908  *
909  * Provides sysfs interface for listing registered clocksources
910  */
911 static ssize_t
912 sysfs_show_available_clocksources(struct device *dev,
913 				  struct device_attribute *attr,
914 				  char *buf)
915 {
916 	struct clocksource *src;
917 	ssize_t count = 0;
918 
919 	mutex_lock(&clocksource_mutex);
920 	list_for_each_entry(src, &clocksource_list, list) {
921 		/*
922 		 * Don't show non-HRES clocksource if the tick code is
923 		 * in one shot mode (highres=on or nohz=on)
924 		 */
925 		if (!tick_oneshot_mode_active() ||
926 		    (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
927 			count += snprintf(buf + count,
928 				  max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
929 				  "%s ", src->name);
930 	}
931 	mutex_unlock(&clocksource_mutex);
932 
933 	count += snprintf(buf + count,
934 			  max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
935 
936 	return count;
937 }
938 
939 /*
940  * Sysfs setup bits:
941  */
942 static DEVICE_ATTR(current_clocksource, 0644, sysfs_show_current_clocksources,
943 		   sysfs_override_clocksource);
944 
945 static DEVICE_ATTR(unbind_clocksource, 0200, NULL, sysfs_unbind_clocksource);
946 
947 static DEVICE_ATTR(available_clocksource, 0444,
948 		   sysfs_show_available_clocksources, NULL);
949 
950 static struct bus_type clocksource_subsys = {
951 	.name = "clocksource",
952 	.dev_name = "clocksource",
953 };
954 
955 static struct device device_clocksource = {
956 	.id	= 0,
957 	.bus	= &clocksource_subsys,
958 };
959 
960 static int __init init_clocksource_sysfs(void)
961 {
962 	int error = subsys_system_register(&clocksource_subsys, NULL);
963 
964 	if (!error)
965 		error = device_register(&device_clocksource);
966 	if (!error)
967 		error = device_create_file(
968 				&device_clocksource,
969 				&dev_attr_current_clocksource);
970 	if (!error)
971 		error = device_create_file(&device_clocksource,
972 					   &dev_attr_unbind_clocksource);
973 	if (!error)
974 		error = device_create_file(
975 				&device_clocksource,
976 				&dev_attr_available_clocksource);
977 	return error;
978 }
979 
980 device_initcall(init_clocksource_sysfs);
981 #endif /* CONFIG_SYSFS */
982 
983 /**
984  * boot_override_clocksource - boot clock override
985  * @str:	override name
986  *
987  * Takes a clocksource= boot argument and uses it
988  * as the clocksource override name.
989  */
990 static int __init boot_override_clocksource(char* str)
991 {
992 	mutex_lock(&clocksource_mutex);
993 	if (str)
994 		strlcpy(override_name, str, sizeof(override_name));
995 	mutex_unlock(&clocksource_mutex);
996 	return 1;
997 }
998 
999 __setup("clocksource=", boot_override_clocksource);
1000 
1001 /**
1002  * boot_override_clock - Compatibility layer for deprecated boot option
1003  * @str:	override name
1004  *
1005  * DEPRECATED! Takes a clock= boot argument and uses it
1006  * as the clocksource override name
1007  */
1008 static int __init boot_override_clock(char* str)
1009 {
1010 	if (!strcmp(str, "pmtmr")) {
1011 		printk("Warning: clock=pmtmr is deprecated. "
1012 			"Use clocksource=acpi_pm.\n");
1013 		return boot_override_clocksource("acpi_pm");
1014 	}
1015 	printk("Warning! clock= boot option is deprecated. "
1016 		"Use clocksource=xyz\n");
1017 	return boot_override_clocksource(str);
1018 }
1019 
1020 __setup("clock=", boot_override_clock);
1021