xref: /openbmc/linux/kernel/time/clockevents.c (revision e8f6f3b4)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 /**
98  * clockevents_set_mode - set the operating mode of a clock event device
99  * @dev:	device to modify
100  * @mode:	new mode
101  *
102  * Must be called with interrupts disabled !
103  */
104 void clockevents_set_mode(struct clock_event_device *dev,
105 				 enum clock_event_mode mode)
106 {
107 	if (dev->mode != mode) {
108 		dev->set_mode(mode, dev);
109 		dev->mode = mode;
110 
111 		/*
112 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
113 		 * on it, so fix it up and emit a warning:
114 		 */
115 		if (mode == CLOCK_EVT_MODE_ONESHOT) {
116 			if (unlikely(!dev->mult)) {
117 				dev->mult = 1;
118 				WARN_ON(1);
119 			}
120 		}
121 	}
122 }
123 
124 /**
125  * clockevents_shutdown - shutdown the device and clear next_event
126  * @dev:	device to shutdown
127  */
128 void clockevents_shutdown(struct clock_event_device *dev)
129 {
130 	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
131 	dev->next_event.tv64 = KTIME_MAX;
132 }
133 
134 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
135 
136 /* Limit min_delta to a jiffie */
137 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
138 
139 /**
140  * clockevents_increase_min_delta - raise minimum delta of a clock event device
141  * @dev:       device to increase the minimum delta
142  *
143  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
144  */
145 static int clockevents_increase_min_delta(struct clock_event_device *dev)
146 {
147 	/* Nothing to do if we already reached the limit */
148 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
149 		printk_deferred(KERN_WARNING
150 				"CE: Reprogramming failure. Giving up\n");
151 		dev->next_event.tv64 = KTIME_MAX;
152 		return -ETIME;
153 	}
154 
155 	if (dev->min_delta_ns < 5000)
156 		dev->min_delta_ns = 5000;
157 	else
158 		dev->min_delta_ns += dev->min_delta_ns >> 1;
159 
160 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
161 		dev->min_delta_ns = MIN_DELTA_LIMIT;
162 
163 	printk_deferred(KERN_WARNING
164 			"CE: %s increased min_delta_ns to %llu nsec\n",
165 			dev->name ? dev->name : "?",
166 			(unsigned long long) dev->min_delta_ns);
167 	return 0;
168 }
169 
170 /**
171  * clockevents_program_min_delta - Set clock event device to the minimum delay.
172  * @dev:	device to program
173  *
174  * Returns 0 on success, -ETIME when the retry loop failed.
175  */
176 static int clockevents_program_min_delta(struct clock_event_device *dev)
177 {
178 	unsigned long long clc;
179 	int64_t delta;
180 	int i;
181 
182 	for (i = 0;;) {
183 		delta = dev->min_delta_ns;
184 		dev->next_event = ktime_add_ns(ktime_get(), delta);
185 
186 		if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
187 			return 0;
188 
189 		dev->retries++;
190 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
191 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
192 			return 0;
193 
194 		if (++i > 2) {
195 			/*
196 			 * We tried 3 times to program the device with the
197 			 * given min_delta_ns. Try to increase the minimum
198 			 * delta, if that fails as well get out of here.
199 			 */
200 			if (clockevents_increase_min_delta(dev))
201 				return -ETIME;
202 			i = 0;
203 		}
204 	}
205 }
206 
207 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
208 
209 /**
210  * clockevents_program_min_delta - Set clock event device to the minimum delay.
211  * @dev:	device to program
212  *
213  * Returns 0 on success, -ETIME when the retry loop failed.
214  */
215 static int clockevents_program_min_delta(struct clock_event_device *dev)
216 {
217 	unsigned long long clc;
218 	int64_t delta;
219 
220 	delta = dev->min_delta_ns;
221 	dev->next_event = ktime_add_ns(ktime_get(), delta);
222 
223 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
224 		return 0;
225 
226 	dev->retries++;
227 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
228 	return dev->set_next_event((unsigned long) clc, dev);
229 }
230 
231 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
232 
233 /**
234  * clockevents_program_event - Reprogram the clock event device.
235  * @dev:	device to program
236  * @expires:	absolute expiry time (monotonic clock)
237  * @force:	program minimum delay if expires can not be set
238  *
239  * Returns 0 on success, -ETIME when the event is in the past.
240  */
241 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
242 			      bool force)
243 {
244 	unsigned long long clc;
245 	int64_t delta;
246 	int rc;
247 
248 	if (unlikely(expires.tv64 < 0)) {
249 		WARN_ON_ONCE(1);
250 		return -ETIME;
251 	}
252 
253 	dev->next_event = expires;
254 
255 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
256 		return 0;
257 
258 	/* Shortcut for clockevent devices that can deal with ktime. */
259 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
260 		return dev->set_next_ktime(expires, dev);
261 
262 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
263 	if (delta <= 0)
264 		return force ? clockevents_program_min_delta(dev) : -ETIME;
265 
266 	delta = min(delta, (int64_t) dev->max_delta_ns);
267 	delta = max(delta, (int64_t) dev->min_delta_ns);
268 
269 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
270 	rc = dev->set_next_event((unsigned long) clc, dev);
271 
272 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
273 }
274 
275 /*
276  * Called after a notify add to make devices available which were
277  * released from the notifier call.
278  */
279 static void clockevents_notify_released(void)
280 {
281 	struct clock_event_device *dev;
282 
283 	while (!list_empty(&clockevents_released)) {
284 		dev = list_entry(clockevents_released.next,
285 				 struct clock_event_device, list);
286 		list_del(&dev->list);
287 		list_add(&dev->list, &clockevent_devices);
288 		tick_check_new_device(dev);
289 	}
290 }
291 
292 /*
293  * Try to install a replacement clock event device
294  */
295 static int clockevents_replace(struct clock_event_device *ced)
296 {
297 	struct clock_event_device *dev, *newdev = NULL;
298 
299 	list_for_each_entry(dev, &clockevent_devices, list) {
300 		if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED)
301 			continue;
302 
303 		if (!tick_check_replacement(newdev, dev))
304 			continue;
305 
306 		if (!try_module_get(dev->owner))
307 			continue;
308 
309 		if (newdev)
310 			module_put(newdev->owner);
311 		newdev = dev;
312 	}
313 	if (newdev) {
314 		tick_install_replacement(newdev);
315 		list_del_init(&ced->list);
316 	}
317 	return newdev ? 0 : -EBUSY;
318 }
319 
320 /*
321  * Called with clockevents_mutex and clockevents_lock held
322  */
323 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
324 {
325 	/* Fast track. Device is unused */
326 	if (ced->mode == CLOCK_EVT_MODE_UNUSED) {
327 		list_del_init(&ced->list);
328 		return 0;
329 	}
330 
331 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
332 }
333 
334 /*
335  * SMP function call to unbind a device
336  */
337 static void __clockevents_unbind(void *arg)
338 {
339 	struct ce_unbind *cu = arg;
340 	int res;
341 
342 	raw_spin_lock(&clockevents_lock);
343 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
344 	if (res == -EAGAIN)
345 		res = clockevents_replace(cu->ce);
346 	cu->res = res;
347 	raw_spin_unlock(&clockevents_lock);
348 }
349 
350 /*
351  * Issues smp function call to unbind a per cpu device. Called with
352  * clockevents_mutex held.
353  */
354 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
355 {
356 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
357 
358 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
359 	return cu.res;
360 }
361 
362 /*
363  * Unbind a clockevents device.
364  */
365 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
366 {
367 	int ret;
368 
369 	mutex_lock(&clockevents_mutex);
370 	ret = clockevents_unbind(ced, cpu);
371 	mutex_unlock(&clockevents_mutex);
372 	return ret;
373 }
374 EXPORT_SYMBOL_GPL(clockevents_unbind);
375 
376 /**
377  * clockevents_register_device - register a clock event device
378  * @dev:	device to register
379  */
380 void clockevents_register_device(struct clock_event_device *dev)
381 {
382 	unsigned long flags;
383 
384 	BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
385 	if (!dev->cpumask) {
386 		WARN_ON(num_possible_cpus() > 1);
387 		dev->cpumask = cpumask_of(smp_processor_id());
388 	}
389 
390 	raw_spin_lock_irqsave(&clockevents_lock, flags);
391 
392 	list_add(&dev->list, &clockevent_devices);
393 	tick_check_new_device(dev);
394 	clockevents_notify_released();
395 
396 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
397 }
398 EXPORT_SYMBOL_GPL(clockevents_register_device);
399 
400 void clockevents_config(struct clock_event_device *dev, u32 freq)
401 {
402 	u64 sec;
403 
404 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
405 		return;
406 
407 	/*
408 	 * Calculate the maximum number of seconds we can sleep. Limit
409 	 * to 10 minutes for hardware which can program more than
410 	 * 32bit ticks so we still get reasonable conversion values.
411 	 */
412 	sec = dev->max_delta_ticks;
413 	do_div(sec, freq);
414 	if (!sec)
415 		sec = 1;
416 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
417 		sec = 600;
418 
419 	clockevents_calc_mult_shift(dev, freq, sec);
420 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
421 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
422 }
423 
424 /**
425  * clockevents_config_and_register - Configure and register a clock event device
426  * @dev:	device to register
427  * @freq:	The clock frequency
428  * @min_delta:	The minimum clock ticks to program in oneshot mode
429  * @max_delta:	The maximum clock ticks to program in oneshot mode
430  *
431  * min/max_delta can be 0 for devices which do not support oneshot mode.
432  */
433 void clockevents_config_and_register(struct clock_event_device *dev,
434 				     u32 freq, unsigned long min_delta,
435 				     unsigned long max_delta)
436 {
437 	dev->min_delta_ticks = min_delta;
438 	dev->max_delta_ticks = max_delta;
439 	clockevents_config(dev, freq);
440 	clockevents_register_device(dev);
441 }
442 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
443 
444 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
445 {
446 	clockevents_config(dev, freq);
447 
448 	if (dev->mode == CLOCK_EVT_MODE_ONESHOT)
449 		return clockevents_program_event(dev, dev->next_event, false);
450 
451 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
452 		dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
453 
454 	return 0;
455 }
456 
457 /**
458  * clockevents_update_freq - Update frequency and reprogram a clock event device.
459  * @dev:	device to modify
460  * @freq:	new device frequency
461  *
462  * Reconfigure and reprogram a clock event device in oneshot
463  * mode. Must be called on the cpu for which the device delivers per
464  * cpu timer events. If called for the broadcast device the core takes
465  * care of serialization.
466  *
467  * Returns 0 on success, -ETIME when the event is in the past.
468  */
469 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
470 {
471 	unsigned long flags;
472 	int ret;
473 
474 	local_irq_save(flags);
475 	ret = tick_broadcast_update_freq(dev, freq);
476 	if (ret == -ENODEV)
477 		ret = __clockevents_update_freq(dev, freq);
478 	local_irq_restore(flags);
479 	return ret;
480 }
481 
482 /*
483  * Noop handler when we shut down an event device
484  */
485 void clockevents_handle_noop(struct clock_event_device *dev)
486 {
487 }
488 
489 /**
490  * clockevents_exchange_device - release and request clock devices
491  * @old:	device to release (can be NULL)
492  * @new:	device to request (can be NULL)
493  *
494  * Called from the notifier chain. clockevents_lock is held already
495  */
496 void clockevents_exchange_device(struct clock_event_device *old,
497 				 struct clock_event_device *new)
498 {
499 	unsigned long flags;
500 
501 	local_irq_save(flags);
502 	/*
503 	 * Caller releases a clock event device. We queue it into the
504 	 * released list and do a notify add later.
505 	 */
506 	if (old) {
507 		module_put(old->owner);
508 		clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
509 		list_del(&old->list);
510 		list_add(&old->list, &clockevents_released);
511 	}
512 
513 	if (new) {
514 		BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
515 		clockevents_shutdown(new);
516 	}
517 	local_irq_restore(flags);
518 }
519 
520 /**
521  * clockevents_suspend - suspend clock devices
522  */
523 void clockevents_suspend(void)
524 {
525 	struct clock_event_device *dev;
526 
527 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
528 		if (dev->suspend)
529 			dev->suspend(dev);
530 }
531 
532 /**
533  * clockevents_resume - resume clock devices
534  */
535 void clockevents_resume(void)
536 {
537 	struct clock_event_device *dev;
538 
539 	list_for_each_entry(dev, &clockevent_devices, list)
540 		if (dev->resume)
541 			dev->resume(dev);
542 }
543 
544 #ifdef CONFIG_GENERIC_CLOCKEVENTS
545 /**
546  * clockevents_notify - notification about relevant events
547  * Returns 0 on success, any other value on error
548  */
549 int clockevents_notify(unsigned long reason, void *arg)
550 {
551 	struct clock_event_device *dev, *tmp;
552 	unsigned long flags;
553 	int cpu, ret = 0;
554 
555 	raw_spin_lock_irqsave(&clockevents_lock, flags);
556 
557 	switch (reason) {
558 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
559 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
560 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
561 		tick_broadcast_on_off(reason, arg);
562 		break;
563 
564 	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
565 	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
566 		ret = tick_broadcast_oneshot_control(reason);
567 		break;
568 
569 	case CLOCK_EVT_NOTIFY_CPU_DYING:
570 		tick_handover_do_timer(arg);
571 		break;
572 
573 	case CLOCK_EVT_NOTIFY_SUSPEND:
574 		tick_suspend();
575 		tick_suspend_broadcast();
576 		break;
577 
578 	case CLOCK_EVT_NOTIFY_RESUME:
579 		tick_resume();
580 		break;
581 
582 	case CLOCK_EVT_NOTIFY_CPU_DEAD:
583 		tick_shutdown_broadcast_oneshot(arg);
584 		tick_shutdown_broadcast(arg);
585 		tick_shutdown(arg);
586 		/*
587 		 * Unregister the clock event devices which were
588 		 * released from the users in the notify chain.
589 		 */
590 		list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
591 			list_del(&dev->list);
592 		/*
593 		 * Now check whether the CPU has left unused per cpu devices
594 		 */
595 		cpu = *((int *)arg);
596 		list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
597 			if (cpumask_test_cpu(cpu, dev->cpumask) &&
598 			    cpumask_weight(dev->cpumask) == 1 &&
599 			    !tick_is_broadcast_device(dev)) {
600 				BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
601 				list_del(&dev->list);
602 			}
603 		}
604 		break;
605 	default:
606 		break;
607 	}
608 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
609 	return ret;
610 }
611 EXPORT_SYMBOL_GPL(clockevents_notify);
612 
613 #ifdef CONFIG_SYSFS
614 struct bus_type clockevents_subsys = {
615 	.name		= "clockevents",
616 	.dev_name       = "clockevent",
617 };
618 
619 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
620 static struct tick_device *tick_get_tick_dev(struct device *dev);
621 
622 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
623 					   struct device_attribute *attr,
624 					   char *buf)
625 {
626 	struct tick_device *td;
627 	ssize_t count = 0;
628 
629 	raw_spin_lock_irq(&clockevents_lock);
630 	td = tick_get_tick_dev(dev);
631 	if (td && td->evtdev)
632 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
633 	raw_spin_unlock_irq(&clockevents_lock);
634 	return count;
635 }
636 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
637 
638 /* We don't support the abomination of removable broadcast devices */
639 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
640 				     struct device_attribute *attr,
641 				     const char *buf, size_t count)
642 {
643 	char name[CS_NAME_LEN];
644 	ssize_t ret = sysfs_get_uname(buf, name, count);
645 	struct clock_event_device *ce;
646 
647 	if (ret < 0)
648 		return ret;
649 
650 	ret = -ENODEV;
651 	mutex_lock(&clockevents_mutex);
652 	raw_spin_lock_irq(&clockevents_lock);
653 	list_for_each_entry(ce, &clockevent_devices, list) {
654 		if (!strcmp(ce->name, name)) {
655 			ret = __clockevents_try_unbind(ce, dev->id);
656 			break;
657 		}
658 	}
659 	raw_spin_unlock_irq(&clockevents_lock);
660 	/*
661 	 * We hold clockevents_mutex, so ce can't go away
662 	 */
663 	if (ret == -EAGAIN)
664 		ret = clockevents_unbind(ce, dev->id);
665 	mutex_unlock(&clockevents_mutex);
666 	return ret ? ret : count;
667 }
668 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
669 
670 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
671 static struct device tick_bc_dev = {
672 	.init_name	= "broadcast",
673 	.id		= 0,
674 	.bus		= &clockevents_subsys,
675 };
676 
677 static struct tick_device *tick_get_tick_dev(struct device *dev)
678 {
679 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
680 		&per_cpu(tick_cpu_device, dev->id);
681 }
682 
683 static __init int tick_broadcast_init_sysfs(void)
684 {
685 	int err = device_register(&tick_bc_dev);
686 
687 	if (!err)
688 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
689 	return err;
690 }
691 #else
692 static struct tick_device *tick_get_tick_dev(struct device *dev)
693 {
694 	return &per_cpu(tick_cpu_device, dev->id);
695 }
696 static inline int tick_broadcast_init_sysfs(void) { return 0; }
697 #endif
698 
699 static int __init tick_init_sysfs(void)
700 {
701 	int cpu;
702 
703 	for_each_possible_cpu(cpu) {
704 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
705 		int err;
706 
707 		dev->id = cpu;
708 		dev->bus = &clockevents_subsys;
709 		err = device_register(dev);
710 		if (!err)
711 			err = device_create_file(dev, &dev_attr_current_device);
712 		if (!err)
713 			err = device_create_file(dev, &dev_attr_unbind_device);
714 		if (err)
715 			return err;
716 	}
717 	return tick_broadcast_init_sysfs();
718 }
719 
720 static int __init clockevents_init_sysfs(void)
721 {
722 	int err = subsys_system_register(&clockevents_subsys, NULL);
723 
724 	if (!err)
725 		err = tick_init_sysfs();
726 	return err;
727 }
728 device_initcall(clockevents_init_sysfs);
729 #endif /* SYSFS */
730 
731 #endif /* GENERIC_CLOCK_EVENTS */
732