1 /* 2 * Alarmtimer interface 3 * 4 * This interface provides a timer which is similarto hrtimers, 5 * but triggers a RTC alarm if the box is suspend. 6 * 7 * This interface is influenced by the Android RTC Alarm timer 8 * interface. 9 * 10 * Copyright (C) 2010 IBM Corperation 11 * 12 * Author: John Stultz <john.stultz@linaro.org> 13 * 14 * This program is free software; you can redistribute it and/or modify 15 * it under the terms of the GNU General Public License version 2 as 16 * published by the Free Software Foundation. 17 */ 18 #include <linux/time.h> 19 #include <linux/hrtimer.h> 20 #include <linux/timerqueue.h> 21 #include <linux/rtc.h> 22 #include <linux/alarmtimer.h> 23 #include <linux/mutex.h> 24 #include <linux/platform_device.h> 25 #include <linux/posix-timers.h> 26 #include <linux/workqueue.h> 27 #include <linux/freezer.h> 28 29 #define CREATE_TRACE_POINTS 30 #include <trace/events/alarmtimer.h> 31 32 /** 33 * struct alarm_base - Alarm timer bases 34 * @lock: Lock for syncrhonized access to the base 35 * @timerqueue: Timerqueue head managing the list of events 36 * @gettime: Function to read the time correlating to the base 37 * @base_clockid: clockid for the base 38 */ 39 static struct alarm_base { 40 spinlock_t lock; 41 struct timerqueue_head timerqueue; 42 ktime_t (*gettime)(void); 43 clockid_t base_clockid; 44 } alarm_bases[ALARM_NUMTYPE]; 45 46 /* freezer information to handle clock_nanosleep triggered wakeups */ 47 static enum alarmtimer_type freezer_alarmtype; 48 static ktime_t freezer_expires; 49 static ktime_t freezer_delta; 50 static DEFINE_SPINLOCK(freezer_delta_lock); 51 52 static struct wakeup_source *ws; 53 54 #ifdef CONFIG_RTC_CLASS 55 /* rtc timer and device for setting alarm wakeups at suspend */ 56 static struct rtc_timer rtctimer; 57 static struct rtc_device *rtcdev; 58 static DEFINE_SPINLOCK(rtcdev_lock); 59 60 /** 61 * alarmtimer_get_rtcdev - Return selected rtcdevice 62 * 63 * This function returns the rtc device to use for wakealarms. 64 * If one has not already been chosen, it checks to see if a 65 * functional rtc device is available. 66 */ 67 struct rtc_device *alarmtimer_get_rtcdev(void) 68 { 69 unsigned long flags; 70 struct rtc_device *ret; 71 72 spin_lock_irqsave(&rtcdev_lock, flags); 73 ret = rtcdev; 74 spin_unlock_irqrestore(&rtcdev_lock, flags); 75 76 return ret; 77 } 78 EXPORT_SYMBOL_GPL(alarmtimer_get_rtcdev); 79 80 static int alarmtimer_rtc_add_device(struct device *dev, 81 struct class_interface *class_intf) 82 { 83 unsigned long flags; 84 struct rtc_device *rtc = to_rtc_device(dev); 85 86 if (rtcdev) 87 return -EBUSY; 88 89 if (!rtc->ops->set_alarm) 90 return -1; 91 if (!device_may_wakeup(rtc->dev.parent)) 92 return -1; 93 94 spin_lock_irqsave(&rtcdev_lock, flags); 95 if (!rtcdev) { 96 rtcdev = rtc; 97 /* hold a reference so it doesn't go away */ 98 get_device(dev); 99 } 100 spin_unlock_irqrestore(&rtcdev_lock, flags); 101 return 0; 102 } 103 104 static inline void alarmtimer_rtc_timer_init(void) 105 { 106 rtc_timer_init(&rtctimer, NULL, NULL); 107 } 108 109 static struct class_interface alarmtimer_rtc_interface = { 110 .add_dev = &alarmtimer_rtc_add_device, 111 }; 112 113 static int alarmtimer_rtc_interface_setup(void) 114 { 115 alarmtimer_rtc_interface.class = rtc_class; 116 return class_interface_register(&alarmtimer_rtc_interface); 117 } 118 static void alarmtimer_rtc_interface_remove(void) 119 { 120 class_interface_unregister(&alarmtimer_rtc_interface); 121 } 122 #else 123 struct rtc_device *alarmtimer_get_rtcdev(void) 124 { 125 return NULL; 126 } 127 #define rtcdev (NULL) 128 static inline int alarmtimer_rtc_interface_setup(void) { return 0; } 129 static inline void alarmtimer_rtc_interface_remove(void) { } 130 static inline void alarmtimer_rtc_timer_init(void) { } 131 #endif 132 133 /** 134 * alarmtimer_enqueue - Adds an alarm timer to an alarm_base timerqueue 135 * @base: pointer to the base where the timer is being run 136 * @alarm: pointer to alarm being enqueued. 137 * 138 * Adds alarm to a alarm_base timerqueue 139 * 140 * Must hold base->lock when calling. 141 */ 142 static void alarmtimer_enqueue(struct alarm_base *base, struct alarm *alarm) 143 { 144 if (alarm->state & ALARMTIMER_STATE_ENQUEUED) 145 timerqueue_del(&base->timerqueue, &alarm->node); 146 147 timerqueue_add(&base->timerqueue, &alarm->node); 148 alarm->state |= ALARMTIMER_STATE_ENQUEUED; 149 } 150 151 /** 152 * alarmtimer_dequeue - Removes an alarm timer from an alarm_base timerqueue 153 * @base: pointer to the base where the timer is running 154 * @alarm: pointer to alarm being removed 155 * 156 * Removes alarm to a alarm_base timerqueue 157 * 158 * Must hold base->lock when calling. 159 */ 160 static void alarmtimer_dequeue(struct alarm_base *base, struct alarm *alarm) 161 { 162 if (!(alarm->state & ALARMTIMER_STATE_ENQUEUED)) 163 return; 164 165 timerqueue_del(&base->timerqueue, &alarm->node); 166 alarm->state &= ~ALARMTIMER_STATE_ENQUEUED; 167 } 168 169 170 /** 171 * alarmtimer_fired - Handles alarm hrtimer being fired. 172 * @timer: pointer to hrtimer being run 173 * 174 * When a alarm timer fires, this runs through the timerqueue to 175 * see which alarms expired, and runs those. If there are more alarm 176 * timers queued for the future, we set the hrtimer to fire when 177 * when the next future alarm timer expires. 178 */ 179 static enum hrtimer_restart alarmtimer_fired(struct hrtimer *timer) 180 { 181 struct alarm *alarm = container_of(timer, struct alarm, timer); 182 struct alarm_base *base = &alarm_bases[alarm->type]; 183 unsigned long flags; 184 int ret = HRTIMER_NORESTART; 185 int restart = ALARMTIMER_NORESTART; 186 187 spin_lock_irqsave(&base->lock, flags); 188 alarmtimer_dequeue(base, alarm); 189 spin_unlock_irqrestore(&base->lock, flags); 190 191 if (alarm->function) 192 restart = alarm->function(alarm, base->gettime()); 193 194 spin_lock_irqsave(&base->lock, flags); 195 if (restart != ALARMTIMER_NORESTART) { 196 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 197 alarmtimer_enqueue(base, alarm); 198 ret = HRTIMER_RESTART; 199 } 200 spin_unlock_irqrestore(&base->lock, flags); 201 202 trace_alarmtimer_fired(alarm, base->gettime()); 203 return ret; 204 205 } 206 207 ktime_t alarm_expires_remaining(const struct alarm *alarm) 208 { 209 struct alarm_base *base = &alarm_bases[alarm->type]; 210 return ktime_sub(alarm->node.expires, base->gettime()); 211 } 212 EXPORT_SYMBOL_GPL(alarm_expires_remaining); 213 214 #ifdef CONFIG_RTC_CLASS 215 /** 216 * alarmtimer_suspend - Suspend time callback 217 * @dev: unused 218 * @state: unused 219 * 220 * When we are going into suspend, we look through the bases 221 * to see which is the soonest timer to expire. We then 222 * set an rtc timer to fire that far into the future, which 223 * will wake us from suspend. 224 */ 225 static int alarmtimer_suspend(struct device *dev) 226 { 227 ktime_t min, now, expires; 228 int i, ret, type; 229 struct rtc_device *rtc; 230 unsigned long flags; 231 struct rtc_time tm; 232 233 spin_lock_irqsave(&freezer_delta_lock, flags); 234 min = freezer_delta; 235 expires = freezer_expires; 236 type = freezer_alarmtype; 237 freezer_delta = 0; 238 spin_unlock_irqrestore(&freezer_delta_lock, flags); 239 240 rtc = alarmtimer_get_rtcdev(); 241 /* If we have no rtcdev, just return */ 242 if (!rtc) 243 return 0; 244 245 /* Find the soonest timer to expire*/ 246 for (i = 0; i < ALARM_NUMTYPE; i++) { 247 struct alarm_base *base = &alarm_bases[i]; 248 struct timerqueue_node *next; 249 ktime_t delta; 250 251 spin_lock_irqsave(&base->lock, flags); 252 next = timerqueue_getnext(&base->timerqueue); 253 spin_unlock_irqrestore(&base->lock, flags); 254 if (!next) 255 continue; 256 delta = ktime_sub(next->expires, base->gettime()); 257 if (!min || (delta < min)) { 258 expires = next->expires; 259 min = delta; 260 type = i; 261 } 262 } 263 if (min == 0) 264 return 0; 265 266 if (ktime_to_ns(min) < 2 * NSEC_PER_SEC) { 267 __pm_wakeup_event(ws, 2 * MSEC_PER_SEC); 268 return -EBUSY; 269 } 270 271 trace_alarmtimer_suspend(expires, type); 272 273 /* Setup an rtc timer to fire that far in the future */ 274 rtc_timer_cancel(rtc, &rtctimer); 275 rtc_read_time(rtc, &tm); 276 now = rtc_tm_to_ktime(tm); 277 now = ktime_add(now, min); 278 279 /* Set alarm, if in the past reject suspend briefly to handle */ 280 ret = rtc_timer_start(rtc, &rtctimer, now, 0); 281 if (ret < 0) 282 __pm_wakeup_event(ws, MSEC_PER_SEC); 283 return ret; 284 } 285 286 static int alarmtimer_resume(struct device *dev) 287 { 288 struct rtc_device *rtc; 289 290 rtc = alarmtimer_get_rtcdev(); 291 if (rtc) 292 rtc_timer_cancel(rtc, &rtctimer); 293 return 0; 294 } 295 296 #else 297 static int alarmtimer_suspend(struct device *dev) 298 { 299 return 0; 300 } 301 302 static int alarmtimer_resume(struct device *dev) 303 { 304 return 0; 305 } 306 #endif 307 308 static void alarmtimer_freezerset(ktime_t absexp, enum alarmtimer_type type) 309 { 310 struct alarm_base *base; 311 unsigned long flags; 312 ktime_t delta; 313 314 switch(type) { 315 case ALARM_REALTIME: 316 base = &alarm_bases[ALARM_REALTIME]; 317 type = ALARM_REALTIME_FREEZER; 318 break; 319 case ALARM_BOOTTIME: 320 base = &alarm_bases[ALARM_BOOTTIME]; 321 type = ALARM_BOOTTIME_FREEZER; 322 break; 323 default: 324 WARN_ONCE(1, "Invalid alarm type: %d\n", type); 325 return; 326 } 327 328 delta = ktime_sub(absexp, base->gettime()); 329 330 spin_lock_irqsave(&freezer_delta_lock, flags); 331 if (!freezer_delta || (delta < freezer_delta)) { 332 freezer_delta = delta; 333 freezer_expires = absexp; 334 freezer_alarmtype = type; 335 } 336 spin_unlock_irqrestore(&freezer_delta_lock, flags); 337 } 338 339 340 /** 341 * alarm_init - Initialize an alarm structure 342 * @alarm: ptr to alarm to be initialized 343 * @type: the type of the alarm 344 * @function: callback that is run when the alarm fires 345 */ 346 void alarm_init(struct alarm *alarm, enum alarmtimer_type type, 347 enum alarmtimer_restart (*function)(struct alarm *, ktime_t)) 348 { 349 timerqueue_init(&alarm->node); 350 hrtimer_init(&alarm->timer, alarm_bases[type].base_clockid, 351 HRTIMER_MODE_ABS); 352 alarm->timer.function = alarmtimer_fired; 353 alarm->function = function; 354 alarm->type = type; 355 alarm->state = ALARMTIMER_STATE_INACTIVE; 356 } 357 EXPORT_SYMBOL_GPL(alarm_init); 358 359 /** 360 * alarm_start - Sets an absolute alarm to fire 361 * @alarm: ptr to alarm to set 362 * @start: time to run the alarm 363 */ 364 void alarm_start(struct alarm *alarm, ktime_t start) 365 { 366 struct alarm_base *base = &alarm_bases[alarm->type]; 367 unsigned long flags; 368 369 spin_lock_irqsave(&base->lock, flags); 370 alarm->node.expires = start; 371 alarmtimer_enqueue(base, alarm); 372 hrtimer_start(&alarm->timer, alarm->node.expires, HRTIMER_MODE_ABS); 373 spin_unlock_irqrestore(&base->lock, flags); 374 375 trace_alarmtimer_start(alarm, base->gettime()); 376 } 377 EXPORT_SYMBOL_GPL(alarm_start); 378 379 /** 380 * alarm_start_relative - Sets a relative alarm to fire 381 * @alarm: ptr to alarm to set 382 * @start: time relative to now to run the alarm 383 */ 384 void alarm_start_relative(struct alarm *alarm, ktime_t start) 385 { 386 struct alarm_base *base = &alarm_bases[alarm->type]; 387 388 start = ktime_add(start, base->gettime()); 389 alarm_start(alarm, start); 390 } 391 EXPORT_SYMBOL_GPL(alarm_start_relative); 392 393 void alarm_restart(struct alarm *alarm) 394 { 395 struct alarm_base *base = &alarm_bases[alarm->type]; 396 unsigned long flags; 397 398 spin_lock_irqsave(&base->lock, flags); 399 hrtimer_set_expires(&alarm->timer, alarm->node.expires); 400 hrtimer_restart(&alarm->timer); 401 alarmtimer_enqueue(base, alarm); 402 spin_unlock_irqrestore(&base->lock, flags); 403 } 404 EXPORT_SYMBOL_GPL(alarm_restart); 405 406 /** 407 * alarm_try_to_cancel - Tries to cancel an alarm timer 408 * @alarm: ptr to alarm to be canceled 409 * 410 * Returns 1 if the timer was canceled, 0 if it was not running, 411 * and -1 if the callback was running 412 */ 413 int alarm_try_to_cancel(struct alarm *alarm) 414 { 415 struct alarm_base *base = &alarm_bases[alarm->type]; 416 unsigned long flags; 417 int ret; 418 419 spin_lock_irqsave(&base->lock, flags); 420 ret = hrtimer_try_to_cancel(&alarm->timer); 421 if (ret >= 0) 422 alarmtimer_dequeue(base, alarm); 423 spin_unlock_irqrestore(&base->lock, flags); 424 425 trace_alarmtimer_cancel(alarm, base->gettime()); 426 return ret; 427 } 428 EXPORT_SYMBOL_GPL(alarm_try_to_cancel); 429 430 431 /** 432 * alarm_cancel - Spins trying to cancel an alarm timer until it is done 433 * @alarm: ptr to alarm to be canceled 434 * 435 * Returns 1 if the timer was canceled, 0 if it was not active. 436 */ 437 int alarm_cancel(struct alarm *alarm) 438 { 439 for (;;) { 440 int ret = alarm_try_to_cancel(alarm); 441 if (ret >= 0) 442 return ret; 443 cpu_relax(); 444 } 445 } 446 EXPORT_SYMBOL_GPL(alarm_cancel); 447 448 449 u64 alarm_forward(struct alarm *alarm, ktime_t now, ktime_t interval) 450 { 451 u64 overrun = 1; 452 ktime_t delta; 453 454 delta = ktime_sub(now, alarm->node.expires); 455 456 if (delta < 0) 457 return 0; 458 459 if (unlikely(delta >= interval)) { 460 s64 incr = ktime_to_ns(interval); 461 462 overrun = ktime_divns(delta, incr); 463 464 alarm->node.expires = ktime_add_ns(alarm->node.expires, 465 incr*overrun); 466 467 if (alarm->node.expires > now) 468 return overrun; 469 /* 470 * This (and the ktime_add() below) is the 471 * correction for exact: 472 */ 473 overrun++; 474 } 475 476 alarm->node.expires = ktime_add(alarm->node.expires, interval); 477 return overrun; 478 } 479 EXPORT_SYMBOL_GPL(alarm_forward); 480 481 u64 alarm_forward_now(struct alarm *alarm, ktime_t interval) 482 { 483 struct alarm_base *base = &alarm_bases[alarm->type]; 484 485 return alarm_forward(alarm, base->gettime(), interval); 486 } 487 EXPORT_SYMBOL_GPL(alarm_forward_now); 488 489 490 /** 491 * clock2alarm - helper that converts from clockid to alarmtypes 492 * @clockid: clockid. 493 */ 494 static enum alarmtimer_type clock2alarm(clockid_t clockid) 495 { 496 if (clockid == CLOCK_REALTIME_ALARM) 497 return ALARM_REALTIME; 498 if (clockid == CLOCK_BOOTTIME_ALARM) 499 return ALARM_BOOTTIME; 500 return -1; 501 } 502 503 /** 504 * alarm_handle_timer - Callback for posix timers 505 * @alarm: alarm that fired 506 * 507 * Posix timer callback for expired alarm timers. 508 */ 509 static enum alarmtimer_restart alarm_handle_timer(struct alarm *alarm, 510 ktime_t now) 511 { 512 unsigned long flags; 513 struct k_itimer *ptr = container_of(alarm, struct k_itimer, 514 it.alarm.alarmtimer); 515 enum alarmtimer_restart result = ALARMTIMER_NORESTART; 516 517 spin_lock_irqsave(&ptr->it_lock, flags); 518 if ((ptr->it_sigev_notify & ~SIGEV_THREAD_ID) != SIGEV_NONE) { 519 if (IS_ENABLED(CONFIG_POSIX_TIMERS) && 520 posix_timer_event(ptr, 0) != 0) 521 ptr->it_overrun++; 522 } 523 524 /* Re-add periodic timers */ 525 if (ptr->it.alarm.interval) { 526 ptr->it_overrun += alarm_forward(alarm, now, 527 ptr->it.alarm.interval); 528 result = ALARMTIMER_RESTART; 529 } 530 spin_unlock_irqrestore(&ptr->it_lock, flags); 531 532 return result; 533 } 534 535 /** 536 * alarm_clock_getres - posix getres interface 537 * @which_clock: clockid 538 * @tp: timespec to fill 539 * 540 * Returns the granularity of underlying alarm base clock 541 */ 542 static int alarm_clock_getres(const clockid_t which_clock, struct timespec *tp) 543 { 544 if (!alarmtimer_get_rtcdev()) 545 return -EINVAL; 546 547 tp->tv_sec = 0; 548 tp->tv_nsec = hrtimer_resolution; 549 return 0; 550 } 551 552 /** 553 * alarm_clock_get - posix clock_get interface 554 * @which_clock: clockid 555 * @tp: timespec to fill. 556 * 557 * Provides the underlying alarm base time. 558 */ 559 static int alarm_clock_get(clockid_t which_clock, struct timespec *tp) 560 { 561 struct alarm_base *base = &alarm_bases[clock2alarm(which_clock)]; 562 563 if (!alarmtimer_get_rtcdev()) 564 return -EINVAL; 565 566 *tp = ktime_to_timespec(base->gettime()); 567 return 0; 568 } 569 570 /** 571 * alarm_timer_create - posix timer_create interface 572 * @new_timer: k_itimer pointer to manage 573 * 574 * Initializes the k_itimer structure. 575 */ 576 static int alarm_timer_create(struct k_itimer *new_timer) 577 { 578 enum alarmtimer_type type; 579 580 if (!alarmtimer_get_rtcdev()) 581 return -ENOTSUPP; 582 583 if (!capable(CAP_WAKE_ALARM)) 584 return -EPERM; 585 586 type = clock2alarm(new_timer->it_clock); 587 alarm_init(&new_timer->it.alarm.alarmtimer, type, alarm_handle_timer); 588 return 0; 589 } 590 591 /** 592 * alarm_timer_get - posix timer_get interface 593 * @new_timer: k_itimer pointer 594 * @cur_setting: itimerspec data to fill 595 * 596 * Copies out the current itimerspec data 597 */ 598 static void alarm_timer_get(struct k_itimer *timr, 599 struct itimerspec *cur_setting) 600 { 601 ktime_t relative_expiry_time = 602 alarm_expires_remaining(&(timr->it.alarm.alarmtimer)); 603 604 if (ktime_to_ns(relative_expiry_time) > 0) { 605 cur_setting->it_value = ktime_to_timespec(relative_expiry_time); 606 } else { 607 cur_setting->it_value.tv_sec = 0; 608 cur_setting->it_value.tv_nsec = 0; 609 } 610 611 cur_setting->it_interval = ktime_to_timespec(timr->it.alarm.interval); 612 } 613 614 /** 615 * alarm_timer_del - posix timer_del interface 616 * @timr: k_itimer pointer to be deleted 617 * 618 * Cancels any programmed alarms for the given timer. 619 */ 620 static int alarm_timer_del(struct k_itimer *timr) 621 { 622 if (!rtcdev) 623 return -ENOTSUPP; 624 625 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 626 return TIMER_RETRY; 627 628 return 0; 629 } 630 631 /** 632 * alarm_timer_set - posix timer_set interface 633 * @timr: k_itimer pointer to be deleted 634 * @flags: timer flags 635 * @new_setting: itimerspec to be used 636 * @old_setting: itimerspec being replaced 637 * 638 * Sets the timer to new_setting, and starts the timer. 639 */ 640 static int alarm_timer_set(struct k_itimer *timr, int flags, 641 struct itimerspec *new_setting, 642 struct itimerspec *old_setting) 643 { 644 ktime_t exp; 645 646 if (!rtcdev) 647 return -ENOTSUPP; 648 649 if (flags & ~TIMER_ABSTIME) 650 return -EINVAL; 651 652 if (old_setting) 653 alarm_timer_get(timr, old_setting); 654 655 /* If the timer was already set, cancel it */ 656 if (alarm_try_to_cancel(&timr->it.alarm.alarmtimer) < 0) 657 return TIMER_RETRY; 658 659 /* start the timer */ 660 timr->it.alarm.interval = timespec_to_ktime(new_setting->it_interval); 661 exp = timespec_to_ktime(new_setting->it_value); 662 /* Convert (if necessary) to absolute time */ 663 if (flags != TIMER_ABSTIME) { 664 ktime_t now; 665 666 now = alarm_bases[timr->it.alarm.alarmtimer.type].gettime(); 667 exp = ktime_add(now, exp); 668 } 669 670 alarm_start(&timr->it.alarm.alarmtimer, exp); 671 return 0; 672 } 673 674 /** 675 * alarmtimer_nsleep_wakeup - Wakeup function for alarm_timer_nsleep 676 * @alarm: ptr to alarm that fired 677 * 678 * Wakes up the task that set the alarmtimer 679 */ 680 static enum alarmtimer_restart alarmtimer_nsleep_wakeup(struct alarm *alarm, 681 ktime_t now) 682 { 683 struct task_struct *task = (struct task_struct *)alarm->data; 684 685 alarm->data = NULL; 686 if (task) 687 wake_up_process(task); 688 return ALARMTIMER_NORESTART; 689 } 690 691 /** 692 * alarmtimer_do_nsleep - Internal alarmtimer nsleep implementation 693 * @alarm: ptr to alarmtimer 694 * @absexp: absolute expiration time 695 * 696 * Sets the alarm timer and sleeps until it is fired or interrupted. 697 */ 698 static int alarmtimer_do_nsleep(struct alarm *alarm, ktime_t absexp) 699 { 700 alarm->data = (void *)current; 701 do { 702 set_current_state(TASK_INTERRUPTIBLE); 703 alarm_start(alarm, absexp); 704 if (likely(alarm->data)) 705 schedule(); 706 707 alarm_cancel(alarm); 708 } while (alarm->data && !signal_pending(current)); 709 710 __set_current_state(TASK_RUNNING); 711 712 return (alarm->data == NULL); 713 } 714 715 716 /** 717 * update_rmtp - Update remaining timespec value 718 * @exp: expiration time 719 * @type: timer type 720 * @rmtp: user pointer to remaining timepsec value 721 * 722 * Helper function that fills in rmtp value with time between 723 * now and the exp value 724 */ 725 static int update_rmtp(ktime_t exp, enum alarmtimer_type type, 726 struct timespec __user *rmtp) 727 { 728 struct timespec rmt; 729 ktime_t rem; 730 731 rem = ktime_sub(exp, alarm_bases[type].gettime()); 732 733 if (rem <= 0) 734 return 0; 735 rmt = ktime_to_timespec(rem); 736 737 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) 738 return -EFAULT; 739 740 return 1; 741 742 } 743 744 /** 745 * alarm_timer_nsleep_restart - restartblock alarmtimer nsleep 746 * @restart: ptr to restart block 747 * 748 * Handles restarted clock_nanosleep calls 749 */ 750 static long __sched alarm_timer_nsleep_restart(struct restart_block *restart) 751 { 752 enum alarmtimer_type type = restart->nanosleep.clockid; 753 ktime_t exp; 754 struct timespec __user *rmtp; 755 struct alarm alarm; 756 int ret = 0; 757 758 exp = restart->nanosleep.expires; 759 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 760 761 if (alarmtimer_do_nsleep(&alarm, exp)) 762 goto out; 763 764 if (freezing(current)) 765 alarmtimer_freezerset(exp, type); 766 767 rmtp = restart->nanosleep.rmtp; 768 if (rmtp) { 769 ret = update_rmtp(exp, type, rmtp); 770 if (ret <= 0) 771 goto out; 772 } 773 774 775 /* The other values in restart are already filled in */ 776 ret = -ERESTART_RESTARTBLOCK; 777 out: 778 return ret; 779 } 780 781 /** 782 * alarm_timer_nsleep - alarmtimer nanosleep 783 * @which_clock: clockid 784 * @flags: determins abstime or relative 785 * @tsreq: requested sleep time (abs or rel) 786 * @rmtp: remaining sleep time saved 787 * 788 * Handles clock_nanosleep calls against _ALARM clockids 789 */ 790 static int alarm_timer_nsleep(const clockid_t which_clock, int flags, 791 struct timespec *tsreq, struct timespec __user *rmtp) 792 { 793 enum alarmtimer_type type = clock2alarm(which_clock); 794 struct alarm alarm; 795 ktime_t exp; 796 int ret = 0; 797 struct restart_block *restart; 798 799 if (!alarmtimer_get_rtcdev()) 800 return -ENOTSUPP; 801 802 if (flags & ~TIMER_ABSTIME) 803 return -EINVAL; 804 805 if (!capable(CAP_WAKE_ALARM)) 806 return -EPERM; 807 808 alarm_init(&alarm, type, alarmtimer_nsleep_wakeup); 809 810 exp = timespec_to_ktime(*tsreq); 811 /* Convert (if necessary) to absolute time */ 812 if (flags != TIMER_ABSTIME) { 813 ktime_t now = alarm_bases[type].gettime(); 814 exp = ktime_add(now, exp); 815 } 816 817 if (alarmtimer_do_nsleep(&alarm, exp)) 818 goto out; 819 820 if (freezing(current)) 821 alarmtimer_freezerset(exp, type); 822 823 /* abs timers don't set remaining time or restart */ 824 if (flags == TIMER_ABSTIME) { 825 ret = -ERESTARTNOHAND; 826 goto out; 827 } 828 829 if (rmtp) { 830 ret = update_rmtp(exp, type, rmtp); 831 if (ret <= 0) 832 goto out; 833 } 834 835 restart = ¤t->restart_block; 836 restart->fn = alarm_timer_nsleep_restart; 837 restart->nanosleep.clockid = type; 838 restart->nanosleep.expires = exp; 839 restart->nanosleep.rmtp = rmtp; 840 ret = -ERESTART_RESTARTBLOCK; 841 842 out: 843 return ret; 844 } 845 846 847 /* Suspend hook structures */ 848 static const struct dev_pm_ops alarmtimer_pm_ops = { 849 .suspend = alarmtimer_suspend, 850 .resume = alarmtimer_resume, 851 }; 852 853 static struct platform_driver alarmtimer_driver = { 854 .driver = { 855 .name = "alarmtimer", 856 .pm = &alarmtimer_pm_ops, 857 } 858 }; 859 860 /** 861 * alarmtimer_init - Initialize alarm timer code 862 * 863 * This function initializes the alarm bases and registers 864 * the posix clock ids. 865 */ 866 static int __init alarmtimer_init(void) 867 { 868 struct platform_device *pdev; 869 int error = 0; 870 int i; 871 struct k_clock alarm_clock = { 872 .clock_getres = alarm_clock_getres, 873 .clock_get = alarm_clock_get, 874 .timer_create = alarm_timer_create, 875 .timer_set = alarm_timer_set, 876 .timer_del = alarm_timer_del, 877 .timer_get = alarm_timer_get, 878 .nsleep = alarm_timer_nsleep, 879 }; 880 881 alarmtimer_rtc_timer_init(); 882 883 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 884 posix_timers_register_clock(CLOCK_REALTIME_ALARM, &alarm_clock); 885 posix_timers_register_clock(CLOCK_BOOTTIME_ALARM, &alarm_clock); 886 } 887 888 /* Initialize alarm bases */ 889 alarm_bases[ALARM_REALTIME].base_clockid = CLOCK_REALTIME; 890 alarm_bases[ALARM_REALTIME].gettime = &ktime_get_real; 891 alarm_bases[ALARM_BOOTTIME].base_clockid = CLOCK_BOOTTIME; 892 alarm_bases[ALARM_BOOTTIME].gettime = &ktime_get_boottime; 893 for (i = 0; i < ALARM_NUMTYPE; i++) { 894 timerqueue_init_head(&alarm_bases[i].timerqueue); 895 spin_lock_init(&alarm_bases[i].lock); 896 } 897 898 error = alarmtimer_rtc_interface_setup(); 899 if (error) 900 return error; 901 902 error = platform_driver_register(&alarmtimer_driver); 903 if (error) 904 goto out_if; 905 906 pdev = platform_device_register_simple("alarmtimer", -1, NULL, 0); 907 if (IS_ERR(pdev)) { 908 error = PTR_ERR(pdev); 909 goto out_drv; 910 } 911 ws = wakeup_source_register("alarmtimer"); 912 return 0; 913 914 out_drv: 915 platform_driver_unregister(&alarmtimer_driver); 916 out_if: 917 alarmtimer_rtc_interface_remove(); 918 return error; 919 } 920 device_initcall(alarmtimer_init); 921