xref: /openbmc/linux/kernel/time/clockevents.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 static int __clockevents_set_state(struct clock_event_device *dev,
98 				   enum clock_event_state state)
99 {
100 	/* Transition with legacy set_mode() callback */
101 	if (dev->set_mode) {
102 		/* Legacy callback doesn't support new modes */
103 		if (state > CLOCK_EVT_STATE_ONESHOT)
104 			return -ENOSYS;
105 		/*
106 		 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107 		 * mapping until *_ONESHOT, and so a simple cast will work.
108 		 */
109 		dev->set_mode((enum clock_event_mode)state, dev);
110 		dev->mode = (enum clock_event_mode)state;
111 		return 0;
112 	}
113 
114 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115 		return 0;
116 
117 	/* Transition with new state-specific callbacks */
118 	switch (state) {
119 	case CLOCK_EVT_STATE_DETACHED:
120 		/* The clockevent device is getting replaced. Shut it down. */
121 
122 	case CLOCK_EVT_STATE_SHUTDOWN:
123 		return dev->set_state_shutdown(dev);
124 
125 	case CLOCK_EVT_STATE_PERIODIC:
126 		/* Core internal bug */
127 		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
128 			return -ENOSYS;
129 		return dev->set_state_periodic(dev);
130 
131 	case CLOCK_EVT_STATE_ONESHOT:
132 		/* Core internal bug */
133 		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
134 			return -ENOSYS;
135 		return dev->set_state_oneshot(dev);
136 
137 	default:
138 		return -ENOSYS;
139 	}
140 }
141 
142 /**
143  * clockevents_set_state - set the operating state of a clock event device
144  * @dev:	device to modify
145  * @state:	new state
146  *
147  * Must be called with interrupts disabled !
148  */
149 void clockevents_set_state(struct clock_event_device *dev,
150 			   enum clock_event_state state)
151 {
152 	if (dev->state != state) {
153 		if (__clockevents_set_state(dev, state))
154 			return;
155 
156 		dev->state = state;
157 
158 		/*
159 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
160 		 * on it, so fix it up and emit a warning:
161 		 */
162 		if (state == CLOCK_EVT_STATE_ONESHOT) {
163 			if (unlikely(!dev->mult)) {
164 				dev->mult = 1;
165 				WARN_ON(1);
166 			}
167 		}
168 	}
169 }
170 
171 /**
172  * clockevents_shutdown - shutdown the device and clear next_event
173  * @dev:	device to shutdown
174  */
175 void clockevents_shutdown(struct clock_event_device *dev)
176 {
177 	clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
178 	dev->next_event.tv64 = KTIME_MAX;
179 }
180 
181 /**
182  * clockevents_tick_resume -	Resume the tick device before using it again
183  * @dev:			device to resume
184  */
185 int clockevents_tick_resume(struct clock_event_device *dev)
186 {
187 	int ret = 0;
188 
189 	if (dev->set_mode) {
190 		dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
191 		dev->mode = CLOCK_EVT_MODE_RESUME;
192 	} else if (dev->tick_resume) {
193 		ret = dev->tick_resume(dev);
194 	}
195 
196 	return ret;
197 }
198 
199 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200 
201 /* Limit min_delta to a jiffie */
202 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
203 
204 /**
205  * clockevents_increase_min_delta - raise minimum delta of a clock event device
206  * @dev:       device to increase the minimum delta
207  *
208  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209  */
210 static int clockevents_increase_min_delta(struct clock_event_device *dev)
211 {
212 	/* Nothing to do if we already reached the limit */
213 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214 		printk_deferred(KERN_WARNING
215 				"CE: Reprogramming failure. Giving up\n");
216 		dev->next_event.tv64 = KTIME_MAX;
217 		return -ETIME;
218 	}
219 
220 	if (dev->min_delta_ns < 5000)
221 		dev->min_delta_ns = 5000;
222 	else
223 		dev->min_delta_ns += dev->min_delta_ns >> 1;
224 
225 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226 		dev->min_delta_ns = MIN_DELTA_LIMIT;
227 
228 	printk_deferred(KERN_WARNING
229 			"CE: %s increased min_delta_ns to %llu nsec\n",
230 			dev->name ? dev->name : "?",
231 			(unsigned long long) dev->min_delta_ns);
232 	return 0;
233 }
234 
235 /**
236  * clockevents_program_min_delta - Set clock event device to the minimum delay.
237  * @dev:	device to program
238  *
239  * Returns 0 on success, -ETIME when the retry loop failed.
240  */
241 static int clockevents_program_min_delta(struct clock_event_device *dev)
242 {
243 	unsigned long long clc;
244 	int64_t delta;
245 	int i;
246 
247 	for (i = 0;;) {
248 		delta = dev->min_delta_ns;
249 		dev->next_event = ktime_add_ns(ktime_get(), delta);
250 
251 		if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
252 			return 0;
253 
254 		dev->retries++;
255 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
257 			return 0;
258 
259 		if (++i > 2) {
260 			/*
261 			 * We tried 3 times to program the device with the
262 			 * given min_delta_ns. Try to increase the minimum
263 			 * delta, if that fails as well get out of here.
264 			 */
265 			if (clockevents_increase_min_delta(dev))
266 				return -ETIME;
267 			i = 0;
268 		}
269 	}
270 }
271 
272 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273 
274 /**
275  * clockevents_program_min_delta - Set clock event device to the minimum delay.
276  * @dev:	device to program
277  *
278  * Returns 0 on success, -ETIME when the retry loop failed.
279  */
280 static int clockevents_program_min_delta(struct clock_event_device *dev)
281 {
282 	unsigned long long clc;
283 	int64_t delta;
284 
285 	delta = dev->min_delta_ns;
286 	dev->next_event = ktime_add_ns(ktime_get(), delta);
287 
288 	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
289 		return 0;
290 
291 	dev->retries++;
292 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
293 	return dev->set_next_event((unsigned long) clc, dev);
294 }
295 
296 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
297 
298 /**
299  * clockevents_program_event - Reprogram the clock event device.
300  * @dev:	device to program
301  * @expires:	absolute expiry time (monotonic clock)
302  * @force:	program minimum delay if expires can not be set
303  *
304  * Returns 0 on success, -ETIME when the event is in the past.
305  */
306 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
307 			      bool force)
308 {
309 	unsigned long long clc;
310 	int64_t delta;
311 	int rc;
312 
313 	if (unlikely(expires.tv64 < 0)) {
314 		WARN_ON_ONCE(1);
315 		return -ETIME;
316 	}
317 
318 	dev->next_event = expires;
319 
320 	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
321 		return 0;
322 
323 	/* Shortcut for clockevent devices that can deal with ktime. */
324 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
325 		return dev->set_next_ktime(expires, dev);
326 
327 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
328 	if (delta <= 0)
329 		return force ? clockevents_program_min_delta(dev) : -ETIME;
330 
331 	delta = min(delta, (int64_t) dev->max_delta_ns);
332 	delta = max(delta, (int64_t) dev->min_delta_ns);
333 
334 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
335 	rc = dev->set_next_event((unsigned long) clc, dev);
336 
337 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
338 }
339 
340 /*
341  * Called after a notify add to make devices available which were
342  * released from the notifier call.
343  */
344 static void clockevents_notify_released(void)
345 {
346 	struct clock_event_device *dev;
347 
348 	while (!list_empty(&clockevents_released)) {
349 		dev = list_entry(clockevents_released.next,
350 				 struct clock_event_device, list);
351 		list_del(&dev->list);
352 		list_add(&dev->list, &clockevent_devices);
353 		tick_check_new_device(dev);
354 	}
355 }
356 
357 /*
358  * Try to install a replacement clock event device
359  */
360 static int clockevents_replace(struct clock_event_device *ced)
361 {
362 	struct clock_event_device *dev, *newdev = NULL;
363 
364 	list_for_each_entry(dev, &clockevent_devices, list) {
365 		if (dev == ced || dev->state != CLOCK_EVT_STATE_DETACHED)
366 			continue;
367 
368 		if (!tick_check_replacement(newdev, dev))
369 			continue;
370 
371 		if (!try_module_get(dev->owner))
372 			continue;
373 
374 		if (newdev)
375 			module_put(newdev->owner);
376 		newdev = dev;
377 	}
378 	if (newdev) {
379 		tick_install_replacement(newdev);
380 		list_del_init(&ced->list);
381 	}
382 	return newdev ? 0 : -EBUSY;
383 }
384 
385 /*
386  * Called with clockevents_mutex and clockevents_lock held
387  */
388 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
389 {
390 	/* Fast track. Device is unused */
391 	if (ced->state == CLOCK_EVT_STATE_DETACHED) {
392 		list_del_init(&ced->list);
393 		return 0;
394 	}
395 
396 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
397 }
398 
399 /*
400  * SMP function call to unbind a device
401  */
402 static void __clockevents_unbind(void *arg)
403 {
404 	struct ce_unbind *cu = arg;
405 	int res;
406 
407 	raw_spin_lock(&clockevents_lock);
408 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
409 	if (res == -EAGAIN)
410 		res = clockevents_replace(cu->ce);
411 	cu->res = res;
412 	raw_spin_unlock(&clockevents_lock);
413 }
414 
415 /*
416  * Issues smp function call to unbind a per cpu device. Called with
417  * clockevents_mutex held.
418  */
419 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
420 {
421 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
422 
423 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
424 	return cu.res;
425 }
426 
427 /*
428  * Unbind a clockevents device.
429  */
430 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
431 {
432 	int ret;
433 
434 	mutex_lock(&clockevents_mutex);
435 	ret = clockevents_unbind(ced, cpu);
436 	mutex_unlock(&clockevents_mutex);
437 	return ret;
438 }
439 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
440 
441 /* Sanity check of state transition callbacks */
442 static int clockevents_sanity_check(struct clock_event_device *dev)
443 {
444 	/* Legacy set_mode() callback */
445 	if (dev->set_mode) {
446 		/* We shouldn't be supporting new modes now */
447 		WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
448 			dev->set_state_shutdown || dev->tick_resume);
449 
450 		BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
451 		return 0;
452 	}
453 
454 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
455 		return 0;
456 
457 	/* New state-specific callbacks */
458 	if (!dev->set_state_shutdown)
459 		return -EINVAL;
460 
461 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
462 	    !dev->set_state_periodic)
463 		return -EINVAL;
464 
465 	if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
466 	    !dev->set_state_oneshot)
467 		return -EINVAL;
468 
469 	return 0;
470 }
471 
472 /**
473  * clockevents_register_device - register a clock event device
474  * @dev:	device to register
475  */
476 void clockevents_register_device(struct clock_event_device *dev)
477 {
478 	unsigned long flags;
479 
480 	BUG_ON(clockevents_sanity_check(dev));
481 
482 	/* Initialize state to DETACHED */
483 	dev->state = CLOCK_EVT_STATE_DETACHED;
484 
485 	if (!dev->cpumask) {
486 		WARN_ON(num_possible_cpus() > 1);
487 		dev->cpumask = cpumask_of(smp_processor_id());
488 	}
489 
490 	raw_spin_lock_irqsave(&clockevents_lock, flags);
491 
492 	list_add(&dev->list, &clockevent_devices);
493 	tick_check_new_device(dev);
494 	clockevents_notify_released();
495 
496 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
497 }
498 EXPORT_SYMBOL_GPL(clockevents_register_device);
499 
500 void clockevents_config(struct clock_event_device *dev, u32 freq)
501 {
502 	u64 sec;
503 
504 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
505 		return;
506 
507 	/*
508 	 * Calculate the maximum number of seconds we can sleep. Limit
509 	 * to 10 minutes for hardware which can program more than
510 	 * 32bit ticks so we still get reasonable conversion values.
511 	 */
512 	sec = dev->max_delta_ticks;
513 	do_div(sec, freq);
514 	if (!sec)
515 		sec = 1;
516 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
517 		sec = 600;
518 
519 	clockevents_calc_mult_shift(dev, freq, sec);
520 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
521 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
522 }
523 
524 /**
525  * clockevents_config_and_register - Configure and register a clock event device
526  * @dev:	device to register
527  * @freq:	The clock frequency
528  * @min_delta:	The minimum clock ticks to program in oneshot mode
529  * @max_delta:	The maximum clock ticks to program in oneshot mode
530  *
531  * min/max_delta can be 0 for devices which do not support oneshot mode.
532  */
533 void clockevents_config_and_register(struct clock_event_device *dev,
534 				     u32 freq, unsigned long min_delta,
535 				     unsigned long max_delta)
536 {
537 	dev->min_delta_ticks = min_delta;
538 	dev->max_delta_ticks = max_delta;
539 	clockevents_config(dev, freq);
540 	clockevents_register_device(dev);
541 }
542 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
543 
544 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
545 {
546 	clockevents_config(dev, freq);
547 
548 	if (dev->state == CLOCK_EVT_STATE_ONESHOT)
549 		return clockevents_program_event(dev, dev->next_event, false);
550 
551 	if (dev->state == CLOCK_EVT_STATE_PERIODIC)
552 		return __clockevents_set_state(dev, CLOCK_EVT_STATE_PERIODIC);
553 
554 	return 0;
555 }
556 
557 /**
558  * clockevents_update_freq - Update frequency and reprogram a clock event device.
559  * @dev:	device to modify
560  * @freq:	new device frequency
561  *
562  * Reconfigure and reprogram a clock event device in oneshot
563  * mode. Must be called on the cpu for which the device delivers per
564  * cpu timer events. If called for the broadcast device the core takes
565  * care of serialization.
566  *
567  * Returns 0 on success, -ETIME when the event is in the past.
568  */
569 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
570 {
571 	unsigned long flags;
572 	int ret;
573 
574 	local_irq_save(flags);
575 	ret = tick_broadcast_update_freq(dev, freq);
576 	if (ret == -ENODEV)
577 		ret = __clockevents_update_freq(dev, freq);
578 	local_irq_restore(flags);
579 	return ret;
580 }
581 
582 /*
583  * Noop handler when we shut down an event device
584  */
585 void clockevents_handle_noop(struct clock_event_device *dev)
586 {
587 }
588 
589 /**
590  * clockevents_exchange_device - release and request clock devices
591  * @old:	device to release (can be NULL)
592  * @new:	device to request (can be NULL)
593  *
594  * Called from various tick functions with clockevents_lock held and
595  * interrupts disabled.
596  */
597 void clockevents_exchange_device(struct clock_event_device *old,
598 				 struct clock_event_device *new)
599 {
600 	/*
601 	 * Caller releases a clock event device. We queue it into the
602 	 * released list and do a notify add later.
603 	 */
604 	if (old) {
605 		module_put(old->owner);
606 		clockevents_set_state(old, CLOCK_EVT_STATE_DETACHED);
607 		list_del(&old->list);
608 		list_add(&old->list, &clockevents_released);
609 	}
610 
611 	if (new) {
612 		BUG_ON(new->state != CLOCK_EVT_STATE_DETACHED);
613 		clockevents_shutdown(new);
614 	}
615 }
616 
617 /**
618  * clockevents_suspend - suspend clock devices
619  */
620 void clockevents_suspend(void)
621 {
622 	struct clock_event_device *dev;
623 
624 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
625 		if (dev->suspend)
626 			dev->suspend(dev);
627 }
628 
629 /**
630  * clockevents_resume - resume clock devices
631  */
632 void clockevents_resume(void)
633 {
634 	struct clock_event_device *dev;
635 
636 	list_for_each_entry(dev, &clockevent_devices, list)
637 		if (dev->resume)
638 			dev->resume(dev);
639 }
640 
641 #ifdef CONFIG_HOTPLUG_CPU
642 /**
643  * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
644  */
645 void tick_cleanup_dead_cpu(int cpu)
646 {
647 	struct clock_event_device *dev, *tmp;
648 	unsigned long flags;
649 
650 	raw_spin_lock_irqsave(&clockevents_lock, flags);
651 
652 	tick_shutdown_broadcast_oneshot(cpu);
653 	tick_shutdown_broadcast(cpu);
654 	tick_shutdown(cpu);
655 	/*
656 	 * Unregister the clock event devices which were
657 	 * released from the users in the notify chain.
658 	 */
659 	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
660 		list_del(&dev->list);
661 	/*
662 	 * Now check whether the CPU has left unused per cpu devices
663 	 */
664 	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
665 		if (cpumask_test_cpu(cpu, dev->cpumask) &&
666 		    cpumask_weight(dev->cpumask) == 1 &&
667 		    !tick_is_broadcast_device(dev)) {
668 			BUG_ON(dev->state != CLOCK_EVT_STATE_DETACHED);
669 			list_del(&dev->list);
670 		}
671 	}
672 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
673 }
674 #endif
675 
676 #ifdef CONFIG_SYSFS
677 struct bus_type clockevents_subsys = {
678 	.name		= "clockevents",
679 	.dev_name       = "clockevent",
680 };
681 
682 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
683 static struct tick_device *tick_get_tick_dev(struct device *dev);
684 
685 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
686 					   struct device_attribute *attr,
687 					   char *buf)
688 {
689 	struct tick_device *td;
690 	ssize_t count = 0;
691 
692 	raw_spin_lock_irq(&clockevents_lock);
693 	td = tick_get_tick_dev(dev);
694 	if (td && td->evtdev)
695 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
696 	raw_spin_unlock_irq(&clockevents_lock);
697 	return count;
698 }
699 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
700 
701 /* We don't support the abomination of removable broadcast devices */
702 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
703 				     struct device_attribute *attr,
704 				     const char *buf, size_t count)
705 {
706 	char name[CS_NAME_LEN];
707 	ssize_t ret = sysfs_get_uname(buf, name, count);
708 	struct clock_event_device *ce;
709 
710 	if (ret < 0)
711 		return ret;
712 
713 	ret = -ENODEV;
714 	mutex_lock(&clockevents_mutex);
715 	raw_spin_lock_irq(&clockevents_lock);
716 	list_for_each_entry(ce, &clockevent_devices, list) {
717 		if (!strcmp(ce->name, name)) {
718 			ret = __clockevents_try_unbind(ce, dev->id);
719 			break;
720 		}
721 	}
722 	raw_spin_unlock_irq(&clockevents_lock);
723 	/*
724 	 * We hold clockevents_mutex, so ce can't go away
725 	 */
726 	if (ret == -EAGAIN)
727 		ret = clockevents_unbind(ce, dev->id);
728 	mutex_unlock(&clockevents_mutex);
729 	return ret ? ret : count;
730 }
731 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
732 
733 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
734 static struct device tick_bc_dev = {
735 	.init_name	= "broadcast",
736 	.id		= 0,
737 	.bus		= &clockevents_subsys,
738 };
739 
740 static struct tick_device *tick_get_tick_dev(struct device *dev)
741 {
742 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
743 		&per_cpu(tick_cpu_device, dev->id);
744 }
745 
746 static __init int tick_broadcast_init_sysfs(void)
747 {
748 	int err = device_register(&tick_bc_dev);
749 
750 	if (!err)
751 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
752 	return err;
753 }
754 #else
755 static struct tick_device *tick_get_tick_dev(struct device *dev)
756 {
757 	return &per_cpu(tick_cpu_device, dev->id);
758 }
759 static inline int tick_broadcast_init_sysfs(void) { return 0; }
760 #endif
761 
762 static int __init tick_init_sysfs(void)
763 {
764 	int cpu;
765 
766 	for_each_possible_cpu(cpu) {
767 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
768 		int err;
769 
770 		dev->id = cpu;
771 		dev->bus = &clockevents_subsys;
772 		err = device_register(dev);
773 		if (!err)
774 			err = device_create_file(dev, &dev_attr_current_device);
775 		if (!err)
776 			err = device_create_file(dev, &dev_attr_unbind_device);
777 		if (err)
778 			return err;
779 	}
780 	return tick_broadcast_init_sysfs();
781 }
782 
783 static int __init clockevents_init_sysfs(void)
784 {
785 	int err = subsys_system_register(&clockevents_subsys, NULL);
786 
787 	if (!err)
788 		err = tick_init_sysfs();
789 	return err;
790 }
791 device_initcall(clockevents_init_sysfs);
792 #endif /* SYSFS */
793