1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/debug.h> 24 #include <linux/alarmtimer.h> 25 #include <linux/mutex.h> 26 #include <linux/platform_device.h> 27 #include <linux/posix-timers.h> 28 #include <linux/workqueue.h> 29 #include <linux/freezer.h> 30 31 #include "posix-timers.h" 32 33 #define CREATE_TRACE_POINTS 34 #include <trace/events/alarmtimer.h> 35 36 /** 37 * struct alarm_base - Alarm timer bases 38 * @lock: Lock for syncrhonized access to the base 39 * @timerqueue: Timerqueue head managing the list of events 40 * @gettime: Function to read the time correlating to the base 41 * @base_clockid: clockid for the base 42 */ 43 static struct alarm_base { 44 spinlock_t lock; 45 struct timerqueue_head timerqueue; 46 ktime_t (*gettime)(void); 47 clockid_t base_clockid; 48 } alarm_bases[ALARM_NUMTYPE]; 49 50 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 51 /* freezer information to handle clock_nanosleep triggered wakeups */ 52 static enum alarmtimer_type freezer_alarmtype; 53 static ktime_t freezer_expires; 54 static ktime_t freezer_delta; 55 static DEFINE_SPINLOCK(freezer_delta_lock); 56 #endif 57 58 static struct wakeup_source *ws; 59 60 #ifdef CONFIG_RTC_CLASS 61 /* rtc timer and device for setting alarm wakeups at suspend */ 62 static struct rtc_timer rtctimer; 63 static struct rtc_device *rtcdev; 64 static DEFINE_SPINLOCK(rtcdev_lock); 65 66 /** 67 * alarmtimer_get_rtcdev - Return selected rtcdevice 68 * 69 * This function returns the rtc device to use for wakealarms. 70 * If one has not already been chosen, it checks to see if a 71 * functional rtc device is available. 72 */ 73 struct rtc_device *alarmtimer_get_rtcdev(void) 74 { 75 unsigned long flags; 76 struct rtc_device *ret; 77 78 spin_lock_irqsave(&rtcdev_lock, flags); 79 ret = rtcdev; 80 spin_unlock_irqrestore(&rtcdev_lock, flags); 81 82 return ret; 83 } 84 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 85 86 static int alarmtimer_rtc_add_device(struct device *dev, 87 struct class_interface *class_intf) 88 { 89 unsigned long flags; 90 struct rtc_device *rtc = to_rtc_device(dev); 91 92 if (rtcdev) 93 return -EBUSY; 94 95 if (!rtc->ops->set_alarm) 96 return -1; 97 if (!device_may_wakeup(rtc->dev.parent)) 98 return -1; 99 100 spin_lock_irqsave(&rtcdev_lock, flags); 101 if (!rtcdev) { 102 rtcdev = rtc; 103 /* hold a reference so it doesn't go away */ 104 get_device(dev); 105 } 106 spin_unlock_irqrestore(&rtcdev_lock, flags); 107 return 0; 108 } 109 110 static inline void alarmtimer_rtc_timer_init(void) 111 { 112 rtc_timer_init(&rtctimer, NULL, NULL); 113 } 114 115 static struct class_interface alarmtimer_rtc_interface = { 116 .add_dev = &alarmtimer_rtc_add_device, 117 }; 118 119 static int alarmtimer_rtc_interface_setup(void) 120 { 121 alarmtimer_rtc_interface.class = rtc_class; 122 return class_interface_register(&alarmtimer_rtc_interface); 123 } 124 static void alarmtimer_rtc_interface_remove(void) 125 { 126 class_interface_unregister(&alarmtimer_rtc_interface); 127 } 128 #else 129 struct rtc_device *alarmtimer_get_rtcdev(void) 130 { 131 return NULL; 132 } 133 #define rtcdev (NULL) 134 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 135 static inline void alarmtimer_rtc_interface_remove(void) { } 136 static inline void alarmtimer_rtc_timer_init(void) { } 137 #endif 138 139 /** 140 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 141 * @base: pointer to the base where the timer is being run 142 * @alarm: pointer to alarm being enqueued. 143 * 144 * Adds alarm to a alarm_base timerqueue 145 * 146 * Must hold base->lock when calling. 147 */ 148 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 149 { 150 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 151 timerqueue_del(&base->timerqueue, &alarm->node); 152 153 timerqueue_add(&base->timerqueue, &alarm->node); 154 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 155 } 156 157 /** 158 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 159 * @base: pointer to the base where the timer is running 160 * @alarm: pointer to alarm being removed 161 * 162 * Removes alarm to a alarm_base timerqueue 163 * 164 * Must hold base->lock when calling. 165 */ 166 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 167 { 168 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 169 return; 170 171 timerqueue_del(&base->timerqueue, &alarm->node); 172 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 173 } 174 175 176 /** 177 * alarmtimer_fired - Handles alarm hrtimer being fired. 178 * @timer: pointer to hrtimer being run 179 * 180 * When a alarm timer fires, this runs through the timerqueue to 181 * see which alarms expired, and runs those. If there are more alarm 182 * timers queued for the future, we set the hrtimer to fire when 183 * when the next future alarm timer expires. 184 */ 185 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 186 { 187 struct alarm *alarm = container_of(timer, struct alarm, timer); 188 struct alarm_base *base = &alarm_bases[alarm->type]; 189 unsigned long flags; 190 int ret = HRTIMER_NORESTART; 191 int restart = ALARMTIMER_NORESTART; 192 193 spin_lock_irqsave(&base->lock, flags); 194 alarmtimer_dequeue(base, alarm); 195 spin_unlock_irqrestore(&base->lock, flags); 196 197 if (alarm->function) 198 restart = alarm->function(alarm, base->gettime()); 199 200 spin_lock_irqsave(&base->lock, flags); 201 if (restart != ALARMTIMER_NORESTART) { 202 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 203 alarmtimer_enqueue(base, alarm); 204 ret = HRTIMER_RESTART; 205 } 206 spin_unlock_irqrestore(&base->lock, flags); 207 208 trace_alarmtimer_fired(alarm, base->gettime()); 209 return ret; 210 211 } 212 213 ktime_t alarm_expires_remaining(const struct alarm *alarm) 214 { 215 struct alarm_base *base = &alarm_bases[alarm->type]; 216 return ktime_sub(alarm->node.expires, base->gettime()); 217 } 218 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 219 220 #ifdef CONFIG_RTC_CLASS 221 /** 222 * alarmtimer_suspend - Suspend time callback 223 * @dev: unused 224 * @state: unused 225 * 226 * When we are going into suspend, we look through the bases 227 * to see which is the soonest timer to expire. We then 228 * set an rtc timer to fire that far into the future, which 229 * will wake us from suspend. 230 */ 231 static int alarmtimer_suspend(struct device *dev) 232 { 233 ktime_t min, now, expires; 234 int i, ret, type; 235 struct rtc_device *rtc; 236 unsigned long flags; 237 struct rtc_time tm; 238 239 spin_lock_irqsave(&freezer_delta_lock, flags); 240 min = freezer_delta; 241 expires = freezer_expires; 242 type = freezer_alarmtype; 243 freezer_delta = 0; 244 spin_unlock_irqrestore(&freezer_delta_lock, flags); 245 246 rtc = alarmtimer_get_rtcdev(); 247 /* If we have no rtcdev, just return */ 248 if (!rtc) 249 return 0; 250 251 /* Find the soonest timer to expire*/ 252 for (i = 0; i < ALARM_NUMTYPE; i++) { 253 struct alarm_base *base = &alarm_bases[i]; 254 struct timerqueue_node *next; 255 ktime_t delta; 256 257 spin_lock_irqsave(&base->lock, flags); 258 next = timerqueue_getnext(&base->timerqueue); 259 spin_unlock_irqrestore(&base->lock, flags); 260 if (!next) 261 continue; 262 delta = ktime_sub(next->expires, base->gettime()); 263 if (!min || (delta < min)) { 264 expires = next->expires; 265 min = delta; 266 type = i; 267 } 268 } 269 if (min == 0) 270 return 0; 271 272 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 273 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 274 return -EBUSY; 275 } 276 277 trace_alarmtimer_suspend(expires, type); 278 279 /* Setup an rtc timer to fire that far in the future */ 280 rtc_timer_cancel(rtc, &rtctimer); 281 rtc_read_time(rtc, &tm); 282 now = rtc_tm_to_ktime(tm); 283 now = ktime_add(now, min); 284 285 /* Set alarm, if in the past reject suspend briefly to handle */ 286 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 287 if (ret < 0) 288 __pm_wakeup_event(ws, MSEC_PER_SEC); 289 return ret; 290 } 291 292 static int alarmtimer_resume(struct device *dev) 293 { 294 struct rtc_device *rtc; 295 296 rtc = alarmtimer_get_rtcdev(); 297 if (rtc) 298 rtc_timer_cancel(rtc, &rtctimer); 299 return 0; 300 } 301 302 #else 303 static int alarmtimer_suspend(struct device *dev) 304 { 305 return 0; 306 } 307 308 static int alarmtimer_resume(struct device *dev) 309 { 310 return 0; 311 } 312 #endif 313 314 /** 315 * alarm_init - Initialize an alarm structure 316 * @alarm: ptr to alarm to be initialized 317 * @type: the type of the alarm 318 * @function: callback that is run when the alarm fires 319 */ 320 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 321 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 322 { 323 timerqueue_init(&alarm->node); 324 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 325 HRTIMER_MODE_ABS); 326 alarm->timer.function = alarmtimer_fired; 327 alarm->function = function; 328 alarm->type = type; 329 alarm->state = ALARMTIMER_STATE_INACTIVE; 330 } 331 EXPORT_SYMBOL_GPL(alarm_init); 332 333 /** 334 * alarm_start - Sets an absolute alarm to fire 335 * @alarm: ptr to alarm to set 336 * @start: time to run the alarm 337 */ 338 void alarm_start(struct alarm *alarm, ktime_t start) 339 { 340 struct alarm_base *base = &alarm_bases[alarm->type]; 341 unsigned long flags; 342 343 spin_lock_irqsave(&base->lock, flags); 344 alarm->node.expires = start; 345 alarmtimer_enqueue(base, alarm); 346 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 347 spin_unlock_irqrestore(&base->lock, flags); 348 349 trace_alarmtimer_start(alarm, base->gettime()); 350 } 351 EXPORT_SYMBOL_GPL(alarm_start); 352 353 /** 354 * alarm_start_relative - Sets a relative alarm to fire 355 * @alarm: ptr to alarm to set 356 * @start: time relative to now to run the alarm 357 */ 358 void alarm_start_relative(struct alarm *alarm, ktime_t start) 359 { 360 struct alarm_base *base = &alarm_bases[alarm->type]; 361 362 start = ktime_add_safe(start, base->gettime()); 363 alarm_start(alarm, start); 364 } 365 EXPORT_SYMBOL_GPL(alarm_start_relative); 366 367 void alarm_restart(struct alarm *alarm) 368 { 369 struct alarm_base *base = &alarm_bases[alarm->type]; 370 unsigned long flags; 371 372 spin_lock_irqsave(&base->lock, flags); 373 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 374 hrtimer_restart(&alarm->timer); 375 alarmtimer_enqueue(base, alarm); 376 spin_unlock_irqrestore(&base->lock, flags); 377 } 378 EXPORT_SYMBOL_GPL(alarm_restart); 379 380 /** 381 * alarm_try_to_cancel - Tries to cancel an alarm timer 382 * @alarm: ptr to alarm to be canceled 383 * 384 * Returns 1 if the timer was canceled, 0 if it was not running, 385 * and -1 if the callback was running 386 */ 387 int alarm_try_to_cancel(struct alarm *alarm) 388 { 389 struct alarm_base *base = &alarm_bases[alarm->type]; 390 unsigned long flags; 391 int ret; 392 393 spin_lock_irqsave(&base->lock, flags); 394 ret = hrtimer_try_to_cancel(&alarm->timer); 395 if (ret >= 0) 396 alarmtimer_dequeue(base, alarm); 397 spin_unlock_irqrestore(&base->lock, flags); 398 399 trace_alarmtimer_cancel(alarm, base->gettime()); 400 return ret; 401 } 402 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 403 404 405 /** 406 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 407 * @alarm: ptr to alarm to be canceled 408 * 409 * Returns 1 if the timer was canceled, 0 if it was not active. 410 */ 411 int alarm_cancel(struct alarm *alarm) 412 { 413 for (;;) { 414 int ret = alarm_try_to_cancel(alarm); 415 if (ret >= 0) 416 return ret; 417 cpu_relax(); 418 } 419 } 420 EXPORT_SYMBOL_GPL(alarm_cancel); 421 422 423 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 424 { 425 u64 overrun = 1; 426 ktime_t delta; 427 428 delta = ktime_sub(now, alarm->node.expires); 429 430 if (delta < 0) 431 return 0; 432 433 if (unlikely(delta >= interval)) { 434 s64 incr = ktime_to_ns(interval); 435 436 overrun = ktime_divns(delta, incr); 437 438 alarm->node.expires = ktime_add_ns(alarm->node.expires, 439 incr*overrun); 440 441 if (alarm->node.expires > now) 442 return overrun; 443 /* 444 * This (and the ktime_add() below) is the 445 * correction for exact: 446 */ 447 overrun++; 448 } 449 450 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 451 return overrun; 452 } 453 EXPORT_SYMBOL_GPL(alarm_forward); 454 455 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 456 { 457 struct alarm_base *base = &alarm_bases[alarm->type]; 458 459 return alarm_forward(alarm, base->gettime(), interval); 460 } 461 EXPORT_SYMBOL_GPL(alarm_forward_now); 462 463 #ifdef CONFIG_POSIX_TIMERS 464 465 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 466 { 467 struct alarm_base *base; 468 unsigned long flags; 469 ktime_t delta; 470 471 switch(type) { 472 case ALARM_REALTIME: 473 base = &alarm_bases[ALARM_REALTIME]; 474 type = ALARM_REALTIME_FREEZER; 475 break; 476 case ALARM_BOOTTIME: 477 base = &alarm_bases[ALARM_BOOTTIME]; 478 type = ALARM_BOOTTIME_FREEZER; 479 break; 480 default: 481 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 482 return; 483 } 484 485 delta = ktime_sub(absexp, base->gettime()); 486 487 spin_lock_irqsave(&freezer_delta_lock, flags); 488 if (!freezer_delta || (delta < freezer_delta)) { 489 freezer_delta = delta; 490 freezer_expires = absexp; 491 freezer_alarmtype = type; 492 } 493 spin_unlock_irqrestore(&freezer_delta_lock, flags); 494 } 495 496 /** 497 * clock2alarm - helper that converts from clockid to alarmtypes 498 * @clockid: clockid. 499 */ 500 static enum alarmtimer_type clock2alarm(clockid_t clockid) 501 { 502 if (clockid == CLOCK_REALTIME_ALARM) 503 return ALARM_REALTIME; 504 if (clockid == CLOCK_BOOTTIME_ALARM) 505 return ALARM_BOOTTIME; 506 return -1; 507 } 508 509 /** 510 * alarm_handle_timer - Callback for posix timers 511 * @alarm: alarm that fired 512 * 513 * Posix timer callback for expired alarm timers. 514 */ 515 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 516 ktime_t now) 517 { 518 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 519 it.alarm.alarmtimer); 520 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 521 unsigned long flags; 522 int si_private = 0; 523 524 spin_lock_irqsave(&ptr->it_lock, flags); 525 526 ptr->it_active = 0; 527 if (ptr->it_interval) 528 si_private = ++ptr->it_requeue_pending; 529 530 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 531 /* 532 * Handle ignored signals and rearm the timer. This will go 533 * away once we handle ignored signals proper. 534 */ 535 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval); 536 ++ptr->it_requeue_pending; 537 ptr->it_active = 1; 538 result = ALARMTIMER_RESTART; 539 } 540 spin_unlock_irqrestore(&ptr->it_lock, flags); 541 542 return result; 543 } 544 545 /** 546 * alarm_timer_rearm - Posix timer callback for rearming timer 547 * @timr: Pointer to the posixtimer data struct 548 */ 549 static void alarm_timer_rearm(struct k_itimer *timr) 550 { 551 struct alarm *alarm = &timr->it.alarm.alarmtimer; 552 553 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 554 alarm_start(alarm, alarm->node.expires); 555 } 556 557 /** 558 * alarm_timer_forward - Posix timer callback for forwarding timer 559 * @timr: Pointer to the posixtimer data struct 560 * @now: Current time to forward the timer against 561 */ 562 static int alarm_timer_forward(struct k_itimer *timr, ktime_t now) 563 { 564 struct alarm *alarm = &timr->it.alarm.alarmtimer; 565 566 return (int) alarm_forward(alarm, timr->it_interval, now); 567 } 568 569 /** 570 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 571 * @timr: Pointer to the posixtimer data struct 572 * @now: Current time to calculate against 573 */ 574 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 575 { 576 struct alarm *alarm = &timr->it.alarm.alarmtimer; 577 578 return ktime_sub(now, alarm->node.expires); 579 } 580 581 /** 582 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 583 * @timr: Pointer to the posixtimer data struct 584 */ 585 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 586 { 587 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 588 } 589 590 /** 591 * alarm_timer_arm - Posix timer callback to arm a timer 592 * @timr: Pointer to the posixtimer data struct 593 * @expires: The new expiry time 594 * @absolute: Expiry value is absolute time 595 * @sigev_none: Posix timer does not deliver signals 596 */ 597 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 598 bool absolute, bool sigev_none) 599 { 600 struct alarm *alarm = &timr->it.alarm.alarmtimer; 601 struct alarm_base *base = &alarm_bases[alarm->type]; 602 603 if (!absolute) 604 expires = ktime_add_safe(expires, base->gettime()); 605 if (sigev_none) 606 alarm->node.expires = expires; 607 else 608 alarm_start(&timr->it.alarm.alarmtimer, expires); 609 } 610 611 /** 612 * alarm_clock_getres - posix getres interface 613 * @which_clock: clockid 614 * @tp: timespec to fill 615 * 616 * Returns the granularity of underlying alarm base clock 617 */ 618 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 619 { 620 if (!alarmtimer_get_rtcdev()) 621 return -EINVAL; 622 623 tp->tv_sec = 0; 624 tp->tv_nsec = hrtimer_resolution; 625 return 0; 626 } 627 628 /** 629 * alarm_clock_get - posix clock_get interface 630 * @which_clock: clockid 631 * @tp: timespec to fill. 632 * 633 * Provides the underlying alarm base time. 634 */ 635 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp) 636 { 637 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 638 639 if (!alarmtimer_get_rtcdev()) 640 return -EINVAL; 641 642 *tp = ktime_to_timespec64(base->gettime()); 643 return 0; 644 } 645 646 /** 647 * alarm_timer_create - posix timer_create interface 648 * @new_timer: k_itimer pointer to manage 649 * 650 * Initializes the k_itimer structure. 651 */ 652 static int alarm_timer_create(struct k_itimer *new_timer) 653 { 654 enum alarmtimer_type type; 655 656 if (!alarmtimer_get_rtcdev()) 657 return -ENOTSUPP; 658 659 if (!capable(CAP_WAKE_ALARM)) 660 return -EPERM; 661 662 type = clock2alarm(new_timer->it_clock); 663 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 664 return 0; 665 } 666 667 /** 668 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 669 * @alarm: ptr to alarm that fired 670 * 671 * Wakes up the task that set the alarmtimer 672 */ 673 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 674 ktime_t now) 675 { 676 struct task_struct *task = (struct task_struct *)alarm->data; 677 678 alarm->data = NULL; 679 if (task) 680 wake_up_process(task); 681 return ALARMTIMER_NORESTART; 682 } 683 684 /** 685 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 686 * @alarm: ptr to alarmtimer 687 * @absexp: absolute expiration time 688 * 689 * Sets the alarm timer and sleeps until it is fired or interrupted. 690 */ 691 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 692 { 693 alarm->data = (void *)current; 694 do { 695 set_current_state(TASK_INTERRUPTIBLE); 696 alarm_start(alarm, absexp); 697 if (likely(alarm->data)) 698 schedule(); 699 700 alarm_cancel(alarm); 701 } while (alarm->data && !signal_pending(current)); 702 703 __set_current_state(TASK_RUNNING); 704 705 return (alarm->data == NULL); 706 } 707 708 709 /** 710 * update_rmtp - Update remaining timespec value 711 * @exp: expiration time 712 * @type: timer type 713 * @rmtp: user pointer to remaining timepsec value 714 * 715 * Helper function that fills in rmtp value with time between 716 * now and the exp value 717 */ 718 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 719 struct timespec __user *rmtp) 720 { 721 struct timespec rmt; 722 ktime_t rem; 723 724 rem = ktime_sub(exp, alarm_bases[type].gettime()); 725 726 if (rem <= 0) 727 return 0; 728 rmt = ktime_to_timespec(rem); 729 730 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 731 return -EFAULT; 732 733 return 1; 734 735 } 736 737 /** 738 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 739 * @restart: ptr to restart block 740 * 741 * Handles restarted clock_nanosleep calls 742 */ 743 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 744 { 745 enum alarmtimer_type type = restart->nanosleep.clockid; 746 ktime_t exp; 747 struct timespec __user *rmtp; 748 struct alarm alarm; 749 int ret = 0; 750 751 exp = restart->nanosleep.expires; 752 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 753 754 if (alarmtimer_do_nsleep(&alarm, exp)) 755 goto out; 756 757 if (freezing(current)) 758 alarmtimer_freezerset(exp, type); 759 760 rmtp = restart->nanosleep.rmtp; 761 if (rmtp) { 762 ret = update_rmtp(exp, type, rmtp); 763 if (ret <= 0) 764 goto out; 765 } 766 767 768 /* The other values in restart are already filled in */ 769 ret = -ERESTART_RESTARTBLOCK; 770 out: 771 return ret; 772 } 773 774 /** 775 * alarm_timer_nsleep - alarmtimer nanosleep 776 * @which_clock: clockid 777 * @flags: determins abstime or relative 778 * @tsreq: requested sleep time (abs or rel) 779 * @rmtp: remaining sleep time saved 780 * 781 * Handles clock_nanosleep calls against _ALARM clockids 782 */ 783 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 784 struct timespec64 *tsreq, 785 struct timespec __user *rmtp) 786 { 787 enum alarmtimer_type type = clock2alarm(which_clock); 788 struct restart_block *restart; 789 struct alarm alarm; 790 ktime_t exp; 791 int ret = 0; 792 793 if (!alarmtimer_get_rtcdev()) 794 return -ENOTSUPP; 795 796 if (flags & ~TIMER_ABSTIME) 797 return -EINVAL; 798 799 if (!capable(CAP_WAKE_ALARM)) 800 return -EPERM; 801 802 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 803 804 exp = timespec64_to_ktime(*tsreq); 805 /* Convert (if necessary) to absolute time */ 806 if (flags != TIMER_ABSTIME) { 807 ktime_t now = alarm_bases[type].gettime(); 808 exp = ktime_add(now, exp); 809 } 810 811 if (alarmtimer_do_nsleep(&alarm, exp)) 812 goto out; 813 814 if (freezing(current)) 815 alarmtimer_freezerset(exp, type); 816 817 /* abs timers don't set remaining time or restart */ 818 if (flags == TIMER_ABSTIME) { 819 ret = -ERESTARTNOHAND; 820 goto out; 821 } 822 823 if (rmtp) { 824 ret = update_rmtp(exp, type, rmtp); 825 if (ret <= 0) 826 goto out; 827 } 828 829 restart = ¤t->restart_block; 830 restart->fn = alarm_timer_nsleep_restart; 831 restart->nanosleep.clockid = type; 832 restart->nanosleep.expires = exp; 833 restart->nanosleep.rmtp = rmtp; 834 ret = -ERESTART_RESTARTBLOCK; 835 836 out: 837 return ret; 838 } 839 840 const struct k_clock alarm_clock = { 841 .clock_getres = alarm_clock_getres, 842 .clock_get = alarm_clock_get, 843 .timer_create = alarm_timer_create, 844 .timer_set = common_timer_set, 845 .timer_del = common_timer_del, 846 .timer_get = common_timer_get, 847 .timer_arm = alarm_timer_arm, 848 .timer_rearm = alarm_timer_rearm, 849 .timer_forward = alarm_timer_forward, 850 .timer_remaining = alarm_timer_remaining, 851 .timer_try_to_cancel = alarm_timer_try_to_cancel, 852 .nsleep = alarm_timer_nsleep, 853 }; 854 #endif /* CONFIG_POSIX_TIMERS */ 855 856 857 /* Suspend hook structures */ 858 static const struct dev_pm_ops alarmtimer_pm_ops = { 859 .suspend = alarmtimer_suspend, 860 .resume = alarmtimer_resume, 861 }; 862 863 static struct platform_driver alarmtimer_driver = { 864 .driver = { 865 .name = "alarmtimer", 866 .pm = &alarmtimer_pm_ops, 867 } 868 }; 869 870 /** 871 * alarmtimer_init - Initialize alarm timer code 872 * 873 * This function initializes the alarm bases and registers 874 * the posix clock ids. 875 */ 876 static int __init alarmtimer_init(void) 877 { 878 struct platform_device *pdev; 879 int error = 0; 880 int i; 881 882 alarmtimer_rtc_timer_init(); 883 884 /* Initialize alarm bases */ 885 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 886 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 887 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 888 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 889 for (i = 0; i < ALARM_NUMTYPE; i++) { 890 timerqueue_init_head(&alarm_bases[i].timerqueue); 891 spin_lock_init(&alarm_bases[i].lock); 892 } 893 894 error = alarmtimer_rtc_interface_setup(); 895 if (error) 896 return error; 897 898 error = platform_driver_register(&alarmtimer_driver); 899 if (error) 900 goto out_if; 901 902 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 903 if (IS_ERR(pdev)) { 904 error = PTR_ERR(pdev); 905 goto out_drv; 906 } 907 ws = wakeup_source_register("alarmtimer"); 908 return 0; 909 910 out_drv: 911 platform_driver_unregister(&alarmtimer_driver); 912 out_if: 913 alarmtimer_rtc_interface_remove(); 914 return error; 915 } 916 device_initcall(alarmtimer_init); 917