1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains functions which manage clock event devices. 4 * 5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 8 */ 9 10 #include <linux/clockchips.h> 11 #include <linux/hrtimer.h> 12 #include <linux/init.h> 13 #include <linux/module.h> 14 #include <linux/smp.h> 15 #include <linux/device.h> 16 17 #include "tick-internal.h" 18 19 /* The registered clock event devices */ 20 static LIST_HEAD(clockevent_devices); 21 static LIST_HEAD(clockevents_released); 22 /* Protection for the above */ 23 static DEFINE_RAW_SPINLOCK(clockevents_lock); 24 /* Protection for unbind operations */ 25 static DEFINE_MUTEX(clockevents_mutex); 26 27 struct ce_unbind { 28 struct clock_event_device *ce; 29 int res; 30 }; 31 32 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt, 33 bool ismax) 34 { 35 u64 clc = (u64) latch << evt->shift; 36 u64 rnd; 37 38 if (WARN_ON(!evt->mult)) 39 evt->mult = 1; 40 rnd = (u64) evt->mult - 1; 41 42 /* 43 * Upper bound sanity check. If the backwards conversion is 44 * not equal latch, we know that the above shift overflowed. 45 */ 46 if ((clc >> evt->shift) != (u64)latch) 47 clc = ~0ULL; 48 49 /* 50 * Scaled math oddities: 51 * 52 * For mult <= (1 << shift) we can safely add mult - 1 to 53 * prevent integer rounding loss. So the backwards conversion 54 * from nsec to device ticks will be correct. 55 * 56 * For mult > (1 << shift), i.e. device frequency is > 1GHz we 57 * need to be careful. Adding mult - 1 will result in a value 58 * which when converted back to device ticks can be larger 59 * than latch by up to (mult - 1) >> shift. For the min_delta 60 * calculation we still want to apply this in order to stay 61 * above the minimum device ticks limit. For the upper limit 62 * we would end up with a latch value larger than the upper 63 * limit of the device, so we omit the add to stay below the 64 * device upper boundary. 65 * 66 * Also omit the add if it would overflow the u64 boundary. 67 */ 68 if ((~0ULL - clc > rnd) && 69 (!ismax || evt->mult <= (1ULL << evt->shift))) 70 clc += rnd; 71 72 do_div(clc, evt->mult); 73 74 /* Deltas less than 1usec are pointless noise */ 75 return clc > 1000 ? clc : 1000; 76 } 77 78 /** 79 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds 80 * @latch: value to convert 81 * @evt: pointer to clock event device descriptor 82 * 83 * Math helper, returns latch value converted to nanoseconds (bound checked) 84 */ 85 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt) 86 { 87 return cev_delta2ns(latch, evt, false); 88 } 89 EXPORT_SYMBOL_GPL(clockevent_delta2ns); 90 91 static int __clockevents_switch_state(struct clock_event_device *dev, 92 enum clock_event_state state) 93 { 94 if (dev->features & CLOCK_EVT_FEAT_DUMMY) 95 return 0; 96 97 /* Transition with new state-specific callbacks */ 98 switch (state) { 99 case CLOCK_EVT_STATE_DETACHED: 100 /* The clockevent device is getting replaced. Shut it down. */ 101 102 case CLOCK_EVT_STATE_SHUTDOWN: 103 if (dev->set_state_shutdown) 104 return dev->set_state_shutdown(dev); 105 return 0; 106 107 case CLOCK_EVT_STATE_PERIODIC: 108 /* Core internal bug */ 109 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC)) 110 return -ENOSYS; 111 if (dev->set_state_periodic) 112 return dev->set_state_periodic(dev); 113 return 0; 114 115 case CLOCK_EVT_STATE_ONESHOT: 116 /* Core internal bug */ 117 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 118 return -ENOSYS; 119 if (dev->set_state_oneshot) 120 return dev->set_state_oneshot(dev); 121 return 0; 122 123 case CLOCK_EVT_STATE_ONESHOT_STOPPED: 124 /* Core internal bug */ 125 if (WARN_ONCE(!clockevent_state_oneshot(dev), 126 "Current state: %d\n", 127 clockevent_get_state(dev))) 128 return -EINVAL; 129 130 if (dev->set_state_oneshot_stopped) 131 return dev->set_state_oneshot_stopped(dev); 132 else 133 return -ENOSYS; 134 135 default: 136 return -ENOSYS; 137 } 138 } 139 140 /** 141 * clockevents_switch_state - set the operating state of a clock event device 142 * @dev: device to modify 143 * @state: new state 144 * 145 * Must be called with interrupts disabled ! 146 */ 147 void clockevents_switch_state(struct clock_event_device *dev, 148 enum clock_event_state state) 149 { 150 if (clockevent_get_state(dev) != state) { 151 if (__clockevents_switch_state(dev, state)) 152 return; 153 154 clockevent_set_state(dev, state); 155 156 /* 157 * A nsec2cyc multiplicator of 0 is invalid and we'd crash 158 * on it, so fix it up and emit a warning: 159 */ 160 if (clockevent_state_oneshot(dev)) { 161 if (WARN_ON(!dev->mult)) 162 dev->mult = 1; 163 } 164 } 165 } 166 167 /** 168 * clockevents_shutdown - shutdown the device and clear next_event 169 * @dev: device to shutdown 170 */ 171 void clockevents_shutdown(struct clock_event_device *dev) 172 { 173 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 174 dev->next_event = KTIME_MAX; 175 } 176 177 /** 178 * clockevents_tick_resume - Resume the tick device before using it again 179 * @dev: device to resume 180 */ 181 int clockevents_tick_resume(struct clock_event_device *dev) 182 { 183 int ret = 0; 184 185 if (dev->tick_resume) 186 ret = dev->tick_resume(dev); 187 188 return ret; 189 } 190 191 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST 192 193 /* Limit min_delta to a jiffie */ 194 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ) 195 196 /** 197 * clockevents_increase_min_delta - raise minimum delta of a clock event device 198 * @dev: device to increase the minimum delta 199 * 200 * Returns 0 on success, -ETIME when the minimum delta reached the limit. 201 */ 202 static int clockevents_increase_min_delta(struct clock_event_device *dev) 203 { 204 /* Nothing to do if we already reached the limit */ 205 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) { 206 printk_deferred(KERN_WARNING 207 "CE: Reprogramming failure. Giving up\n"); 208 dev->next_event = KTIME_MAX; 209 return -ETIME; 210 } 211 212 if (dev->min_delta_ns < 5000) 213 dev->min_delta_ns = 5000; 214 else 215 dev->min_delta_ns += dev->min_delta_ns >> 1; 216 217 if (dev->min_delta_ns > MIN_DELTA_LIMIT) 218 dev->min_delta_ns = MIN_DELTA_LIMIT; 219 220 printk_deferred(KERN_WARNING 221 "CE: %s increased min_delta_ns to %llu nsec\n", 222 dev->name ? dev->name : "?", 223 (unsigned long long) dev->min_delta_ns); 224 return 0; 225 } 226 227 /** 228 * clockevents_program_min_delta - Set clock event device to the minimum delay. 229 * @dev: device to program 230 * 231 * Returns 0 on success, -ETIME when the retry loop failed. 232 */ 233 static int clockevents_program_min_delta(struct clock_event_device *dev) 234 { 235 unsigned long long clc; 236 int64_t delta; 237 int i; 238 239 for (i = 0;;) { 240 delta = dev->min_delta_ns; 241 dev->next_event = ktime_add_ns(ktime_get(), delta); 242 243 if (clockevent_state_shutdown(dev)) 244 return 0; 245 246 dev->retries++; 247 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 248 if (dev->set_next_event((unsigned long) clc, dev) == 0) 249 return 0; 250 251 if (++i > 2) { 252 /* 253 * We tried 3 times to program the device with the 254 * given min_delta_ns. Try to increase the minimum 255 * delta, if that fails as well get out of here. 256 */ 257 if (clockevents_increase_min_delta(dev)) 258 return -ETIME; 259 i = 0; 260 } 261 } 262 } 263 264 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 265 266 /** 267 * clockevents_program_min_delta - Set clock event device to the minimum delay. 268 * @dev: device to program 269 * 270 * Returns 0 on success, -ETIME when the retry loop failed. 271 */ 272 static int clockevents_program_min_delta(struct clock_event_device *dev) 273 { 274 unsigned long long clc; 275 int64_t delta = 0; 276 int i; 277 278 for (i = 0; i < 10; i++) { 279 delta += dev->min_delta_ns; 280 dev->next_event = ktime_add_ns(ktime_get(), delta); 281 282 if (clockevent_state_shutdown(dev)) 283 return 0; 284 285 dev->retries++; 286 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 287 if (dev->set_next_event((unsigned long) clc, dev) == 0) 288 return 0; 289 } 290 return -ETIME; 291 } 292 293 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 294 295 /** 296 * clockevents_program_event - Reprogram the clock event device. 297 * @dev: device to program 298 * @expires: absolute expiry time (monotonic clock) 299 * @force: program minimum delay if expires can not be set 300 * 301 * Returns 0 on success, -ETIME when the event is in the past. 302 */ 303 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, 304 bool force) 305 { 306 unsigned long long clc; 307 int64_t delta; 308 int rc; 309 310 if (WARN_ON_ONCE(expires < 0)) 311 return -ETIME; 312 313 dev->next_event = expires; 314 315 if (clockevent_state_shutdown(dev)) 316 return 0; 317 318 /* We must be in ONESHOT state here */ 319 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n", 320 clockevent_get_state(dev)); 321 322 /* Shortcut for clockevent devices that can deal with ktime. */ 323 if (dev->features & CLOCK_EVT_FEAT_KTIME) 324 return dev->set_next_ktime(expires, dev); 325 326 delta = ktime_to_ns(ktime_sub(expires, ktime_get())); 327 if (delta <= 0) 328 return force ? clockevents_program_min_delta(dev) : -ETIME; 329 330 delta = min(delta, (int64_t) dev->max_delta_ns); 331 delta = max(delta, (int64_t) dev->min_delta_ns); 332 333 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 334 rc = dev->set_next_event((unsigned long) clc, dev); 335 336 return (rc && force) ? clockevents_program_min_delta(dev) : rc; 337 } 338 339 /* 340 * Called after a notify add to make devices available which were 341 * released from the notifier call. 342 */ 343 static void clockevents_notify_released(void) 344 { 345 struct clock_event_device *dev; 346 347 while (!list_empty(&clockevents_released)) { 348 dev = list_entry(clockevents_released.next, 349 struct clock_event_device, list); 350 list_del(&dev->list); 351 list_add(&dev->list, &clockevent_devices); 352 tick_check_new_device(dev); 353 } 354 } 355 356 /* 357 * Try to install a replacement clock event device 358 */ 359 static int clockevents_replace(struct clock_event_device *ced) 360 { 361 struct clock_event_device *dev, *newdev = NULL; 362 363 list_for_each_entry(dev, &clockevent_devices, list) { 364 if (dev == ced || !clockevent_state_detached(dev)) 365 continue; 366 367 if (!tick_check_replacement(newdev, dev)) 368 continue; 369 370 if (!try_module_get(dev->owner)) 371 continue; 372 373 if (newdev) 374 module_put(newdev->owner); 375 newdev = dev; 376 } 377 if (newdev) { 378 tick_install_replacement(newdev); 379 list_del_init(&ced->list); 380 } 381 return newdev ? 0 : -EBUSY; 382 } 383 384 /* 385 * Called with clockevents_mutex and clockevents_lock held 386 */ 387 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu) 388 { 389 /* Fast track. Device is unused */ 390 if (clockevent_state_detached(ced)) { 391 list_del_init(&ced->list); 392 return 0; 393 } 394 395 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY; 396 } 397 398 /* 399 * SMP function call to unbind a device 400 */ 401 static void __clockevents_unbind(void *arg) 402 { 403 struct ce_unbind *cu = arg; 404 int res; 405 406 raw_spin_lock(&clockevents_lock); 407 res = __clockevents_try_unbind(cu->ce, smp_processor_id()); 408 if (res == -EAGAIN) 409 res = clockevents_replace(cu->ce); 410 cu->res = res; 411 raw_spin_unlock(&clockevents_lock); 412 } 413 414 /* 415 * Issues smp function call to unbind a per cpu device. Called with 416 * clockevents_mutex held. 417 */ 418 static int clockevents_unbind(struct clock_event_device *ced, int cpu) 419 { 420 struct ce_unbind cu = { .ce = ced, .res = -ENODEV }; 421 422 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1); 423 return cu.res; 424 } 425 426 /* 427 * Unbind a clockevents device. 428 */ 429 int clockevents_unbind_device(struct clock_event_device *ced, int cpu) 430 { 431 int ret; 432 433 mutex_lock(&clockevents_mutex); 434 ret = clockevents_unbind(ced, cpu); 435 mutex_unlock(&clockevents_mutex); 436 return ret; 437 } 438 EXPORT_SYMBOL_GPL(clockevents_unbind_device); 439 440 /** 441 * clockevents_register_device - register a clock event device 442 * @dev: device to register 443 */ 444 void clockevents_register_device(struct clock_event_device *dev) 445 { 446 unsigned long flags; 447 448 /* Initialize state to DETACHED */ 449 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 450 451 if (!dev->cpumask) { 452 WARN_ON(num_possible_cpus() > 1); 453 dev->cpumask = cpumask_of(smp_processor_id()); 454 } 455 456 if (dev->cpumask == cpu_all_mask) { 457 WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n", 458 dev->name); 459 dev->cpumask = cpu_possible_mask; 460 } 461 462 raw_spin_lock_irqsave(&clockevents_lock, flags); 463 464 list_add(&dev->list, &clockevent_devices); 465 tick_check_new_device(dev); 466 clockevents_notify_released(); 467 468 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 469 } 470 EXPORT_SYMBOL_GPL(clockevents_register_device); 471 472 static void clockevents_config(struct clock_event_device *dev, u32 freq) 473 { 474 u64 sec; 475 476 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 477 return; 478 479 /* 480 * Calculate the maximum number of seconds we can sleep. Limit 481 * to 10 minutes for hardware which can program more than 482 * 32bit ticks so we still get reasonable conversion values. 483 */ 484 sec = dev->max_delta_ticks; 485 do_div(sec, freq); 486 if (!sec) 487 sec = 1; 488 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX) 489 sec = 600; 490 491 clockevents_calc_mult_shift(dev, freq, sec); 492 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false); 493 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true); 494 } 495 496 /** 497 * clockevents_config_and_register - Configure and register a clock event device 498 * @dev: device to register 499 * @freq: The clock frequency 500 * @min_delta: The minimum clock ticks to program in oneshot mode 501 * @max_delta: The maximum clock ticks to program in oneshot mode 502 * 503 * min/max_delta can be 0 for devices which do not support oneshot mode. 504 */ 505 void clockevents_config_and_register(struct clock_event_device *dev, 506 u32 freq, unsigned long min_delta, 507 unsigned long max_delta) 508 { 509 dev->min_delta_ticks = min_delta; 510 dev->max_delta_ticks = max_delta; 511 clockevents_config(dev, freq); 512 clockevents_register_device(dev); 513 } 514 EXPORT_SYMBOL_GPL(clockevents_config_and_register); 515 516 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq) 517 { 518 clockevents_config(dev, freq); 519 520 if (clockevent_state_oneshot(dev)) 521 return clockevents_program_event(dev, dev->next_event, false); 522 523 if (clockevent_state_periodic(dev)) 524 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 525 526 return 0; 527 } 528 529 /** 530 * clockevents_update_freq - Update frequency and reprogram a clock event device. 531 * @dev: device to modify 532 * @freq: new device frequency 533 * 534 * Reconfigure and reprogram a clock event device in oneshot 535 * mode. Must be called on the cpu for which the device delivers per 536 * cpu timer events. If called for the broadcast device the core takes 537 * care of serialization. 538 * 539 * Returns 0 on success, -ETIME when the event is in the past. 540 */ 541 int clockevents_update_freq(struct clock_event_device *dev, u32 freq) 542 { 543 unsigned long flags; 544 int ret; 545 546 local_irq_save(flags); 547 ret = tick_broadcast_update_freq(dev, freq); 548 if (ret == -ENODEV) 549 ret = __clockevents_update_freq(dev, freq); 550 local_irq_restore(flags); 551 return ret; 552 } 553 554 /* 555 * Noop handler when we shut down an event device 556 */ 557 void clockevents_handle_noop(struct clock_event_device *dev) 558 { 559 } 560 561 /** 562 * clockevents_exchange_device - release and request clock devices 563 * @old: device to release (can be NULL) 564 * @new: device to request (can be NULL) 565 * 566 * Called from various tick functions with clockevents_lock held and 567 * interrupts disabled. 568 */ 569 void clockevents_exchange_device(struct clock_event_device *old, 570 struct clock_event_device *new) 571 { 572 /* 573 * Caller releases a clock event device. We queue it into the 574 * released list and do a notify add later. 575 */ 576 if (old) { 577 module_put(old->owner); 578 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED); 579 list_del(&old->list); 580 list_add(&old->list, &clockevents_released); 581 } 582 583 if (new) { 584 BUG_ON(!clockevent_state_detached(new)); 585 clockevents_shutdown(new); 586 } 587 } 588 589 /** 590 * clockevents_suspend - suspend clock devices 591 */ 592 void clockevents_suspend(void) 593 { 594 struct clock_event_device *dev; 595 596 list_for_each_entry_reverse(dev, &clockevent_devices, list) 597 if (dev->suspend && !clockevent_state_detached(dev)) 598 dev->suspend(dev); 599 } 600 601 /** 602 * clockevents_resume - resume clock devices 603 */ 604 void clockevents_resume(void) 605 { 606 struct clock_event_device *dev; 607 608 list_for_each_entry(dev, &clockevent_devices, list) 609 if (dev->resume && !clockevent_state_detached(dev)) 610 dev->resume(dev); 611 } 612 613 #ifdef CONFIG_HOTPLUG_CPU 614 /** 615 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu 616 */ 617 void tick_cleanup_dead_cpu(int cpu) 618 { 619 struct clock_event_device *dev, *tmp; 620 unsigned long flags; 621 622 raw_spin_lock_irqsave(&clockevents_lock, flags); 623 624 tick_shutdown_broadcast_oneshot(cpu); 625 tick_shutdown_broadcast(cpu); 626 tick_shutdown(cpu); 627 /* 628 * Unregister the clock event devices which were 629 * released from the users in the notify chain. 630 */ 631 list_for_each_entry_safe(dev, tmp, &clockevents_released, list) 632 list_del(&dev->list); 633 /* 634 * Now check whether the CPU has left unused per cpu devices 635 */ 636 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) { 637 if (cpumask_test_cpu(cpu, dev->cpumask) && 638 cpumask_weight(dev->cpumask) == 1 && 639 !tick_is_broadcast_device(dev)) { 640 BUG_ON(!clockevent_state_detached(dev)); 641 list_del(&dev->list); 642 } 643 } 644 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 645 } 646 #endif 647 648 #ifdef CONFIG_SYSFS 649 static struct bus_type clockevents_subsys = { 650 .name = "clockevents", 651 .dev_name = "clockevent", 652 }; 653 654 static DEFINE_PER_CPU(struct device, tick_percpu_dev); 655 static struct tick_device *tick_get_tick_dev(struct device *dev); 656 657 static ssize_t sysfs_show_current_tick_dev(struct device *dev, 658 struct device_attribute *attr, 659 char *buf) 660 { 661 struct tick_device *td; 662 ssize_t count = 0; 663 664 raw_spin_lock_irq(&clockevents_lock); 665 td = tick_get_tick_dev(dev); 666 if (td && td->evtdev) 667 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name); 668 raw_spin_unlock_irq(&clockevents_lock); 669 return count; 670 } 671 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL); 672 673 /* We don't support the abomination of removable broadcast devices */ 674 static ssize_t sysfs_unbind_tick_dev(struct device *dev, 675 struct device_attribute *attr, 676 const char *buf, size_t count) 677 { 678 char name[CS_NAME_LEN]; 679 ssize_t ret = sysfs_get_uname(buf, name, count); 680 struct clock_event_device *ce; 681 682 if (ret < 0) 683 return ret; 684 685 ret = -ENODEV; 686 mutex_lock(&clockevents_mutex); 687 raw_spin_lock_irq(&clockevents_lock); 688 list_for_each_entry(ce, &clockevent_devices, list) { 689 if (!strcmp(ce->name, name)) { 690 ret = __clockevents_try_unbind(ce, dev->id); 691 break; 692 } 693 } 694 raw_spin_unlock_irq(&clockevents_lock); 695 /* 696 * We hold clockevents_mutex, so ce can't go away 697 */ 698 if (ret == -EAGAIN) 699 ret = clockevents_unbind(ce, dev->id); 700 mutex_unlock(&clockevents_mutex); 701 return ret ? ret : count; 702 } 703 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev); 704 705 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 706 static struct device tick_bc_dev = { 707 .init_name = "broadcast", 708 .id = 0, 709 .bus = &clockevents_subsys, 710 }; 711 712 static struct tick_device *tick_get_tick_dev(struct device *dev) 713 { 714 return dev == &tick_bc_dev ? tick_get_broadcast_device() : 715 &per_cpu(tick_cpu_device, dev->id); 716 } 717 718 static __init int tick_broadcast_init_sysfs(void) 719 { 720 int err = device_register(&tick_bc_dev); 721 722 if (!err) 723 err = device_create_file(&tick_bc_dev, &dev_attr_current_device); 724 return err; 725 } 726 #else 727 static struct tick_device *tick_get_tick_dev(struct device *dev) 728 { 729 return &per_cpu(tick_cpu_device, dev->id); 730 } 731 static inline int tick_broadcast_init_sysfs(void) { return 0; } 732 #endif 733 734 static int __init tick_init_sysfs(void) 735 { 736 int cpu; 737 738 for_each_possible_cpu(cpu) { 739 struct device *dev = &per_cpu(tick_percpu_dev, cpu); 740 int err; 741 742 dev->id = cpu; 743 dev->bus = &clockevents_subsys; 744 err = device_register(dev); 745 if (!err) 746 err = device_create_file(dev, &dev_attr_current_device); 747 if (!err) 748 err = device_create_file(dev, &dev_attr_unbind_device); 749 if (err) 750 return err; 751 } 752 return tick_broadcast_init_sysfs(); 753 } 754 755 static int __init clockevents_init_sysfs(void) 756 { 757 int err = subsys_system_register(&clockevents_subsys, NULL); 758 759 if (!err) 760 err = tick_init_sysfs(); 761 return err; 762 } 763 device_initcall(clockevents_init_sysfs); 764 #endif /* SYSFS */ 765