1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Alarmtimer interface 4 * 5 * This interface provides a timer which is similarto hrtimers, 6 * but triggers a RTC alarm if the box is suspend. 7 * 8 * This interface is influenced by the Android RTC Alarm timer 9 * interface. 10 * 11 * Copyright (C) 2010 IBM Corperation 12 * 13 * Author: John Stultz <john.stultz@linaro.org> 14 */ 15 #include <linux/time.h> 16 #include <linux/hrtimer.h> 17 #include <linux/timerqueue.h> 18 #include <linux/rtc.h> 19 #include <linux/sched/signal.h> 20 #include <linux/sched/debug.h> 21 #include <linux/alarmtimer.h> 22 #include <linux/mutex.h> 23 #include <linux/platform_device.h> 24 #include <linux/posix-timers.h> 25 #include <linux/workqueue.h> 26 #include <linux/freezer.h> 27 #include <linux/compat.h> 28 #include <linux/module.h> 29 30 #include "posix-timers.h" 31 32 #define CREATE_TRACE_POINTS 33 #include <trace/events/alarmtimer.h> 34 35 /** 36 * struct alarm_base - Alarm timer bases 37 * @lock: Lock for syncrhonized access to the base 38 * @timerqueue: Timerqueue head managing the list of events 39 * @gettime: Function to read the time correlating to the base 40 * @base_clockid: clockid for the base 41 */ 42 static struct alarm_base { 43 spinlock_t lock; 44 struct timerqueue_head timerqueue; 45 ktime_t (*gettime)(void); 46 clockid_t base_clockid; 47 } alarm_bases[ALARM_NUMTYPE]; 48 49 #if defined(CONFIG_POSIX_TIMERS) || defined(CONFIG_RTC_CLASS) 50 /* freezer information to handle clock_nanosleep triggered wakeups */ 51 static enum alarmtimer_type freezer_alarmtype; 52 static ktime_t freezer_expires; 53 static ktime_t freezer_delta; 54 static DEFINE_SPINLOCK(freezer_delta_lock); 55 #endif 56 57 #ifdef CONFIG_RTC_CLASS 58 static struct wakeup_source *ws; 59 60 /* rtc timer and device for setting alarm wakeups at suspend */ 61 static struct rtc_timer rtctimer; 62 static struct rtc_device *rtcdev; 63 static DEFINE_SPINLOCK(rtcdev_lock); 64 65 /** 66 * alarmtimer_get_rtcdev - Return selected rtcdevice 67 * 68 * This function returns the rtc device to use for wakealarms. 69 * If one has not already been chosen, it checks to see if a 70 * functional rtc device is available. 71 */ 72 struct rtc_device *alarmtimer_get_rtcdev(void) 73 { 74 unsigned long flags; 75 struct rtc_device *ret; 76 77 spin_lock_irqsave(&rtcdev_lock, flags); 78 ret = rtcdev; 79 spin_unlock_irqrestore(&rtcdev_lock, flags); 80 81 return ret; 82 } 83 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 84 85 static int alarmtimer_rtc_add_device(struct device *dev, 86 struct class_interface *class_intf) 87 { 88 unsigned long flags; 89 struct rtc_device *rtc = to_rtc_device(dev); 90 struct wakeup_source *__ws; 91 92 if (rtcdev) 93 return -EBUSY; 94 95 if (!rtc->ops->set_alarm) 96 return -1; 97 if (!device_may_wakeup(rtc->dev.parent)) 98 return -1; 99 100 __ws = wakeup_source_register("alarmtimer"); 101 102 spin_lock_irqsave(&rtcdev_lock, flags); 103 if (!rtcdev) { 104 if (!try_module_get(rtc->owner)) { 105 spin_unlock_irqrestore(&rtcdev_lock, flags); 106 return -1; 107 } 108 109 rtcdev = rtc; 110 /* hold a reference so it doesn't go away */ 111 get_device(dev); 112 ws = __ws; 113 __ws = NULL; 114 } 115 spin_unlock_irqrestore(&rtcdev_lock, flags); 116 117 wakeup_source_unregister(__ws); 118 119 return 0; 120 } 121 122 static inline void alarmtimer_rtc_timer_init(void) 123 { 124 rtc_timer_init(&rtctimer, NULL, NULL); 125 } 126 127 static struct class_interface alarmtimer_rtc_interface = { 128 .add_dev = &alarmtimer_rtc_add_device, 129 }; 130 131 static int alarmtimer_rtc_interface_setup(void) 132 { 133 alarmtimer_rtc_interface.class = rtc_class; 134 return class_interface_register(&alarmtimer_rtc_interface); 135 } 136 static void alarmtimer_rtc_interface_remove(void) 137 { 138 class_interface_unregister(&alarmtimer_rtc_interface); 139 } 140 #else 141 struct rtc_device *alarmtimer_get_rtcdev(void) 142 { 143 return NULL; 144 } 145 #define rtcdev (NULL) 146 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 147 static inline void alarmtimer_rtc_interface_remove(void) { } 148 static inline void alarmtimer_rtc_timer_init(void) { } 149 #endif 150 151 /** 152 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 153 * @base: pointer to the base where the timer is being run 154 * @alarm: pointer to alarm being enqueued. 155 * 156 * Adds alarm to a alarm_base timerqueue 157 * 158 * Must hold base->lock when calling. 159 */ 160 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 161 { 162 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 163 timerqueue_del(&base->timerqueue, &alarm->node); 164 165 timerqueue_add(&base->timerqueue, &alarm->node); 166 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 167 } 168 169 /** 170 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 171 * @base: pointer to the base where the timer is running 172 * @alarm: pointer to alarm being removed 173 * 174 * Removes alarm to a alarm_base timerqueue 175 * 176 * Must hold base->lock when calling. 177 */ 178 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 179 { 180 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 181 return; 182 183 timerqueue_del(&base->timerqueue, &alarm->node); 184 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 185 } 186 187 188 /** 189 * alarmtimer_fired - Handles alarm hrtimer being fired. 190 * @timer: pointer to hrtimer being run 191 * 192 * When a alarm timer fires, this runs through the timerqueue to 193 * see which alarms expired, and runs those. If there are more alarm 194 * timers queued for the future, we set the hrtimer to fire when 195 * when the next future alarm timer expires. 196 */ 197 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 198 { 199 struct alarm *alarm = container_of(timer, struct alarm, timer); 200 struct alarm_base *base = &alarm_bases[alarm->type]; 201 unsigned long flags; 202 int ret = HRTIMER_NORESTART; 203 int restart = ALARMTIMER_NORESTART; 204 205 spin_lock_irqsave(&base->lock, flags); 206 alarmtimer_dequeue(base, alarm); 207 spin_unlock_irqrestore(&base->lock, flags); 208 209 if (alarm->function) 210 restart = alarm->function(alarm, base->gettime()); 211 212 spin_lock_irqsave(&base->lock, flags); 213 if (restart != ALARMTIMER_NORESTART) { 214 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 215 alarmtimer_enqueue(base, alarm); 216 ret = HRTIMER_RESTART; 217 } 218 spin_unlock_irqrestore(&base->lock, flags); 219 220 trace_alarmtimer_fired(alarm, base->gettime()); 221 return ret; 222 223 } 224 225 ktime_t alarm_expires_remaining(const struct alarm *alarm) 226 { 227 struct alarm_base *base = &alarm_bases[alarm->type]; 228 return ktime_sub(alarm->node.expires, base->gettime()); 229 } 230 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 231 232 #ifdef CONFIG_RTC_CLASS 233 /** 234 * alarmtimer_suspend - Suspend time callback 235 * @dev: unused 236 * 237 * When we are going into suspend, we look through the bases 238 * to see which is the soonest timer to expire. We then 239 * set an rtc timer to fire that far into the future, which 240 * will wake us from suspend. 241 */ 242 static int alarmtimer_suspend(struct device *dev) 243 { 244 ktime_t min, now, expires; 245 int i, ret, type; 246 struct rtc_device *rtc; 247 unsigned long flags; 248 struct rtc_time tm; 249 250 spin_lock_irqsave(&freezer_delta_lock, flags); 251 min = freezer_delta; 252 expires = freezer_expires; 253 type = freezer_alarmtype; 254 freezer_delta = 0; 255 spin_unlock_irqrestore(&freezer_delta_lock, flags); 256 257 rtc = alarmtimer_get_rtcdev(); 258 /* If we have no rtcdev, just return */ 259 if (!rtc) 260 return 0; 261 262 /* Find the soonest timer to expire*/ 263 for (i = 0; i < ALARM_NUMTYPE; i++) { 264 struct alarm_base *base = &alarm_bases[i]; 265 struct timerqueue_node *next; 266 ktime_t delta; 267 268 spin_lock_irqsave(&base->lock, flags); 269 next = timerqueue_getnext(&base->timerqueue); 270 spin_unlock_irqrestore(&base->lock, flags); 271 if (!next) 272 continue; 273 delta = ktime_sub(next->expires, base->gettime()); 274 if (!min || (delta < min)) { 275 expires = next->expires; 276 min = delta; 277 type = i; 278 } 279 } 280 if (min == 0) 281 return 0; 282 283 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 284 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 285 return -EBUSY; 286 } 287 288 trace_alarmtimer_suspend(expires, type); 289 290 /* Setup an rtc timer to fire that far in the future */ 291 rtc_timer_cancel(rtc, &rtctimer); 292 rtc_read_time(rtc, &tm); 293 now = rtc_tm_to_ktime(tm); 294 now = ktime_add(now, min); 295 296 /* Set alarm, if in the past reject suspend briefly to handle */ 297 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 298 if (ret < 0) 299 __pm_wakeup_event(ws, MSEC_PER_SEC); 300 return ret; 301 } 302 303 static int alarmtimer_resume(struct device *dev) 304 { 305 struct rtc_device *rtc; 306 307 rtc = alarmtimer_get_rtcdev(); 308 if (rtc) 309 rtc_timer_cancel(rtc, &rtctimer); 310 return 0; 311 } 312 313 #else 314 static int alarmtimer_suspend(struct device *dev) 315 { 316 return 0; 317 } 318 319 static int alarmtimer_resume(struct device *dev) 320 { 321 return 0; 322 } 323 #endif 324 325 static void 326 __alarm_init(struct alarm *alarm, enum alarmtimer_type type, 327 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 328 { 329 timerqueue_init(&alarm->node); 330 alarm->timer.function = alarmtimer_fired; 331 alarm->function = function; 332 alarm->type = type; 333 alarm->state = ALARMTIMER_STATE_INACTIVE; 334 } 335 336 /** 337 * alarm_init - Initialize an alarm structure 338 * @alarm: ptr to alarm to be initialized 339 * @type: the type of the alarm 340 * @function: callback that is run when the alarm fires 341 */ 342 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 343 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 344 { 345 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 346 HRTIMER_MODE_ABS); 347 __alarm_init(alarm, type, function); 348 } 349 EXPORT_SYMBOL_GPL(alarm_init); 350 351 /** 352 * alarm_start - Sets an absolute alarm to fire 353 * @alarm: ptr to alarm to set 354 * @start: time to run the alarm 355 */ 356 void alarm_start(struct alarm *alarm, ktime_t start) 357 { 358 struct alarm_base *base = &alarm_bases[alarm->type]; 359 unsigned long flags; 360 361 spin_lock_irqsave(&base->lock, flags); 362 alarm->node.expires = start; 363 alarmtimer_enqueue(base, alarm); 364 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 365 spin_unlock_irqrestore(&base->lock, flags); 366 367 trace_alarmtimer_start(alarm, base->gettime()); 368 } 369 EXPORT_SYMBOL_GPL(alarm_start); 370 371 /** 372 * alarm_start_relative - Sets a relative alarm to fire 373 * @alarm: ptr to alarm to set 374 * @start: time relative to now to run the alarm 375 */ 376 void alarm_start_relative(struct alarm *alarm, ktime_t start) 377 { 378 struct alarm_base *base = &alarm_bases[alarm->type]; 379 380 start = ktime_add_safe(start, base->gettime()); 381 alarm_start(alarm, start); 382 } 383 EXPORT_SYMBOL_GPL(alarm_start_relative); 384 385 void alarm_restart(struct alarm *alarm) 386 { 387 struct alarm_base *base = &alarm_bases[alarm->type]; 388 unsigned long flags; 389 390 spin_lock_irqsave(&base->lock, flags); 391 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 392 hrtimer_restart(&alarm->timer); 393 alarmtimer_enqueue(base, alarm); 394 spin_unlock_irqrestore(&base->lock, flags); 395 } 396 EXPORT_SYMBOL_GPL(alarm_restart); 397 398 /** 399 * alarm_try_to_cancel - Tries to cancel an alarm timer 400 * @alarm: ptr to alarm to be canceled 401 * 402 * Returns 1 if the timer was canceled, 0 if it was not running, 403 * and -1 if the callback was running 404 */ 405 int alarm_try_to_cancel(struct alarm *alarm) 406 { 407 struct alarm_base *base = &alarm_bases[alarm->type]; 408 unsigned long flags; 409 int ret; 410 411 spin_lock_irqsave(&base->lock, flags); 412 ret = hrtimer_try_to_cancel(&alarm->timer); 413 if (ret >= 0) 414 alarmtimer_dequeue(base, alarm); 415 spin_unlock_irqrestore(&base->lock, flags); 416 417 trace_alarmtimer_cancel(alarm, base->gettime()); 418 return ret; 419 } 420 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 421 422 423 /** 424 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 425 * @alarm: ptr to alarm to be canceled 426 * 427 * Returns 1 if the timer was canceled, 0 if it was not active. 428 */ 429 int alarm_cancel(struct alarm *alarm) 430 { 431 for (;;) { 432 int ret = alarm_try_to_cancel(alarm); 433 if (ret >= 0) 434 return ret; 435 cpu_relax(); 436 } 437 } 438 EXPORT_SYMBOL_GPL(alarm_cancel); 439 440 441 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 442 { 443 u64 overrun = 1; 444 ktime_t delta; 445 446 delta = ktime_sub(now, alarm->node.expires); 447 448 if (delta < 0) 449 return 0; 450 451 if (unlikely(delta >= interval)) { 452 s64 incr = ktime_to_ns(interval); 453 454 overrun = ktime_divns(delta, incr); 455 456 alarm->node.expires = ktime_add_ns(alarm->node.expires, 457 incr*overrun); 458 459 if (alarm->node.expires > now) 460 return overrun; 461 /* 462 * This (and the ktime_add() below) is the 463 * correction for exact: 464 */ 465 overrun++; 466 } 467 468 alarm->node.expires = ktime_add_safe(alarm->node.expires, interval); 469 return overrun; 470 } 471 EXPORT_SYMBOL_GPL(alarm_forward); 472 473 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 474 { 475 struct alarm_base *base = &alarm_bases[alarm->type]; 476 477 return alarm_forward(alarm, base->gettime(), interval); 478 } 479 EXPORT_SYMBOL_GPL(alarm_forward_now); 480 481 #ifdef CONFIG_POSIX_TIMERS 482 483 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 484 { 485 struct alarm_base *base; 486 unsigned long flags; 487 ktime_t delta; 488 489 switch(type) { 490 case ALARM_REALTIME: 491 base = &alarm_bases[ALARM_REALTIME]; 492 type = ALARM_REALTIME_FREEZER; 493 break; 494 case ALARM_BOOTTIME: 495 base = &alarm_bases[ALARM_BOOTTIME]; 496 type = ALARM_BOOTTIME_FREEZER; 497 break; 498 default: 499 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 500 return; 501 } 502 503 delta = ktime_sub(absexp, base->gettime()); 504 505 spin_lock_irqsave(&freezer_delta_lock, flags); 506 if (!freezer_delta || (delta < freezer_delta)) { 507 freezer_delta = delta; 508 freezer_expires = absexp; 509 freezer_alarmtype = type; 510 } 511 spin_unlock_irqrestore(&freezer_delta_lock, flags); 512 } 513 514 /** 515 * clock2alarm - helper that converts from clockid to alarmtypes 516 * @clockid: clockid. 517 */ 518 static enum alarmtimer_type clock2alarm(clockid_t clockid) 519 { 520 if (clockid == CLOCK_REALTIME_ALARM) 521 return ALARM_REALTIME; 522 if (clockid == CLOCK_BOOTTIME_ALARM) 523 return ALARM_BOOTTIME; 524 return -1; 525 } 526 527 /** 528 * alarm_handle_timer - Callback for posix timers 529 * @alarm: alarm that fired 530 * 531 * Posix timer callback for expired alarm timers. 532 */ 533 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 534 ktime_t now) 535 { 536 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 537 it.alarm.alarmtimer); 538 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 539 unsigned long flags; 540 int si_private = 0; 541 542 spin_lock_irqsave(&ptr->it_lock, flags); 543 544 ptr->it_active = 0; 545 if (ptr->it_interval) 546 si_private = ++ptr->it_requeue_pending; 547 548 if (posix_timer_event(ptr, si_private) && ptr->it_interval) { 549 /* 550 * Handle ignored signals and rearm the timer. This will go 551 * away once we handle ignored signals proper. 552 */ 553 ptr->it_overrun += alarm_forward_now(alarm, ptr->it_interval); 554 ++ptr->it_requeue_pending; 555 ptr->it_active = 1; 556 result = ALARMTIMER_RESTART; 557 } 558 spin_unlock_irqrestore(&ptr->it_lock, flags); 559 560 return result; 561 } 562 563 /** 564 * alarm_timer_rearm - Posix timer callback for rearming timer 565 * @timr: Pointer to the posixtimer data struct 566 */ 567 static void alarm_timer_rearm(struct k_itimer *timr) 568 { 569 struct alarm *alarm = &timr->it.alarm.alarmtimer; 570 571 timr->it_overrun += alarm_forward_now(alarm, timr->it_interval); 572 alarm_start(alarm, alarm->node.expires); 573 } 574 575 /** 576 * alarm_timer_forward - Posix timer callback for forwarding timer 577 * @timr: Pointer to the posixtimer data struct 578 * @now: Current time to forward the timer against 579 */ 580 static s64 alarm_timer_forward(struct k_itimer *timr, ktime_t now) 581 { 582 struct alarm *alarm = &timr->it.alarm.alarmtimer; 583 584 return alarm_forward(alarm, timr->it_interval, now); 585 } 586 587 /** 588 * alarm_timer_remaining - Posix timer callback to retrieve remaining time 589 * @timr: Pointer to the posixtimer data struct 590 * @now: Current time to calculate against 591 */ 592 static ktime_t alarm_timer_remaining(struct k_itimer *timr, ktime_t now) 593 { 594 struct alarm *alarm = &timr->it.alarm.alarmtimer; 595 596 return ktime_sub(alarm->node.expires, now); 597 } 598 599 /** 600 * alarm_timer_try_to_cancel - Posix timer callback to cancel a timer 601 * @timr: Pointer to the posixtimer data struct 602 */ 603 static int alarm_timer_try_to_cancel(struct k_itimer *timr) 604 { 605 return alarm_try_to_cancel(&timr->it.alarm.alarmtimer); 606 } 607 608 /** 609 * alarm_timer_arm - Posix timer callback to arm a timer 610 * @timr: Pointer to the posixtimer data struct 611 * @expires: The new expiry time 612 * @absolute: Expiry value is absolute time 613 * @sigev_none: Posix timer does not deliver signals 614 */ 615 static void alarm_timer_arm(struct k_itimer *timr, ktime_t expires, 616 bool absolute, bool sigev_none) 617 { 618 struct alarm *alarm = &timr->it.alarm.alarmtimer; 619 struct alarm_base *base = &alarm_bases[alarm->type]; 620 621 if (!absolute) 622 expires = ktime_add_safe(expires, base->gettime()); 623 if (sigev_none) 624 alarm->node.expires = expires; 625 else 626 alarm_start(&timr->it.alarm.alarmtimer, expires); 627 } 628 629 /** 630 * alarm_clock_getres - posix getres interface 631 * @which_clock: clockid 632 * @tp: timespec to fill 633 * 634 * Returns the granularity of underlying alarm base clock 635 */ 636 static int alarm_clock_getres(const clockid_t which_clock, struct timespec64 *tp) 637 { 638 if (!alarmtimer_get_rtcdev()) 639 return -EINVAL; 640 641 tp->tv_sec = 0; 642 tp->tv_nsec = hrtimer_resolution; 643 return 0; 644 } 645 646 /** 647 * alarm_clock_get - posix clock_get interface 648 * @which_clock: clockid 649 * @tp: timespec to fill. 650 * 651 * Provides the underlying alarm base time. 652 */ 653 static int alarm_clock_get(clockid_t which_clock, struct timespec64 *tp) 654 { 655 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 656 657 if (!alarmtimer_get_rtcdev()) 658 return -EINVAL; 659 660 *tp = ktime_to_timespec64(base->gettime()); 661 return 0; 662 } 663 664 /** 665 * alarm_timer_create - posix timer_create interface 666 * @new_timer: k_itimer pointer to manage 667 * 668 * Initializes the k_itimer structure. 669 */ 670 static int alarm_timer_create(struct k_itimer *new_timer) 671 { 672 enum alarmtimer_type type; 673 674 if (!alarmtimer_get_rtcdev()) 675 return -ENOTSUPP; 676 677 if (!capable(CAP_WAKE_ALARM)) 678 return -EPERM; 679 680 type = clock2alarm(new_timer->it_clock); 681 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 682 return 0; 683 } 684 685 /** 686 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 687 * @alarm: ptr to alarm that fired 688 * 689 * Wakes up the task that set the alarmtimer 690 */ 691 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 692 ktime_t now) 693 { 694 struct task_struct *task = (struct task_struct *)alarm->data; 695 696 alarm->data = NULL; 697 if (task) 698 wake_up_process(task); 699 return ALARMTIMER_NORESTART; 700 } 701 702 /** 703 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 704 * @alarm: ptr to alarmtimer 705 * @absexp: absolute expiration time 706 * 707 * Sets the alarm timer and sleeps until it is fired or interrupted. 708 */ 709 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp, 710 enum alarmtimer_type type) 711 { 712 struct restart_block *restart; 713 alarm->data = (void *)current; 714 do { 715 set_current_state(TASK_INTERRUPTIBLE); 716 alarm_start(alarm, absexp); 717 if (likely(alarm->data)) 718 schedule(); 719 720 alarm_cancel(alarm); 721 } while (alarm->data && !signal_pending(current)); 722 723 __set_current_state(TASK_RUNNING); 724 725 destroy_hrtimer_on_stack(&alarm->timer); 726 727 if (!alarm->data) 728 return 0; 729 730 if (freezing(current)) 731 alarmtimer_freezerset(absexp, type); 732 restart = ¤t->restart_block; 733 if (restart->nanosleep.type != TT_NONE) { 734 struct timespec64 rmt; 735 ktime_t rem; 736 737 rem = ktime_sub(absexp, alarm_bases[type].gettime()); 738 739 if (rem <= 0) 740 return 0; 741 rmt = ktime_to_timespec64(rem); 742 743 return nanosleep_copyout(restart, &rmt); 744 } 745 return -ERESTART_RESTARTBLOCK; 746 } 747 748 static void 749 alarm_init_on_stack(struct alarm *alarm, enum alarmtimer_type type, 750 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 751 { 752 hrtimer_init_on_stack(&alarm->timer, alarm_bases[type].base_clockid, 753 HRTIMER_MODE_ABS); 754 __alarm_init(alarm, type, function); 755 } 756 757 /** 758 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 759 * @restart: ptr to restart block 760 * 761 * Handles restarted clock_nanosleep calls 762 */ 763 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 764 { 765 enum alarmtimer_type type = restart->nanosleep.clockid; 766 ktime_t exp = restart->nanosleep.expires; 767 struct alarm alarm; 768 769 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 770 771 return alarmtimer_do_nsleep(&alarm, exp, type); 772 } 773 774 /** 775 * alarm_timer_nsleep - alarmtimer nanosleep 776 * @which_clock: clockid 777 * @flags: determins abstime or relative 778 * @tsreq: requested sleep time (abs or rel) 779 * @rmtp: remaining sleep time saved 780 * 781 * Handles clock_nanosleep calls against _ALARM clockids 782 */ 783 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 784 const struct timespec64 *tsreq) 785 { 786 enum alarmtimer_type type = clock2alarm(which_clock); 787 struct restart_block *restart = ¤t->restart_block; 788 struct alarm alarm; 789 ktime_t exp; 790 int ret = 0; 791 792 if (!alarmtimer_get_rtcdev()) 793 return -ENOTSUPP; 794 795 if (flags & ~TIMER_ABSTIME) 796 return -EINVAL; 797 798 if (!capable(CAP_WAKE_ALARM)) 799 return -EPERM; 800 801 alarm_init_on_stack(&alarm, type, alarmtimer_nsleep_wakeup); 802 803 exp = timespec64_to_ktime(*tsreq); 804 /* Convert (if necessary) to absolute time */ 805 if (flags != TIMER_ABSTIME) { 806 ktime_t now = alarm_bases[type].gettime(); 807 808 exp = ktime_add_safe(now, exp); 809 } 810 811 ret = alarmtimer_do_nsleep(&alarm, exp, type); 812 if (ret != -ERESTART_RESTARTBLOCK) 813 return ret; 814 815 /* abs timers don't set remaining time or restart */ 816 if (flags == TIMER_ABSTIME) 817 return -ERESTARTNOHAND; 818 819 restart->fn = alarm_timer_nsleep_restart; 820 restart->nanosleep.clockid = type; 821 restart->nanosleep.expires = exp; 822 return ret; 823 } 824 825 const struct k_clock alarm_clock = { 826 .clock_getres = alarm_clock_getres, 827 .clock_get = alarm_clock_get, 828 .timer_create = alarm_timer_create, 829 .timer_set = common_timer_set, 830 .timer_del = common_timer_del, 831 .timer_get = common_timer_get, 832 .timer_arm = alarm_timer_arm, 833 .timer_rearm = alarm_timer_rearm, 834 .timer_forward = alarm_timer_forward, 835 .timer_remaining = alarm_timer_remaining, 836 .timer_try_to_cancel = alarm_timer_try_to_cancel, 837 .nsleep = alarm_timer_nsleep, 838 }; 839 #endif /* CONFIG_POSIX_TIMERS */ 840 841 842 /* Suspend hook structures */ 843 static const struct dev_pm_ops alarmtimer_pm_ops = { 844 .suspend = alarmtimer_suspend, 845 .resume = alarmtimer_resume, 846 }; 847 848 static struct platform_driver alarmtimer_driver = { 849 .driver = { 850 .name = "alarmtimer", 851 .pm = &alarmtimer_pm_ops, 852 } 853 }; 854 855 /** 856 * alarmtimer_init - Initialize alarm timer code 857 * 858 * This function initializes the alarm bases and registers 859 * the posix clock ids. 860 */ 861 static int __init alarmtimer_init(void) 862 { 863 struct platform_device *pdev; 864 int error = 0; 865 int i; 866 867 alarmtimer_rtc_timer_init(); 868 869 /* Initialize alarm bases */ 870 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 871 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 872 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 873 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 874 for (i = 0; i < ALARM_NUMTYPE; i++) { 875 timerqueue_init_head(&alarm_bases[i].timerqueue); 876 spin_lock_init(&alarm_bases[i].lock); 877 } 878 879 error = alarmtimer_rtc_interface_setup(); 880 if (error) 881 return error; 882 883 error = platform_driver_register(&alarmtimer_driver); 884 if (error) 885 goto out_if; 886 887 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 888 if (IS_ERR(pdev)) { 889 error = PTR_ERR(pdev); 890 goto out_drv; 891 } 892 return 0; 893 894 out_drv: 895 platform_driver_unregister(&alarmtimer_driver); 896 out_if: 897 alarmtimer_rtc_interface_remove(); 898 return error; 899 } 900 device_initcall(alarmtimer_init); 901