xref: /openbmc/linux/kernel/time/clockevents.c (revision 02b4e275)
1 /*
2  * linux/kernel/time/clockevents.c
3  *
4  * This file contains functions which manage clock event devices.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  *
10  * This code is licenced under the GPL version 2. For details see
11  * kernel-base/COPYING.
12  */
13 
14 #include <linux/clockchips.h>
15 #include <linux/hrtimer.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/smp.h>
19 #include <linux/device.h>
20 
21 #include "tick-internal.h"
22 
23 /* The registered clock event devices */
24 static LIST_HEAD(clockevent_devices);
25 static LIST_HEAD(clockevents_released);
26 /* Protection for the above */
27 static DEFINE_RAW_SPINLOCK(clockevents_lock);
28 /* Protection for unbind operations */
29 static DEFINE_MUTEX(clockevents_mutex);
30 
31 struct ce_unbind {
32 	struct clock_event_device *ce;
33 	int res;
34 };
35 
36 static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 			bool ismax)
38 {
39 	u64 clc = (u64) latch << evt->shift;
40 	u64 rnd;
41 
42 	if (unlikely(!evt->mult)) {
43 		evt->mult = 1;
44 		WARN_ON(1);
45 	}
46 	rnd = (u64) evt->mult - 1;
47 
48 	/*
49 	 * Upper bound sanity check. If the backwards conversion is
50 	 * not equal latch, we know that the above shift overflowed.
51 	 */
52 	if ((clc >> evt->shift) != (u64)latch)
53 		clc = ~0ULL;
54 
55 	/*
56 	 * Scaled math oddities:
57 	 *
58 	 * For mult <= (1 << shift) we can safely add mult - 1 to
59 	 * prevent integer rounding loss. So the backwards conversion
60 	 * from nsec to device ticks will be correct.
61 	 *
62 	 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 	 * need to be careful. Adding mult - 1 will result in a value
64 	 * which when converted back to device ticks can be larger
65 	 * than latch by up to (mult - 1) >> shift. For the min_delta
66 	 * calculation we still want to apply this in order to stay
67 	 * above the minimum device ticks limit. For the upper limit
68 	 * we would end up with a latch value larger than the upper
69 	 * limit of the device, so we omit the add to stay below the
70 	 * device upper boundary.
71 	 *
72 	 * Also omit the add if it would overflow the u64 boundary.
73 	 */
74 	if ((~0ULL - clc > rnd) &&
75 	    (!ismax || evt->mult <= (1ULL << evt->shift)))
76 		clc += rnd;
77 
78 	do_div(clc, evt->mult);
79 
80 	/* Deltas less than 1usec are pointless noise */
81 	return clc > 1000 ? clc : 1000;
82 }
83 
84 /**
85  * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86  * @latch:	value to convert
87  * @evt:	pointer to clock event device descriptor
88  *
89  * Math helper, returns latch value converted to nanoseconds (bound checked)
90  */
91 u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92 {
93 	return cev_delta2ns(latch, evt, false);
94 }
95 EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96 
97 static int __clockevents_set_state(struct clock_event_device *dev,
98 				   enum clock_event_state state)
99 {
100 	/* Transition with legacy set_mode() callback */
101 	if (dev->set_mode) {
102 		/* Legacy callback doesn't support new modes */
103 		if (state > CLOCK_EVT_STATE_ONESHOT)
104 			return -ENOSYS;
105 		/*
106 		 * 'clock_event_state' and 'clock_event_mode' have 1-to-1
107 		 * mapping until *_ONESHOT, and so a simple cast will work.
108 		 */
109 		dev->set_mode((enum clock_event_mode)state, dev);
110 		dev->mode = (enum clock_event_mode)state;
111 		return 0;
112 	}
113 
114 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
115 		return 0;
116 
117 	/* Transition with new state-specific callbacks */
118 	switch (state) {
119 	case CLOCK_EVT_STATE_DETACHED:
120 		/*
121 		 * This is an internal state, which is guaranteed to go from
122 		 * SHUTDOWN to DETACHED. No driver interaction required.
123 		 */
124 		return 0;
125 
126 	case CLOCK_EVT_STATE_SHUTDOWN:
127 		return dev->set_state_shutdown(dev);
128 
129 	case CLOCK_EVT_STATE_PERIODIC:
130 		/* Core internal bug */
131 		if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
132 			return -ENOSYS;
133 		return dev->set_state_periodic(dev);
134 
135 	case CLOCK_EVT_STATE_ONESHOT:
136 		/* Core internal bug */
137 		if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
138 			return -ENOSYS;
139 		return dev->set_state_oneshot(dev);
140 
141 	default:
142 		return -ENOSYS;
143 	}
144 }
145 
146 /**
147  * clockevents_set_state - set the operating state of a clock event device
148  * @dev:	device to modify
149  * @state:	new state
150  *
151  * Must be called with interrupts disabled !
152  */
153 void clockevents_set_state(struct clock_event_device *dev,
154 			   enum clock_event_state state)
155 {
156 	if (dev->state != state) {
157 		if (__clockevents_set_state(dev, state))
158 			return;
159 
160 		dev->state = state;
161 
162 		/*
163 		 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164 		 * on it, so fix it up and emit a warning:
165 		 */
166 		if (state == CLOCK_EVT_STATE_ONESHOT) {
167 			if (unlikely(!dev->mult)) {
168 				dev->mult = 1;
169 				WARN_ON(1);
170 			}
171 		}
172 	}
173 }
174 
175 /**
176  * clockevents_shutdown - shutdown the device and clear next_event
177  * @dev:	device to shutdown
178  */
179 void clockevents_shutdown(struct clock_event_device *dev)
180 {
181 	clockevents_set_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182 	dev->next_event.tv64 = KTIME_MAX;
183 }
184 
185 /**
186  * clockevents_tick_resume -	Resume the tick device before using it again
187  * @dev:			device to resume
188  */
189 int clockevents_tick_resume(struct clock_event_device *dev)
190 {
191 	int ret = 0;
192 
193 	if (dev->set_mode) {
194 		dev->set_mode(CLOCK_EVT_MODE_RESUME, dev);
195 		dev->mode = CLOCK_EVT_MODE_RESUME;
196 	} else if (dev->tick_resume) {
197 		ret = dev->tick_resume(dev);
198 	}
199 
200 	return ret;
201 }
202 
203 #ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
204 
205 /* Limit min_delta to a jiffie */
206 #define MIN_DELTA_LIMIT		(NSEC_PER_SEC / HZ)
207 
208 /**
209  * clockevents_increase_min_delta - raise minimum delta of a clock event device
210  * @dev:       device to increase the minimum delta
211  *
212  * Returns 0 on success, -ETIME when the minimum delta reached the limit.
213  */
214 static int clockevents_increase_min_delta(struct clock_event_device *dev)
215 {
216 	/* Nothing to do if we already reached the limit */
217 	if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
218 		printk_deferred(KERN_WARNING
219 				"CE: Reprogramming failure. Giving up\n");
220 		dev->next_event.tv64 = KTIME_MAX;
221 		return -ETIME;
222 	}
223 
224 	if (dev->min_delta_ns < 5000)
225 		dev->min_delta_ns = 5000;
226 	else
227 		dev->min_delta_ns += dev->min_delta_ns >> 1;
228 
229 	if (dev->min_delta_ns > MIN_DELTA_LIMIT)
230 		dev->min_delta_ns = MIN_DELTA_LIMIT;
231 
232 	printk_deferred(KERN_WARNING
233 			"CE: %s increased min_delta_ns to %llu nsec\n",
234 			dev->name ? dev->name : "?",
235 			(unsigned long long) dev->min_delta_ns);
236 	return 0;
237 }
238 
239 /**
240  * clockevents_program_min_delta - Set clock event device to the minimum delay.
241  * @dev:	device to program
242  *
243  * Returns 0 on success, -ETIME when the retry loop failed.
244  */
245 static int clockevents_program_min_delta(struct clock_event_device *dev)
246 {
247 	unsigned long long clc;
248 	int64_t delta;
249 	int i;
250 
251 	for (i = 0;;) {
252 		delta = dev->min_delta_ns;
253 		dev->next_event = ktime_add_ns(ktime_get(), delta);
254 
255 		if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
256 			return 0;
257 
258 		dev->retries++;
259 		clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
260 		if (dev->set_next_event((unsigned long) clc, dev) == 0)
261 			return 0;
262 
263 		if (++i > 2) {
264 			/*
265 			 * We tried 3 times to program the device with the
266 			 * given min_delta_ns. Try to increase the minimum
267 			 * delta, if that fails as well get out of here.
268 			 */
269 			if (clockevents_increase_min_delta(dev))
270 				return -ETIME;
271 			i = 0;
272 		}
273 	}
274 }
275 
276 #else  /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
277 
278 /**
279  * clockevents_program_min_delta - Set clock event device to the minimum delay.
280  * @dev:	device to program
281  *
282  * Returns 0 on success, -ETIME when the retry loop failed.
283  */
284 static int clockevents_program_min_delta(struct clock_event_device *dev)
285 {
286 	unsigned long long clc;
287 	int64_t delta;
288 
289 	delta = dev->min_delta_ns;
290 	dev->next_event = ktime_add_ns(ktime_get(), delta);
291 
292 	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
293 		return 0;
294 
295 	dev->retries++;
296 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
297 	return dev->set_next_event((unsigned long) clc, dev);
298 }
299 
300 #endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
301 
302 /**
303  * clockevents_program_event - Reprogram the clock event device.
304  * @dev:	device to program
305  * @expires:	absolute expiry time (monotonic clock)
306  * @force:	program minimum delay if expires can not be set
307  *
308  * Returns 0 on success, -ETIME when the event is in the past.
309  */
310 int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
311 			      bool force)
312 {
313 	unsigned long long clc;
314 	int64_t delta;
315 	int rc;
316 
317 	if (unlikely(expires.tv64 < 0)) {
318 		WARN_ON_ONCE(1);
319 		return -ETIME;
320 	}
321 
322 	dev->next_event = expires;
323 
324 	if (dev->state == CLOCK_EVT_STATE_SHUTDOWN)
325 		return 0;
326 
327 	/* Shortcut for clockevent devices that can deal with ktime. */
328 	if (dev->features & CLOCK_EVT_FEAT_KTIME)
329 		return dev->set_next_ktime(expires, dev);
330 
331 	delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
332 	if (delta <= 0)
333 		return force ? clockevents_program_min_delta(dev) : -ETIME;
334 
335 	delta = min(delta, (int64_t) dev->max_delta_ns);
336 	delta = max(delta, (int64_t) dev->min_delta_ns);
337 
338 	clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
339 	rc = dev->set_next_event((unsigned long) clc, dev);
340 
341 	return (rc && force) ? clockevents_program_min_delta(dev) : rc;
342 }
343 
344 /*
345  * Called after a notify add to make devices available which were
346  * released from the notifier call.
347  */
348 static void clockevents_notify_released(void)
349 {
350 	struct clock_event_device *dev;
351 
352 	while (!list_empty(&clockevents_released)) {
353 		dev = list_entry(clockevents_released.next,
354 				 struct clock_event_device, list);
355 		list_del(&dev->list);
356 		list_add(&dev->list, &clockevent_devices);
357 		tick_check_new_device(dev);
358 	}
359 }
360 
361 /*
362  * Try to install a replacement clock event device
363  */
364 static int clockevents_replace(struct clock_event_device *ced)
365 {
366 	struct clock_event_device *dev, *newdev = NULL;
367 
368 	list_for_each_entry(dev, &clockevent_devices, list) {
369 		if (dev == ced || dev->state != CLOCK_EVT_STATE_DETACHED)
370 			continue;
371 
372 		if (!tick_check_replacement(newdev, dev))
373 			continue;
374 
375 		if (!try_module_get(dev->owner))
376 			continue;
377 
378 		if (newdev)
379 			module_put(newdev->owner);
380 		newdev = dev;
381 	}
382 	if (newdev) {
383 		tick_install_replacement(newdev);
384 		list_del_init(&ced->list);
385 	}
386 	return newdev ? 0 : -EBUSY;
387 }
388 
389 /*
390  * Called with clockevents_mutex and clockevents_lock held
391  */
392 static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
393 {
394 	/* Fast track. Device is unused */
395 	if (ced->state == CLOCK_EVT_STATE_DETACHED) {
396 		list_del_init(&ced->list);
397 		return 0;
398 	}
399 
400 	return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
401 }
402 
403 /*
404  * SMP function call to unbind a device
405  */
406 static void __clockevents_unbind(void *arg)
407 {
408 	struct ce_unbind *cu = arg;
409 	int res;
410 
411 	raw_spin_lock(&clockevents_lock);
412 	res = __clockevents_try_unbind(cu->ce, smp_processor_id());
413 	if (res == -EAGAIN)
414 		res = clockevents_replace(cu->ce);
415 	cu->res = res;
416 	raw_spin_unlock(&clockevents_lock);
417 }
418 
419 /*
420  * Issues smp function call to unbind a per cpu device. Called with
421  * clockevents_mutex held.
422  */
423 static int clockevents_unbind(struct clock_event_device *ced, int cpu)
424 {
425 	struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
426 
427 	smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
428 	return cu.res;
429 }
430 
431 /*
432  * Unbind a clockevents device.
433  */
434 int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
435 {
436 	int ret;
437 
438 	mutex_lock(&clockevents_mutex);
439 	ret = clockevents_unbind(ced, cpu);
440 	mutex_unlock(&clockevents_mutex);
441 	return ret;
442 }
443 EXPORT_SYMBOL_GPL(clockevents_unbind_device);
444 
445 /* Sanity check of state transition callbacks */
446 static int clockevents_sanity_check(struct clock_event_device *dev)
447 {
448 	/* Legacy set_mode() callback */
449 	if (dev->set_mode) {
450 		/* We shouldn't be supporting new modes now */
451 		WARN_ON(dev->set_state_periodic || dev->set_state_oneshot ||
452 			dev->set_state_shutdown || dev->tick_resume);
453 
454 		BUG_ON(dev->mode != CLOCK_EVT_MODE_UNUSED);
455 		return 0;
456 	}
457 
458 	if (dev->features & CLOCK_EVT_FEAT_DUMMY)
459 		return 0;
460 
461 	/* New state-specific callbacks */
462 	if (!dev->set_state_shutdown)
463 		return -EINVAL;
464 
465 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
466 	    !dev->set_state_periodic)
467 		return -EINVAL;
468 
469 	if ((dev->features & CLOCK_EVT_FEAT_ONESHOT) &&
470 	    !dev->set_state_oneshot)
471 		return -EINVAL;
472 
473 	return 0;
474 }
475 
476 /**
477  * clockevents_register_device - register a clock event device
478  * @dev:	device to register
479  */
480 void clockevents_register_device(struct clock_event_device *dev)
481 {
482 	unsigned long flags;
483 
484 	BUG_ON(clockevents_sanity_check(dev));
485 
486 	/* Initialize state to DETACHED */
487 	dev->state = CLOCK_EVT_STATE_DETACHED;
488 
489 	if (!dev->cpumask) {
490 		WARN_ON(num_possible_cpus() > 1);
491 		dev->cpumask = cpumask_of(smp_processor_id());
492 	}
493 
494 	raw_spin_lock_irqsave(&clockevents_lock, flags);
495 
496 	list_add(&dev->list, &clockevent_devices);
497 	tick_check_new_device(dev);
498 	clockevents_notify_released();
499 
500 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
501 }
502 EXPORT_SYMBOL_GPL(clockevents_register_device);
503 
504 void clockevents_config(struct clock_event_device *dev, u32 freq)
505 {
506 	u64 sec;
507 
508 	if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
509 		return;
510 
511 	/*
512 	 * Calculate the maximum number of seconds we can sleep. Limit
513 	 * to 10 minutes for hardware which can program more than
514 	 * 32bit ticks so we still get reasonable conversion values.
515 	 */
516 	sec = dev->max_delta_ticks;
517 	do_div(sec, freq);
518 	if (!sec)
519 		sec = 1;
520 	else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
521 		sec = 600;
522 
523 	clockevents_calc_mult_shift(dev, freq, sec);
524 	dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
525 	dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
526 }
527 
528 /**
529  * clockevents_config_and_register - Configure and register a clock event device
530  * @dev:	device to register
531  * @freq:	The clock frequency
532  * @min_delta:	The minimum clock ticks to program in oneshot mode
533  * @max_delta:	The maximum clock ticks to program in oneshot mode
534  *
535  * min/max_delta can be 0 for devices which do not support oneshot mode.
536  */
537 void clockevents_config_and_register(struct clock_event_device *dev,
538 				     u32 freq, unsigned long min_delta,
539 				     unsigned long max_delta)
540 {
541 	dev->min_delta_ticks = min_delta;
542 	dev->max_delta_ticks = max_delta;
543 	clockevents_config(dev, freq);
544 	clockevents_register_device(dev);
545 }
546 EXPORT_SYMBOL_GPL(clockevents_config_and_register);
547 
548 int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
549 {
550 	clockevents_config(dev, freq);
551 
552 	if (dev->state == CLOCK_EVT_STATE_ONESHOT)
553 		return clockevents_program_event(dev, dev->next_event, false);
554 
555 	if (dev->state == CLOCK_EVT_STATE_PERIODIC)
556 		return __clockevents_set_state(dev, CLOCK_EVT_STATE_PERIODIC);
557 
558 	return 0;
559 }
560 
561 /**
562  * clockevents_update_freq - Update frequency and reprogram a clock event device.
563  * @dev:	device to modify
564  * @freq:	new device frequency
565  *
566  * Reconfigure and reprogram a clock event device in oneshot
567  * mode. Must be called on the cpu for which the device delivers per
568  * cpu timer events. If called for the broadcast device the core takes
569  * care of serialization.
570  *
571  * Returns 0 on success, -ETIME when the event is in the past.
572  */
573 int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
574 {
575 	unsigned long flags;
576 	int ret;
577 
578 	local_irq_save(flags);
579 	ret = tick_broadcast_update_freq(dev, freq);
580 	if (ret == -ENODEV)
581 		ret = __clockevents_update_freq(dev, freq);
582 	local_irq_restore(flags);
583 	return ret;
584 }
585 
586 /*
587  * Noop handler when we shut down an event device
588  */
589 void clockevents_handle_noop(struct clock_event_device *dev)
590 {
591 }
592 
593 /**
594  * clockevents_exchange_device - release and request clock devices
595  * @old:	device to release (can be NULL)
596  * @new:	device to request (can be NULL)
597  *
598  * Called from various tick functions with clockevents_lock held and
599  * interrupts disabled.
600  */
601 void clockevents_exchange_device(struct clock_event_device *old,
602 				 struct clock_event_device *new)
603 {
604 	/*
605 	 * Caller releases a clock event device. We queue it into the
606 	 * released list and do a notify add later.
607 	 */
608 	if (old) {
609 		module_put(old->owner);
610 		clockevents_set_state(old, CLOCK_EVT_STATE_DETACHED);
611 		list_del(&old->list);
612 		list_add(&old->list, &clockevents_released);
613 	}
614 
615 	if (new) {
616 		BUG_ON(new->state != CLOCK_EVT_STATE_DETACHED);
617 		clockevents_shutdown(new);
618 	}
619 }
620 
621 /**
622  * clockevents_suspend - suspend clock devices
623  */
624 void clockevents_suspend(void)
625 {
626 	struct clock_event_device *dev;
627 
628 	list_for_each_entry_reverse(dev, &clockevent_devices, list)
629 		if (dev->suspend)
630 			dev->suspend(dev);
631 }
632 
633 /**
634  * clockevents_resume - resume clock devices
635  */
636 void clockevents_resume(void)
637 {
638 	struct clock_event_device *dev;
639 
640 	list_for_each_entry(dev, &clockevent_devices, list)
641 		if (dev->resume)
642 			dev->resume(dev);
643 }
644 
645 #ifdef CONFIG_HOTPLUG_CPU
646 /**
647  * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
648  */
649 void tick_cleanup_dead_cpu(int cpu)
650 {
651 	struct clock_event_device *dev, *tmp;
652 	unsigned long flags;
653 
654 	raw_spin_lock_irqsave(&clockevents_lock, flags);
655 
656 	tick_shutdown_broadcast_oneshot(cpu);
657 	tick_shutdown_broadcast(cpu);
658 	tick_shutdown(cpu);
659 	/*
660 	 * Unregister the clock event devices which were
661 	 * released from the users in the notify chain.
662 	 */
663 	list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
664 		list_del(&dev->list);
665 	/*
666 	 * Now check whether the CPU has left unused per cpu devices
667 	 */
668 	list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
669 		if (cpumask_test_cpu(cpu, dev->cpumask) &&
670 		    cpumask_weight(dev->cpumask) == 1 &&
671 		    !tick_is_broadcast_device(dev)) {
672 			BUG_ON(dev->state != CLOCK_EVT_STATE_DETACHED);
673 			list_del(&dev->list);
674 		}
675 	}
676 	raw_spin_unlock_irqrestore(&clockevents_lock, flags);
677 }
678 #endif
679 
680 #ifdef CONFIG_SYSFS
681 struct bus_type clockevents_subsys = {
682 	.name		= "clockevents",
683 	.dev_name       = "clockevent",
684 };
685 
686 static DEFINE_PER_CPU(struct device, tick_percpu_dev);
687 static struct tick_device *tick_get_tick_dev(struct device *dev);
688 
689 static ssize_t sysfs_show_current_tick_dev(struct device *dev,
690 					   struct device_attribute *attr,
691 					   char *buf)
692 {
693 	struct tick_device *td;
694 	ssize_t count = 0;
695 
696 	raw_spin_lock_irq(&clockevents_lock);
697 	td = tick_get_tick_dev(dev);
698 	if (td && td->evtdev)
699 		count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
700 	raw_spin_unlock_irq(&clockevents_lock);
701 	return count;
702 }
703 static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
704 
705 /* We don't support the abomination of removable broadcast devices */
706 static ssize_t sysfs_unbind_tick_dev(struct device *dev,
707 				     struct device_attribute *attr,
708 				     const char *buf, size_t count)
709 {
710 	char name[CS_NAME_LEN];
711 	ssize_t ret = sysfs_get_uname(buf, name, count);
712 	struct clock_event_device *ce;
713 
714 	if (ret < 0)
715 		return ret;
716 
717 	ret = -ENODEV;
718 	mutex_lock(&clockevents_mutex);
719 	raw_spin_lock_irq(&clockevents_lock);
720 	list_for_each_entry(ce, &clockevent_devices, list) {
721 		if (!strcmp(ce->name, name)) {
722 			ret = __clockevents_try_unbind(ce, dev->id);
723 			break;
724 		}
725 	}
726 	raw_spin_unlock_irq(&clockevents_lock);
727 	/*
728 	 * We hold clockevents_mutex, so ce can't go away
729 	 */
730 	if (ret == -EAGAIN)
731 		ret = clockevents_unbind(ce, dev->id);
732 	mutex_unlock(&clockevents_mutex);
733 	return ret ? ret : count;
734 }
735 static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
736 
737 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
738 static struct device tick_bc_dev = {
739 	.init_name	= "broadcast",
740 	.id		= 0,
741 	.bus		= &clockevents_subsys,
742 };
743 
744 static struct tick_device *tick_get_tick_dev(struct device *dev)
745 {
746 	return dev == &tick_bc_dev ? tick_get_broadcast_device() :
747 		&per_cpu(tick_cpu_device, dev->id);
748 }
749 
750 static __init int tick_broadcast_init_sysfs(void)
751 {
752 	int err = device_register(&tick_bc_dev);
753 
754 	if (!err)
755 		err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
756 	return err;
757 }
758 #else
759 static struct tick_device *tick_get_tick_dev(struct device *dev)
760 {
761 	return &per_cpu(tick_cpu_device, dev->id);
762 }
763 static inline int tick_broadcast_init_sysfs(void) { return 0; }
764 #endif
765 
766 static int __init tick_init_sysfs(void)
767 {
768 	int cpu;
769 
770 	for_each_possible_cpu(cpu) {
771 		struct device *dev = &per_cpu(tick_percpu_dev, cpu);
772 		int err;
773 
774 		dev->id = cpu;
775 		dev->bus = &clockevents_subsys;
776 		err = device_register(dev);
777 		if (!err)
778 			err = device_create_file(dev, &dev_attr_current_device);
779 		if (!err)
780 			err = device_create_file(dev, &dev_attr_unbind_device);
781 		if (err)
782 			return err;
783 	}
784 	return tick_broadcast_init_sysfs();
785 }
786 
787 static int __init clockevents_init_sysfs(void)
788 {
789 	int err = subsys_system_register(&clockevents_subsys, NULL);
790 
791 	if (!err)
792 		err = tick_init_sysfs();
793 	return err;
794 }
795 device_initcall(clockevents_init_sysfs);
796 #endif /* SYSFS */
797