xref: /openbmc/linux/kernel/time/clockevents.c (revision d3597236)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 static int __clockevents_switch_state(struct clock_event_device *dev,
98 				      enum clock_event_state state)
99 {
100 	/* Transition with legacy set_mode() callback */
101 	if (dev->set_mode) {
102 		/* Legacy callback doesn't support new modes */
103 		if (state > CLOCK_EVT_STATE_ONESHOT)
104 			return -ENOSYS;
105 		/*
106 		 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107 		 * mapping until *_ONESHOT, and so a simple cast will work.
108 		 */
109 		dev->set_mode((enum clock_event_mode)state, dev);
110 		dev->mode = (enum clock_event_mode)state;
111 		return 0;
112 	}
113 
114 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115 		return 0;
116 
117 	/* Transition with new state-specific callbacks */
118 	switch (state) {
119 	case CLOCK_EVT_STATE_DETACHED:
120 		/* The clockevent device is getting replaced. Shut it down. */
121 
122 	case CLOCK_EVT_STATE_SHUTDOWN:
123 		return dev->set_state_shutdown(dev);
124 
125 	case CLOCK_EVT_STATE_PERIODIC:
126 		/* Core internal bug */
127 		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
128 			return -ENOSYS;
129 		return dev->set_state_periodic(dev);
130 
131 	case CLOCK_EVT_STATE_ONESHOT:
132 		/* Core internal bug */
133 		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
134 			return -ENOSYS;
135 		return dev->set_state_oneshot(dev);
136 
137 	case CLOCK_EVT_STATE_ONESHOT_STOPPED:
138 		/* Core internal bug */
139 		if (WARN_ONCE(!clockevent_state_oneshot(dev),
140 			      "Current state: %d\n",
141 			      clockevent_get_state(dev)))
142 			return -EINVAL;
143 
144 		if (dev->set_state_oneshot_stopped)
145 			return dev->set_state_oneshot_stopped(dev);
146 		else
147 			return -ENOSYS;
148 
149 	default:
150 		return -ENOSYS;
151 	}
152 }
153 
154 /**
155  * clockevents_switch_state - set the operating state of a clock event device
156  * @dev:	device to modify
157  * @state:	new state
158  *
159  * Must be called with interrupts disabled !
160  */
161 void clockevents_switch_state(struct clock_event_device *dev,
162 			      enum clock_event_state state)
163 {
164 	if (clockevent_get_state(dev) != state) {
165 		if (__clockevents_switch_state(dev, state))
166 			return;
167 
168 		clockevent_set_state(dev, state);
169 
170 		/*
171 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
172 		 * on it, so fix it up and emit a warning:
173 		 */
174 		if (clockevent_state_oneshot(dev)) {
175 			if (unlikely(!dev->mult)) {
176 				dev->mult = 1;
177 				WARN_ON(1);
178 			}
179 		}
180 	}
181 }
182 
183 /**
184  * clockevents_shutdown - shutdown the device and clear next_event
185  * @dev:	device to shutdown
186  */
187 void clockevents_shutdown(struct clock_event_device *dev)
188 {
189 	clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
190 	dev->next_event.tv64 = KTIME_MAX;
191 }
192 
193 /**
194  * clockevents_tick_resume -	Resume the tick device before using it again
195  * @dev:			device to resume
196  */
197 int clockevents_tick_resume(struct clock_event_device *dev)
198 {
199 	int ret = 0;
200 
201 	if (dev->set_mode) {
202 		dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
203 		dev->mode = CLOCK_EVT_MODE_RESUME;
204 	} else if (dev->tick_resume) {
205 		ret = dev->tick_resume(dev);
206 	}
207 
208 	return ret;
209 }
210 
211 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
212 
213 /* Limit min_delta to a jiffie */
214 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
215 
216 /**
217  * clockevents_increase_min_delta - raise minimum delta of a clock event device
218  * @dev:       device to increase the minimum delta
219  *
220  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
221  */
222 static int clockevents_increase_min_delta(struct clock_event_device *dev)
223 {
224 	/* Nothing to do if we already reached the limit */
225 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
226 		printk_deferred(KERN_WARNING
227 				"CE: Reprogramming failure. Giving up\n");
228 		dev->next_event.tv64 = KTIME_MAX;
229 		return -ETIME;
230 	}
231 
232 	if (dev->min_delta_ns < 5000)
233 		dev->min_delta_ns = 5000;
234 	else
235 		dev->min_delta_ns += dev->min_delta_ns >> 1;
236 
237 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
238 		dev->min_delta_ns = MIN_DELTA_LIMIT;
239 
240 	printk_deferred(KERN_WARNING
241 			"CE: %s increased min_delta_ns to %llu nsec\n",
242 			dev->name ? dev->name : "?",
243 			(unsigned long long) dev->min_delta_ns);
244 	return 0;
245 }
246 
247 /**
248  * clockevents_program_min_delta - Set clock event device to the minimum delay.
249  * @dev:	device to program
250  *
251  * Returns 0 on success, -ETIME when the retry loop failed.
252  */
253 static int clockevents_program_min_delta(struct clock_event_device *dev)
254 {
255 	unsigned long long clc;
256 	int64_t delta;
257 	int i;
258 
259 	for (i = 0;;) {
260 		delta = dev->min_delta_ns;
261 		dev->next_event = ktime_add_ns(ktime_get(), delta);
262 
263 		if (clockevent_state_shutdown(dev))
264 			return 0;
265 
266 		dev->retries++;
267 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
268 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
269 			return 0;
270 
271 		if (++i > 2) {
272 			/*
273 			 * We tried 3 times to program the device with the
274 			 * given min_delta_ns. Try to increase the minimum
275 			 * delta, if that fails as well get out of here.
276 			 */
277 			if (clockevents_increase_min_delta(dev))
278 				return -ETIME;
279 			i = 0;
280 		}
281 	}
282 }
283 
284 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
285 
286 /**
287  * clockevents_program_min_delta - Set clock event device to the minimum delay.
288  * @dev:	device to program
289  *
290  * Returns 0 on success, -ETIME when the retry loop failed.
291  */
292 static int clockevents_program_min_delta(struct clock_event_device *dev)
293 {
294 	unsigned long long clc;
295 	int64_t delta;
296 
297 	delta = dev->min_delta_ns;
298 	dev->next_event = ktime_add_ns(ktime_get(), delta);
299 
300 	if (clockevent_state_shutdown(dev))
301 		return 0;
302 
303 	dev->retries++;
304 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
305 	return dev->set_next_event((unsigned long) clc, dev);
306 }
307 
308 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
309 
310 /**
311  * clockevents_program_event - Reprogram the clock event device.
312  * @dev:	device to program
313  * @expires:	absolute expiry time (monotonic clock)
314  * @force:	program minimum delay if expires can not be set
315  *
316  * Returns 0 on success, -ETIME when the event is in the past.
317  */
318 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
319 			      bool force)
320 {
321 	unsigned long long clc;
322 	int64_t delta;
323 	int rc;
324 
325 	if (unlikely(expires.tv64 < 0)) {
326 		WARN_ON_ONCE(1);
327 		return -ETIME;
328 	}
329 
330 	dev->next_event = expires;
331 
332 	if (clockevent_state_shutdown(dev))
333 		return 0;
334 
335 	/* We must be in ONESHOT state here */
336 	WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
337 		  clockevent_get_state(dev));
338 
339 	/* Shortcut for clockevent devices that can deal with ktime. */
340 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
341 		return dev->set_next_ktime(expires, dev);
342 
343 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
344 	if (delta <= 0)
345 		return force ? clockevents_program_min_delta(dev) : -ETIME;
346 
347 	delta = min(delta, (int64_t) dev->max_delta_ns);
348 	delta = max(delta, (int64_t) dev->min_delta_ns);
349 
350 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
351 	rc = dev->set_next_event((unsigned long) clc, dev);
352 
353 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
354 }
355 
356 /*
357  * Called after a notify add to make devices available which were
358  * released from the notifier call.
359  */
360 static void clockevents_notify_released(void)
361 {
362 	struct clock_event_device *dev;
363 
364 	while (!list_empty(&clockevents_released)) {
365 		dev = list_entry(clockevents_released.next,
366 				 struct clock_event_device, list);
367 		list_del(&dev->list);
368 		list_add(&dev->list, &clockevent_devices);
369 		tick_check_new_device(dev);
370 	}
371 }
372 
373 /*
374  * Try to install a replacement clock event device
375  */
376 static int clockevents_replace(struct clock_event_device *ced)
377 {
378 	struct clock_event_device *dev, *newdev = NULL;
379 
380 	list_for_each_entry(dev, &clockevent_devices, list) {
381 		if (dev == ced || !clockevent_state_detached(dev))
382 			continue;
383 
384 		if (!tick_check_replacement(newdev, dev))
385 			continue;
386 
387 		if (!try_module_get(dev->owner))
388 			continue;
389 
390 		if (newdev)
391 			module_put(newdev->owner);
392 		newdev = dev;
393 	}
394 	if (newdev) {
395 		tick_install_replacement(newdev);
396 		list_del_init(&ced->list);
397 	}
398 	return newdev ? 0 : -EBUSY;
399 }
400 
401 /*
402  * Called with clockevents_mutex and clockevents_lock held
403  */
404 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
405 {
406 	/* Fast track. Device is unused */
407 	if (clockevent_state_detached(ced)) {
408 		list_del_init(&ced->list);
409 		return 0;
410 	}
411 
412 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
413 }
414 
415 /*
416  * SMP function call to unbind a device
417  */
418 static void __clockevents_unbind(void *arg)
419 {
420 	struct ce_unbind *cu = arg;
421 	int res;
422 
423 	raw_spin_lock(&clockevents_lock);
424 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
425 	if (res == -EAGAIN)
426 		res = clockevents_replace(cu->ce);
427 	cu->res = res;
428 	raw_spin_unlock(&clockevents_lock);
429 }
430 
431 /*
432  * Issues smp function call to unbind a per cpu device. Called with
433  * clockevents_mutex held.
434  */
435 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
436 {
437 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
438 
439 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
440 	return cu.res;
441 }
442 
443 /*
444  * Unbind a clockevents device.
445  */
446 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
447 {
448 	int ret;
449 
450 	mutex_lock(&clockevents_mutex);
451 	ret = clockevents_unbind(ced, cpu);
452 	mutex_unlock(&clockevents_mutex);
453 	return ret;
454 }
455 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
456 
457 /* Sanity check of state transition callbacks */
458 static int clockevents_sanity_check(struct clock_event_device *dev)
459 {
460 	/* Legacy set_mode() callback */
461 	if (dev->set_mode) {
462 		/* We shouldn't be supporting new modes now */
463 		WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
464 			dev->set_state_shutdown || dev->tick_resume ||
465 			dev->set_state_oneshot_stopped);
466 
467 		BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
468 		return 0;
469 	}
470 
471 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
472 		return 0;
473 
474 	/* New state-specific callbacks */
475 	if (!dev->set_state_shutdown)
476 		return -EINVAL;
477 
478 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
479 	    !dev->set_state_periodic)
480 		return -EINVAL;
481 
482 	if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
483 	    !dev->set_state_oneshot)
484 		return -EINVAL;
485 
486 	return 0;
487 }
488 
489 /**
490  * clockevents_register_device - register a clock event device
491  * @dev:	device to register
492  */
493 void clockevents_register_device(struct clock_event_device *dev)
494 {
495 	unsigned long flags;
496 
497 	BUG_ON(clockevents_sanity_check(dev));
498 
499 	/* Initialize state to DETACHED */
500 	clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
501 
502 	if (!dev->cpumask) {
503 		WARN_ON(num_possible_cpus() > 1);
504 		dev->cpumask = cpumask_of(smp_processor_id());
505 	}
506 
507 	raw_spin_lock_irqsave(&clockevents_lock, flags);
508 
509 	list_add(&dev->list, &clockevent_devices);
510 	tick_check_new_device(dev);
511 	clockevents_notify_released();
512 
513 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
514 }
515 EXPORT_SYMBOL_GPL(clockevents_register_device);
516 
517 void clockevents_config(struct clock_event_device *dev, u32 freq)
518 {
519 	u64 sec;
520 
521 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
522 		return;
523 
524 	/*
525 	 * Calculate the maximum number of seconds we can sleep. Limit
526 	 * to 10 minutes for hardware which can program more than
527 	 * 32bit ticks so we still get reasonable conversion values.
528 	 */
529 	sec = dev->max_delta_ticks;
530 	do_div(sec, freq);
531 	if (!sec)
532 		sec = 1;
533 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
534 		sec = 600;
535 
536 	clockevents_calc_mult_shift(dev, freq, sec);
537 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
538 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
539 }
540 
541 /**
542  * clockevents_config_and_register - Configure and register a clock event device
543  * @dev:	device to register
544  * @freq:	The clock frequency
545  * @min_delta:	The minimum clock ticks to program in oneshot mode
546  * @max_delta:	The maximum clock ticks to program in oneshot mode
547  *
548  * min/max_delta can be 0 for devices which do not support oneshot mode.
549  */
550 void clockevents_config_and_register(struct clock_event_device *dev,
551 				     u32 freq, unsigned long min_delta,
552 				     unsigned long max_delta)
553 {
554 	dev->min_delta_ticks = min_delta;
555 	dev->max_delta_ticks = max_delta;
556 	clockevents_config(dev, freq);
557 	clockevents_register_device(dev);
558 }
559 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
560 
561 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
562 {
563 	clockevents_config(dev, freq);
564 
565 	if (clockevent_state_oneshot(dev))
566 		return clockevents_program_event(dev, dev->next_event, false);
567 
568 	if (clockevent_state_periodic(dev))
569 		return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
570 
571 	return 0;
572 }
573 
574 /**
575  * clockevents_update_freq - Update frequency and reprogram a clock event device.
576  * @dev:	device to modify
577  * @freq:	new device frequency
578  *
579  * Reconfigure and reprogram a clock event device in oneshot
580  * mode. Must be called on the cpu for which the device delivers per
581  * cpu timer events. If called for the broadcast device the core takes
582  * care of serialization.
583  *
584  * Returns 0 on success, -ETIME when the event is in the past.
585  */
586 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
587 {
588 	unsigned long flags;
589 	int ret;
590 
591 	local_irq_save(flags);
592 	ret = tick_broadcast_update_freq(dev, freq);
593 	if (ret == -ENODEV)
594 		ret = __clockevents_update_freq(dev, freq);
595 	local_irq_restore(flags);
596 	return ret;
597 }
598 
599 /*
600  * Noop handler when we shut down an event device
601  */
602 void clockevents_handle_noop(struct clock_event_device *dev)
603 {
604 }
605 
606 /**
607  * clockevents_exchange_device - release and request clock devices
608  * @old:	device to release (can be NULL)
609  * @new:	device to request (can be NULL)
610  *
611  * Called from various tick functions with clockevents_lock held and
612  * interrupts disabled.
613  */
614 void clockevents_exchange_device(struct clock_event_device *old,
615 				 struct clock_event_device *new)
616 {
617 	/*
618 	 * Caller releases a clock event device. We queue it into the
619 	 * released list and do a notify add later.
620 	 */
621 	if (old) {
622 		module_put(old->owner);
623 		clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
624 		list_del(&old->list);
625 		list_add(&old->list, &clockevents_released);
626 	}
627 
628 	if (new) {
629 		BUG_ON(!clockevent_state_detached(new));
630 		clockevents_shutdown(new);
631 	}
632 }
633 
634 /**
635  * clockevents_suspend - suspend clock devices
636  */
637 void clockevents_suspend(void)
638 {
639 	struct clock_event_device *dev;
640 
641 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
642 		if (dev->suspend && !clockevent_state_detached(dev))
643 			dev->suspend(dev);
644 }
645 
646 /**
647  * clockevents_resume - resume clock devices
648  */
649 void clockevents_resume(void)
650 {
651 	struct clock_event_device *dev;
652 
653 	list_for_each_entry(dev, &clockevent_devices, list)
654 		if (dev->resume && !clockevent_state_detached(dev))
655 			dev->resume(dev);
656 }
657 
658 #ifdef CONFIG_HOTPLUG_CPU
659 /**
660  * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
661  */
662 void tick_cleanup_dead_cpu(int cpu)
663 {
664 	struct clock_event_device *dev, *tmp;
665 	unsigned long flags;
666 
667 	raw_spin_lock_irqsave(&clockevents_lock, flags);
668 
669 	tick_shutdown_broadcast_oneshot(cpu);
670 	tick_shutdown_broadcast(cpu);
671 	tick_shutdown(cpu);
672 	/*
673 	 * Unregister the clock event devices which were
674 	 * released from the users in the notify chain.
675 	 */
676 	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
677 		list_del(&dev->list);
678 	/*
679 	 * Now check whether the CPU has left unused per cpu devices
680 	 */
681 	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
682 		if (cpumask_test_cpu(cpu, dev->cpumask) &&
683 		    cpumask_weight(dev->cpumask) == 1 &&
684 		    !tick_is_broadcast_device(dev)) {
685 			BUG_ON(!clockevent_state_detached(dev));
686 			list_del(&dev->list);
687 		}
688 	}
689 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
690 }
691 #endif
692 
693 #ifdef CONFIG_SYSFS
694 struct bus_type clockevents_subsys = {
695 	.name		= "clockevents",
696 	.dev_name       = "clockevent",
697 };
698 
699 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
700 static struct tick_device *tick_get_tick_dev(struct device *dev);
701 
702 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
703 					   struct device_attribute *attr,
704 					   char *buf)
705 {
706 	struct tick_device *td;
707 	ssize_t count = 0;
708 
709 	raw_spin_lock_irq(&clockevents_lock);
710 	td = tick_get_tick_dev(dev);
711 	if (td && td->evtdev)
712 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
713 	raw_spin_unlock_irq(&clockevents_lock);
714 	return count;
715 }
716 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
717 
718 /* We don't support the abomination of removable broadcast devices */
719 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
720 				     struct device_attribute *attr,
721 				     const char *buf, size_t count)
722 {
723 	char name[CS_NAME_LEN];
724 	ssize_t ret = sysfs_get_uname(buf, name, count);
725 	struct clock_event_device *ce;
726 
727 	if (ret < 0)
728 		return ret;
729 
730 	ret = -ENODEV;
731 	mutex_lock(&clockevents_mutex);
732 	raw_spin_lock_irq(&clockevents_lock);
733 	list_for_each_entry(ce, &clockevent_devices, list) {
734 		if (!strcmp(ce->name, name)) {
735 			ret = __clockevents_try_unbind(ce, dev->id);
736 			break;
737 		}
738 	}
739 	raw_spin_unlock_irq(&clockevents_lock);
740 	/*
741 	 * We hold clockevents_mutex, so ce can't go away
742 	 */
743 	if (ret == -EAGAIN)
744 		ret = clockevents_unbind(ce, dev->id);
745 	mutex_unlock(&clockevents_mutex);
746 	return ret ? ret : count;
747 }
748 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
749 
750 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
751 static struct device tick_bc_dev = {
752 	.init_name	= "broadcast",
753 	.id		= 0,
754 	.bus		= &clockevents_subsys,
755 };
756 
757 static struct tick_device *tick_get_tick_dev(struct device *dev)
758 {
759 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
760 		&per_cpu(tick_cpu_device, dev->id);
761 }
762 
763 static __init int tick_broadcast_init_sysfs(void)
764 {
765 	int err = device_register(&tick_bc_dev);
766 
767 	if (!err)
768 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
769 	return err;
770 }
771 #else
772 static struct tick_device *tick_get_tick_dev(struct device *dev)
773 {
774 	return &per_cpu(tick_cpu_device, dev->id);
775 }
776 static inline int tick_broadcast_init_sysfs(void) { return 0; }
777 #endif
778 
779 static int __init tick_init_sysfs(void)
780 {
781 	int cpu;
782 
783 	for_each_possible_cpu(cpu) {
784 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
785 		int err;
786 
787 		dev->id = cpu;
788 		dev->bus = &clockevents_subsys;
789 		err = device_register(dev);
790 		if (!err)
791 			err = device_create_file(dev, &dev_attr_current_device);
792 		if (!err)
793 			err = device_create_file(dev, &dev_attr_unbind_device);
794 		if (err)
795 			return err;
796 	}
797 	return tick_broadcast_init_sysfs();
798 }
799 
800 static int __init clockevents_init_sysfs(void)
801 {
802 	int err = subsys_system_register(&clockevents_subsys, NULL);
803 
804 	if (!err)
805 		err = tick_init_sysfs();
806 	return err;
807 }
808 device_initcall(clockevents_init_sysfs);
809 #endif /* SYSFS */
810