xref: /openbmc/linux/kernel/time/alarmtimer.c (revision e2f1cf25)
1 /*
2  * Alarmtimer interface
3  *
4  * This interface provides a timer which is similarto hrtimers,
5  * but triggers a RTC alarm if the box is suspend.
6  *
7  * This interface is influenced by the Android RTC Alarm timer
8  * interface.
9  *
10  * Copyright (C) 2010 IBM Corperation
11  *
12  * Author: John Stultz <john.stultz@linaro.org>
13  *
14  * This program is free software; you can redistribute it and/or modify
15  * it under the terms of the GNU General Public License version 2 as
16  * published by the Free Software Foundation.
17  */
18 #include <linux/time.h>
19 #include <linux/hrtimer.h>
20 #include <linux/timerqueue.h>
21 #include <linux/rtc.h>
22 #include <linux/alarmtimer.h>
23 #include <linux/mutex.h>
24 #include <linux/platform_device.h>
25 #include <linux/posix-timers.h>
26 #include <linux/workqueue.h>
27 #include <linux/freezer.h>
28 
29 /**
30  * struct alarm_base - Alarm timer bases
31  * @lock:		Lock for syncrhonized access to the base
32  * @timerqueue:		Timerqueue head managing the list of events
33  * @timer: 		hrtimer used to schedule events while running
34  * @gettime:		Function to read the time correlating to the base
35  * @base_clockid:	clockid for the base
36  */
37 static struct alarm_base {
38 	spinlock_t		lock;
39 	struct timerqueue_head	timerqueue;
40 	ktime_t			(*gettime)(void);
41 	clockid_t		base_clockid;
42 } alarm_bases[ALARM_NUMTYPE];
43 
44 /* freezer delta & lock used to handle clock_nanosleep triggered wakeups */
45 static ktime_t freezer_delta;
46 static DEFINE_SPINLOCK(freezer_delta_lock);
47 
48 static struct wakeup_source *ws;
49 
50 #ifdef CONFIG_RTC_CLASS
51 /* rtc timer and device for setting alarm wakeups at suspend */
52 static struct rtc_timer		rtctimer;
53 static struct rtc_device	*rtcdev;
54 static DEFINE_SPINLOCK(rtcdev_lock);
55 
56 /**
57  * alarmtimer_get_rtcdev - Return selected rtcdevice
58  *
59  * This function returns the rtc device to use for wakealarms.
60  * If one has not already been chosen, it checks to see if a
61  * functional rtc device is available.
62  */
63 struct rtc_device *alarmtimer_get_rtcdev(void)
64 {
65 	unsigned long flags;
66 	struct rtc_device *ret;
67 
68 	spin_lock_irqsave(&rtcdev_lock, flags);
69 	ret = rtcdev;
70 	spin_unlock_irqrestore(&rtcdev_lock, flags);
71 
72 	return ret;
73 }
74 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev);
75 
76 static int alarmtimer_rtc_add_device(struct device *dev,
77 				struct class_interface *class_intf)
78 {
79 	unsigned long flags;
80 	struct rtc_device *rtc = to_rtc_device(dev);
81 
82 	if (rtcdev)
83 		return -EBUSY;
84 
85 	if (!rtc->ops->set_alarm)
86 		return -1;
87 	if (!device_may_wakeup(rtc->dev.parent))
88 		return -1;
89 
90 	spin_lock_irqsave(&rtcdev_lock, flags);
91 	if (!rtcdev) {
92 		rtcdev = rtc;
93 		/* hold a reference so it doesn't go away */
94 		get_device(dev);
95 	}
96 	spin_unlock_irqrestore(&rtcdev_lock, flags);
97 	return 0;
98 }
99 
100 static inline void alarmtimer_rtc_timer_init(void)
101 {
102 	rtc_timer_init(&rtctimer, NULL, NULL);
103 }
104 
105 static struct class_interface alarmtimer_rtc_interface = {
106 	.add_dev = &alarmtimer_rtc_add_device,
107 };
108 
109 static int alarmtimer_rtc_interface_setup(void)
110 {
111 	alarmtimer_rtc_interface.class = rtc_class;
112 	return class_interface_register(&alarmtimer_rtc_interface);
113 }
114 static void alarmtimer_rtc_interface_remove(void)
115 {
116 	class_interface_unregister(&alarmtimer_rtc_interface);
117 }
118 #else
119 struct rtc_device *alarmtimer_get_rtcdev(void)
120 {
121 	return NULL;
122 }
123 #define rtcdev (NULL)
124 static inline int alarmtimer_rtc_interface_setup(void) { return 0; }
125 static inline void alarmtimer_rtc_interface_remove(void) { }
126 static inline void alarmtimer_rtc_timer_init(void) { }
127 #endif
128 
129 /**
130  * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue
131  * @base: pointer to the base where the timer is being run
132  * @alarm: pointer to alarm being enqueued.
133  *
134  * Adds alarm to a alarm_base timerqueue
135  *
136  * Must hold base->lock when calling.
137  */
138 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm)
139 {
140 	if (alarm->state & ALARMTIMER_STATE_ENQUEUED)
141 		timerqueue_del(&base->timerqueue, &alarm->node);
142 
143 	timerqueue_add(&base->timerqueue, &alarm->node);
144 	alarm->state |= ALARMTIMER_STATE_ENQUEUED;
145 }
146 
147 /**
148  * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue
149  * @base: pointer to the base where the timer is running
150  * @alarm: pointer to alarm being removed
151  *
152  * Removes alarm to a alarm_base timerqueue
153  *
154  * Must hold base->lock when calling.
155  */
156 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm)
157 {
158 	if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED))
159 		return;
160 
161 	timerqueue_del(&base->timerqueue, &alarm->node);
162 	alarm->state &= ~ALARMTIMER_STATE_ENQUEUED;
163 }
164 
165 
166 /**
167  * alarmtimer_fired - Handles alarm hrtimer being fired.
168  * @timer: pointer to hrtimer being run
169  *
170  * When a alarm timer fires, this runs through the timerqueue to
171  * see which alarms expired, and runs those. If there are more alarm
172  * timers queued for the future, we set the hrtimer to fire when
173  * when the next future alarm timer expires.
174  */
175 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer)
176 {
177 	struct alarm *alarm = container_of(timer, struct alarm, timer);
178 	struct alarm_base *base = &alarm_bases[alarm->type];
179 	unsigned long flags;
180 	int ret = HRTIMER_NORESTART;
181 	int restart = ALARMTIMER_NORESTART;
182 
183 	spin_lock_irqsave(&base->lock, flags);
184 	alarmtimer_dequeue(base, alarm);
185 	spin_unlock_irqrestore(&base->lock, flags);
186 
187 	if (alarm->function)
188 		restart = alarm->function(alarm, base->gettime());
189 
190 	spin_lock_irqsave(&base->lock, flags);
191 	if (restart != ALARMTIMER_NORESTART) {
192 		hrtimer_set_expires(&alarm->timer, alarm->node.expires);
193 		alarmtimer_enqueue(base, alarm);
194 		ret = HRTIMER_RESTART;
195 	}
196 	spin_unlock_irqrestore(&base->lock, flags);
197 
198 	return ret;
199 
200 }
201 
202 ktime_t alarm_expires_remaining(const struct alarm *alarm)
203 {
204 	struct alarm_base *base = &alarm_bases[alarm->type];
205 	return ktime_sub(alarm->node.expires, base->gettime());
206 }
207 EXPORT_SYMBOL_GPL(alarm_expires_remaining);
208 
209 #ifdef CONFIG_RTC_CLASS
210 /**
211  * alarmtimer_suspend - Suspend time callback
212  * @dev: unused
213  * @state: unused
214  *
215  * When we are going into suspend, we look through the bases
216  * to see which is the soonest timer to expire. We then
217  * set an rtc timer to fire that far into the future, which
218  * will wake us from suspend.
219  */
220 static int alarmtimer_suspend(struct device *dev)
221 {
222 	struct rtc_time tm;
223 	ktime_t min, now;
224 	unsigned long flags;
225 	struct rtc_device *rtc;
226 	int i;
227 	int ret;
228 
229 	spin_lock_irqsave(&freezer_delta_lock, flags);
230 	min = freezer_delta;
231 	freezer_delta = ktime_set(0, 0);
232 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
233 
234 	rtc = alarmtimer_get_rtcdev();
235 	/* If we have no rtcdev, just return */
236 	if (!rtc)
237 		return 0;
238 
239 	/* Find the soonest timer to expire*/
240 	for (i = 0; i < ALARM_NUMTYPE; i++) {
241 		struct alarm_base *base = &alarm_bases[i];
242 		struct timerqueue_node *next;
243 		ktime_t delta;
244 
245 		spin_lock_irqsave(&base->lock, flags);
246 		next = timerqueue_getnext(&base->timerqueue);
247 		spin_unlock_irqrestore(&base->lock, flags);
248 		if (!next)
249 			continue;
250 		delta = ktime_sub(next->expires, base->gettime());
251 		if (!min.tv64 || (delta.tv64 < min.tv64))
252 			min = delta;
253 	}
254 	if (min.tv64 == 0)
255 		return 0;
256 
257 	if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) {
258 		__pm_wakeup_event(ws, 2 * MSEC_PER_SEC);
259 		return -EBUSY;
260 	}
261 
262 	/* Setup an rtc timer to fire that far in the future */
263 	rtc_timer_cancel(rtc, &rtctimer);
264 	rtc_read_time(rtc, &tm);
265 	now = rtc_tm_to_ktime(tm);
266 	now = ktime_add(now, min);
267 
268 	/* Set alarm, if in the past reject suspend briefly to handle */
269 	ret = rtc_timer_start(rtc, &rtctimer, now, ktime_set(0, 0));
270 	if (ret < 0)
271 		__pm_wakeup_event(ws, MSEC_PER_SEC);
272 	return ret;
273 }
274 #else
275 static int alarmtimer_suspend(struct device *dev)
276 {
277 	return 0;
278 }
279 #endif
280 
281 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type)
282 {
283 	ktime_t delta;
284 	unsigned long flags;
285 	struct alarm_base *base = &alarm_bases[type];
286 
287 	delta = ktime_sub(absexp, base->gettime());
288 
289 	spin_lock_irqsave(&freezer_delta_lock, flags);
290 	if (!freezer_delta.tv64 || (delta.tv64 < freezer_delta.tv64))
291 		freezer_delta = delta;
292 	spin_unlock_irqrestore(&freezer_delta_lock, flags);
293 }
294 
295 
296 /**
297  * alarm_init - Initialize an alarm structure
298  * @alarm: ptr to alarm to be initialized
299  * @type: the type of the alarm
300  * @function: callback that is run when the alarm fires
301  */
302 void alarm_init(struct alarm *alarm, enum alarmtimer_type type,
303 		enum alarmtimer_restart (*function)(struct alarm *, ktime_t))
304 {
305 	timerqueue_init(&alarm->node);
306 	hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid,
307 			HRTIMER_MODE_ABS);
308 	alarm->timer.function = alarmtimer_fired;
309 	alarm->function = function;
310 	alarm->type = type;
311 	alarm->state = ALARMTIMER_STATE_INACTIVE;
312 }
313 EXPORT_SYMBOL_GPL(alarm_init);
314 
315 /**
316  * alarm_start - Sets an absolute alarm to fire
317  * @alarm: ptr to alarm to set
318  * @start: time to run the alarm
319  */
320 void alarm_start(struct alarm *alarm, ktime_t start)
321 {
322 	struct alarm_base *base = &alarm_bases[alarm->type];
323 	unsigned long flags;
324 
325 	spin_lock_irqsave(&base->lock, flags);
326 	alarm->node.expires = start;
327 	alarmtimer_enqueue(base, alarm);
328 	hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS);
329 	spin_unlock_irqrestore(&base->lock, flags);
330 }
331 EXPORT_SYMBOL_GPL(alarm_start);
332 
333 /**
334  * alarm_start_relative - Sets a relative alarm to fire
335  * @alarm: ptr to alarm to set
336  * @start: time relative to now to run the alarm
337  */
338 void alarm_start_relative(struct alarm *alarm, ktime_t start)
339 {
340 	struct alarm_base *base = &alarm_bases[alarm->type];
341 
342 	start = ktime_add(start, base->gettime());
343 	alarm_start(alarm, start);
344 }
345 EXPORT_SYMBOL_GPL(alarm_start_relative);
346 
347 void alarm_restart(struct alarm *alarm)
348 {
349 	struct alarm_base *base = &alarm_bases[alarm->type];
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(&base->lock, flags);
353 	hrtimer_set_expires(&alarm->timer, alarm->node.expires);
354 	hrtimer_restart(&alarm->timer);
355 	alarmtimer_enqueue(base, alarm);
356 	spin_unlock_irqrestore(&base->lock, flags);
357 }
358 EXPORT_SYMBOL_GPL(alarm_restart);
359 
360 /**
361  * alarm_try_to_cancel - Tries to cancel an alarm timer
362  * @alarm: ptr to alarm to be canceled
363  *
364  * Returns 1 if the timer was canceled, 0 if it was not running,
365  * and -1 if the callback was running
366  */
367 int alarm_try_to_cancel(struct alarm *alarm)
368 {
369 	struct alarm_base *base = &alarm_bases[alarm->type];
370 	unsigned long flags;
371 	int ret;
372 
373 	spin_lock_irqsave(&base->lock, flags);
374 	ret = hrtimer_try_to_cancel(&alarm->timer);
375 	if (ret >= 0)
376 		alarmtimer_dequeue(base, alarm);
377 	spin_unlock_irqrestore(&base->lock, flags);
378 	return ret;
379 }
380 EXPORT_SYMBOL_GPL(alarm_try_to_cancel);
381 
382 
383 /**
384  * alarm_cancel - Spins trying to cancel an alarm timer until it is done
385  * @alarm: ptr to alarm to be canceled
386  *
387  * Returns 1 if the timer was canceled, 0 if it was not active.
388  */
389 int alarm_cancel(struct alarm *alarm)
390 {
391 	for (;;) {
392 		int ret = alarm_try_to_cancel(alarm);
393 		if (ret >= 0)
394 			return ret;
395 		cpu_relax();
396 	}
397 }
398 EXPORT_SYMBOL_GPL(alarm_cancel);
399 
400 
401 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval)
402 {
403 	u64 overrun = 1;
404 	ktime_t delta;
405 
406 	delta = ktime_sub(now, alarm->node.expires);
407 
408 	if (delta.tv64 < 0)
409 		return 0;
410 
411 	if (unlikely(delta.tv64 >= interval.tv64)) {
412 		s64 incr = ktime_to_ns(interval);
413 
414 		overrun = ktime_divns(delta, incr);
415 
416 		alarm->node.expires = ktime_add_ns(alarm->node.expires,
417 							incr*overrun);
418 
419 		if (alarm->node.expires.tv64 > now.tv64)
420 			return overrun;
421 		/*
422 		 * This (and the ktime_add() below) is the
423 		 * correction for exact:
424 		 */
425 		overrun++;
426 	}
427 
428 	alarm->node.expires = ktime_add(alarm->node.expires, interval);
429 	return overrun;
430 }
431 EXPORT_SYMBOL_GPL(alarm_forward);
432 
433 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval)
434 {
435 	struct alarm_base *base = &alarm_bases[alarm->type];
436 
437 	return alarm_forward(alarm, base->gettime(), interval);
438 }
439 EXPORT_SYMBOL_GPL(alarm_forward_now);
440 
441 
442 /**
443  * clock2alarm - helper that converts from clockid to alarmtypes
444  * @clockid: clockid.
445  */
446 static enum alarmtimer_type clock2alarm(clockid_t clockid)
447 {
448 	if (clockid == CLOCK_REALTIME_ALARM)
449 		return ALARM_REALTIME;
450 	if (clockid == CLOCK_BOOTTIME_ALARM)
451 		return ALARM_BOOTTIME;
452 	return -1;
453 }
454 
455 /**
456  * alarm_handle_timer - Callback for posix timers
457  * @alarm: alarm that fired
458  *
459  * Posix timer callback for expired alarm timers.
460  */
461 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm,
462 							ktime_t now)
463 {
464 	unsigned long flags;
465 	struct k_itimer *ptr = container_of(alarm, struct k_itimer,
466 						it.alarm.alarmtimer);
467 	enum alarmtimer_restart result = ALARMTIMER_NORESTART;
468 
469 	spin_lock_irqsave(&ptr->it_lock, flags);
470 	if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) {
471 		if (posix_timer_event(ptr, 0) != 0)
472 			ptr->it_overrun++;
473 	}
474 
475 	/* Re-add periodic timers */
476 	if (ptr->it.alarm.interval.tv64) {
477 		ptr->it_overrun += alarm_forward(alarm, now,
478 						ptr->it.alarm.interval);
479 		result = ALARMTIMER_RESTART;
480 	}
481 	spin_unlock_irqrestore(&ptr->it_lock, flags);
482 
483 	return result;
484 }
485 
486 /**
487  * alarm_clock_getres - posix getres interface
488  * @which_clock: clockid
489  * @tp: timespec to fill
490  *
491  * Returns the granularity of underlying alarm base clock
492  */
493 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp)
494 {
495 	if (!alarmtimer_get_rtcdev())
496 		return -EINVAL;
497 
498 	tp->tv_sec = 0;
499 	tp->tv_nsec = hrtimer_resolution;
500 	return 0;
501 }
502 
503 /**
504  * alarm_clock_get - posix clock_get interface
505  * @which_clock: clockid
506  * @tp: timespec to fill.
507  *
508  * Provides the underlying alarm base time.
509  */
510 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp)
511 {
512 	struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)];
513 
514 	if (!alarmtimer_get_rtcdev())
515 		return -EINVAL;
516 
517 	*tp = ktime_to_timespec(base->gettime());
518 	return 0;
519 }
520 
521 /**
522  * alarm_timer_create - posix timer_create interface
523  * @new_timer: k_itimer pointer to manage
524  *
525  * Initializes the k_itimer structure.
526  */
527 static int alarm_timer_create(struct k_itimer *new_timer)
528 {
529 	enum  alarmtimer_type type;
530 	struct alarm_base *base;
531 
532 	if (!alarmtimer_get_rtcdev())
533 		return -ENOTSUPP;
534 
535 	if (!capable(CAP_WAKE_ALARM))
536 		return -EPERM;
537 
538 	type = clock2alarm(new_timer->it_clock);
539 	base = &alarm_bases[type];
540 	alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer);
541 	return 0;
542 }
543 
544 /**
545  * alarm_timer_get - posix timer_get interface
546  * @new_timer: k_itimer pointer
547  * @cur_setting: itimerspec data to fill
548  *
549  * Copies out the current itimerspec data
550  */
551 static void alarm_timer_get(struct k_itimer *timr,
552 				struct itimerspec *cur_setting)
553 {
554 	ktime_t relative_expiry_time =
555 		alarm_expires_remaining(&(timr->it.alarm.alarmtimer));
556 
557 	if (ktime_to_ns(relative_expiry_time) > 0) {
558 		cur_setting->it_value = ktime_to_timespec(relative_expiry_time);
559 	} else {
560 		cur_setting->it_value.tv_sec = 0;
561 		cur_setting->it_value.tv_nsec = 0;
562 	}
563 
564 	cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval);
565 }
566 
567 /**
568  * alarm_timer_del - posix timer_del interface
569  * @timr: k_itimer pointer to be deleted
570  *
571  * Cancels any programmed alarms for the given timer.
572  */
573 static int alarm_timer_del(struct k_itimer *timr)
574 {
575 	if (!rtcdev)
576 		return -ENOTSUPP;
577 
578 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
579 		return TIMER_RETRY;
580 
581 	return 0;
582 }
583 
584 /**
585  * alarm_timer_set - posix timer_set interface
586  * @timr: k_itimer pointer to be deleted
587  * @flags: timer flags
588  * @new_setting: itimerspec to be used
589  * @old_setting: itimerspec being replaced
590  *
591  * Sets the timer to new_setting, and starts the timer.
592  */
593 static int alarm_timer_set(struct k_itimer *timr, int flags,
594 				struct itimerspec *new_setting,
595 				struct itimerspec *old_setting)
596 {
597 	ktime_t exp;
598 
599 	if (!rtcdev)
600 		return -ENOTSUPP;
601 
602 	if (flags & ~TIMER_ABSTIME)
603 		return -EINVAL;
604 
605 	if (old_setting)
606 		alarm_timer_get(timr, old_setting);
607 
608 	/* If the timer was already set, cancel it */
609 	if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0)
610 		return TIMER_RETRY;
611 
612 	/* start the timer */
613 	timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval);
614 	exp = timespec_to_ktime(new_setting->it_value);
615 	/* Convert (if necessary) to absolute time */
616 	if (flags != TIMER_ABSTIME) {
617 		ktime_t now;
618 
619 		now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime();
620 		exp = ktime_add(now, exp);
621 	}
622 
623 	alarm_start(&timr->it.alarm.alarmtimer, exp);
624 	return 0;
625 }
626 
627 /**
628  * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep
629  * @alarm: ptr to alarm that fired
630  *
631  * Wakes up the task that set the alarmtimer
632  */
633 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm,
634 								ktime_t now)
635 {
636 	struct task_struct *task = (struct task_struct *)alarm->data;
637 
638 	alarm->data = NULL;
639 	if (task)
640 		wake_up_process(task);
641 	return ALARMTIMER_NORESTART;
642 }
643 
644 /**
645  * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation
646  * @alarm: ptr to alarmtimer
647  * @absexp: absolute expiration time
648  *
649  * Sets the alarm timer and sleeps until it is fired or interrupted.
650  */
651 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp)
652 {
653 	alarm->data = (void *)current;
654 	do {
655 		set_current_state(TASK_INTERRUPTIBLE);
656 		alarm_start(alarm, absexp);
657 		if (likely(alarm->data))
658 			schedule();
659 
660 		alarm_cancel(alarm);
661 	} while (alarm->data && !signal_pending(current));
662 
663 	__set_current_state(TASK_RUNNING);
664 
665 	return (alarm->data == NULL);
666 }
667 
668 
669 /**
670  * update_rmtp - Update remaining timespec value
671  * @exp: expiration time
672  * @type: timer type
673  * @rmtp: user pointer to remaining timepsec value
674  *
675  * Helper function that fills in rmtp value with time between
676  * now and the exp value
677  */
678 static int update_rmtp(ktime_t exp, enum  alarmtimer_type type,
679 			struct timespec __user *rmtp)
680 {
681 	struct timespec rmt;
682 	ktime_t rem;
683 
684 	rem = ktime_sub(exp, alarm_bases[type].gettime());
685 
686 	if (rem.tv64 <= 0)
687 		return 0;
688 	rmt = ktime_to_timespec(rem);
689 
690 	if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
691 		return -EFAULT;
692 
693 	return 1;
694 
695 }
696 
697 /**
698  * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep
699  * @restart: ptr to restart block
700  *
701  * Handles restarted clock_nanosleep calls
702  */
703 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart)
704 {
705 	enum  alarmtimer_type type = restart->nanosleep.clockid;
706 	ktime_t exp;
707 	struct timespec __user  *rmtp;
708 	struct alarm alarm;
709 	int ret = 0;
710 
711 	exp.tv64 = restart->nanosleep.expires;
712 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
713 
714 	if (alarmtimer_do_nsleep(&alarm, exp))
715 		goto out;
716 
717 	if (freezing(current))
718 		alarmtimer_freezerset(exp, type);
719 
720 	rmtp = restart->nanosleep.rmtp;
721 	if (rmtp) {
722 		ret = update_rmtp(exp, type, rmtp);
723 		if (ret <= 0)
724 			goto out;
725 	}
726 
727 
728 	/* The other values in restart are already filled in */
729 	ret = -ERESTART_RESTARTBLOCK;
730 out:
731 	return ret;
732 }
733 
734 /**
735  * alarm_timer_nsleep - alarmtimer nanosleep
736  * @which_clock: clockid
737  * @flags: determins abstime or relative
738  * @tsreq: requested sleep time (abs or rel)
739  * @rmtp: remaining sleep time saved
740  *
741  * Handles clock_nanosleep calls against _ALARM clockids
742  */
743 static int alarm_timer_nsleep(const clockid_t which_clock, int flags,
744 		     struct timespec *tsreq, struct timespec __user *rmtp)
745 {
746 	enum  alarmtimer_type type = clock2alarm(which_clock);
747 	struct alarm alarm;
748 	ktime_t exp;
749 	int ret = 0;
750 	struct restart_block *restart;
751 
752 	if (!alarmtimer_get_rtcdev())
753 		return -ENOTSUPP;
754 
755 	if (flags & ~TIMER_ABSTIME)
756 		return -EINVAL;
757 
758 	if (!capable(CAP_WAKE_ALARM))
759 		return -EPERM;
760 
761 	alarm_init(&alarm, type, alarmtimer_nsleep_wakeup);
762 
763 	exp = timespec_to_ktime(*tsreq);
764 	/* Convert (if necessary) to absolute time */
765 	if (flags != TIMER_ABSTIME) {
766 		ktime_t now = alarm_bases[type].gettime();
767 		exp = ktime_add(now, exp);
768 	}
769 
770 	if (alarmtimer_do_nsleep(&alarm, exp))
771 		goto out;
772 
773 	if (freezing(current))
774 		alarmtimer_freezerset(exp, type);
775 
776 	/* abs timers don't set remaining time or restart */
777 	if (flags == TIMER_ABSTIME) {
778 		ret = -ERESTARTNOHAND;
779 		goto out;
780 	}
781 
782 	if (rmtp) {
783 		ret = update_rmtp(exp, type, rmtp);
784 		if (ret <= 0)
785 			goto out;
786 	}
787 
788 	restart = &current->restart_block;
789 	restart->fn = alarm_timer_nsleep_restart;
790 	restart->nanosleep.clockid = type;
791 	restart->nanosleep.expires = exp.tv64;
792 	restart->nanosleep.rmtp = rmtp;
793 	ret = -ERESTART_RESTARTBLOCK;
794 
795 out:
796 	return ret;
797 }
798 
799 
800 /* Suspend hook structures */
801 static const struct dev_pm_ops alarmtimer_pm_ops = {
802 	.suspend = alarmtimer_suspend,
803 };
804 
805 static struct platform_driver alarmtimer_driver = {
806 	.driver = {
807 		.name = "alarmtimer",
808 		.pm = &alarmtimer_pm_ops,
809 	}
810 };
811 
812 /**
813  * alarmtimer_init - Initialize alarm timer code
814  *
815  * This function initializes the alarm bases and registers
816  * the posix clock ids.
817  */
818 static int __init alarmtimer_init(void)
819 {
820 	struct platform_device *pdev;
821 	int error = 0;
822 	int i;
823 	struct k_clock alarm_clock = {
824 		.clock_getres	= alarm_clock_getres,
825 		.clock_get	= alarm_clock_get,
826 		.timer_create	= alarm_timer_create,
827 		.timer_set	= alarm_timer_set,
828 		.timer_del	= alarm_timer_del,
829 		.timer_get	= alarm_timer_get,
830 		.nsleep		= alarm_timer_nsleep,
831 	};
832 
833 	alarmtimer_rtc_timer_init();
834 
835 	posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock);
836 	posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock);
837 
838 	/* Initialize alarm bases */
839 	alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME;
840 	alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real;
841 	alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME;
842 	alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime;
843 	for (i = 0; i < ALARM_NUMTYPE; i++) {
844 		timerqueue_init_head(&alarm_bases[i].timerqueue);
845 		spin_lock_init(&alarm_bases[i].lock);
846 	}
847 
848 	error = alarmtimer_rtc_interface_setup();
849 	if (error)
850 		return error;
851 
852 	error = platform_driver_register(&alarmtimer_driver);
853 	if (error)
854 		goto out_if;
855 
856 	pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0);
857 	if (IS_ERR(pdev)) {
858 		error = PTR_ERR(pdev);
859 		goto out_drv;
860 	}
861 	ws = wakeup_source_register("alarmtimer");
862 	return 0;
863 
864 out_drv:
865 	platform_driver_unregister(&alarmtimer_driver);
866 out_if:
867 	alarmtimer_rtc_interface_remove();
868 	return error;
869 }
870 device_initcall(alarmtimer_init);
871