1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similarto hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corperation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 30 #include "posix-timers.h" 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/alarmtimer.h> 34 35 /** 36 * struct alarm_base - Alarm timer bases 37 * @lock: Lock for syncrhonized access to the base 38 * @timerqueue: Timerqueue head managing the list of events 39 * @gettime: Function to read the time correlating to the base 40 * @base_clockid: clockid for the base 41 */ 42 static struct alarm_base { 43 spinlock_t lock; 44 struct timerqueue_head timerqueue; 45 ktime_t (*gettime)(void); 46 clockid_t base_clockid; 47 } alarm_bases[ALARM_NUMTYPE]; 48 49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 50 /* freezer information to handle clock_nanosleep triggered wakeups */ 51 static enum alarmtimer_type freezer_alarmtype; 52 static ktime_t freezer_expires; 53 static ktime_t freezer_delta; 54 static DEFINE_SPINLOCK(freezer_delta_lock); 55 #endif 56 57 #ifdef CONFIG_RTC_CLASS 58 static struct wakeup_source *ws; 59 60 /* rtc timer and device for setting alarm wakeups at suspend */ 61 static struct rtc_timer rtctimer; 62 static struct rtc_device *rtcdev; 63 static DEFINE_SPINLOCK(rtcdev_lock); 64 65 /** 66 * alarmtimer_get_rtcdev - Return selected rtcdevice 67 * 68 * This function returns the rtc device to use for wakealarms. 69 * If one has not already been chosen, it checks to see if a 70 * functional rtc device is available. 71 */ 72 struct rtc_device *alarmtimer_get_rtcdev(void) 73 { 74 unsigned long flags; 75 struct rtc_device *ret; 76 77 spin_lock_irqsave(&rtcdev_lock, flags); 78 ret = rtcdev; 79 spin_unlock_irqrestore(&rtcdev_lock, flags); 80 81 return ret; 82 } 83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 84 85 static int alarmtimer_rtc_add_device(struct device *dev, 86 struct class_interface *class_intf) 87 { 88 unsigned long flags; 89 struct rtc_device *rtc = to_rtc_device(dev); 90 struct wakeup_source *__ws; 91 92 if (rtcdev) 93 return -EBUSY; 94 95 if (!rtc->ops->set_alarm) 96 return -1; 97 if (!device_may_wakeup(rtc->dev.parent)) 98 return -1; 99 100 __ws = wakeup_source_register("alarmtimer"); 101 102 spin_lock_irqsave(&rtcdev_lock, flags); 103 if (!rtcdev) { 104 if (!try_module_get(rtc->owner)) { 105 spin_unlock_irqrestore(&rtcdev_lock, flags); 106 return -1; 107 } 108 109 rtcdev = rtc; 110 /* hold a reference so it doesn't go away */ 111 get_device(dev); 112 ws = __ws; 113 __ws = NULL; 114 } 115 spin_unlock_irqrestore(&rtcdev_lock, flags); 116 117 wakeup_source_unregister(__ws); 118 119 return 0; 120 } 121 122 static inline void alarmtimer_rtc_timer_init(void) 123 { 124 rtc_timer_init(&rtctimer, NULL, NULL); 125 } 126 127 static struct class_interface alarmtimer_rtc_interface = { 128 .add_dev = &alarmtimer_rtc_add_device, 129 }; 130 131 static int alarmtimer_rtc_interface_setup(void) 132 { 133 alarmtimer_rtc_interface.class = rtc_class; 134 return class_interface_register(&alarmtimer_rtc_interface); 135 } 136 static void alarmtimer_rtc_interface_remove(void) 137 { 138 class_interface_unregister(&alarmtimer_rtc_interface); 139 } 140 #else 141 struct rtc_device *alarmtimer_get_rtcdev(void) 142 { 143 return NULL; 144 } 145 #define rtcdev (NULL) 146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 147 static inline void alarmtimer_rtc_interface_remove(void) { } 148 static inline void alarmtimer_rtc_timer_init(void) { } 149 #endif 150 151 /** 152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 153 * @base: pointer to the base where the timer is being run 154 * @alarm: pointer to alarm being enqueued. 155 * 156 * Adds alarm to a alarm_base timerqueue 157 * 158 * Must hold base->lock when calling. 159 */ 160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 161 { 162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 163 timerqueue_del(&base->timerqueue, &alarm->node); 164 165 timerqueue_add(&base->timerqueue, &alarm->node); 166 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 167 } 168 169 /** 170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 171 * @base: pointer to the base where the timer is running 172 * @alarm: pointer to alarm being removed 173 * 174 * Removes alarm to a alarm_base timerqueue 175 * 176 * Must hold base->lock when calling. 177 */ 178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 179 { 180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 181 return; 182 183 timerqueue_del(&base->timerqueue, &alarm->node); 184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 185 } 186 187 188 /** 189 * alarmtimer_fired - Handles alarm hrtimer being fired. 190 * @timer: pointer to hrtimer being run 191 * 192 * When a alarm timer fires, this runs through the timerqueue to 193 * see which alarms expired, and runs those. If there are more alarm 194 * timers queued for the future, we set the hrtimer to fire when 195 * when the next future alarm timer expires. 196 */ 197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 198 { 199 struct alarm *alarm = container_of(timer, struct alarm, timer); 200 struct alarm_base *base = &alarm_bases[alarm->type]; 201 unsigned long flags; 202 int ret = HRTIMER_NORESTART; 203 int restart = ALARMTIMER_NORESTART; 204 205 spin_lock_irqsave(&base->lock, flags); 206 alarmtimer_dequeue(base, alarm); 207 spin_unlock_irqrestore(&base->lock, flags); 208 209 if (alarm->function) 210 restart = alarm->function(alarm, base->gettime()); 211 212 spin_lock_irqsave(&base->lock, flags); 213 if (restart != ALARMTIMER_NORESTART) { 214 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 215 alarmtimer_enqueue(base, alarm); 216 ret = HRTIMER_RESTART; 217 } 218 spin_unlock_irqrestore(&base->lock, flags); 219 220 trace_alarmtimer_fired(alarm, base->gettime()); 221 return ret; 222 223 } 224 225 ktime_t alarm_expires_remaining(const struct alarm *alarm) 226 { 227 struct alarm_base *base = &alarm_bases[alarm->type]; 228 return ktime_sub(alarm->node.expires, base->gettime()); 229 } 230 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 231 232 #ifdef CONFIG_RTC_CLASS 233 /** 234 * alarmtimer_suspend - Suspend time callback 235 * @dev: unused 236 * @state: unused 237 * 238 * When we are going into suspend, we look through the bases 239 * to see which is the soonest timer to expire. We then 240 * set an rtc timer to fire that far into the future, which 241 * will wake us from suspend. 242 */ 243 static int alarmtimer_suspend(struct device *dev) 244 { 245 ktime_t min, now, expires; 246 int i, ret, type; 247 struct rtc_device *rtc; 248 unsigned long flags; 249 struct rtc_time tm; 250 251 spin_lock_irqsave(&freezer_delta_lock, flags); 252 min = freezer_delta; 253 expires = freezer_expires; 254 type = freezer_alarmtype; 255 freezer_delta = 0; 256 spin_unlock_irqrestore(&freezer_delta_lock, flags); 257 258 rtc = alarmtimer_get_rtcdev(); 259 /* If we have no rtcdev, just return */ 260 if (!rtc) 261 return 0; 262 263 /* Find the soonest timer to expire*/ 264 for (i = 0; i < ALARM_NUMTYPE; i++) { 265 struct alarm_base *base = &alarm_bases[i]; 266 struct timerqueue_node *next; 267 ktime_t delta; 268 269 spin_lock_irqsave(&base->lock, flags); 270 next = timerqueue_getnext(&base->timerqueue); 271 spin_unlock_irqrestore(&base->lock, flags); 272 if (!next) 273 continue; 274 delta = ktime_sub(next->expires, base->gettime()); 275 if (!min || (delta < min)) { 276 expires = next->expires; 277 min = delta; 278 type = i; 279 } 280 } 281 if (min == 0) 282 return 0; 283 284 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 285 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 286 return -EBUSY; 287 } 288 289 trace_alarmtimer_suspend(expires, type); 290 291 /* Setup an rtc timer to fire that far in the future */ 292 rtc_timer_cancel(rtc, &rtctimer); 293 rtc_read_time(rtc, &tm); 294 now = rtc_tm_to_ktime(tm); 295 now = ktime_add(now, min); 296 297 /* Set alarm, if in the past reject suspend briefly to handle */ 298 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 299 if (ret < 0) 300 __pm_wakeup_event(ws, MSEC_PER_SEC); 301 return ret; 302 } 303 304 static int alarmtimer_resume(struct device *dev) 305 { 306 struct rtc_device *rtc; 307 308 rtc = alarmtimer_get_rtcdev(); 309 if (rtc) 310 rtc_timer_cancel(rtc, &rtctimer); 311 return 0; 312 } 313 314 #else 315 static int alarmtimer_suspend(struct device *dev) 316 { 317 return 0; 318 } 319 320 static int alarmtimer_resume(struct device *dev) 321 { 322 return 0; 323 } 324 #endif 325 326 static void 327 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 328 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 329 { 330 timerqueue_init(&alarm->node); 331 alarm->timer.function = alarmtimer_fired; 332 alarm->function = function; 333 alarm->type = type; 334 alarm->state = ALARMTIMER_STATE_INACTIVE; 335 } 336 337 /** 338 * alarm_init - Initialize an alarm structure 339 * @alarm: ptr to alarm to be initialized 340 * @type: the type of the alarm 341 * @function: callback that is run when the alarm fires 342 */ 343 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 344 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 345 { 346 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 347 HRTIMER_MODE_ABS); 348 __alarm_init(alarm, type, function); 349 } 350 EXPORT_SYMBOL_GPL(alarm_init); 351 352 /** 353 * alarm_start - Sets an absolute alarm to fire 354 * @alarm: ptr to alarm to set 355 * @start: time to run the alarm 356 */ 357 void alarm_start(struct alarm *alarm, ktime_t start) 358 { 359 struct alarm_base *base = &alarm_bases[alarm->type]; 360 unsigned long flags; 361 362 spin_lock_irqsave(&base->lock, flags); 363 alarm->node.expires = start; 364 alarmtimer_enqueue(base, alarm); 365 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 366 spin_unlock_irqrestore(&base->lock, flags); 367 368 trace_alarmtimer_start(alarm, base->gettime()); 369 } 370 EXPORT_SYMBOL_GPL(alarm_start); 371 372 /** 373 * alarm_start_relative - Sets a relative alarm to fire 374 * @alarm: ptr to alarm to set 375 * @start: time relative to now to run the alarm 376 */ 377 void alarm_start_relative(struct alarm *alarm, ktime_t start) 378 { 379 struct alarm_base *base = &alarm_bases[alarm->type]; 380 381 start = ktime_add_safe(start, base->gettime()); 382 alarm_start(alarm, start); 383 } 384 EXPORT_SYMBOL_GPL(alarm_start_relative); 385 386 void alarm_restart(struct alarm *alarm) 387 { 388 struct alarm_base *base = &alarm_bases[alarm->type]; 389 unsigned long flags; 390 391 spin_lock_irqsave(&base->lock, flags); 392 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 393 hrtimer_restart(&alarm->timer); 394 alarmtimer_enqueue(base, alarm); 395 spin_unlock_irqrestore(&base->lock, flags); 396 } 397 EXPORT_SYMBOL_GPL(alarm_restart); 398 399 /** 400 * alarm_try_to_cancel - Tries to cancel an alarm timer 401 * @alarm: ptr to alarm to be canceled 402 * 403 * Returns 1 if the timer was canceled, 0 if it was not running, 404 * and -1 if the callback was running 405 */ 406 int alarm_try_to_cancel(struct alarm *alarm) 407 { 408 struct alarm_base *base = &alarm_bases[alarm->type]; 409 unsigned long flags; 410 int ret; 411 412 spin_lock_irqsave(&base->lock, flags); 413 ret = hrtimer_try_to_cancel(&alarm->timer); 414 if (ret >= 0) 415 alarmtimer_dequeue(base, alarm); 416 spin_unlock_irqrestore(&base->lock, flags); 417 418 trace_alarmtimer_cancel(alarm, base->gettime()); 419 return ret; 420 } 421 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 422 423 424 /** 425 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 426 * @alarm: ptr to alarm to be canceled 427 * 428 * Returns 1 if the timer was canceled, 0 if it was not active. 429 */ 430 int alarm_cancel(struct alarm *alarm) 431 { 432 for (;;) { 433 int ret = alarm_try_to_cancel(alarm); 434 if (ret >= 0) 435 return ret; 436 cpu_relax(); 437 } 438 } 439 EXPORT_SYMBOL_GPL(alarm_cancel); 440 441 442 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 443 { 444 u64 overrun = 1; 445 ktime_t delta; 446 447 delta = ktime_sub(now, alarm->node.expires); 448 449 if (delta < 0) 450 return 0; 451 452 if (unlikely(delta >= interval)) { 453 s64 incr = ktime_to_ns(interval); 454 455 overrun = ktime_divns(delta, incr); 456 457 alarm->node.expires = ktime_add_ns(alarm->node.expires, 458 incr*overrun); 459 460 if (alarm->node.expires > now) 461 return overrun; 462 /* 463 * This (and the ktime_add() below) is the 464 * correction for exact: 465 */ 466 overrun++; 467 } 468 469 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 470 return overrun; 471 } 472 EXPORT_SYMBOL_GPL(alarm_forward); 473 474 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 475 { 476 struct alarm_base *base = &alarm_bases[alarm->type]; 477 478 return alarm_forward(alarm, base->gettime(), interval); 479 } 480 EXPORT_SYMBOL_GPL(alarm_forward_now); 481 482 #ifdef CONFIG_POSIX_TIMERS 483 484 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 485 { 486 struct alarm_base *base; 487 unsigned long flags; 488 ktime_t delta; 489 490 switch(type) { 491 case ALARM_REALTIME: 492 base = &alarm_bases[ALARM_REALTIME]; 493 type = ALARM_REALTIME_FREEZER; 494 break; 495 case ALARM_BOOTTIME: 496 base = &alarm_bases[ALARM_BOOTTIME]; 497 type = ALARM_BOOTTIME_FREEZER; 498 break; 499 default: 500 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 501 return; 502 } 503 504 delta = ktime_sub(absexp, base->gettime()); 505 506 spin_lock_irqsave(&freezer_delta_lock, flags); 507 if (!freezer_delta || (delta < freezer_delta)) { 508 freezer_delta = delta; 509 freezer_expires = absexp; 510 freezer_alarmtype = type; 511 } 512 spin_unlock_irqrestore(&freezer_delta_lock, flags); 513 } 514 515 /** 516 * clock2alarm - helper that converts from clockid to alarmtypes 517 * @clockid: clockid. 518 */ 519 static enum alarmtimer_type clock2alarm(clockid_t clockid) 520 { 521 if (clockid == CLOCK_REALTIME_ALARM) 522 return ALARM_REALTIME; 523 if (clockid == CLOCK_BOOTTIME_ALARM) 524 return ALARM_BOOTTIME; 525 return -1; 526 } 527 528 /** 529 * alarm_handle_timer - Callback for posix timers 530 * @alarm: alarm that fired 531 * 532 * Posix timer callback for expired alarm timers. 533 */ 534 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 535 ktime_t now) 536 { 537 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 538 it.alarm.alarmtimer); 539 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 540 unsigned long flags; 541 int si_private = 0; 542 543 spin_lock_irqsave(&ptr->it_lock, flags); 544 545 ptr->it_active = 0; 546 if (ptr->it_interval) 547 si_private = ++ptr->it_requeue_pending; 548 549 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 550 /* 551 * Handle ignored signals and rearm the timer. This will go 552 * away once we handle ignored signals proper. 553 */ 554 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval); 555 ++ptr->it_requeue_pending; 556 ptr->it_active = 1; 557 result = ALARMTIMER_RESTART; 558 } 559 spin_unlock_irqrestore(&ptr->it_lock, flags); 560 561 return result; 562 } 563 564 /** 565 * alarm_timer_rearm - Posix timer callback for rearming timer 566 * @timr: Pointer to the posixtimer data struct 567 */ 568 static void alarm_timer_rearm(struct k_itimer *timr) 569 { 570 struct alarm *alarm = &timr->it.alarm.alarmtimer; 571 572 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 573 alarm_start(alarm, alarm->node.expires); 574 } 575 576 /** 577 * alarm_timer_forward - Posix timer callback for forwarding timer 578 * @timr: Pointer to the posixtimer data struct 579 * @now: Current time to forward the timer against 580 */ 581 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 582 { 583 struct alarm *alarm = &timr->it.alarm.alarmtimer; 584 585 return alarm_forward(alarm, timr->it_interval, now); 586 } 587 588 /** 589 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 590 * @timr: Pointer to the posixtimer data struct 591 * @now: Current time to calculate against 592 */ 593 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 594 { 595 struct alarm *alarm = &timr->it.alarm.alarmtimer; 596 597 return ktime_sub(now, alarm->node.expires); 598 } 599 600 /** 601 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 602 * @timr: Pointer to the posixtimer data struct 603 */ 604 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 605 { 606 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 607 } 608 609 /** 610 * alarm_timer_arm - Posix timer callback to arm a timer 611 * @timr: Pointer to the posixtimer data struct 612 * @expires: The new expiry time 613 * @absolute: Expiry value is absolute time 614 * @sigev_none: Posix timer does not deliver signals 615 */ 616 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 617 bool absolute, bool sigev_none) 618 { 619 struct alarm *alarm = &timr->it.alarm.alarmtimer; 620 struct alarm_base *base = &alarm_bases[alarm->type]; 621 622 if (!absolute) 623 expires = ktime_add_safe(expires, base->gettime()); 624 if (sigev_none) 625 alarm->node.expires = expires; 626 else 627 alarm_start(&timr->it.alarm.alarmtimer, expires); 628 } 629 630 /** 631 * alarm_clock_getres - posix getres interface 632 * @which_clock: clockid 633 * @tp: timespec to fill 634 * 635 * Returns the granularity of underlying alarm base clock 636 */ 637 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 638 { 639 if (!alarmtimer_get_rtcdev()) 640 return -EINVAL; 641 642 tp->tv_sec = 0; 643 tp->tv_nsec = hrtimer_resolution; 644 return 0; 645 } 646 647 /** 648 * alarm_clock_get - posix clock_get interface 649 * @which_clock: clockid 650 * @tp: timespec to fill. 651 * 652 * Provides the underlying alarm base time. 653 */ 654 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp) 655 { 656 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 657 658 if (!alarmtimer_get_rtcdev()) 659 return -EINVAL; 660 661 *tp = ktime_to_timespec64(base->gettime()); 662 return 0; 663 } 664 665 /** 666 * alarm_timer_create - posix timer_create interface 667 * @new_timer: k_itimer pointer to manage 668 * 669 * Initializes the k_itimer structure. 670 */ 671 static int alarm_timer_create(struct k_itimer *new_timer) 672 { 673 enum alarmtimer_type type; 674 675 if (!alarmtimer_get_rtcdev()) 676 return -ENOTSUPP; 677 678 if (!capable(CAP_WAKE_ALARM)) 679 return -EPERM; 680 681 type = clock2alarm(new_timer->it_clock); 682 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 683 return 0; 684 } 685 686 /** 687 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 688 * @alarm: ptr to alarm that fired 689 * 690 * Wakes up the task that set the alarmtimer 691 */ 692 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 693 ktime_t now) 694 { 695 struct task_struct *task = (struct task_struct *)alarm->data; 696 697 alarm->data = NULL; 698 if (task) 699 wake_up_process(task); 700 return ALARMTIMER_NORESTART; 701 } 702 703 /** 704 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 705 * @alarm: ptr to alarmtimer 706 * @absexp: absolute expiration time 707 * 708 * Sets the alarm timer and sleeps until it is fired or interrupted. 709 */ 710 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 711 enum alarmtimer_type type) 712 { 713 struct restart_block *restart; 714 alarm->data = (void *)current; 715 do { 716 set_current_state(TASK_INTERRUPTIBLE); 717 alarm_start(alarm, absexp); 718 if (likely(alarm->data)) 719 schedule(); 720 721 alarm_cancel(alarm); 722 } while (alarm->data && !signal_pending(current)); 723 724 __set_current_state(TASK_RUNNING); 725 726 destroy_hrtimer_on_stack(&alarm->timer); 727 728 if (!alarm->data) 729 return 0; 730 731 if (freezing(current)) 732 alarmtimer_freezerset(absexp, type); 733 restart = ¤t->restart_block; 734 if (restart->nanosleep.type != TT_NONE) { 735 struct timespec64 rmt; 736 ktime_t rem; 737 738 rem = ktime_sub(absexp, alarm_bases[type].gettime()); 739 740 if (rem <= 0) 741 return 0; 742 rmt = ktime_to_timespec64(rem); 743 744 return nanosleep_copyout(restart, &rmt); 745 } 746 return -ERESTART_RESTARTBLOCK; 747 } 748 749 static void 750 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 751 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 752 { 753 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 754 HRTIMER_MODE_ABS); 755 __alarm_init(alarm, type, function); 756 } 757 758 /** 759 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 760 * @restart: ptr to restart block 761 * 762 * Handles restarted clock_nanosleep calls 763 */ 764 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 765 { 766 enum alarmtimer_type type = restart->nanosleep.clockid; 767 ktime_t exp = restart->nanosleep.expires; 768 struct alarm alarm; 769 770 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 771 772 return alarmtimer_do_nsleep(&alarm, exp, type); 773 } 774 775 /** 776 * alarm_timer_nsleep - alarmtimer nanosleep 777 * @which_clock: clockid 778 * @flags: determins abstime or relative 779 * @tsreq: requested sleep time (abs or rel) 780 * @rmtp: remaining sleep time saved 781 * 782 * Handles clock_nanosleep calls against _ALARM clockids 783 */ 784 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 785 const struct timespec64 *tsreq) 786 { 787 enum alarmtimer_type type = clock2alarm(which_clock); 788 struct restart_block *restart = ¤t->restart_block; 789 struct alarm alarm; 790 ktime_t exp; 791 int ret = 0; 792 793 if (!alarmtimer_get_rtcdev()) 794 return -ENOTSUPP; 795 796 if (flags & ~TIMER_ABSTIME) 797 return -EINVAL; 798 799 if (!capable(CAP_WAKE_ALARM)) 800 return -EPERM; 801 802 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 803 804 exp = timespec64_to_ktime(*tsreq); 805 /* Convert (if necessary) to absolute time */ 806 if (flags != TIMER_ABSTIME) { 807 ktime_t now = alarm_bases[type].gettime(); 808 809 exp = ktime_add_safe(now, exp); 810 } 811 812 ret = alarmtimer_do_nsleep(&alarm, exp, type); 813 if (ret != -ERESTART_RESTARTBLOCK) 814 return ret; 815 816 /* abs timers don't set remaining time or restart */ 817 if (flags == TIMER_ABSTIME) 818 return -ERESTARTNOHAND; 819 820 restart->fn = alarm_timer_nsleep_restart; 821 restart->nanosleep.clockid = type; 822 restart->nanosleep.expires = exp; 823 return ret; 824 } 825 826 const struct k_clock alarm_clock = { 827 .clock_getres = alarm_clock_getres, 828 .clock_get = alarm_clock_get, 829 .timer_create = alarm_timer_create, 830 .timer_set = common_timer_set, 831 .timer_del = common_timer_del, 832 .timer_get = common_timer_get, 833 .timer_arm = alarm_timer_arm, 834 .timer_rearm = alarm_timer_rearm, 835 .timer_forward = alarm_timer_forward, 836 .timer_remaining = alarm_timer_remaining, 837 .timer_try_to_cancel = alarm_timer_try_to_cancel, 838 .nsleep = alarm_timer_nsleep, 839 }; 840 #endif /* CONFIG_POSIX_TIMERS */ 841 842 843 /* Suspend hook structures */ 844 static const struct dev_pm_ops alarmtimer_pm_ops = { 845 .suspend = alarmtimer_suspend, 846 .resume = alarmtimer_resume, 847 }; 848 849 static struct platform_driver alarmtimer_driver = { 850 .driver = { 851 .name = "alarmtimer", 852 .pm = &alarmtimer_pm_ops, 853 } 854 }; 855 856 /** 857 * alarmtimer_init - Initialize alarm timer code 858 * 859 * This function initializes the alarm bases and registers 860 * the posix clock ids. 861 */ 862 static int __init alarmtimer_init(void) 863 { 864 struct platform_device *pdev; 865 int error = 0; 866 int i; 867 868 alarmtimer_rtc_timer_init(); 869 870 /* Initialize alarm bases */ 871 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 872 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 873 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 874 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 875 for (i = 0; i < ALARM_NUMTYPE; i++) { 876 timerqueue_init_head(&alarm_bases[i].timerqueue); 877 spin_lock_init(&alarm_bases[i].lock); 878 } 879 880 error = alarmtimer_rtc_interface_setup(); 881 if (error) 882 return error; 883 884 error = platform_driver_register(&alarmtimer_driver); 885 if (error) 886 goto out_if; 887 888 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 889 if (IS_ERR(pdev)) { 890 error = PTR_ERR(pdev); 891 goto out_drv; 892 } 893 return 0; 894 895 out_drv: 896 platform_driver_unregister(&alarmtimer_driver); 897 out_if: 898 alarmtimer_rtc_interface_remove(); 899 return error; 900 } 901 device_initcall(alarmtimer_init); 902