xref: /openbmc/linux/kernel/time/clockevents.c (revision b34e08d5)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1U << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 /**
98  * clockevents_set_mode - set the operating mode of a clock event device
99  * @dev:	device to modify
100  * @mode:	new mode
101  *
102  * Must be called with interrupts disabled !
103  */
104 void clockevents_set_mode(struct clock_event_device *dev,
105 				 enum clock_event_mode mode)
106 {
107 	if (dev->mode != mode) {
108 		dev->set_mode(mode, dev);
109 		dev->mode = mode;
110 
111 		/*
112 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
113 		 * on it, so fix it up and emit a warning:
114 		 */
115 		if (mode == CLOCK_EVT_MODE_ONESHOT) {
116 			if (unlikely(!dev->mult)) {
117 				dev->mult = 1;
118 				WARN_ON(1);
119 			}
120 		}
121 	}
122 }
123 
124 /**
125  * clockevents_shutdown - shutdown the device and clear next_event
126  * @dev:	device to shutdown
127  */
128 void clockevents_shutdown(struct clock_event_device *dev)
129 {
130 	clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
131 	dev->next_event.tv64 = KTIME_MAX;
132 }
133 
134 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
135 
136 /* Limit min_delta to a jiffie */
137 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
138 
139 /**
140  * clockevents_increase_min_delta - raise minimum delta of a clock event device
141  * @dev:       device to increase the minimum delta
142  *
143  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
144  */
145 static int clockevents_increase_min_delta(struct clock_event_device *dev)
146 {
147 	/* Nothing to do if we already reached the limit */
148 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
149 		printk(KERN_WARNING "CE: Reprogramming failure. Giving up\n");
150 		dev->next_event.tv64 = KTIME_MAX;
151 		return -ETIME;
152 	}
153 
154 	if (dev->min_delta_ns < 5000)
155 		dev->min_delta_ns = 5000;
156 	else
157 		dev->min_delta_ns += dev->min_delta_ns >> 1;
158 
159 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
160 		dev->min_delta_ns = MIN_DELTA_LIMIT;
161 
162 	printk(KERN_WARNING "CE: %s increased min_delta_ns to %llu nsec\n",
163 	       dev->name ? dev->name : "?",
164 	       (unsigned long long) dev->min_delta_ns);
165 	return 0;
166 }
167 
168 /**
169  * clockevents_program_min_delta - Set clock event device to the minimum delay.
170  * @dev:	device to program
171  *
172  * Returns 0 on success, -ETIME when the retry loop failed.
173  */
174 static int clockevents_program_min_delta(struct clock_event_device *dev)
175 {
176 	unsigned long long clc;
177 	int64_t delta;
178 	int i;
179 
180 	for (i = 0;;) {
181 		delta = dev->min_delta_ns;
182 		dev->next_event = ktime_add_ns(ktime_get(), delta);
183 
184 		if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
185 			return 0;
186 
187 		dev->retries++;
188 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
189 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
190 			return 0;
191 
192 		if (++i > 2) {
193 			/*
194 			 * We tried 3 times to program the device with the
195 			 * given min_delta_ns. Try to increase the minimum
196 			 * delta, if that fails as well get out of here.
197 			 */
198 			if (clockevents_increase_min_delta(dev))
199 				return -ETIME;
200 			i = 0;
201 		}
202 	}
203 }
204 
205 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
206 
207 /**
208  * clockevents_program_min_delta - Set clock event device to the minimum delay.
209  * @dev:	device to program
210  *
211  * Returns 0 on success, -ETIME when the retry loop failed.
212  */
213 static int clockevents_program_min_delta(struct clock_event_device *dev)
214 {
215 	unsigned long long clc;
216 	int64_t delta;
217 
218 	delta = dev->min_delta_ns;
219 	dev->next_event = ktime_add_ns(ktime_get(), delta);
220 
221 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
222 		return 0;
223 
224 	dev->retries++;
225 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
226 	return dev->set_next_event((unsigned long) clc, dev);
227 }
228 
229 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
230 
231 /**
232  * clockevents_program_event - Reprogram the clock event device.
233  * @dev:	device to program
234  * @expires:	absolute expiry time (monotonic clock)
235  * @force:	program minimum delay if expires can not be set
236  *
237  * Returns 0 on success, -ETIME when the event is in the past.
238  */
239 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
240 			      bool force)
241 {
242 	unsigned long long clc;
243 	int64_t delta;
244 	int rc;
245 
246 	if (unlikely(expires.tv64 < 0)) {
247 		WARN_ON_ONCE(1);
248 		return -ETIME;
249 	}
250 
251 	dev->next_event = expires;
252 
253 	if (dev->mode == CLOCK_EVT_MODE_SHUTDOWN)
254 		return 0;
255 
256 	/* Shortcut for clockevent devices that can deal with ktime. */
257 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
258 		return dev->set_next_ktime(expires, dev);
259 
260 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
261 	if (delta <= 0)
262 		return force ? clockevents_program_min_delta(dev) : -ETIME;
263 
264 	delta = min(delta, (int64_t) dev->max_delta_ns);
265 	delta = max(delta, (int64_t) dev->min_delta_ns);
266 
267 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
268 	rc = dev->set_next_event((unsigned long) clc, dev);
269 
270 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
271 }
272 
273 /*
274  * Called after a notify add to make devices available which were
275  * released from the notifier call.
276  */
277 static void clockevents_notify_released(void)
278 {
279 	struct clock_event_device *dev;
280 
281 	while (!list_empty(&clockevents_released)) {
282 		dev = list_entry(clockevents_released.next,
283 				 struct clock_event_device, list);
284 		list_del(&dev->list);
285 		list_add(&dev->list, &clockevent_devices);
286 		tick_check_new_device(dev);
287 	}
288 }
289 
290 /*
291  * Try to install a replacement clock event device
292  */
293 static int clockevents_replace(struct clock_event_device *ced)
294 {
295 	struct clock_event_device *dev, *newdev = NULL;
296 
297 	list_for_each_entry(dev, &clockevent_devices, list) {
298 		if (dev == ced || dev->mode != CLOCK_EVT_MODE_UNUSED)
299 			continue;
300 
301 		if (!tick_check_replacement(newdev, dev))
302 			continue;
303 
304 		if (!try_module_get(dev->owner))
305 			continue;
306 
307 		if (newdev)
308 			module_put(newdev->owner);
309 		newdev = dev;
310 	}
311 	if (newdev) {
312 		tick_install_replacement(newdev);
313 		list_del_init(&ced->list);
314 	}
315 	return newdev ? 0 : -EBUSY;
316 }
317 
318 /*
319  * Called with clockevents_mutex and clockevents_lock held
320  */
321 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
322 {
323 	/* Fast track. Device is unused */
324 	if (ced->mode == CLOCK_EVT_MODE_UNUSED) {
325 		list_del_init(&ced->list);
326 		return 0;
327 	}
328 
329 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
330 }
331 
332 /*
333  * SMP function call to unbind a device
334  */
335 static void __clockevents_unbind(void *arg)
336 {
337 	struct ce_unbind *cu = arg;
338 	int res;
339 
340 	raw_spin_lock(&clockevents_lock);
341 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
342 	if (res == -EAGAIN)
343 		res = clockevents_replace(cu->ce);
344 	cu->res = res;
345 	raw_spin_unlock(&clockevents_lock);
346 }
347 
348 /*
349  * Issues smp function call to unbind a per cpu device. Called with
350  * clockevents_mutex held.
351  */
352 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
353 {
354 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
355 
356 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
357 	return cu.res;
358 }
359 
360 /*
361  * Unbind a clockevents device.
362  */
363 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
364 {
365 	int ret;
366 
367 	mutex_lock(&clockevents_mutex);
368 	ret = clockevents_unbind(ced, cpu);
369 	mutex_unlock(&clockevents_mutex);
370 	return ret;
371 }
372 EXPORT_SYMBOL_GPL(clockevents_unbind);
373 
374 /**
375  * clockevents_register_device - register a clock event device
376  * @dev:	device to register
377  */
378 void clockevents_register_device(struct clock_event_device *dev)
379 {
380 	unsigned long flags;
381 
382 	BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
383 	if (!dev->cpumask) {
384 		WARN_ON(num_possible_cpus() > 1);
385 		dev->cpumask = cpumask_of(smp_processor_id());
386 	}
387 
388 	raw_spin_lock_irqsave(&clockevents_lock, flags);
389 
390 	list_add(&dev->list, &clockevent_devices);
391 	tick_check_new_device(dev);
392 	clockevents_notify_released();
393 
394 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
395 }
396 EXPORT_SYMBOL_GPL(clockevents_register_device);
397 
398 void clockevents_config(struct clock_event_device *dev, u32 freq)
399 {
400 	u64 sec;
401 
402 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
403 		return;
404 
405 	/*
406 	 * Calculate the maximum number of seconds we can sleep. Limit
407 	 * to 10 minutes for hardware which can program more than
408 	 * 32bit ticks so we still get reasonable conversion values.
409 	 */
410 	sec = dev->max_delta_ticks;
411 	do_div(sec, freq);
412 	if (!sec)
413 		sec = 1;
414 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
415 		sec = 600;
416 
417 	clockevents_calc_mult_shift(dev, freq, sec);
418 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
419 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
420 }
421 
422 /**
423  * clockevents_config_and_register - Configure and register a clock event device
424  * @dev:	device to register
425  * @freq:	The clock frequency
426  * @min_delta:	The minimum clock ticks to program in oneshot mode
427  * @max_delta:	The maximum clock ticks to program in oneshot mode
428  *
429  * min/max_delta can be 0 for devices which do not support oneshot mode.
430  */
431 void clockevents_config_and_register(struct clock_event_device *dev,
432 				     u32 freq, unsigned long min_delta,
433 				     unsigned long max_delta)
434 {
435 	dev->min_delta_ticks = min_delta;
436 	dev->max_delta_ticks = max_delta;
437 	clockevents_config(dev, freq);
438 	clockevents_register_device(dev);
439 }
440 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
441 
442 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
443 {
444 	clockevents_config(dev, freq);
445 
446 	if (dev->mode == CLOCK_EVT_MODE_ONESHOT)
447 		return clockevents_program_event(dev, dev->next_event, false);
448 
449 	if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
450 		dev->set_mode(CLOCK_EVT_MODE_PERIODIC, dev);
451 
452 	return 0;
453 }
454 
455 /**
456  * clockevents_update_freq - Update frequency and reprogram a clock event device.
457  * @dev:	device to modify
458  * @freq:	new device frequency
459  *
460  * Reconfigure and reprogram a clock event device in oneshot
461  * mode. Must be called on the cpu for which the device delivers per
462  * cpu timer events. If called for the broadcast device the core takes
463  * care of serialization.
464  *
465  * Returns 0 on success, -ETIME when the event is in the past.
466  */
467 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
468 {
469 	unsigned long flags;
470 	int ret;
471 
472 	local_irq_save(flags);
473 	ret = tick_broadcast_update_freq(dev, freq);
474 	if (ret == -ENODEV)
475 		ret = __clockevents_update_freq(dev, freq);
476 	local_irq_restore(flags);
477 	return ret;
478 }
479 
480 /*
481  * Noop handler when we shut down an event device
482  */
483 void clockevents_handle_noop(struct clock_event_device *dev)
484 {
485 }
486 
487 /**
488  * clockevents_exchange_device - release and request clock devices
489  * @old:	device to release (can be NULL)
490  * @new:	device to request (can be NULL)
491  *
492  * Called from the notifier chain. clockevents_lock is held already
493  */
494 void clockevents_exchange_device(struct clock_event_device *old,
495 				 struct clock_event_device *new)
496 {
497 	unsigned long flags;
498 
499 	local_irq_save(flags);
500 	/*
501 	 * Caller releases a clock event device. We queue it into the
502 	 * released list and do a notify add later.
503 	 */
504 	if (old) {
505 		module_put(old->owner);
506 		clockevents_set_mode(old, CLOCK_EVT_MODE_UNUSED);
507 		list_del(&old->list);
508 		list_add(&old->list, &clockevents_released);
509 	}
510 
511 	if (new) {
512 		BUG_ON(new->mode != CLOCK_EVT_MODE_UNUSED);
513 		clockevents_shutdown(new);
514 	}
515 	local_irq_restore(flags);
516 }
517 
518 /**
519  * clockevents_suspend - suspend clock devices
520  */
521 void clockevents_suspend(void)
522 {
523 	struct clock_event_device *dev;
524 
525 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
526 		if (dev->suspend)
527 			dev->suspend(dev);
528 }
529 
530 /**
531  * clockevents_resume - resume clock devices
532  */
533 void clockevents_resume(void)
534 {
535 	struct clock_event_device *dev;
536 
537 	list_for_each_entry(dev, &clockevent_devices, list)
538 		if (dev->resume)
539 			dev->resume(dev);
540 }
541 
542 #ifdef CONFIG_GENERIC_CLOCKEVENTS
543 /**
544  * clockevents_notify - notification about relevant events
545  * Returns 0 on success, any other value on error
546  */
547 int clockevents_notify(unsigned long reason, void *arg)
548 {
549 	struct clock_event_device *dev, *tmp;
550 	unsigned long flags;
551 	int cpu, ret = 0;
552 
553 	raw_spin_lock_irqsave(&clockevents_lock, flags);
554 
555 	switch (reason) {
556 	case CLOCK_EVT_NOTIFY_BROADCAST_ON:
557 	case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
558 	case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
559 		tick_broadcast_on_off(reason, arg);
560 		break;
561 
562 	case CLOCK_EVT_NOTIFY_BROADCAST_ENTER:
563 	case CLOCK_EVT_NOTIFY_BROADCAST_EXIT:
564 		ret = tick_broadcast_oneshot_control(reason);
565 		break;
566 
567 	case CLOCK_EVT_NOTIFY_CPU_DYING:
568 		tick_handover_do_timer(arg);
569 		break;
570 
571 	case CLOCK_EVT_NOTIFY_SUSPEND:
572 		tick_suspend();
573 		tick_suspend_broadcast();
574 		break;
575 
576 	case CLOCK_EVT_NOTIFY_RESUME:
577 		tick_resume();
578 		break;
579 
580 	case CLOCK_EVT_NOTIFY_CPU_DEAD:
581 		tick_shutdown_broadcast_oneshot(arg);
582 		tick_shutdown_broadcast(arg);
583 		tick_shutdown(arg);
584 		/*
585 		 * Unregister the clock event devices which were
586 		 * released from the users in the notify chain.
587 		 */
588 		list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
589 			list_del(&dev->list);
590 		/*
591 		 * Now check whether the CPU has left unused per cpu devices
592 		 */
593 		cpu = *((int *)arg);
594 		list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
595 			if (cpumask_test_cpu(cpu, dev->cpumask) &&
596 			    cpumask_weight(dev->cpumask) == 1 &&
597 			    !tick_is_broadcast_device(dev)) {
598 				BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
599 				list_del(&dev->list);
600 			}
601 		}
602 		break;
603 	default:
604 		break;
605 	}
606 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
607 	return ret;
608 }
609 EXPORT_SYMBOL_GPL(clockevents_notify);
610 
611 #ifdef CONFIG_SYSFS
612 struct bus_type clockevents_subsys = {
613 	.name		= "clockevents",
614 	.dev_name       = "clockevent",
615 };
616 
617 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
618 static struct tick_device *tick_get_tick_dev(struct device *dev);
619 
620 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
621 					   struct device_attribute *attr,
622 					   char *buf)
623 {
624 	struct tick_device *td;
625 	ssize_t count = 0;
626 
627 	raw_spin_lock_irq(&clockevents_lock);
628 	td = tick_get_tick_dev(dev);
629 	if (td && td->evtdev)
630 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
631 	raw_spin_unlock_irq(&clockevents_lock);
632 	return count;
633 }
634 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
635 
636 /* We don't support the abomination of removable broadcast devices */
637 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
638 				     struct device_attribute *attr,
639 				     const char *buf, size_t count)
640 {
641 	char name[CS_NAME_LEN];
642 	ssize_t ret = sysfs_get_uname(buf, name, count);
643 	struct clock_event_device *ce;
644 
645 	if (ret < 0)
646 		return ret;
647 
648 	ret = -ENODEV;
649 	mutex_lock(&clockevents_mutex);
650 	raw_spin_lock_irq(&clockevents_lock);
651 	list_for_each_entry(ce, &clockevent_devices, list) {
652 		if (!strcmp(ce->name, name)) {
653 			ret = __clockevents_try_unbind(ce, dev->id);
654 			break;
655 		}
656 	}
657 	raw_spin_unlock_irq(&clockevents_lock);
658 	/*
659 	 * We hold clockevents_mutex, so ce can't go away
660 	 */
661 	if (ret == -EAGAIN)
662 		ret = clockevents_unbind(ce, dev->id);
663 	mutex_unlock(&clockevents_mutex);
664 	return ret ? ret : count;
665 }
666 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
667 
668 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
669 static struct device tick_bc_dev = {
670 	.init_name	= "broadcast",
671 	.id		= 0,
672 	.bus		= &clockevents_subsys,
673 };
674 
675 static struct tick_device *tick_get_tick_dev(struct device *dev)
676 {
677 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
678 		&per_cpu(tick_cpu_device, dev->id);
679 }
680 
681 static __init int tick_broadcast_init_sysfs(void)
682 {
683 	int err = device_register(&tick_bc_dev);
684 
685 	if (!err)
686 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
687 	return err;
688 }
689 #else
690 static struct tick_device *tick_get_tick_dev(struct device *dev)
691 {
692 	return &per_cpu(tick_cpu_device, dev->id);
693 }
694 static inline int tick_broadcast_init_sysfs(void) { return 0; }
695 #endif
696 
697 static int __init tick_init_sysfs(void)
698 {
699 	int cpu;
700 
701 	for_each_possible_cpu(cpu) {
702 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
703 		int err;
704 
705 		dev->id = cpu;
706 		dev->bus = &clockevents_subsys;
707 		err = device_register(dev);
708 		if (!err)
709 			err = device_create_file(dev, &dev_attr_current_device);
710 		if (!err)
711 			err = device_create_file(dev, &dev_attr_unbind_device);
712 		if (err)
713 			return err;
714 	}
715 	return tick_broadcast_init_sysfs();
716 }
717 
718 static int __init clockevents_init_sysfs(void)
719 {
720 	int err = subsys_system_register(&clockevents_subsys, NULL);
721 
722 	if (!err)
723 		err = tick_init_sysfs();
724 	return err;
725 }
726 device_initcall(clockevents_init_sysfs);
727 #endif /* SYSFS */
728 
729 #endif /* GENERIC_CLOCK_EVENTS */
730