1 /* 2 * linux/kernel/time/clockevents.c 3 * 4 * This file contains functions which manage clock event devices. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 * 10 * This code is licenced under the GPL version 2. For details see 11 * kernel-base/COPYING. 12 */ 13 14 #include <linux/clockchips.h> 15 #include <linux/hrtimer.h> 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/smp.h> 19 #include <linux/device.h> 20 21 #include "tick-internal.h" 22 23 /* The registered clock event devices */ 24 static LIST_HEAD(clockevent_devices); 25 static LIST_HEAD(clockevents_released); 26 /* Protection for the above */ 27 static DEFINE_RAW_SPINLOCK(clockevents_lock); 28 /* Protection for unbind operations */ 29 static DEFINE_MUTEX(clockevents_mutex); 30 31 struct ce_unbind { 32 struct clock_event_device *ce; 33 int res; 34 }; 35 36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt, 37 bool ismax) 38 { 39 u64 clc = (u64) latch << evt->shift; 40 u64 rnd; 41 42 if (unlikely(!evt->mult)) { 43 evt->mult = 1; 44 WARN_ON(1); 45 } 46 rnd = (u64) evt->mult - 1; 47 48 /* 49 * Upper bound sanity check. If the backwards conversion is 50 * not equal latch, we know that the above shift overflowed. 51 */ 52 if ((clc >> evt->shift) != (u64)latch) 53 clc = ~0ULL; 54 55 /* 56 * Scaled math oddities: 57 * 58 * For mult <= (1 << shift) we can safely add mult - 1 to 59 * prevent integer rounding loss. So the backwards conversion 60 * from nsec to device ticks will be correct. 61 * 62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we 63 * need to be careful. Adding mult - 1 will result in a value 64 * which when converted back to device ticks can be larger 65 * than latch by up to (mult - 1) >> shift. For the min_delta 66 * calculation we still want to apply this in order to stay 67 * above the minimum device ticks limit. For the upper limit 68 * we would end up with a latch value larger than the upper 69 * limit of the device, so we omit the add to stay below the 70 * device upper boundary. 71 * 72 * Also omit the add if it would overflow the u64 boundary. 73 */ 74 if ((~0ULL - clc > rnd) && 75 (!ismax || evt->mult <= (1ULL << evt->shift))) 76 clc += rnd; 77 78 do_div(clc, evt->mult); 79 80 /* Deltas less than 1usec are pointless noise */ 81 return clc > 1000 ? clc : 1000; 82 } 83 84 /** 85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds 86 * @latch: value to convert 87 * @evt: pointer to clock event device descriptor 88 * 89 * Math helper, returns latch value converted to nanoseconds (bound checked) 90 */ 91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt) 92 { 93 return cev_delta2ns(latch, evt, false); 94 } 95 EXPORT_SYMBOL_GPL(clockevent_delta2ns); 96 97 static int __clockevents_switch_state(struct clock_event_device *dev, 98 enum clock_event_state state) 99 { 100 if (dev->features & CLOCK_EVT_FEAT_DUMMY) 101 return 0; 102 103 /* Transition with new state-specific callbacks */ 104 switch (state) { 105 case CLOCK_EVT_STATE_DETACHED: 106 /* The clockevent device is getting replaced. Shut it down. */ 107 108 case CLOCK_EVT_STATE_SHUTDOWN: 109 if (dev->set_state_shutdown) 110 return dev->set_state_shutdown(dev); 111 return 0; 112 113 case CLOCK_EVT_STATE_PERIODIC: 114 /* Core internal bug */ 115 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC)) 116 return -ENOSYS; 117 if (dev->set_state_periodic) 118 return dev->set_state_periodic(dev); 119 return 0; 120 121 case CLOCK_EVT_STATE_ONESHOT: 122 /* Core internal bug */ 123 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 124 return -ENOSYS; 125 if (dev->set_state_oneshot) 126 return dev->set_state_oneshot(dev); 127 return 0; 128 129 case CLOCK_EVT_STATE_ONESHOT_STOPPED: 130 /* Core internal bug */ 131 if (WARN_ONCE(!clockevent_state_oneshot(dev), 132 "Current state: %d\n", 133 clockevent_get_state(dev))) 134 return -EINVAL; 135 136 if (dev->set_state_oneshot_stopped) 137 return dev->set_state_oneshot_stopped(dev); 138 else 139 return -ENOSYS; 140 141 default: 142 return -ENOSYS; 143 } 144 } 145 146 /** 147 * clockevents_switch_state - set the operating state of a clock event device 148 * @dev: device to modify 149 * @state: new state 150 * 151 * Must be called with interrupts disabled ! 152 */ 153 void clockevents_switch_state(struct clock_event_device *dev, 154 enum clock_event_state state) 155 { 156 if (clockevent_get_state(dev) != state) { 157 if (__clockevents_switch_state(dev, state)) 158 return; 159 160 clockevent_set_state(dev, state); 161 162 /* 163 * A nsec2cyc multiplicator of 0 is invalid and we'd crash 164 * on it, so fix it up and emit a warning: 165 */ 166 if (clockevent_state_oneshot(dev)) { 167 if (unlikely(!dev->mult)) { 168 dev->mult = 1; 169 WARN_ON(1); 170 } 171 } 172 } 173 } 174 175 /** 176 * clockevents_shutdown - shutdown the device and clear next_event 177 * @dev: device to shutdown 178 */ 179 void clockevents_shutdown(struct clock_event_device *dev) 180 { 181 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN); 182 dev->next_event = KTIME_MAX; 183 } 184 185 /** 186 * clockevents_tick_resume - Resume the tick device before using it again 187 * @dev: device to resume 188 */ 189 int clockevents_tick_resume(struct clock_event_device *dev) 190 { 191 int ret = 0; 192 193 if (dev->tick_resume) 194 ret = dev->tick_resume(dev); 195 196 return ret; 197 } 198 199 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST 200 201 /* Limit min_delta to a jiffie */ 202 #define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ) 203 204 /** 205 * clockevents_increase_min_delta - raise minimum delta of a clock event device 206 * @dev: device to increase the minimum delta 207 * 208 * Returns 0 on success, -ETIME when the minimum delta reached the limit. 209 */ 210 static int clockevents_increase_min_delta(struct clock_event_device *dev) 211 { 212 /* Nothing to do if we already reached the limit */ 213 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) { 214 printk_deferred(KERN_WARNING 215 "CE: Reprogramming failure. Giving up\n"); 216 dev->next_event = KTIME_MAX; 217 return -ETIME; 218 } 219 220 if (dev->min_delta_ns < 5000) 221 dev->min_delta_ns = 5000; 222 else 223 dev->min_delta_ns += dev->min_delta_ns >> 1; 224 225 if (dev->min_delta_ns > MIN_DELTA_LIMIT) 226 dev->min_delta_ns = MIN_DELTA_LIMIT; 227 228 printk_deferred(KERN_WARNING 229 "CE: %s increased min_delta_ns to %llu nsec\n", 230 dev->name ? dev->name : "?", 231 (unsigned long long) dev->min_delta_ns); 232 return 0; 233 } 234 235 /** 236 * clockevents_program_min_delta - Set clock event device to the minimum delay. 237 * @dev: device to program 238 * 239 * Returns 0 on success, -ETIME when the retry loop failed. 240 */ 241 static int clockevents_program_min_delta(struct clock_event_device *dev) 242 { 243 unsigned long long clc; 244 int64_t delta; 245 int i; 246 247 for (i = 0;;) { 248 delta = dev->min_delta_ns; 249 dev->next_event = ktime_add_ns(ktime_get(), delta); 250 251 if (clockevent_state_shutdown(dev)) 252 return 0; 253 254 dev->retries++; 255 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 256 if (dev->set_next_event((unsigned long) clc, dev) == 0) 257 return 0; 258 259 if (++i > 2) { 260 /* 261 * We tried 3 times to program the device with the 262 * given min_delta_ns. Try to increase the minimum 263 * delta, if that fails as well get out of here. 264 */ 265 if (clockevents_increase_min_delta(dev)) 266 return -ETIME; 267 i = 0; 268 } 269 } 270 } 271 272 #else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 273 274 /** 275 * clockevents_program_min_delta - Set clock event device to the minimum delay. 276 * @dev: device to program 277 * 278 * Returns 0 on success, -ETIME when the retry loop failed. 279 */ 280 static int clockevents_program_min_delta(struct clock_event_device *dev) 281 { 282 unsigned long long clc; 283 int64_t delta; 284 285 delta = dev->min_delta_ns; 286 dev->next_event = ktime_add_ns(ktime_get(), delta); 287 288 if (clockevent_state_shutdown(dev)) 289 return 0; 290 291 dev->retries++; 292 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 293 return dev->set_next_event((unsigned long) clc, dev); 294 } 295 296 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */ 297 298 /** 299 * clockevents_program_event - Reprogram the clock event device. 300 * @dev: device to program 301 * @expires: absolute expiry time (monotonic clock) 302 * @force: program minimum delay if expires can not be set 303 * 304 * Returns 0 on success, -ETIME when the event is in the past. 305 */ 306 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires, 307 bool force) 308 { 309 unsigned long long clc; 310 int64_t delta; 311 int rc; 312 313 if (unlikely(expires < 0)) { 314 WARN_ON_ONCE(1); 315 return -ETIME; 316 } 317 318 dev->next_event = expires; 319 320 if (clockevent_state_shutdown(dev)) 321 return 0; 322 323 /* We must be in ONESHOT state here */ 324 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n", 325 clockevent_get_state(dev)); 326 327 /* Shortcut for clockevent devices that can deal with ktime. */ 328 if (dev->features & CLOCK_EVT_FEAT_KTIME) 329 return dev->set_next_ktime(expires, dev); 330 331 delta = ktime_to_ns(ktime_sub(expires, ktime_get())); 332 if (delta <= 0) 333 return force ? clockevents_program_min_delta(dev) : -ETIME; 334 335 delta = min(delta, (int64_t) dev->max_delta_ns); 336 delta = max(delta, (int64_t) dev->min_delta_ns); 337 338 clc = ((unsigned long long) delta * dev->mult) >> dev->shift; 339 rc = dev->set_next_event((unsigned long) clc, dev); 340 341 return (rc && force) ? clockevents_program_min_delta(dev) : rc; 342 } 343 344 /* 345 * Called after a notify add to make devices available which were 346 * released from the notifier call. 347 */ 348 static void clockevents_notify_released(void) 349 { 350 struct clock_event_device *dev; 351 352 while (!list_empty(&clockevents_released)) { 353 dev = list_entry(clockevents_released.next, 354 struct clock_event_device, list); 355 list_del(&dev->list); 356 list_add(&dev->list, &clockevent_devices); 357 tick_check_new_device(dev); 358 } 359 } 360 361 /* 362 * Try to install a replacement clock event device 363 */ 364 static int clockevents_replace(struct clock_event_device *ced) 365 { 366 struct clock_event_device *dev, *newdev = NULL; 367 368 list_for_each_entry(dev, &clockevent_devices, list) { 369 if (dev == ced || !clockevent_state_detached(dev)) 370 continue; 371 372 if (!tick_check_replacement(newdev, dev)) 373 continue; 374 375 if (!try_module_get(dev->owner)) 376 continue; 377 378 if (newdev) 379 module_put(newdev->owner); 380 newdev = dev; 381 } 382 if (newdev) { 383 tick_install_replacement(newdev); 384 list_del_init(&ced->list); 385 } 386 return newdev ? 0 : -EBUSY; 387 } 388 389 /* 390 * Called with clockevents_mutex and clockevents_lock held 391 */ 392 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu) 393 { 394 /* Fast track. Device is unused */ 395 if (clockevent_state_detached(ced)) { 396 list_del_init(&ced->list); 397 return 0; 398 } 399 400 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY; 401 } 402 403 /* 404 * SMP function call to unbind a device 405 */ 406 static void __clockevents_unbind(void *arg) 407 { 408 struct ce_unbind *cu = arg; 409 int res; 410 411 raw_spin_lock(&clockevents_lock); 412 res = __clockevents_try_unbind(cu->ce, smp_processor_id()); 413 if (res == -EAGAIN) 414 res = clockevents_replace(cu->ce); 415 cu->res = res; 416 raw_spin_unlock(&clockevents_lock); 417 } 418 419 /* 420 * Issues smp function call to unbind a per cpu device. Called with 421 * clockevents_mutex held. 422 */ 423 static int clockevents_unbind(struct clock_event_device *ced, int cpu) 424 { 425 struct ce_unbind cu = { .ce = ced, .res = -ENODEV }; 426 427 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1); 428 return cu.res; 429 } 430 431 /* 432 * Unbind a clockevents device. 433 */ 434 int clockevents_unbind_device(struct clock_event_device *ced, int cpu) 435 { 436 int ret; 437 438 mutex_lock(&clockevents_mutex); 439 ret = clockevents_unbind(ced, cpu); 440 mutex_unlock(&clockevents_mutex); 441 return ret; 442 } 443 EXPORT_SYMBOL_GPL(clockevents_unbind_device); 444 445 /** 446 * clockevents_register_device - register a clock event device 447 * @dev: device to register 448 */ 449 void clockevents_register_device(struct clock_event_device *dev) 450 { 451 unsigned long flags; 452 453 /* Initialize state to DETACHED */ 454 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 455 456 if (!dev->cpumask) { 457 WARN_ON(num_possible_cpus() > 1); 458 dev->cpumask = cpumask_of(smp_processor_id()); 459 } 460 461 raw_spin_lock_irqsave(&clockevents_lock, flags); 462 463 list_add(&dev->list, &clockevent_devices); 464 tick_check_new_device(dev); 465 clockevents_notify_released(); 466 467 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 468 } 469 EXPORT_SYMBOL_GPL(clockevents_register_device); 470 471 void clockevents_config(struct clock_event_device *dev, u32 freq) 472 { 473 u64 sec; 474 475 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 476 return; 477 478 /* 479 * Calculate the maximum number of seconds we can sleep. Limit 480 * to 10 minutes for hardware which can program more than 481 * 32bit ticks so we still get reasonable conversion values. 482 */ 483 sec = dev->max_delta_ticks; 484 do_div(sec, freq); 485 if (!sec) 486 sec = 1; 487 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX) 488 sec = 600; 489 490 clockevents_calc_mult_shift(dev, freq, sec); 491 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false); 492 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true); 493 } 494 495 /** 496 * clockevents_config_and_register - Configure and register a clock event device 497 * @dev: device to register 498 * @freq: The clock frequency 499 * @min_delta: The minimum clock ticks to program in oneshot mode 500 * @max_delta: The maximum clock ticks to program in oneshot mode 501 * 502 * min/max_delta can be 0 for devices which do not support oneshot mode. 503 */ 504 void clockevents_config_and_register(struct clock_event_device *dev, 505 u32 freq, unsigned long min_delta, 506 unsigned long max_delta) 507 { 508 dev->min_delta_ticks = min_delta; 509 dev->max_delta_ticks = max_delta; 510 clockevents_config(dev, freq); 511 clockevents_register_device(dev); 512 } 513 EXPORT_SYMBOL_GPL(clockevents_config_and_register); 514 515 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq) 516 { 517 clockevents_config(dev, freq); 518 519 if (clockevent_state_oneshot(dev)) 520 return clockevents_program_event(dev, dev->next_event, false); 521 522 if (clockevent_state_periodic(dev)) 523 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 524 525 return 0; 526 } 527 528 /** 529 * clockevents_update_freq - Update frequency and reprogram a clock event device. 530 * @dev: device to modify 531 * @freq: new device frequency 532 * 533 * Reconfigure and reprogram a clock event device in oneshot 534 * mode. Must be called on the cpu for which the device delivers per 535 * cpu timer events. If called for the broadcast device the core takes 536 * care of serialization. 537 * 538 * Returns 0 on success, -ETIME when the event is in the past. 539 */ 540 int clockevents_update_freq(struct clock_event_device *dev, u32 freq) 541 { 542 unsigned long flags; 543 int ret; 544 545 local_irq_save(flags); 546 ret = tick_broadcast_update_freq(dev, freq); 547 if (ret == -ENODEV) 548 ret = __clockevents_update_freq(dev, freq); 549 local_irq_restore(flags); 550 return ret; 551 } 552 553 /* 554 * Noop handler when we shut down an event device 555 */ 556 void clockevents_handle_noop(struct clock_event_device *dev) 557 { 558 } 559 560 /** 561 * clockevents_exchange_device - release and request clock devices 562 * @old: device to release (can be NULL) 563 * @new: device to request (can be NULL) 564 * 565 * Called from various tick functions with clockevents_lock held and 566 * interrupts disabled. 567 */ 568 void clockevents_exchange_device(struct clock_event_device *old, 569 struct clock_event_device *new) 570 { 571 /* 572 * Caller releases a clock event device. We queue it into the 573 * released list and do a notify add later. 574 */ 575 if (old) { 576 module_put(old->owner); 577 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED); 578 list_del(&old->list); 579 list_add(&old->list, &clockevents_released); 580 } 581 582 if (new) { 583 BUG_ON(!clockevent_state_detached(new)); 584 clockevents_shutdown(new); 585 } 586 } 587 588 /** 589 * clockevents_suspend - suspend clock devices 590 */ 591 void clockevents_suspend(void) 592 { 593 struct clock_event_device *dev; 594 595 list_for_each_entry_reverse(dev, &clockevent_devices, list) 596 if (dev->suspend && !clockevent_state_detached(dev)) 597 dev->suspend(dev); 598 } 599 600 /** 601 * clockevents_resume - resume clock devices 602 */ 603 void clockevents_resume(void) 604 { 605 struct clock_event_device *dev; 606 607 list_for_each_entry(dev, &clockevent_devices, list) 608 if (dev->resume && !clockevent_state_detached(dev)) 609 dev->resume(dev); 610 } 611 612 #ifdef CONFIG_HOTPLUG_CPU 613 /** 614 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu 615 */ 616 void tick_cleanup_dead_cpu(int cpu) 617 { 618 struct clock_event_device *dev, *tmp; 619 unsigned long flags; 620 621 raw_spin_lock_irqsave(&clockevents_lock, flags); 622 623 tick_shutdown_broadcast_oneshot(cpu); 624 tick_shutdown_broadcast(cpu); 625 tick_shutdown(cpu); 626 /* 627 * Unregister the clock event devices which were 628 * released from the users in the notify chain. 629 */ 630 list_for_each_entry_safe(dev, tmp, &clockevents_released, list) 631 list_del(&dev->list); 632 /* 633 * Now check whether the CPU has left unused per cpu devices 634 */ 635 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) { 636 if (cpumask_test_cpu(cpu, dev->cpumask) && 637 cpumask_weight(dev->cpumask) == 1 && 638 !tick_is_broadcast_device(dev)) { 639 BUG_ON(!clockevent_state_detached(dev)); 640 list_del(&dev->list); 641 } 642 } 643 raw_spin_unlock_irqrestore(&clockevents_lock, flags); 644 } 645 #endif 646 647 #ifdef CONFIG_SYSFS 648 static struct bus_type clockevents_subsys = { 649 .name = "clockevents", 650 .dev_name = "clockevent", 651 }; 652 653 static DEFINE_PER_CPU(struct device, tick_percpu_dev); 654 static struct tick_device *tick_get_tick_dev(struct device *dev); 655 656 static ssize_t sysfs_show_current_tick_dev(struct device *dev, 657 struct device_attribute *attr, 658 char *buf) 659 { 660 struct tick_device *td; 661 ssize_t count = 0; 662 663 raw_spin_lock_irq(&clockevents_lock); 664 td = tick_get_tick_dev(dev); 665 if (td && td->evtdev) 666 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name); 667 raw_spin_unlock_irq(&clockevents_lock); 668 return count; 669 } 670 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL); 671 672 /* We don't support the abomination of removable broadcast devices */ 673 static ssize_t sysfs_unbind_tick_dev(struct device *dev, 674 struct device_attribute *attr, 675 const char *buf, size_t count) 676 { 677 char name[CS_NAME_LEN]; 678 ssize_t ret = sysfs_get_uname(buf, name, count); 679 struct clock_event_device *ce; 680 681 if (ret < 0) 682 return ret; 683 684 ret = -ENODEV; 685 mutex_lock(&clockevents_mutex); 686 raw_spin_lock_irq(&clockevents_lock); 687 list_for_each_entry(ce, &clockevent_devices, list) { 688 if (!strcmp(ce->name, name)) { 689 ret = __clockevents_try_unbind(ce, dev->id); 690 break; 691 } 692 } 693 raw_spin_unlock_irq(&clockevents_lock); 694 /* 695 * We hold clockevents_mutex, so ce can't go away 696 */ 697 if (ret == -EAGAIN) 698 ret = clockevents_unbind(ce, dev->id); 699 mutex_unlock(&clockevents_mutex); 700 return ret ? ret : count; 701 } 702 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev); 703 704 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST 705 static struct device tick_bc_dev = { 706 .init_name = "broadcast", 707 .id = 0, 708 .bus = &clockevents_subsys, 709 }; 710 711 static struct tick_device *tick_get_tick_dev(struct device *dev) 712 { 713 return dev == &tick_bc_dev ? tick_get_broadcast_device() : 714 &per_cpu(tick_cpu_device, dev->id); 715 } 716 717 static __init int tick_broadcast_init_sysfs(void) 718 { 719 int err = device_register(&tick_bc_dev); 720 721 if (!err) 722 err = device_create_file(&tick_bc_dev, &dev_attr_current_device); 723 return err; 724 } 725 #else 726 static struct tick_device *tick_get_tick_dev(struct device *dev) 727 { 728 return &per_cpu(tick_cpu_device, dev->id); 729 } 730 static inline int tick_broadcast_init_sysfs(void) { return 0; } 731 #endif 732 733 static int __init tick_init_sysfs(void) 734 { 735 int cpu; 736 737 for_each_possible_cpu(cpu) { 738 struct device *dev = &per_cpu(tick_percpu_dev, cpu); 739 int err; 740 741 dev->id = cpu; 742 dev->bus = &clockevents_subsys; 743 err = device_register(dev); 744 if (!err) 745 err = device_create_file(dev, &dev_attr_current_device); 746 if (!err) 747 err = device_create_file(dev, &dev_attr_unbind_device); 748 if (err) 749 return err; 750 } 751 return tick_broadcast_init_sysfs(); 752 } 753 754 static int __init clockevents_init_sysfs(void) 755 { 756 int err = subsys_system_register(&clockevents_subsys, NULL); 757 758 if (!err) 759 err = tick_init_sysfs(); 760 return err; 761 } 762 device_initcall(clockevents_init_sysfs); 763 #endif /* SYSFS */ 764